JP2012176687A - Interior material for aircraft - Google Patents

Interior material for aircraft Download PDF

Info

Publication number
JP2012176687A
JP2012176687A JP2011040552A JP2011040552A JP2012176687A JP 2012176687 A JP2012176687 A JP 2012176687A JP 2011040552 A JP2011040552 A JP 2011040552A JP 2011040552 A JP2011040552 A JP 2011040552A JP 2012176687 A JP2012176687 A JP 2012176687A
Authority
JP
Japan
Prior art keywords
foamed molded
molded product
mass
resin particles
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011040552A
Other languages
Japanese (ja)
Inventor
Seiichi Morimoto
誠一 森本
Takehiro Togami
武広 砥上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2011040552A priority Critical patent/JP2012176687A/en
Publication of JP2012176687A publication Critical patent/JP2012176687A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an interior material for an aircraft which has a high bulk foaming rate, and is excellent in strength, fire resistance, and heat resistance.SOLUTION: In the interior material for the aircraft, a foam molding body includes: 100 pts.mass of polyolefin based resin; 100-400 pts.mass of polystyrene based resin as resin components and 2-4 pts.mass of flame retardant with respect to 100 pts.mass of the resin component, and has 10-70 times the bulk foaming rate in the entire foam molding body, and the ratio of the bulk foaming rate Sf on the surface of the foam molding body and the bulk foaming rate If inside of the foam molding body satisfies a formula (1): 1.1≤If/Sf≤1.8.

Description

本発明は、航空機用内装材に関する。さらに詳しくは、本発明は、嵩発泡倍率が高く、強度、難燃性および耐熱性に優れた航空機用内装材に関する。   The present invention relates to an aircraft interior material. More specifically, the present invention relates to an aircraft interior material having a high bulk foaming ratio and excellent in strength, flame retardancy and heat resistance.

従来、ポリスチレン系樹脂、ポリプロピレン系樹脂等を熱可塑性樹脂成分として含む発泡成形体は、耐衝撃性、成形性等に優れるため、包装用緩衝材、自動車用構造部材等として幅広く利用されている。   2. Description of the Related Art Conventionally, foam molded articles containing polystyrene resin, polypropylene resin, and the like as thermoplastic resin components are widely used as cushioning materials for packaging, structural members for automobiles, and the like because they are excellent in impact resistance, moldability, and the like.

また、発泡成形体を自動車内装材として用いた場合、発泡成形体には事故での火災等に備えて、前記の耐衝撃性、成形性だけでなく、高い難燃性もさらに求められる。このため、例えば特開2008−75076号公報(特許文献1)には、高い難燃性を有する発泡成形体として特定の難燃剤および難燃助剤を含む発泡成形体が記載されている。   Further, when the foamed molded product is used as an automobile interior material, the foamed molded product is required to have not only the above-mentioned impact resistance and moldability but also high flame resistance in preparation for an accidental fire or the like. For this reason, for example, JP 2008-75076 A (Patent Document 1) describes a foamed molded article containing a specific flame retardant and a flame retardant aid as a foamed molded article having high flame retardancy.

特開2008−75076号公報JP 2008-75076 A

現在、軽量化や低コスト化の観点から、前記の物性に加えて発泡成形体に対して高倍化や低比重化が望まれるようにもなっている。しかし、発泡成形体をより高倍化させた場合、嵩発泡倍率に反比例して発泡成形体表面の硬度が低くなり、用途によっては強度等の所望の物性を得ることができないことがある。   At present, from the viewpoint of weight reduction and cost reduction, in addition to the above physical properties, higher foaming and lower specific gravity are desired for foamed molded products. However, when the foamed molded product is further increased in magnification, the hardness of the surface of the foamed molded product decreases in inverse proportion to the bulk foaming ratio, and desired physical properties such as strength may not be obtained depending on the application.

特に、発泡成形体を航空機用内装材として用いた場合、発泡成形体は包装用緩衝材等と比べて、人体、貨物等によってより大きな負荷の存在下や、より長時間に亘って高温多湿条件下に置かれることがある。この場合、より高倍化させた発泡成形体は柔軟性を失うことによって、変形、倍率変化を起こし、発泡成形体に対して求められる耐衝撃性、強度、耐熱性等の所望の物性を得ることができないことがある。   In particular, when a foamed molded product is used as an aircraft interior material, the foamed molded product has a greater load due to the human body, cargo, etc., or a longer period of time under high temperature and humidity conditions than packaging cushioning materials, etc. May be placed underneath. In this case, the foamed molded article having a higher magnification loses flexibility, thereby causing deformation and change in magnification, and obtaining desired physical properties such as impact resistance, strength, and heat resistance required for the foamed molded article. May not be possible.

他方、従来の発泡成形体や引用文献1に記載のものは、このような場合に一定レベルの発泡性、難燃性等を示すことがあるものの、航空機用内装材として使用し得るような発泡成形体、即ち、嵩発泡倍率が高く、強度、難燃性および耐熱性に優れた発泡成形体としては満足のいくものではなかった。具体的には、国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験を満足するような発泡成形体という観点からは必ずしも満足のいくものではなかった。   On the other hand, the conventional foamed molded article and the one described in the cited reference 1 may exhibit a certain level of foamability, flame retardancy, etc. in such a case, but foam that can be used as an aircraft interior material. The molded article, that is, a foamed molded article having a high bulk foaming ratio and excellent in strength, flame retardancy and heat resistance, was not satisfactory. Specifically, it was not always satisfactory from the viewpoint of a foamed molded product that satisfies the vertical combustion test in Appendix F of Part III, Appendix III, Air Quality Examination Guidelines, Ministry of Land, Infrastructure, Transport and Tourism.

このため、これらの問題点に鑑みて、航空機用内装材として用いた場合であっても十分に使用することができるような、嵩発泡倍率が高く、強度、難燃性および耐熱性に優れた発泡成形体を提供することが求められている。   Therefore, in view of these problems, even when used as an aircraft interior material, the bulk foaming ratio is high enough to be used, and the strength, flame retardancy and heat resistance are excellent. There is a need to provide foam molded articles.

かくして本発明によれば、樹脂成分として、ポリオレフィン系樹脂100質量部とポリスチレン系樹脂100〜400質量部とを含む発泡成形体であり、
前記発泡成形体が、前記樹脂成分100質量部に対して、難燃剤2〜4質量部を含み、かつ、前記発泡成形体全体において10〜70倍の嵩発泡倍率を有し、
前記発泡成形体の表層の嵩発泡倍率Sfとその内部の嵩発泡倍率Ifとの比率が、下記式(1):
1.1≦If/Sf≦1.8 (1)
を満たすことを特徴とする航空機用内装材が提供される。
Thus, according to the present invention, the resin component is a foamed molded article containing 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin,
The foamed molded product includes 2 to 4 parts by mass of a flame retardant with respect to 100 parts by mass of the resin component, and has a bulk foaming ratio of 10 to 70 times in the entire foamed molded product,
The ratio of the bulk foaming ratio Sf of the surface layer of the foamed molded product to the bulk foaming ratio If inside thereof is represented by the following formula (1):
1.1 ≦ If / Sf ≦ 1.8 (1)
An aircraft interior material characterized by satisfying the above is provided.

本発明によれば、嵩発泡倍率が高く、強度、難燃性および耐熱性に優れた航空機用内装材を得ることができる。   According to the present invention, it is possible to obtain an aircraft interior material having a high bulk foaming ratio and excellent strength, flame retardancy, and heat resistance.

また、本発明によれば、発泡成形体が下記式(2):
−0.95X+90≦Y≦100 (2)
(式中、Xは発泡成形体全体の嵩発泡倍率であり、Yは表面硬度(CS硬度)である)
を満たす場合、表面硬度と嵩発泡倍率とを高いレベルで調整することができるため、嵩発泡倍率が高く、難燃性および耐熱性に優れ、より強度の高い航空機用内装材を得ることができる。
Moreover, according to this invention, a foaming molding is following formula (2):
−0.95X + 90 ≦ Y ≦ 100 (2)
(In the formula, X is the bulk expansion ratio of the entire foamed molded product, and Y is the surface hardness (CS hardness)).
In the case of satisfying, since the surface hardness and the bulk foaming ratio can be adjusted at a high level, the bulk foaming ratio is high, the flame retardancy and heat resistance are excellent, and a higher strength aircraft interior material can be obtained. .

また、本発明によれば、国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験を満足する航空機用内装材を得ることもできる。   In addition, according to the present invention, it is also possible to obtain an aircraft interior material that satisfies the vertical combustion test of Appendix F of Part III of the Air Station Air Quality Examination Guidelines, Ministry of Land, Infrastructure, Transport and Tourism.

また、本発明によれば、発泡成形体がJIS K6767:1999KのB法に準拠して、80℃、168時間の加熱後、絶対値で1.0%以下の加熱寸法変化率を有する場合、加熱後のより低い加熱寸法変化率を得ることができるため、嵩発泡倍率が高く、強度および難燃性に優れ、さらに耐熱性にも優れた航空機用内装材を得ることができる。   Further, according to the present invention, when the foamed molded product has a heating dimensional change rate of 1.0% or less in absolute value after heating at 80 ° C. for 168 hours in accordance with JIS K6767: 1999K, Method B, Since a lower heating dimensional change rate after heating can be obtained, an aircraft interior material having a high bulk foaming ratio, excellent strength and flame retardancy, and excellent heat resistance can be obtained.

また、本発明によれば、難燃剤がトリス(2,3−ジブロモプロピル)イソシアヌレートを主成分とする場合、難燃効果の高い難燃剤を含むため、同様に、嵩発泡倍率が高く、強度および耐熱性に優れ、より難燃性に優れた航空機用内装材を得ることができる。   In addition, according to the present invention, when the flame retardant is mainly composed of tris (2,3-dibromopropyl) isocyanurate, the flame retardant having a high flame retardant effect is included, and thus the bulk foaming ratio is high and the strength is increased. In addition, it is possible to obtain an aircraft interior material having excellent heat resistance and flame retardancy.

本発明の特徴は、樹脂成分として、ポリオレフィン系樹脂100質量部とポリスチレン系樹脂100〜400質量部とを含む発泡成形体であり、
前記発泡成形体が、前記樹脂成分100質量部に対して、難燃剤2〜4質量部を含み、かつ、前記発泡成形体全体において10〜70倍の嵩発泡倍率を有し、
前記発泡成形体の表層の嵩発泡倍率Sfとその内部の嵩発泡倍率Ifとの比率が、下記式(1):
1.1≦If/Sf≦1.8 (1)
を満たす航空機用内装材である。
A feature of the present invention is a foamed molded article containing 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin as a resin component,
The foamed molded product includes 2 to 4 parts by mass of a flame retardant with respect to 100 parts by mass of the resin component, and has a bulk foaming ratio of 10 to 70 times in the entire foamed molded product,
The ratio of the bulk foaming ratio Sf of the surface layer of the foamed molded product to the bulk foaming ratio If inside thereof is represented by the following formula (1):
1.1 ≦ If / Sf ≦ 1.8 (1)
It is an aircraft interior material that meets the requirements.

本発明において、航空機用内装材とは、航空機の座席の内部等において軽量化や耐衝撃性の付与等を目的に用いられる緩衝材等を意味する。具体的には、座席のヘッドレストパッド、クッションパッドおよびテーブルの芯材のような航空機内で使用される内装材が意味される。   In the present invention, the aircraft interior material means a cushioning material or the like used for the purpose of reducing the weight, imparting impact resistance, or the like inside an aircraft seat. Specifically, interior materials used in aircraft such as seat headrest pads, cushion pads, and table cores are meant.

本発明の発泡成形体は、樹脂成分として、ポリオレフィン系樹脂100質量部とポリスチレン系樹脂100〜400質量部とを含む発泡成形体である。このため、発泡成形体にオレフィン系樹脂に由来する高耐熱性と耐衝撃性(強度)とを容易に導入することができる。また、ポリスチレン系樹脂に由来する剛性と高い発泡性とを容易に導入することもできる。よって、本発明の発泡成形体は両者の特性を好適に有する発泡成形体である。   The foam molded article of the present invention is a foam molded article containing 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin as a resin component. For this reason, high heat resistance and impact resistance (strength) derived from the olefin resin can be easily introduced into the foam molded article. Further, rigidity derived from polystyrene resin and high foamability can be easily introduced. Therefore, the foamed molded product of the present invention is a foamed molded product having both characteristics suitably.

