JP2012176556A - Wear-resistant member - Google Patents

Wear-resistant member Download PDF

Info

Publication number
JP2012176556A
JP2012176556A JP2011040834A JP2011040834A JP2012176556A JP 2012176556 A JP2012176556 A JP 2012176556A JP 2011040834 A JP2011040834 A JP 2011040834A JP 2011040834 A JP2011040834 A JP 2011040834A JP 2012176556 A JP2012176556 A JP 2012176556A
Authority
JP
Japan
Prior art keywords
cemented carbide
guide member
carbide layer
die
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011040834A
Other languages
Japanese (ja)
Inventor
Yoshiaki Morisada
好昭 森貞
Masa Mizuno
雅 水野
Genryu Abe
源隆 阿部
Yusuke Kitamura
優介 北村
Toru Nagaoka
亨 長岡
Masao Fukuzumi
真男 福角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Municipal Technical Research Institute
AMC KK
Original Assignee
Osaka Municipal Technical Research Institute
AMC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Municipal Technical Research Institute, AMC KK filed Critical Osaka Municipal Technical Research Institute
Priority to JP2011040834A priority Critical patent/JP2012176556A/en
Publication of JP2012176556A publication Critical patent/JP2012176556A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a guide member for discharging a molten material from a slit to the outside.SOLUTION: The guide member is formed by forming a cemented carbide layer using a thermal spray method on an edge of a boundary through which the molten material is discharged to the outside, and subjecting the formed cemented carbide layer to a friction-stir process to reform it through refinement of crystal grains of a binder phase contained in the cemented carbide layer, thereby forming a cemented carbide reforming layer which composes the guide member. The guide member is suitable for a T-die used for extrusion molding of the molten material. The edge where the cemented carbide