また、本発明の発泡成形体は、前記樹脂成分100質量部に対して、難燃剤2〜4質量部を含む発泡成形体でもある。このため、本発明の発泡成形体は、高い嵩発泡倍率と強度、耐熱性等の所望の物性を維持しつつ、高い難燃性を有することができる。   Moreover, the foaming molding of this invention is also a foaming molding containing 2-4 mass parts of flame retardants with respect to 100 mass parts of said resin components. For this reason, the foaming molding of this invention can have high flame retardance, maintaining desired physical properties, such as a high bulk foaming magnification, intensity | strength, and heat resistance.

他方、本発明の発泡成形体は、発泡成形体全体において10〜70倍の嵩発泡倍率を有する。このため、発泡成形体は航空機用内装材として使用することができる程度に十分な耐熱性、断熱性等を有することができる。   On the other hand, the foamed molded product of the present invention has a bulk foaming ratio of 10 to 70 times in the whole foamed molded product. For this reason, a foaming molding can have sufficient heat resistance, heat insulation, etc. which can be used as an aircraft interior material.

さらに、発泡成形体の表層の嵩発泡倍率Sfとその内部の嵩発泡倍率Ifとの比率が、下記式(1):
1.1≦If/Sf≦1.8 (1)
を満たすため、本発明の発泡成形体は内部の嵩発泡倍率が表層の嵩発泡倍率より高い構造を有する。
Furthermore, the ratio between the bulk foaming ratio Sf of the surface layer of the foamed molded product and the bulk foaming ratio If inside thereof is expressed by the following formula (1):
1.1 ≦ If / Sf ≦ 1.8 (1)
In order to satisfy the above, the foamed molded article of the present invention has a structure in which the internal bulk foaming ratio is higher than the bulk foaming ratio of the surface layer.

このため、発泡成形体表層に対衝撃性等に優れる高硬度な低発泡部位を多く導入することができ、他方、発泡成形体内部に高い嵩発泡倍率を期待することができる高発泡部位を多く導入することができる。よって、本発明の発泡成形体は高い強度を有し、かつ、高い嵩発泡倍率も維持することができる。   For this reason, it is possible to introduce many high-hardness low-foaming sites that are excellent in impact resistance and the like into the surface of the foam-molded product, and on the other hand, many high-foamed sites that can be expected to have a high bulk foaming ratio inside the foam-molded product. Can be introduced. Therefore, the foamed molded product of the present invention has high strength and can maintain a high bulk foaming ratio.

なお、本発明において、発泡成形体の表層および内部とは、発泡成形体の厚みが少なくとも20mm以上あり、表皮を含む30mm×30mm以上の水平な面を有する任意の部分から、厚みの1/3の長さを一辺とする立方体を厚み方向に3等分に分割したときに、その3等分した立方体のうちの、発泡成形体の表皮を含む上下の分割片を表層といい、表皮を含まない前記表層に挟まれた分割片を内部という。   In the present invention, the surface layer and the inside of the foam-molded product are 1/3 of the thickness from any part having a thickness of at least 20 mm or more and a horizontal surface of 30 mm × 30 mm or more including the skin. When a cube whose length is one side is divided into three equal parts in the thickness direction, the upper and lower divided pieces, including the skin of the foam molded body, of the three equally divided cubes are called the surface layer and include the skin The divided piece sandwiched between the surface layers is referred to as the inside.

従って、本発明の発泡成形体は嵩発泡倍率が高く、強度、難燃性および耐熱性に優れるため、航空機用内装材として好適に使用することができる。
以下、本発明の発泡成形体について詳説する。
Accordingly, the foamed molded article of the present invention has a high bulk foaming ratio and is excellent in strength, flame retardancy and heat resistance, and therefore can be suitably used as an aircraft interior material.
Hereinafter, the foam molded article of the present invention will be described in detail.

<発泡成形体の製造方法>
本発明の発泡成形体は、
(1)樹脂成分および難燃剤を含む複合樹脂粒子を製造する;
(2)複合樹脂粒子に発泡剤を含浸させることによって発泡性複合樹脂粒子を製造する;
(3)発泡性複合樹脂粒子を予備発泡させることによって予備発泡粒子を製造する;
(4)予備発泡粒子を発泡成形する
ことにより得ることができる。
<Method for producing foam molded article>
The foamed molded article of the present invention is
(1) producing composite resin particles containing a resin component and a flame retardant;
(2) producing expandable composite resin particles by impregnating the composite resin particles with a foaming agent;
(3) producing pre-expanded particles by pre-expanding the expandable composite resin particles;
(4) It can be obtained by foaming the pre-expanded particles.

<複合樹脂粒子>
本発明において、複合樹脂粒子とは、樹脂成分および難燃剤を少なくとも含む樹脂粒子を意味する。なお、所望の物性を得ることができる限り、複合樹脂粒子は難燃助剤を任意に含んでいてもよく、複合樹脂粒子に由来する発泡成形体も難燃助剤を任意に含んでいてもよい。また、本発明の複合樹脂粒子は樹脂成分としてポリオレフィン系樹脂とポリスチレン系樹脂とを所定の割合で含むため、本発明においては、発泡成形体にオレフィン系樹脂に由来する高耐熱性と耐衝撃性(強度)とを容易に導入することができ、ポリスチレン系樹脂に由来する剛性と高い発泡性とを容易に導入することもできる。なお、原材料として使用する単量体成分、樹脂成分、難燃剤等の質量比と、予備発泡粒子、発泡成形体等におけるこれらの質量比とは略同一である。
<Composite resin particles>
In the present invention, the composite resin particle means a resin particle containing at least a resin component and a flame retardant. As long as the desired physical properties can be obtained, the composite resin particles may optionally contain a flame retardant aid, and the foamed molded article derived from the composite resin particles may optionally contain a flame retardant aid. Good. In addition, since the composite resin particle of the present invention contains a polyolefin resin and a polystyrene resin at a predetermined ratio as resin components, in the present invention, the foam molded article has high heat resistance and impact resistance derived from the olefin resin. (Strength) can be easily introduced, and rigidity derived from the polystyrene-based resin and high foamability can also be easily introduced. Note that the mass ratio of the monomer component, resin component, flame retardant, etc. used as the raw material is substantially the same as the mass ratio of the pre-foamed particles, foamed molded product, and the like.

本発明において、ポリスチレン系樹脂とは、スチレン単独重合体、またはスチレンを主成分とし、スチレンと共重合可能な他の単量体との共重合体を意味する。ここでスチレンを主成分とするとは、スチレンが全単量体の70質量%以上を占めることを意味する。他の単量体として、α−メチルスチレン、p−メチルスチレン、アクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、ジビニルベンゼン、ポリエチレングリコールジメタクリレート等が例示される。本発明において、アルキルとは炭素数1〜20のアルキルを意味する。本発明においては、発泡性樹脂粒子を安定に予備発泡させることができるスチレン単独重合体が好ましい。   In the present invention, the polystyrene resin means a styrene homopolymer or a copolymer of styrene as a main component and another monomer copolymerizable with styrene. Here, styrene as a main component means that styrene accounts for 70% by mass or more of all monomers. Examples of other monomers include α-methylstyrene, p-methylstyrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, alkyl acrylate ester, alkyl methacrylate ester, divinylbenzene, and polyethylene glycol dimethacrylate. The In the present invention, alkyl means alkyl having 1 to 20 carbon atoms. In the present invention, a styrene homopolymer capable of stably pre-foaming expandable resin particles is preferable.

本発明において、ポリオレフィン系樹脂とは、オレフィン単独重合体、またはオレフィン系重合性単量体を主成分とし、オレフィン系重合性単量体と共重合可能な他の単量体との共重合体を意味する。ここでオレフィン系重合性単量体を主成分とするとは、オレフィン系重合性単量体が全単量体の70質量%以上を占めることを意味する。   In the present invention, the polyolefin resin is an olefin homopolymer or a copolymer of an olefin polymerizable monomer as a main component and another monomer copolymerizable with the olefin polymerizable monomer. Means. Here, the olefin-based polymerizable monomer as a main component means that the olefin-based polymerizable monomer occupies 70% by mass or more of all monomers.

具体的には、ポリオレフィン系樹脂として、例えば、分枝鎖状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂;
プロピレン単独重合体、エチレン−プロピレン共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−1−ブテン共重合体等のポリプロピレン系樹脂等が挙げられる。
Specifically, as the polyolefin resin, for example, branched low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer Polyethylene resins such as cross-linked products of these polymers;
Examples thereof include polypropylene resins such as propylene homopolymer, ethylene-propylene copolymer, propylene-1-butene copolymer, and ethylene-propylene-1-butene copolymer.

本発明においては、より高いレベルの耐熱性を期待することができるため、ポリオレフィン系樹脂としてポリプロピレン系樹脂が好ましい。   In the present invention, since a higher level of heat resistance can be expected, a polypropylene resin is preferred as the polyolefin resin.

また、所望の物性に影響を与えない限り前記ポリオレフィン系樹脂を単独で使用しても、2種以上を使用してもよい。なお、前記例示中、低密度とは0.91〜0.94g/cm3であることが好ましく、0.91〜0.93g/cm3であることがより好ましい。高密度とは0.95〜0.97g/cm3であることが好ましく、0.95〜0.96g/cm3であることがより好ましい。中密度とはこれら低密度と高密度の中間の密度である。 Moreover, as long as the desired physical properties are not affected, the polyolefin resin may be used alone or in combination of two or more. In addition, in the said illustration, it is preferable that low density is 0.91-0.94 g / cm < 3 >, and it is more preferable that it is 0.91-0.93 g / cm < 3 >. Preferably high density and is 0.95~0.97g / cm 3, more preferably 0.95~0.96g / cm 3. The medium density is an intermediate density between the low density and the high density.

本発明のポリオレフィン系樹脂およびポリスチレン系樹脂は所望の物性に影響を与えない限り、それぞれ、ビニル基、カルボニル基、芳香族基、エステル基、エーテル基、アルデヒド基、アミノ基、ニトリル基、ニトロ基等の官能基を含んでいてもよく、2以上のビニル基を有する架橋剤等により架橋されていてもよく、これらの樹脂を単独で使用しても2種以上を併用してもよい。   Unless the polyolefin-based resin and polystyrene-based resin of the present invention affect the desired physical properties, vinyl group, carbonyl group, aromatic group, ester group, ether group, aldehyde group, amino group, nitrile group, nitro group, respectively. Or a functional group such as a cross-linking agent having two or more vinyl groups, and these resins may be used alone or in combination of two or more.

また、本発明の複合樹脂粒子は同様に所望の物性に影響を与えない限り、その他の樹脂成分を含んでいてもよい。他の樹脂成分としては公知の熱可塑性樹脂、熱硬化性樹脂等が挙げられ、具体的には、ポリ(メタ)アクリル系樹脂、ポリフェニレンエーテル系樹脂、ポリカーボネート系樹脂、ポリ乳酸を含むポリエステル系樹脂等が挙げられる。なお、(メタ)アクリルはアクリルまたはメタクリルを意味する。   Similarly, the composite resin particles of the present invention may contain other resin components as long as they do not affect the desired physical properties. Examples of other resin components include known thermoplastic resins, thermosetting resins, and the like. Specifically, poly (meth) acrylic resins, polyphenylene ether resins, polycarbonate resins, and polyester resins including polylactic acid. Etc. In addition, (meth) acryl means acryl or methacryl.

ポリスチレン系樹脂は複合樹脂粒子中に、ポリオレフィン系樹脂100質量部に対して100〜400質量部含有され、125〜240質量部含有されることが好ましい。ポリスチレン系樹脂の含有量が400質量部より多いと、ポリオレフィン系樹脂が不足し耐熱性が劣ることがある。一方、100質量部より少ないと、ポリスチレン系樹脂が不足し所望の発泡性を得ることができないことがある。   The polystyrene resin is contained in the composite resin particles in an amount of 100 to 400 parts by mass, preferably 125 to 240 parts by mass with respect to 100 parts by mass of the polyolefin resin. If the content of the polystyrene resin is more than 400 parts by mass, the polyolefin resin may be insufficient and the heat resistance may be inferior. On the other hand, when the amount is less than 100 parts by mass, the polystyrene resin may be insufficient and desired foamability may not be obtained.

また、両者の有する物性を好適に発泡成形体に導入することができるため、複合樹脂粒子は複合樹脂粒子100質量部中に両者を併せた樹脂成分を、好ましくは70〜100質量部、より好ましくは80〜98.5質量部含む。他方、ポリオレフィン系樹脂とポリスチレン系樹脂との組合せとして、プロピレン単独重合体とスチレン単独重合体との組合せが好ましい。   In addition, since the physical properties of both can be suitably introduced into the foamed molded article, the composite resin particles are a resin component that combines both in 100 parts by mass of the composite resin particles, preferably 70-100 parts by mass, more preferably. Contains 80-98.5 parts by mass. On the other hand, as a combination of a polyolefin resin and a polystyrene resin, a combination of a propylene homopolymer and a styrene homopolymer is preferable.

本発明においては、公知の難燃剤を使用することができ、
トリス(2,3−ジブロモプロピル)イソシアヌレート、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、デカブロモジフェニルエーテル、トリブロモフェニルアリルエーテル、テトラブロモビスフェノールAジアリルエーテル、テトラブロモビスフェノールAジプロピルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、テトラブロモビスフェノールAジ(ヒドロキシエチル)エーテル、テトラブロモビスフェノールAビス(2,3−ジブロモプロピルエーテル)等の臭素系難燃剤;
塩化パラフィン、塩化トリフェニル、塩化ジフェニル、パークロルペンタシクロデカン等の塩素系難燃剤;
1,2−ジブロモ3−クロルプロパン、2−クロル−1,2,3,4−テトラブロモブタン等の塩素臭素含有難燃剤等を挙げることができる。
In the present invention, a known flame retardant can be used,
Tris (2,3-dibromopropyl) isocyanurate, tetrabromocyclooctane, hexabromocyclododecane, decabromodiphenyl ether, tribromophenyl allyl ether, tetrabromobisphenol A diallyl ether, tetrabromobisphenol A dipropyl ether, tetrabromobisphenol Brominated flame retardants such as A diglycidyl ether, tetrabromobisphenol A di (hydroxyethyl) ether, tetrabromobisphenol A bis (2,3-dibromopropyl ether);
Chlorinated flame retardants such as chlorinated paraffin, triphenyl chloride, diphenyl chloride, perchlorpentacyclodecane;
Examples include chlorine bromine-containing flame retardants such as 1,2-dibromo-3-chloropropane and 2-chloro-1,2,3,4-tetrabromobutane.

難燃剤は、1種のみを使用してもよく、複数種を組み合わせて使用してもよい。本発明においては、所望の難燃性を容易に得ることができるため、トリス(2,3−ジブロモプロピル)イソシアヌレートを主成分として使用することが好ましい。なお、本発明において、主成分とは、難燃剤全量に対して、好ましくは80質量%以上、より好ましくは90質量%以上を意味する。また、難燃助剤についても同様である。   A flame retardant may use only 1 type and may use it in combination of multiple types. In the present invention, it is preferable to use tris (2,3-dibromopropyl) isocyanurate as a main component because desired flame retardancy can be easily obtained. In the present invention, the main component means preferably 80% by mass or more, more preferably 90% by mass or more, based on the total amount of the flame retardant. The same applies to the flame retardant aid.

本発明の難燃剤は、樹脂成分100質量部に対して、2〜4質量部、好ましくは2.2〜3.8質量部、より好ましくは2.5〜3.5質量部の割合で複合樹脂粒子中に含まれる。難燃剤の含有量が2質量部より少ないと、発泡成形体の難燃性が低下することがある。一方、難燃剤の含有量が4質量部より多いと、難燃性の付与に必要以上の量が含まれることになり発泡成形体の製造コストが増加することがある。さらに、発泡成形体の加熱寸法変化が大きくなることがある。   The flame retardant of the present invention is compounded at a ratio of 2 to 4 parts by mass, preferably 2.2 to 3.8 parts by mass, more preferably 2.5 to 3.5 parts by mass with respect to 100 parts by mass of the resin component. Included in resin particles. When content of a flame retardant is less than 2 mass parts, the flame retardance of a foaming molding may fall. On the other hand, when the content of the flame retardant is more than 4 parts by mass, an amount more than necessary for imparting flame retardancy is included, and the production cost of the foamed molded product may increase. Furthermore, the change in the heating dimension of the foamed molded product may become large.

本発明においては、公知の難燃助剤を使用することもでき、2,3−ジメチル−2,3−ジフェニルブタン、3,4−ジメチル−3,4−ジフェニルヘキサン、ジクミルパーオキサイド、クメンヒドロパーオキサイド等を挙げることができる。難燃助剤は、1種のみを使用してもよく、複数種を組み合わせて使用してもよい。本発明においては、所望の難燃性を容易に得ることができるため、2,3−ジメチル−2,3−ジフェニルブタンを主成分として使用することが好ましい。   In the present invention, known flame retardant aids may be used, such as 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, dicumyl peroxide, cumene. And hydroperoxide. Only one type of flame retardant aid may be used, or a plurality of types may be used in combination. In the present invention, since desired flame retardancy can be easily obtained, it is preferable to use 2,3-dimethyl-2,3-diphenylbutane as a main component.

本発明の難燃助剤は、樹脂成分100質量部に対して、好ましくは0〜2質量部、より好ましくは0〜1.8質量部、さらに好ましくは0〜1.5質量部の割合で複合樹脂粒子中に含まれる。難燃助剤の含有量が2質量部より多いと、難燃性の付与に必要以上の量が含まれることになり発泡成形体の製造コストが増加することがある。さらに、発泡成形体の加熱寸法変化が大きくなることがある。   The flame retardant aid of the present invention is preferably 0 to 2 parts by mass, more preferably 0 to 1.8 parts by mass, and still more preferably 0 to 1.5 parts by mass with respect to 100 parts by mass of the resin component. It is contained in the composite resin particles. When the content of the flame retardant aid is more than 2 parts by mass, an amount more than necessary for imparting flame retardancy is included, and the production cost of the foamed molded product may increase. Furthermore, the change in the heating dimension of the foamed molded product may become large.

また、所望の発泡成形体を得ることができる限り、複合樹脂粒子は他の添加剤等を含んでいてもよい。添加剤として、具体的には、被覆剤、連鎖移動剤、光安定剤、紫外線吸収剤、顔料、染料、消泡剤、増粘剤、熱安定剤、レベリング剤、滑剤、帯電防止剤等が挙げられる。   Moreover, as long as a desired foaming molding can be obtained, the composite resin particle may contain the other additive etc. Specific additives include coating agents, chain transfer agents, light stabilizers, ultraviolet absorbers, pigments, dyes, antifoaming agents, thickeners, heat stabilizers, leveling agents, lubricants, antistatic agents, etc. Can be mentioned.

<複合樹脂粒子の製造方法>
複合樹脂粒子の製造方法は、特に限定されず、公知の方法をいずれも使用することができる。例えば、懸濁重合法、シード重合法等が挙げられる。シード重合法は、種粒子にスチレン系単量体等の単量体成分を水性媒体中で含浸、重合させることにより複合樹脂粒子を得る方法である。本発明においては、表層と内部の嵩発泡倍率の異なった発泡成形体を容易に製造することができる場合があるためシード重合法を用いることが好ましい。
以下に一例を挙げて本発明の複合樹脂粒子の製造方法を説明するが、本発明はこれらに限定されるものではない。
<Method for producing composite resin particles>
The production method of the composite resin particles is not particularly limited, and any known method can be used. For example, suspension polymerization method, seed polymerization method and the like can be mentioned. The seed polymerization method is a method of obtaining composite resin particles by impregnating seed particles with a monomer component such as a styrene monomer in an aqueous medium and polymerizing them. In the present invention, it is preferable to use a seed polymerization method because it may be possible to easily produce foamed molded products having different bulk foaming ratios between the surface layer and the inside.
Hereinafter, the method for producing the composite resin particles of the present invention will be described with an example, but the present invention is not limited to these.

本発明の複合樹脂粒子は、例えば、
分散剤を含む水性懸濁液中に、ポリオレフィン系樹脂粒子と、スチレン系単量体と、重合開始剤とを分散させる工程Aと、
得られた分散液を前記スチレン系単量体が実質的に重合しない温度に加熱してスチレン系単量体を前記ポリオレフィン系樹脂粒子に含浸させる工程Bと、
ポリオレフィン系樹脂粒子の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、スチレン系単量体の第1の重合を行って第1の粒子を得る工程Cと、
第1の重合工程に続いて、スチレン系単量体と、重合開始剤とを加え、かつ、(T−25)℃〜(T+10)℃の温度とすることにより、第1の粒子への前記スチレン系単量体の含浸および第2の重合を行って樹脂粒子を得る工程Dと、
第2の重合中の第1の粒子または前記樹脂粒子に難燃剤等を含浸させて、複合樹脂粒子を得る工程Eと
を経ることにより製造することができる。
なお、この場合、ポリオレフィン系樹脂とスチレン系単量体との質量比は発泡成形体、予備発泡粒子、複合樹脂粒子中の樹脂成分比率と略同一である。
The composite resin particles of the present invention are, for example,
Step A of dispersing polyolefin resin particles, a styrene monomer, and a polymerization initiator in an aqueous suspension containing a dispersant;
Heating the obtained dispersion to a temperature at which the styrene monomer is not substantially polymerized to impregnate the polyolefin resin particles with the styrene monomer; and
When the melting point of the polyolefin-based resin particles is T ° C., a step C for obtaining the first particles by performing the first polymerization of the styrene monomer at a temperature of (T−10) ° C. to (T + 20) ° C. ,
Subsequent to the first polymerization step, the styrenic monomer and the polymerization initiator are added, and the temperature is set to (T-25) ° C. to (T + 10) ° C. A step D of impregnating a styrene monomer and performing a second polymerization to obtain resin particles;
It can be produced by impregnating the first particles in the second polymerization or the resin particles with a flame retardant and the like to obtain composite resin particles.
In this case, the mass ratio of the polyolefin resin and the styrene monomer is substantially the same as the resin component ratio in the foamed molded product, the pre-foamed particles, and the composite resin particles.

工程A〜Eのそれぞれは、例えば、スチレン系単量体を原料としてビーズ状のポリスチレン系樹脂粒子を製造するポリスチレン系樹脂の懸濁重合法またはシード重合法等の周知の重合方法を実施する際に用いられるオートクレーブ重合装置を用いて実施できるが、使用される製造装置はこれに限定されない。   Each of the processes A to E is performed, for example, when a well-known polymerization method such as a suspension polymerization method or a seed polymerization method of a polystyrene resin for producing bead-shaped polystyrene resin particles using a styrene monomer as a raw material. However, the production apparatus used is not limited to this.

(工程A)
ポリオレフィン系樹脂粒子は、例えば、ポリオレフィン系樹脂を押出機で溶融し、ストランドカット、水中カット、ホットカット等により造粒ペレット化する方法、粉砕機にて直接樹脂粒子を粉砕しペレット化する方法により得られる。また、その形状は、真球状、楕円球状(卵状)、円柱状、角柱状等が挙げられる。このポリオレフィン系樹脂粒子の好ましい平均粒子径は、0.5〜1.5mmの範囲であり、より好ましくは、0.6〜1.0mmの範囲である。
(Process A)
Polyolefin resin particles are obtained by, for example, melting a polyolefin resin with an extruder and granulating the pellet by strand cutting, underwater cutting, hot cutting, etc., or directly pulverizing and pelletizing resin particles with a pulverizer can get. In addition, examples of the shape include a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, and a prismatic shape. The average particle diameter of the polyolefin resin particles is preferably in the range of 0.5 to 1.5 mm, and more preferably in the range of 0.6 to 1.0 mm.

分散剤としては、例えば、部分けん化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤;
ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、より安定な分散状態を維持することができる場合があるため、無機系分散剤が好ましい。無機系分散剤を用いる場合、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。
Examples of the dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose;
Examples include inorganic dispersants such as magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium phosphate, magnesium carbonate, and magnesium oxide. Among these, an inorganic dispersant is preferable because a more stable dispersion state may be maintained. When using an inorganic dispersant, it is preferable to use a surfactant in combination. Examples of such surfactants include dodecyl benzene sulfonic acid soda and α-olefin sulfonic acid soda.

分散剤の使用量は、水性懸濁液100質量部に対して、0.1〜5質量部であることが好ましい。水性懸濁液を構成する水性媒体は、水、水と水溶性溶媒(例えば、メタノール、エタノール等の低級アルコール)との混合物等が挙げられる。水性媒体の使用量は、懸濁液を形成できさえすれば特に限定されない。   It is preferable that the usage-amount of a dispersing agent is 0.1-5 mass parts with respect to 100 mass parts of aqueous suspension. Examples of the aqueous medium constituting the aqueous suspension include water, a mixture of water and a water-soluble solvent (for example, lower alcohols such as methanol and ethanol), and the like. The amount of the aqueous medium used is not particularly limited as long as a suspension can be formed.

重合開始剤としては、スチレン系単量体の重合に汎用されている従来周知の重合開始剤を使用することができる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−アミルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイド等の有機過酸化物;
アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ系化合物が挙げられる。なお、重合開始剤は、単独で用いられても併用されてもよい。重合開始剤の使用量は、スチレン系単量体100質量部に対して、0.1〜5質量部であることが好ましい。
As the polymerization initiator, a conventionally known polymerization initiator widely used for polymerization of styrene monomers can be used. For example, benzoyl peroxide, lauroyl peroxide, t-amyl peroxy octoate, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butyl peroxybivalate, t-butyl peroxyisopropyl carbonate, t- Butyl peroxyacetate, t-butylperoxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t-butylperoxybutane, dicumyl peroxide Organic peroxides such as;
Examples include azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. In addition, a polymerization initiator may be used independently or may be used together. It is preferable that the usage-amount of a polymerization initiator is 0.1-5 mass parts with respect to 100 mass parts of styrene-type monomers.

また、架橋剤を使用してもよい。架橋剤としては、2,2−ジ−t−ブチルパーオキシブタン、2,2−ビス(t−ブチルパーオキシ)ブタン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン等の有機過酸化物等が挙げられる。架橋剤の添加方法としては、例えば、架橋剤をポリオレフィン系樹脂に直接添加する方法、溶剤、可塑剤またはスチレン系単量体に架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系単量体に架橋剤を溶解させた上で添加する方法が好ましい。   Moreover, you may use a crosslinking agent. As a crosslinking agent, 2,2-di-t-butylperoxybutane, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t -Organic peroxides such as butylperoxyhexane. Examples of the method of adding the crosslinking agent include a method of directly adding the crosslinking agent to the polyolefin resin, a method of adding the crosslinking agent after dissolving it in a solvent, a plasticizer or a styrene monomer, and a method of adding the crosslinking agent to water. The method of adding after dispersing is mentioned. Among these, a method of adding a crosslinking agent after dissolving it in a styrene monomer is preferable.

スチレン系単量体はポリオレフィン系樹脂粒子に含浸させるために、水性媒体に連続的にあるいは断続的に添加できる。スチレン系単量体は水性媒体中に徐々に添加していくことが好ましい。   In order to impregnate the polyolefin resin particles, the styrene monomer can be added to the aqueous medium continuously or intermittently. It is preferable to gradually add the styrenic monomer to the aqueous medium.

(工程B)
工程Bでは、工程Aで得られた分散液を、スチレン系単量体が実質的に重合しない温度に加熱し、スチレン系単量体をポリオレフィン系樹脂粒子に含浸させる。この加熱温度は、45〜70℃の範囲であることが好ましい。加熱温度が45℃未満であると、スチレン系単量体の含浸が不十分となってポリスチレンの重合粉末が生成されることがある。一方、加熱温度が70℃を超えると、スチレン系単量体がポリオレフィン系樹脂粒子に十分含浸される前に重合してしまうことがある。より好ましい加熱温度は50〜65℃の範囲である。
(Process B)
In step B, the dispersion obtained in step A is heated to a temperature at which the styrene monomer is not substantially polymerized, and the styrene monomer is impregnated with the polyolefin resin particles. This heating temperature is preferably in the range of 45 to 70 ° C. When the heating temperature is less than 45 ° C., the impregnation of the styrene monomer is insufficient and a polystyrene polymer powder may be generated. On the other hand, when the heating temperature exceeds 70 ° C., polymerization may occur before the styrene monomer is sufficiently impregnated into the polyolefin resin particles. A more preferable heating temperature is in the range of 50 to 65 ° C.

(工程CおよびD)
工程Cおよび工程Dにおいて、重合温度は重要な要因である。具体的には、ポリオレフィン系樹脂の融点をT℃としたとき、重合温度は、工程C(第1の重合)では、(T−10)℃〜(T+20)℃の範囲であり、工程D(第2の重合)では、(T−25)℃〜(T+10)℃の範囲である。
(Processes C and D)
In step C and step D, the polymerization temperature is an important factor. Specifically, when the melting point of the polyolefin-based resin is T ° C, the polymerization temperature is in the range of (T-10) ° C to (T + 20) ° C in the step C (first polymerization), and the step D ( In the second polymerization, it is in the range of (T-25) ° C. to (T + 10) ° C.

前記温度範囲で重合を行うことにより、中心部はポリスチレン系樹脂の存在量が多く、表層はポリオレフィン系樹脂の存在量が多い複合樹脂粒子を得ることができる場合がある。この場合、ポリスチレン系樹脂とポリオレフィン系樹脂が偏在する結果として、ポリオレフィン系樹脂とポリスチレン系樹脂のそれぞれの長所が生かされ、剛性、発泡成形性および耐薬品性を良好に保持された発泡成形体を提供することができる。   By performing polymerization in the above temperature range, composite resin particles having a large amount of polystyrene resin in the center and a large amount of polyolefin resin in the surface layer may be obtained in some cases. In this case, as a result of the uneven distribution of the polystyrene resin and the polyolefin resin, a foam molded article that retains the rigidity, foam moldability and chemical resistance by utilizing the advantages of the polyolefin resin and the polystyrene resin. Can be provided.

重合温度が前記温度範囲より低くなると、中心部のポリスチレン系樹脂の存在量が少なく、良好な物性を示す発泡成形体が得られないことがある。また、重合温度が前記温度範囲より高くなると、スチレン系単量体がポリオレフィン系樹脂粒子に十分含浸される前に重合が開始してしまうので、良好な物性を示す発泡成形体が得られないことがある。また、高くなると、耐熱性に優れた高価格の重合設備が必要になる。   When the polymerization temperature is lower than the above temperature range, the abundance of the polystyrene-based resin at the center is small, and a foamed molded article having good physical properties may not be obtained. In addition, when the polymerization temperature is higher than the above temperature range, the polymerization starts before the styrene monomer is sufficiently impregnated with the polyolefin resin particles, so that a foam molded article having good physical properties cannot be obtained. There is. Moreover, if it becomes high, the superposition | polymerization equipment excellent in heat resistance will be needed.

また、スチレン系単量体の重合を、工程Cと工程Dの二段階に分ける理由は、一度に多くのスチレン系単量体をポリオレフィン系樹脂に含浸させようとすると、スチレン系単量体がポリオレフィン系樹脂に十分に含浸されず、ポリオレフィン系樹脂の表面に残るからである。重合工程を二段階に分ければ、工程Cにおいてスチレン系単量体が確実にポリオレフィン系樹脂の中心部に含浸され、工程Dにおいてもスチレン系単量体がポリオレフィン系樹脂の中心部に向かって含浸される。   The reason for dividing the polymerization of the styrenic monomer into two stages, Step C and Step D, is that if a large amount of styrene monomer is impregnated into the polyolefin resin at once, the styrene monomer This is because the polyolefin resin is not sufficiently impregnated and remains on the surface of the polyolefin resin. If the polymerization process is divided into two stages, the styrene monomer is reliably impregnated in the center of the polyolefin resin in the process C, and the styrene monomer is impregnated in the process D toward the center of the polyolefin resin. Is done.

(工程E)
工程Eでは、第2の重合中の第1の粒子または複合樹脂粒子に難燃剤を含浸させる。含浸させる際の温度は、難燃剤または任意の難燃助剤の融点の内、高い方の融点をt℃としたとき、t℃〜(t+30)℃の範囲が好ましい。t℃より低いと難燃剤または難燃助剤が複合樹脂粒子に十分に含浸されないことがある。また、(t+30)℃より高いと耐熱性に優れた高価格の重合設備が必要になることがある。工程Eの後、反応槽を冷却し、複合樹脂粒子を水性媒体と分離することで、複合樹脂粒子を単離できる。
(Process E)
In step E, the first particles or the composite resin particles in the second polymerization are impregnated with a flame retardant. The temperature for the impregnation is preferably in the range of t ° C. to (t + 30) ° C., where t ° C. is the higher melting point of the flame retardant or any flame retardant auxiliary. When the temperature is lower than t ° C, the composite resin particles may not be sufficiently impregnated with the flame retardant or the flame retardant aid. On the other hand, if it is higher than (t + 30) ° C., an expensive polymerization facility having excellent heat resistance may be required. After step E, the reaction vessel is cooled, and the composite resin particles can be isolated from the aqueous medium to isolate the composite resin particles.

<発泡性複合樹脂粒子>
発泡性複合樹脂粒子とは、複合樹脂粒子に所定の割合で発泡剤を含浸させた発泡性能を有する樹脂粒子を意味する。
<Expandable composite resin particles>
The foamable composite resin particle means a resin particle having foaming performance in which a composite resin particle is impregnated with a foaming agent at a predetermined ratio.

発泡剤としては、公知の種々の発泡剤が使用できる。例えば、プロパン、n−ブタン(ノルマルブタン)、イソブタン、n−ペンタン(ノルマルペンタン)、イソペンタン、工業用ペンタン、石油エーテル、シクロヘキサン、シクロペンタン、フロン、ハロン等の単独または混合物が挙げられる。これらの内、より大きな発泡性能を発泡性複合樹脂粒子に導入することができる、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタンおよびシクロペンタンのいずれかが好ましい。発泡剤は単独で用いてもよく2種以上を用いてもよい。   Various known foaming agents can be used as the foaming agent. Examples thereof include propane, n-butane (normal butane), isobutane, n-pentane (normal pentane), isopentane, industrial pentane, petroleum ether, cyclohexane, cyclopentane, flon, and halon alone or in a mixture. Of these, propane, n-butane, isobutane, n-pentane, isopentane, and cyclopentane, which can introduce greater foaming performance into the foamable composite resin particles, are preferred. A foaming agent may be used independently and may use 2 or more types.

発泡剤の含有率としては、発泡性複合樹脂粒子100質量部に対して、6〜20質量部であることが好ましい。発泡剤の含有率が6質量部未満であると、発泡性複合樹脂粒子の発泡性が低下することがある。発泡性が低下すると、嵩発泡倍率の高い低嵩密度の予備発泡粒子が得られ難くなると共に、この予備発泡粒子を型内成形して得られる発泡成形体は融着率が低下し、耐割れ性が低下することがある。一方、20質量部を超えると、予備発泡粒子中の気泡サイズが過大となり易く、成形性の低下や、得られる発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。より好ましい発泡剤の含有率は、7.5〜18質量部の範囲である。   As a content rate of a foaming agent, it is preferable that it is 6-20 mass parts with respect to 100 mass parts of expandable composite resin particles. If the content of the foaming agent is less than 6 parts by mass, the foamability of the foamable composite resin particles may be lowered. When the foamability is lowered, it becomes difficult to obtain low-bulk density pre-expanded particles having a high bulk foaming ratio, and the foam-molded product obtained by in-mold molding of the pre-expanded particles has a lower fusion rate and is resistant to cracking. May decrease. On the other hand, when the amount exceeds 20 parts by mass, the bubble size in the pre-expanded particles tends to be excessive, and the moldability may be deteriorated and the strength characteristics such as compression and bending of the obtained foamed molded article may be deteriorated. A more preferable content of the blowing agent is in the range of 7.5 to 18 parts by mass.

また、さらに均一に発泡性複合樹脂粒子を予備発泡させ得る発泡助剤を用いてもよい。発泡助剤として、例えば、トルエン、キシレン、シクロヘキサン、d−リモネン等の溶剤、ジイソブチルアジペート、グリセリン、ジアセチル化モノラウレート、やし油等の可塑剤(高沸点溶剤)が挙げられる。   Moreover, you may use the foaming auxiliary agent which can pre-expand foamable composite resin particles more uniformly. Examples of the foaming aid include solvents such as toluene, xylene, cyclohexane, and d-limonene, and plasticizers (high-boiling solvents) such as diisobutyl adipate, glycerin, diacetylated monolaurate, and palm oil.

<発泡性複合樹脂粒子の製造方法>
発泡性複合樹脂粒子の製造方法は特に限定されず、公知の方法をいずれも使用できる。
例えば、V型、C型あるいはDC型等の回転混合機であって、密閉耐圧の容器に複合樹脂粒子を入れて流動させ、次いで発泡剤を導入することで複合樹脂粒子に発泡剤を含浸させる方法;
攪拌機付密閉耐圧容器内で複合樹脂粒子を水性媒体に懸濁させ、次いで発泡剤を導入し、複合樹脂粒子に発泡剤を含浸させる方法等が挙げられる。
また、発泡剤の含浸は50〜140℃、0.5〜6時間行うことが好ましい。さらに、前記含浸は所望の発泡成形体等を得ることができる限り、大気圧下で行ってもよく、加圧条件下で行ってもよい。
<Method for producing expandable composite resin particles>
The production method of the expandable composite resin particles is not particularly limited, and any known method can be used.
For example, a rotary mixer such as a V-type, C-type, or DC-type, in which composite resin particles are put into a sealed pressure-resistant container and flowed, and then a foaming agent is introduced to impregnate the composite resin particles with the foaming agent. Method;
Examples include a method of suspending the composite resin particles in an aqueous medium in a sealed pressure vessel equipped with a stirrer, then introducing a foaming agent, and impregnating the composite resin particles with the foaming agent.
The impregnation with the foaming agent is preferably performed at 50 to 140 ° C. for 0.5 to 6 hours. Further, the impregnation may be performed under atmospheric pressure or under pressure as long as a desired foamed molded article or the like can be obtained.

<予備発泡粒子>
予備発泡粒子とは、発泡性複合樹脂粒子を所定の嵩発泡倍率まで加熱発泡させた樹脂粒子を意味する。また、本発明の予備発泡粒子は公知の予備発泡方法を用いて製造することができる。予備発泡方法の一例を挙げれば、水蒸気等の加熱媒体を用いて発泡性複合樹脂粒子を加熱し、所定の嵩発泡倍率に予備発泡させることで、予備発泡粒子を得ることができる。
<Pre-expanded particles>
Pre-expanded particles mean resin particles obtained by heating and foaming expandable composite resin particles to a predetermined bulk expansion ratio. The pre-expanded particles of the present invention can be produced using a known pre-expand method. As an example of the pre-foaming method, the pre-foamed particles can be obtained by heating the foamable composite resin particles using a heating medium such as water vapor and pre-foaming at a predetermined bulk foaming ratio.

本発明の予備発泡粒子は、好ましくは10〜70倍、より好ましくは20〜60倍の嵩発泡倍率を有する。嵩発泡倍率が70倍より大きいと、得られる発泡成形体の強度、耐熱性が低下することがある。一方、10倍より小さいと、得られる発泡成形体の重量が増加することがある。   The pre-expanded particles of the present invention preferably have a bulk expansion ratio of 10 to 70 times, more preferably 20 to 60 times. When the bulk foaming ratio is larger than 70 times, the strength and heat resistance of the obtained foamed molded product may be lowered. On the other hand, if it is less than 10 times, the weight of the obtained foamed molded product may increase.

また、予備発泡粒子の平均粒子径は8.4mm以下が好ましく、6.0mm以下がより好ましい。平均粒子径が8.4mmより大きいと、発泡成形機への予備発泡粒子の充填性が低下することがあり、得られる発泡成形体の強度が低下することがある。   Further, the average particle diameter of the pre-expanded particles is preferably 8.4 mm or less, and more preferably 6.0 mm or less. When the average particle diameter is larger than 8.4 mm, the filling property of the pre-expanded particles in the foam molding machine may be lowered, and the strength of the obtained foam molded product may be lowered.

<航空機用内装材(発泡成形体)>
本発明の発泡成形体は公知の発泡成形方法を用いて製造することができる。一例を挙げると、金型内に予備発泡粒子を充填し、再度加熱する。次いで予備発泡粒子を型内発泡させて粒子同士を熱融着させ、冷却を行うことによって発泡成形体を得ることができる。加熱用の媒体は、ゲージ圧力0.05〜0.45MPaの水蒸気が好適に使用され、水蒸気を導入する時間は10〜180秒が好ましい。
<Aircraft interior materials (foam moldings)>
The foamed molded product of the present invention can be produced using a known foam molding method. For example, pre-expanded particles are filled in a mold and heated again. Next, the pre-foamed particles are foamed in-mold, the particles are thermally fused together, and cooled to obtain a foamed molded product. As the heating medium, water vapor having a gauge pressure of 0.05 to 0.45 MPa is preferably used, and the time for introducing water vapor is preferably 10 to 180 seconds.

また、下記式(1)を満たす発泡成形体をより容易に製造することができるため、本発明の発泡成形体は、ゲージ圧力Pが好ましくは0.20MPa<P<0.33MPa、より好ましくは0.23MPa<P<0.30MPaの範囲の水蒸気によって発泡成形される。なお、ゲージ圧力Pは発泡成形機内に備えたゲージ圧力計が示す値を意味する。また、発泡成形工程時の温度、時間等も、使用原料および製造設備に合わせて適宜設定される。   Further, since a foamed molded product satisfying the following formula (1) can be more easily produced, the foamed molded product of the present invention preferably has a gauge pressure P of 0.20 MPa <P <0.33 MPa, more preferably Foam molding is performed with water vapor in the range of 0.23 MPa <P <0.30 MPa. The gauge pressure P means a value indicated by a gauge pressure gauge provided in the foam molding machine. Moreover, the temperature, time, etc. at the time of a foaming process are also set suitably according to a use raw material and manufacturing equipment.

本発明においては、発泡成形体の表層の嵩発泡倍率Sf(倍)とその内部の嵩発泡倍率If(倍)との比率が、下記式(1):
1.1≦If/Sf≦1.8 (1)
を満たすため、本発明の発泡成形体は内部の嵩発泡倍率が表層の嵩発泡倍率より高い構造を有する。このため、発泡成形体表層に対衝撃性等に優れる高硬度な低発泡部位を多く導入することができ、他方、発泡成形体内部に高い嵩発泡倍率を期待することができる高発泡部位を多く導入することができ、その結果、本発明の発泡成形体は好適な硬度を有し、高い嵩発泡倍率を有する。
In the present invention, the ratio between the bulk foaming ratio Sf (times) of the surface layer of the foamed molded product and the bulk foaming ratio If (times) therein is expressed by the following formula (1):
1.1 ≦ If / Sf ≦ 1.8 (1)
In order to satisfy the above, the foamed molded article of the present invention has a structure in which the internal bulk foaming ratio is higher than the bulk foaming ratio of the surface layer. For this reason, it is possible to introduce many high-hardness low-foaming sites that are excellent in impact resistance and the like into the surface of the foam-molded product, and on the other hand, many high-foamed sites that can be expected to have a high bulk foaming ratio inside the foam-molded product. As a result, the foamed molded article of the present invention has a suitable hardness and a high bulk foaming ratio.

また、さらにより強度に優れた発泡成形体を得ることができるため、下記式(3):
1.15≦If/Sf≦1.7 (3)
を満たすことが好ましい。
In addition, since a foamed molded article having even higher strength can be obtained, the following formula (3):
1.15 ≦ If / Sf ≦ 1.7 (3)
It is preferable to satisfy.

他方、所望の嵩発泡倍率を確保することができるため、発泡成形体の見かけの嵩発泡倍率X(全体における嵩発泡倍率)は10〜70倍の範囲であり、15〜60倍の範囲が好ましく、20〜50倍の範囲がより好ましい。   On the other hand, since the desired bulk foaming ratio can be ensured, the apparent bulk foaming ratio X (bulk foaming ratio in the whole) of the foamed molded product is in the range of 10 to 70 times, and preferably in the range of 15 to 60 times. A range of 20 to 50 times is more preferable.

また、所望の強度を確保することができるため、発泡成形体の発泡成形体の表面硬度(CS硬度)Yは、23.5〜100の範囲が好ましく、42.5〜100の範囲がより好ましい。   In addition, since the desired strength can be ensured, the surface hardness (CS hardness) Y of the foam molded body of the foam molded body is preferably in the range of 23.5 to 100, and more preferably in the range of 42.5 to 100. .

さらに、表面硬度と嵩発泡倍率とのより高いレベルで調整を図ることができるため、発泡成形体の表面硬度(CS硬度)Yと発泡成形体全体の嵩発泡倍率X(倍)とが下記式(2):
−0.95X+90≦Y≦100 (2)
を満たすものが好ましく、下記式(4):
−0.90X+90≦Y≦95 (4)
を満たすものがより好ましい。
Furthermore, since the surface hardness and the bulk foaming ratio can be adjusted at a higher level, the surface hardness (CS hardness) Y of the foamed molded product and the bulk foaming magnification X (times) of the entire foamed molded product are expressed by the following formula: (2):
−0.95X + 90 ≦ Y ≦ 100 (2)
Satisfying the following formula (4):
−0.90X + 90 ≦ Y ≦ 95 (4)
It is more preferable to satisfy the above.

従来、表層と内部の嵩発泡倍率が均一な発泡成形体について、要求される表面硬度を有さない場合、良好な表面硬度を得るために、発泡成形体全体の嵩発泡倍率を下げざるを得なかった。しかしながら、本発明の発泡成形体が式(2)または(4)を満たす場合、発泡成形体全体として高い嵩発泡倍率を維持しつつ、その表面硬度を向上させることができる。この場合、本発明によれば、表層と内部の嵩発泡倍率が略均一な発泡成形体と比べて、表面硬度に優れ、高倍数を有する発泡成形体を提供することができる。   Conventionally, when a foam molded body having a uniform surface and internal foam expansion ratio does not have the required surface hardness, the bulk foam expansion ratio of the entire foam molded body must be lowered in order to obtain good surface hardness. There wasn't. However, when the foamed molded product of the present invention satisfies the formula (2) or (4), the surface hardness can be improved while maintaining a high bulk foaming ratio as the whole foamed molded product. In this case, according to the present invention, it is possible to provide a foamed molded article having excellent surface hardness and a high multiple compared to a foamed molded article having a substantially uniform bulk foaming ratio between the surface layer and the inside.

さらに、本発明の発泡成形体は、発泡成形体100質量部中に0〜1.5質量部の残留発泡剤を含んでいてもよい。この場合、残留発泡剤に起因する引火性等を抑制することができるため、嵩発泡倍率が高く、強度および耐熱性に優れ、より難燃性に優れた発泡成形体を得ることができる。   Furthermore, the foamed molded product of the present invention may contain 0 to 1.5 parts by mass of a residual foaming agent in 100 parts by mass of the foamed molded product. In this case, since the flammability caused by the residual foaming agent can be suppressed, a foamed molded article having a high bulk foaming ratio, excellent strength and heat resistance, and more excellent flame retardancy can be obtained.

他方、本発明の発泡成形体は好適な割合で難燃剤を含むため、優れた難燃性および耐熱性を有する。このため、前記発泡成形体は、JIS K6767:1999KのB法に準拠して、80℃、168時間の加熱後、絶対値で好ましくは1.0%以下、より好ましくは0.5%の加熱寸法変化率を有する。   On the other hand, since the foamed molded article of the present invention contains a flame retardant at a suitable ratio, it has excellent flame retardancy and heat resistance. For this reason, the foamed molded article preferably has an absolute value of 1.0% or less, more preferably 0.5% after heating at 80 ° C. for 168 hours, in accordance with JIS K6767: 1999K, method B. Has a dimensional change rate.

また、前記発泡成形体は、国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験を満足することができる。   In addition, the foamed molded product can satisfy the vertical combustion test of Appendix F, Part III of the Air Station Air Quality Examination Guidelines, Ministry of Land, Infrastructure, Transport and Tourism.

従って、本発明で得られる発泡成形体は嵩発泡倍率が高く、強度、難燃性および耐熱性に優れるため、航空機用内装材として好適に使用することができる。   Accordingly, the foamed molded article obtained by the present invention has a high bulk foaming ratio and is excellent in strength, flame retardancy and heat resistance, and therefore can be suitably used as an aircraft interior material.

以下、実施例を挙げて本発明をさらに説明するが、本発明はこれら実施例によって限定されるものではない。実施例に記載した各種測定法および製造条件を以下で説明する。
<予備発泡条件>
水蒸気で予熱したPSX40予備発泡機(笠原工業社製)に発泡剤を含浸させた発泡性複合樹脂粒子を0.5〜1.5kg投入し、撹拌しながらゲージ圧力0.005〜0.09MPaの設定で水蒸気を導入し、20〜180秒間で所定の嵩密度(嵩発泡倍率)まで発泡させることによって予備発泡粒子を得る。
EXAMPLES Hereinafter, although an Example is given and this invention is further demonstrated, this invention is not limited by these Examples. Various measurement methods and production conditions described in the examples will be described below.
<Pre-foaming conditions>
0.5 to 1.5 kg of foamable composite resin particles impregnated with a foaming agent was charged into a PSX40 prefoaming machine (manufactured by Kasahara Kogyo Co., Ltd.) preheated with water vapor, and the gauge pressure was 0.005 to 0.09 MPa while stirring. Steam is introduced at a setting, and pre-expanded particles are obtained by foaming to a predetermined bulk density (bulk foaming ratio) in 20 to 180 seconds.

<予備発泡粒子の嵩密度および嵩発泡倍率>
約5gの予備発泡粒子の重量(a)を小数以下2位まで秤量する。次に、最小メモリ単位が5cm3である500cm3メスシリンダーに秤量した予備発泡粒子を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に幅約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、式(a)/(b)により予備発泡粒子の嵩密度(g/cm3)を求める。なお、嵩発泡倍率(倍)は嵩密度の逆数、即ち、式(b)/(a)とする。
<Bulk density and bulk foaming ratio of pre-foamed particles>
The weight (a) of about 5 g of pre-expanded particles is weighed to the second decimal place. Next, weighed pre-expanded particles in a 500 cm 3 graduated cylinder with a minimum memory unit of 5 cm 3 , and this is a round resin plate slightly smaller than the caliber of the graduated cylinder, with a width of about 1.5 cm at the center, The volume (b) of the pre-expanded particles is read by applying a pressing tool in which a rod-shaped resin plate having a length of about 30 cm is fixed upright, and the bulk density (g) of the pre-expanded particles is calculated according to the formula (a) / (b). / Cm 3 ). The bulk foaming ratio (times) is the reciprocal of the bulk density, that is, the formula (b) / (a).

<発泡成形体全体の嵩密度および嵩発泡倍率>
発泡成形体の嵩密度は、発泡成形後に得られる発泡成形体の見かけの体積(cm3)(c)と、その重量(g)(d)を測定し、式(d)/(c)により発泡成形体の嵩密度(g/cm3)を求める。発泡成形体の見かけの体積は成形後の収縮を考慮しなければ、例えば発泡成形体が得られた時点での金型キャビティ内の体積に等しく、金型図面寸法から算出できる。なお、嵩発泡倍率(倍)は嵩密度の逆数、即ち、式(c)/(d)とする。
<Bulk density and bulk foaming ratio of the entire foamed molded product>
The bulk density of the foam-molded product was determined by measuring the apparent volume (cm 3 ) (c) and weight (g) (d) of the foam-molded product obtained after foam molding, and using the formula (d) / (c) The bulk density (g / cm 3 ) of the foamed molded product is determined. If the shrinkage after molding is not taken into account, the apparent volume of the foam molded body is equal to the volume in the mold cavity at the time when the foam molded body is obtained, and can be calculated from the dimensions of the mold drawing. The bulk foaming ratio (times) is the reciprocal of the bulk density, that is, the formula (c) / (d).

<発泡成形体の表層、内部の嵩発泡倍率>
発泡成形体の厚みが少なくとも20mm以上あり、表皮を含む30mm×30mm以上の水平な面を有する任意の部分から、厚みの1/3の長さを1辺とする立方体を厚み方向に3等分して切削する。3等分した立方体のうち、発泡成形体の表皮を含む、厚み方向から見て上または下の試験片を試験片A、中央の試験片を試験片Bとする。例えば、発泡成形体から任意に選択した部分の厚みが30mmの場合、試験片Aは発泡成形体の表皮を含む1辺10mmの立方体となり、試験片Bは発泡成形体の表皮を含まない1辺10mmの立方体となる。
<Surface layer of foam molded article, bulk foaming ratio inside>
A cube having a thickness of at least 20 mm or more and having a horizontal surface of 30 mm × 30 mm or more including the outer skin is divided into three equal parts in the thickness direction with a length of 1/3 of the thickness as one side. And cut. Of the cube divided into three equal parts, the upper or lower test piece including the skin of the foam-molded product as viewed from the thickness direction is taken as test piece A, and the central test piece is taken as test piece B. For example, when the thickness of the part arbitrarily selected from the foam molded body is 30 mm, the test piece A is a cube of 10 mm on one side including the skin of the foam molded body, and the test piece B is one side not including the skin of the foam molded body. It becomes a 10 mm cube.

この試験片Aの嵩発泡倍率の測定を行い、同様に測定した計10点分の平均値を発泡成形体の表層の嵩発泡倍率(Sf)とした。また、試験片Bの嵩発泡倍率の測定を行い、同様に測定した計10点分の平均値を発泡成形体の内部の嵩発泡倍率(If)とする。ただし、発泡成形体の厚みが20mm未満の場合や、表面を含む水平な面が30mm×30mm未満の場合はこれらの数値を測定に支障なき程度まで減らすことができる。また、発泡成形体の形状により計10点分の測定が困難な場合は、測定可能な数まで測定数を減らすことができる。測定した発泡成形体の表層および内部の嵩発泡倍率から内部/表層(If/Sf)の比を算出する。   The bulk foaming ratio of this test piece A was measured, and the average value for a total of 10 points measured in the same manner was used as the bulk foaming ratio (Sf) of the surface layer of the foam molded article. Moreover, the bulk foaming magnification of the test piece B is measured, and the average value of 10 points measured in the same manner is defined as the bulk foaming magnification (If) inside the foamed molded product. However, when the thickness of the foam molded body is less than 20 mm, or when the horizontal surface including the surface is less than 30 mm × 30 mm, these numerical values can be reduced to a level that does not hinder measurement. Moreover, when it is difficult to measure a total of 10 points due to the shape of the foam molded article, the number of measurements can be reduced to a measurable number. The ratio of internal / surface layer (If / Sf) is calculated from the surface layer of the foamed molded article and the internal bulk foaming ratio.

<発泡成形体の表面硬度>
測定装置として、高分子計器(株)製アスカーゴム硬度計CS型(押針形状:高さ2.54mm、φ10mm円筒形)を用い、発泡成形体の表面硬度を測定する。発泡成形体の厚みが少なくとも20mm以上あり、表皮を含む30mm×30mm以上の水平な面から任意に選択した部分にCS硬度計を設置し、垂直に荷重がかかるように荷重5kgのおもりを用いて試験体表面に対し、5秒間CS硬度計を押し付けることによって発泡成形体の表面硬度を測定した。同様に計20点分の測定を行い、平均値を発泡成形体の表面硬度とする。ただし、発泡成形体の厚みが20mm未満の場合や、表面を含む水平な面が30mm×30mm未満の場合はこれらの数値を測定に支障なき程度まで減らすことができる。また、発泡成形体の形状により計20点分の測定が困難な場合は、測定可能な数まで測定数を減らすことができる。
<Surface hardness of foam molding>
The surface hardness of the foamed molded product is measured using an Asker rubber hardness meter CS type (push needle shape: height 2.54 mm, φ10 mm cylindrical shape) manufactured by Kobunshi Keiki Co., Ltd. as a measuring device. A foam hardness is at least 20 mm or more, and a CS hardness meter is installed at a part arbitrarily selected from a horizontal surface of 30 mm × 30 mm or more including the skin, and a weight of 5 kg is used so that a load is applied vertically. The surface hardness of the foamed molded product was measured by pressing a CS hardness meter against the surface of the test body for 5 seconds. Similarly, measurement for a total of 20 points is performed, and the average value is defined as the surface hardness of the foamed molded product. However, when the thickness of the foam molded body is less than 20 mm, or when the horizontal surface including the surface is less than 30 mm × 30 mm, these numerical values can be reduced to a level that does not hinder measurement. Moreover, when it is difficult to measure a total of 20 points due to the shape of the foam molded article, the number of measurements can be reduced to a measurable number.

本発明においては、
(1)式(2)を満たす場合・・・・合格(○)
(2)式(2)を満たさない場合・・不合格(×)
と判定する。
In the present invention,
(1) When formula (2) is satisfied: Pass (○)
(2) When the expression (2) is not satisfied .. Fail (×)
Is determined.

<発泡成形体の加熱寸法変化率>
JIS K 6767:1999K「発泡プラスチック−ポリエチレン−試験方法」記載のB法により測定した。なお、試験片は、150mm×150mm×30mm(厚さ)としてその中央部に縦および横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるよう記入し、80℃の熱風循環式乾燥機の中に168時間置いた後に取り出し、標準状態の場所に1時間放置後、縦および横線の寸法を下記式によって測定する。
S=(L1−L0)/L0×100
式中、Sは加熱寸法変化率(%)、L1は加熱後の平均寸法(mm)、L0は初めの平均寸法(mm)をそれぞれ表す。
<Heat dimensional change rate of foamed molded product>
Measured by the method B described in JIS K 6767: 1999K “Foamed Plastics-Polyethylene Test Method”. The test piece is 150 mm × 150 mm × 30 mm (thickness), and three straight lines are written in the center and parallel to each other in the vertical and horizontal directions at intervals of 50 mm, and a hot air circulating dryer at 80 ° C. After 168 hours, the product is taken out, left in a standard state for 1 hour, and the vertical and horizontal line dimensions are measured by the following formula.
S = (L1-L0) / L0 × 100
In the formula, S represents a heating dimensional change rate (%), L1 represents an average dimension (mm) after heating, and L0 represents an initial average dimension (mm).

本発明においては、
(1)Sの絶対値が1.0%以下の場合・・・合格(○)
(2)Sの絶対値が1.0%より高い場合・・不合格(×)
と判定する。
In the present invention,
(1) When the absolute value of S is 1.0% or less: Pass (○)
(2) When the absolute value of S is higher than 1.0% .. Fail (×)
Is determined.

<国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験>
国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験に基づいて、発泡成形体の難燃性評価を次の様にして行う。
<Aircraft Bureau, Ministry of Land, Infrastructure, Transport and Tourism, Air Quality Examination Guidelines Part III, Appendix F, Vertical Combustion Test>
Based on the vertical combustion test in Appendix F of Part III of the Air Quality Examination Guidelines, Ministry of Land, Infrastructure, Transport and Tourism, flame retardant evaluation of foamed molded products is performed as follows.

<発泡成形体の難燃性評価>
少なくとも3個の試料を試験に供し、その結果を平均する。85mm×350mm×13mmの試験片を、国土交通省航空局 耐空性審査要領第III部付録Fで定められた長い2辺と上辺とを固定する金属製枠に取り付け、垂直に支持する。高さが3.8cmの炎が得られるように調節された公称0.95cm内径のブンゼン・バーナーまたはチリル・バーナーを使用して、試料の下辺の中心をバーナー上端から1.9cm上方に置き、試料に着火する。この時、炎の中心を測定した温度は熱伝対高温計で843℃以上とする。火炎を12秒間あてた後、火源を取り除き、次の様に合否判定を行う。
<Flame retardant evaluation of foamed molded products>
At least three samples are subjected to the test and the results are averaged. A test piece of 85 mm × 350 mm × 13 mm is attached to a metal frame that fixes the two long sides and the upper side defined in Appendix F of the Ministry of Land, Infrastructure, Transport and Tourism Air Bureau Airworthiness Examination Guidelines Part III, and is supported vertically. Using a Bunsen or Tyryl burner with a nominal 0.95 cm inner diameter, adjusted to give a flame of 3.8 cm in height, center the lower side of the sample 1.9 cm above the top of the burner, Ignite the sample. At this time, the temperature at which the center of the flame is measured is 843 ° C. or higher with a thermocouple pyrometer. After applying the flame for 12 seconds, the fire source is removed and a pass / fail decision is made as follows.

本発明においては、
(1)平均燃焼長さが20cm未満、かつ火源を取り除いた後の平均燃焼時間15秒未満であり、かつ、試料からの滴下物の平均燃焼時間が落下後、平均時間5秒未満である場合・・・・・・・・・・・・・・・・・・合格(○)
(2)前記の条件を満たさない場合・・不合格(×)
と判定する。
In the present invention,
(1) The average combustion length is less than 20 cm, the average combustion time after removing the fire source is less than 15 seconds, and the average combustion time of the drops from the sample is less than 5 seconds after dropping. Case: ……………… Pass (○)
(2) If the above conditions are not met ... Fail (×)
Is determined.

実施例1
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃)2000gを押出機に供給して溶融混練してストランドカットにより造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た。
このときのポリプロピレン系樹脂粒子を100粒あたり60mg、平均粒子径約1mmに調整した。
Example 1
By supplying 2000 g of polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C.) to an extruder, melt-kneading and granulating pellets by strand cutting, spherical (egg) Polypropylene resin particles were obtained.
The polypropylene resin particles at this time were adjusted to 60 mg per 100 particles and an average particle diameter of about 1 mm.

次に、撹拌機付5Lオートクレーブに、前記ポリプロピレン系樹脂粒子800gを入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、撹拌して水性媒体中に懸濁させ、10分間保持し、その後70℃に昇温して水系懸濁液とした。
次に、この懸濁液中にジクミルパーオキサイド0.7gを溶解させたスチレン単量体340gを30分で滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させた。
次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にして、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレン単量体860gを4時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)を行った。
この滴下終了後、120℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結し、改質ポリスチレン系樹脂粒子を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)60gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)30gとを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、複合樹脂粒子を得た。
Next, 800 g of the polypropylene resin particles are put into a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in the aqueous medium. The mixture was made turbid and held for 10 minutes, and then heated to 70 ° C. to obtain an aqueous suspension.
Next, 340 g of a styrene monomer in which 0.7 g of dicumyl peroxide was dissolved in this suspension was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
Next, the temperature of the reaction system was raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and held for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
Next, the reaction liquid of the first polymerization is set to 120 ° C. that is 20 ° C. lower than the melting point of the polypropylene resin particles, and 1.5 g of sodium dodecylbenzenesulfonate is added to this suspension, and then the polymerization initiator is used. 860 g of a styrene monomer in which 3.6 g of dicumyl peroxide was dissolved was dropped over 4 hours, and polymerization (second polymerization) was performed while absorbing the polypropylene resin particles.
After completion of the dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, whereby modified polystyrene resin particles were obtained.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 60 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid were added to this suspension. -30 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo Co., Ltd.) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain composite resin particles.

次に、常温まで冷却し、複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。
次に、得られた発泡性複合樹脂粒子を嵩発泡倍率30倍に予備発泡させ、予備発泡粒子を得た。
Next, it was cooled to room temperature, and the composite resin particles were taken out from the 5 L autoclave. 2 kg of the composite resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried, and expandable composite resin particles were obtained.
Next, the obtained expandable composite resin particles were pre-expanded at a bulk expansion ratio of 30 times to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
この成形条件により外観、融着とも良好な発泡成形体を得た。
Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was applied to the mold for 60 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.
Under these molding conditions, a foamed molded article having good appearance and fusion was obtained.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率等の測定を行った。   Then, using the obtained foamed molded article, the apparent bulk foaming ratio, the vertical combustion test, the CS hardness, the heating dimensional change rate, etc. in the whole foamed molded article, surface layer and inside were measured.

実施例2
実施例1と同様にして改質ポリスチレン系樹脂粒子を含む懸濁液を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)80gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)40gとを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、複合樹脂粒子を得た。次に、実施例1と同様にして発泡性複合樹脂粒子を得た。
得られた発泡性複合樹脂粒子を嵩発泡倍率60倍に予備発泡させ、予備発泡粒子を得た。
Example 2
A suspension containing modified polystyrene resin particles was obtained in the same manner as in Example 1.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 80 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid in this suspension. -40 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo Co., Ltd.) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain composite resin particles. Next, expandable composite resin particles were obtained in the same manner as in Example 1.
The obtained expandable composite resin particles were pre-expanded at a bulk expansion ratio of 60 times to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
この成形条件により外観、融着とも良好な発泡成形体を得た。
Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was applied to the mold for 60 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.
Under these molding conditions, a foamed molded article having good appearance and fusion was obtained.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率の測定を行った。   And using the obtained foaming molding, the apparent bulk foaming magnification in the whole foaming molding, the surface layer, and the inside, a vertical combustion test, CS hardness, and a heating dimensional change rate were measured.

実施例3
実施例1と同様にして改質ポリスチレン系樹脂粒子を含む懸濁液を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)40gを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、複合樹脂粒子を得た。次に、実施例1と同様にして発泡性複合樹脂粒子を得た。
得られた発泡性複合樹脂粒子を嵩発泡倍率10倍に予備発泡させ、予備発泡粒子を得た。
Example 3
A suspension containing modified polystyrene resin particles was obtained in the same manner as in Example 1.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 40 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) was added as a flame retardant to the suspension. The temperature was raised to 130 ° C. and stirring was continued for 2 hours to obtain composite resin particles. Next, expandable composite resin particles were obtained in the same manner as in Example 1.
The obtained expandable composite resin particles were pre-expanded at a bulk expansion ratio of 10 to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
この成形条件により外観、融着とも良好な発泡成形体を得た。
Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was applied to the mold for 60 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.
Under these molding conditions, a foamed molded article having good appearance and fusion was obtained.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率等の測定を行った。   Then, using the obtained foamed molded article, the apparent bulk foaming ratio, the vertical combustion test, the CS hardness, the heating dimensional change rate, etc. in the whole foamed molded article, surface layer and inside were measured.

実施例4
実施例1と同様にして得たポリプロピレン系樹脂粒子1000gを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加えた。内容物を攪拌して水性媒体と懸濁させ、10分間保持し、その後70℃に昇温することで水系懸濁液とした。
次に、この懸濁液中に、ジクミルパーオキサイド0.8gを溶解させたスチレン単量体400gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。
Example 4
1000 g of polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium. The contents were stirred and suspended in an aqueous medium, held for 10 minutes, and then heated to 70 ° C. to obtain an aqueous suspension.
Next, 400 g of styrene monomer in which 0.8 g of dicumyl peroxide was dissolved was dropped into this suspension over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles.

次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド3gを溶解したスチレン単量体600gを3時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)を行った。
滴下終了後、120℃で1時間保持し、次いで140℃に昇温し、3時間保持して重合を完結することで改質ポリスチレン系樹脂粒子を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)40gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)20gとを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、複合樹脂粒子を得た。
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate is added to the suspension, and then 600 g of a styrene monomer in which 3 g of dicumyl peroxide is dissolved is added dropwise over 3 hours to be absorbed by the polypropylene resin particles. The polymerization (second polymerization) was carried out.
After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining modified polystyrene resin particles.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 40 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid in this suspension. -20 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain composite resin particles.

次に、常温まで冷却し、複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。
次に、得られた発泡性複合樹脂粒子を嵩発泡倍率30倍に予備発泡させ、予備発泡粒子を得た。
Next, it was cooled to room temperature, and the composite resin particles were taken out from the 5 L autoclave. 2 kg of the composite resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried, and expandable composite resin particles were obtained.
Next, the obtained expandable composite resin particles were pre-expanded at a bulk expansion ratio of 30 times to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
この成形条件により外観、融着とも良好な発泡成形体を得た。
Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was applied to the mold for 60 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.
Under these molding conditions, a foamed molded article having good appearance and fusion was obtained.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率等の測定を行った。   Then, using the obtained foamed molded article, the apparent bulk foaming ratio, the vertical combustion test, the CS hardness, the heating dimensional change rate, etc. in the whole foamed molded article, surface layer and inside were measured.

実施例5
実施例1と同様にして得たポリプロピレン系樹脂粒子400gを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後70℃に昇温して水系懸濁液とした。
次に、この懸濁液中にジクミルパーオキサイド0.4gを溶解させたスチレン単量体200gを30分かけて滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレン単量体を吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレン単量体をポリプロピレン系樹脂粒子中で重合(第1の重合)させて第1の粒子を得た。
Example 5
400 g of the polypropylene resin particles obtained in the same manner as in Example 1 was placed in a 5 L autoclave equipped with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate and 0.5 g of sodium dodecylbenzenesulfonate were added as an aqueous medium and stirred to obtain an aqueous medium. The suspension was suspended for 10 minutes and then heated to 70 ° C. to obtain an aqueous suspension.
Next, 200 g of a styrene monomer in which 0.4 g of dicumyl peroxide was dissolved in this suspension was dropped over 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
Next, the temperature of the reaction system is raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and is maintained for 2 hours, and the styrene monomer is polymerized in the polypropylene resin particles (first polymerization) to obtain the first. Obtained particles.

次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にした。この後、懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド4.8gを溶解したスチレン単量体1400gを6.5時間かけて滴下し、第1の粒子に吸収させながら重合(第2の重合)を行った。
滴下終了後、120℃で1時間保持し、次いで140℃に昇温し、3時間保持して重合を完結することで改質ポリスチレン系樹脂粒子を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)80gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)40gとを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、複合樹脂粒子を得た。
Next, the reaction liquid for the first polymerization was set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles. Thereafter, 1.5 g of sodium dodecylbenzenesulfonate was added to the suspension, and 1400 g of a styrene monomer in which 4.8 g of dicumyl peroxide was dissolved was dropped over 6.5 hours. Polymerization (second polymerization) was performed while absorbing the particles.
After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, thereby obtaining modified polystyrene resin particles.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 80 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid in this suspension. -40 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo Co., Ltd.) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain composite resin particles.

次に、常温まで冷却し、複合樹脂粒子を5Lオートクレーブから取り出した。取り出し後の複合樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン(イソブタン:ノルマルブタン=3:7、質量比)300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性複合樹脂粒子を得た。
次に、得られた発泡性複合樹脂粒子を嵩発泡倍率60倍に予備発泡させ、予備発泡粒子を得た。
Next, it was cooled to room temperature, and the composite resin particles were taken out from the 5 L autoclave. 2 kg of the composite resin particles after removal and 2 L of water were again put into a 5 L autoclave with a stirrer, and 300 g of butane (isobutane: normal butane = 3: 7, mass ratio) as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Thereafter, the mixture was cooled to room temperature, taken out from the 5 L autoclave, dehydrated and dried, and expandable composite resin particles were obtained.
Next, the obtained expandable composite resin particles were pre-expanded at a bulk expansion ratio of 60 times to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
この成形条件により外観、融着とも良好な発泡成形体を得た。
Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was applied to the mold for 60 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.
Under these molding conditions, a foamed molded article having good appearance and fusion was obtained.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率等の測定を行った。   Then, using the obtained foamed molded article, the apparent bulk foaming ratio, the vertical combustion test, the CS hardness, the heating dimensional change rate, etc. in the whole foamed molded article, surface layer and inside were measured.

比較例1
実施例1と同様にして改質ポリスチレン系樹脂粒子を含む懸濁液を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)36gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)30gとを投入し、投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、複合樹脂粒子を得た。次に、実施例1と同様にして発泡性複合樹脂粒子を得た。
得られた発泡性複合樹脂粒子を嵩発泡倍率30倍に予備発泡させ、予備発泡粒子を得た。
Comparative Example 1
A suspension containing modified polystyrene resin particles was obtained in the same manner as in Example 1.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 36 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid in this suspension. -30 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo Co., Ltd.) was added. After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain composite resin particles. Next, expandable composite resin particles were obtained in the same manner as in Example 1.
The resulting expandable composite resin particles were pre-expanded at a bulk expansion ratio of 30 times to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。   Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was applied to the mold for 60 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率等の測定を行った。   Then, using the obtained foamed molded article, the apparent bulk foaming ratio, the vertical combustion test, the CS hardness, the heating dimensional change rate, etc. in the whole foamed molded article, surface layer and inside were measured.

比較例2
実施例2と同様にして発泡性複合樹脂粒子を得た。
得られた発泡性複合樹脂粒子を嵩発泡倍率45倍に予備発泡させ、予備発泡粒子を得た。
Comparative Example 2
In the same manner as in Example 2, expandable composite resin particles were obtained.
The obtained expandable composite resin particles were pre-expanded at a bulk expansion ratio of 45 times to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.18MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。   Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled in the cavity of a mold having a size of 400 mm × 300 mm × 30 mm. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率等の測定を行った。   Then, using the obtained foamed molded article, the apparent bulk foaming ratio, the vertical combustion test, the CS hardness, the heating dimensional change rate, etc. in the whole foamed molded article, surface layer and inside were measured.

比較例3
実施例5と同様にして改質ポリスチレン系樹脂粒子を含む懸濁液を得た。
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)60gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)30gとを投入し、
投入後、反応系の温度を130℃に昇温し、2時間攪拌を続け、複合樹脂粒子を得た。
Comparative Example 3
A suspension containing modified polystyrene resin particles was obtained in the same manner as in Example 5.
Thereafter, the temperature of the reaction system was set to 60 ° C., and 60 g of tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3 as a flame retardant aid were added to this suspension. -30 g of dimethyl-2,3-diphenylbutane (made by Kayaku Akzo Co., Ltd.)
After the addition, the temperature of the reaction system was raised to 130 ° C. and stirring was continued for 2 hours to obtain composite resin particles.

次に、実施例1と同様にして発泡性複合樹脂粒子を得た。
得られた発泡性複合樹脂粒子を嵩発泡倍率70倍に予備発泡させ、予備発泡粒子を得た。
Next, expandable composite resin particles were obtained in the same manner as in Example 1.
The obtained expandable composite resin particles were pre-expanded at a bulk expansion ratio of 70 times to obtain pre-expanded particles.

さらに、得られた予備発泡粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を60秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。   Further, the pre-expanded particles obtained were left at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was applied to the mold for 60 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.

そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、垂直燃焼試験、CS硬度、加熱寸法変化率等の測定を行った。   Then, using the obtained foamed molded article, the apparent bulk foaming ratio, the vertical combustion test, the CS hardness, the heating dimensional change rate, etc. in the whole foamed molded article, surface layer and inside were measured.

表1において、実施例および比較例の原料種、評価結果を詳説する。   In Table 1, the raw material seed | species and evaluation result of an Example and a comparative example are explained in full detail.

Figure 2012176687
Figure 2012176687

表1に示した通り、実施例1〜5の発泡成形体は、樹脂成分として、ポリオレフィン系樹脂100質量部とポリスチレン系樹脂100〜400質量部とを含み、かつ、樹脂成分100質量部に対して、難燃剤2〜4質量部を含む複合樹脂粒子に由来する。また、実施例1〜5の発泡成形体は、発泡成形体全体において10〜70倍の嵩発泡倍率を有する。さらに、実施例1〜5の発泡成形体は、前記発泡成形体の表層の嵩発泡倍率Sfとその内部の嵩発泡倍率Ifとの比率が、下記式(1):
1.1≦If/Sf≦1.8 (1)
を満たすため、国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験、加熱寸法変化率、CS硬度の評価試験結果において良好な結果が得られた。
As shown in Table 1, the foam molded articles of Examples 1 to 5 contain 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin as a resin component, and with respect to 100 parts by mass of the resin component. And derived from composite resin particles containing 2 to 4 parts by mass of a flame retardant. Moreover, the foaming molding of Examples 1-5 has a bulk foaming magnification of 10 to 70 times in the whole foaming molding. Furthermore, in the foamed molded products of Examples 1 to 5, the ratio between the bulk foaming magnification Sf of the surface layer of the foamed molded product and the bulk foaming magnification If inside thereof is the following formula (1):
1.1 ≦ If / Sf ≦ 1.8 (1)
In order to satisfy the above, good results were obtained in the vertical combustion test, the heating dimensional change rate, and the CS hardness evaluation test results of Appendix F of the Air Station Air Quality Examination Guidelines Part III of the Ministry of Land, Infrastructure, Transport and Tourism.

発泡成形体の表層の嵩発泡倍率Sfとその内部の嵩発泡倍率Ifとの比率が本発明より小さくなった比較例2は、実施例2と比較して発泡成形体の嵩発泡倍率が10倍以上低いにも関わらず、同程度のCS硬度しか発揮することができなかった。さらに、加熱寸法変化率も大きくなり、1.0%以内を満足することができなかった。また、発泡成形体の表層の嵩発泡倍率Sfとその内部の嵩発泡倍率Ifとの比率が本発明より大きい発泡成形体は現段階では得ることができなかった。   In Comparative Example 2 in which the ratio between the bulk foaming ratio Sf of the surface layer of the foam molded article and the bulk foaming ratio If inside thereof is smaller than that of the present invention, the bulk foaming ratio of the foam molded article is 10 times that of Example 2. Despite being low, only the same CS hardness could be exhibited. Furthermore, the heating dimensional change rate also increased and could not be satisfied within 1.0%. In addition, a foamed molded product having a ratio of the bulk foaming magnification Sf of the surface layer of the foamed molded product to the bulk foaming magnification If inside thereof larger than that of the present invention could not be obtained at this stage.

発泡成形体の嵩発泡倍率が本発明の範囲より大きい場合は、比較例3で示すように国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験を満足することができなかった。さらに、加熱寸法変化率も大きくなり、1.0%以内を満足することができなかった。発泡成形体の嵩発泡倍率が本発明の範囲より小さい場合は、発泡成形体として重量が重く軽量性に劣るため、例えば航空機用内装材では受け入れられにくい。   When the bulk foaming ratio of the foamed molded product was larger than the range of the present invention, as shown in Comparative Example 3, the vertical combustion test of Appendix III of the Air Quality Examination Guidelines Part III, Ministry of Land, Infrastructure, Transport and Tourism could not be satisfied. . Furthermore, the heating dimensional change rate also increased and could not be satisfied within 1.0%. When the foam expansion ratio of the foamed molded product is smaller than the range of the present invention, the foamed molded product is heavy and inferior in light weight.

複合樹脂粒子100質量部に対する難燃剤量が本発明の範囲より多い場合は、発泡成型体のコストが増大し、例えば航空機用内装材ではコスト面で受け入れられにくい。複合樹脂粒子100質量部に対する難燃剤、難燃助剤量が本発明の範囲より少ない場合は、比較例1で示すように、国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験を満足することができなかった。   When the amount of the flame retardant with respect to 100 parts by mass of the composite resin particles is larger than the range of the present invention, the cost of the foamed molded article increases. For example, in the case of an aircraft interior material, it is difficult to accept the cost. When the amount of flame retardant and flame retardant aid is less than the scope of the present invention with respect to 100 parts by mass of the composite resin particles, as shown in Comparative Example 1, the vertical combustion of the Ministry of Land, Infrastructure, Transport and Tourism, Air Station Air Resistance Examination Guidelines Part III Appendix F The test could not be satisfied.

従って、本発明で得られる発泡成形体は嵩発泡倍率が高く、強度、難燃性および耐熱性に優れるため、航空機用内装材として好適に使用することができる。   Accordingly, the foamed molded article obtained by the present invention has a high bulk foaming ratio and is excellent in strength, flame retardancy and heat resistance, and therefore can be suitably used as an aircraft interior material.

Claims (5)

樹脂成分として、ポリオレフィン系樹脂100質量部とポリスチレン系樹脂100〜400質量部とを含む発泡成形体であり、
前記発泡成形体が、前記樹脂成分100質量部に対して、難燃剤2〜4質量部を含み、かつ、前記発泡成形体全体において10〜70倍の嵩発泡倍率を有し、
前記発泡成形体の表層の嵩発泡倍率Sfとその内部の嵩発泡倍率Ifとの比率が、下記式(1):
1.1≦If/Sf≦1.8 (1)
を満たすことを特徴とする航空機用内装材。
As a resin component, it is a foamed molded article containing 100 parts by mass of a polyolefin resin and 100 to 400 parts by mass of a polystyrene resin,
The foamed molded product includes 2 to 4 parts by mass of a flame retardant with respect to 100 parts by mass of the resin component, and has a bulk foaming ratio of 10 to 70 times in the entire foamed molded product,
The ratio of the bulk foaming ratio Sf of the surface layer of the foamed molded product to the bulk foaming ratio If inside thereof is represented by the following formula (1):
1.1 ≦ If / Sf ≦ 1.8 (1)
Aircraft interior material characterized by satisfying
前記発泡成形体が、下記式(2):
−0.95X+90≦Y≦100 (2)
(式中、Xは前記発泡成形体全体の嵩発泡倍率であり、Yは表面硬度(CS硬度)である)
を満たす請求項1に記載の航空機用内装材。
The foamed molded product has the following formula (2):
−0.95X + 90 ≦ Y ≦ 100 (2)
(In the formula, X is the bulk expansion ratio of the entire foamed molded article, and Y is the surface hardness (CS hardness)).
The aircraft interior material according to claim 1, wherein:
前記発泡成形体が、国土交通省航空局 耐空性審査要領第III部付録Fの垂直燃焼試験を満足する請求項1または2に記載の航空機用内装材。   The aircraft interior material according to claim 1 or 2, wherein the foamed molded product satisfies the vertical combustion test of Appendix F of Part III of the Air Bureau of the Ministry of Land, Infrastructure, Transport and Tourism Airworthiness Examination Guidelines. 前記発泡成形体が、JIS K6767:1999KのB法に準拠して、80℃、168時間の加熱後、絶対値で1.0%以下の加熱寸法変化率を有する請求項1〜3のいずれか1つに記載の航空機用内装材。   The foamed molded product according to any one of claims 1 to 3, which has a heating dimensional change rate of 1.0% or less in absolute value after heating at 80 ° C for 168 hours in accordance with JIS K6767: 1999K method B. The aircraft interior material according to one. 前記難燃剤が、トリス(2,3−ジブロモプロピル)イソシアヌレートを主成分とする請求項1〜4のいずれか1つに記載の航空機用内装材。   The aircraft interior material according to any one of claims 1 to 4, wherein the flame retardant is mainly composed of tris (2,3-dibromopropyl) isocyanurate.
JP2011040552A 2011-02-25 2011-02-25 Interior material for aircraft Withdrawn JP2012176687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040552A JP2012176687A (en) 2011-02-25 2011-02-25 Interior material for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040552A JP2012176687A (en) 2011-02-25 2011-02-25 Interior material for aircraft

Publications (1)

Publication Number Publication Date
JP2012176687A true JP2012176687A (en) 2012-09-13

Family

ID=46978856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040552A Withdrawn JP2012176687A (en) 2011-02-25 2011-02-25 Interior material for aircraft

Country Status (1)

Country Link
JP (1) JP2012176687A (en)

Similar Documents

Publication Publication Date Title
JP6185872B2 (en) High density polyethylene resin particles, composite resin particles, expanded particles and expanded molded articles
JP2011074152A (en) Prefoamed particle and process for producing the same
JP6251103B2 (en) Linear low density polyethylene resin particles, composite resin particles, expanded particles, and expanded molded articles
JP6059621B2 (en) Expandable styrene-modified thermoplastic polyester resin particles and method for producing the same, styrene-modified thermoplastic polyester resin pre-expanded particles, and styrene-modified thermoplastic polyester resin foam molding
JP5545972B2 (en) Method for producing foam molded article
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
JP5690632B2 (en) Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body
JP2011068776A (en) Foam-molded article
JP5785735B2 (en) Interior materials for railway vehicles
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP2013117037A (en) Foam molding body
JP2011208066A (en) Expansion-molded item, interior material for vehicle, tire spacer for vehicle and luggage box for vehicle
KR20150135205A (en) Molded body of composite resin foam
JP5337442B2 (en) Foam molded body and method for producing the same
JP6764364B2 (en) Composite resin foam molded product and its manufacturing method
JP2012176687A (en) Interior material for aircraft
JP2011231290A (en) Automotive member and method for producing the same
TWI807710B (en) Composite resin particle, composite resin foamed particle and foam molded body
JP2014196423A (en) Foam molded body
JP2012201827A (en) Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body
JP5809902B2 (en) MODIFIED POLYPROPYLENE RESIN PARTICLE, ITS PREFOAMED PARTICLE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING FOAM MOLD
JP2012184355A (en) Pre-foamed particle and foam molded body
JP2018141087A (en) Method for producing foamed particle and method for producing foam molded body
JP5731368B2 (en) Seed particles, composite resin particles, methods for producing the same, composite resin particles, expandable particles, pre-expanded particles, and foam molded article
JP2012193242A (en) Resin particle, method for producing the same, foamable resin particle, foamed particle and foamed molded article

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513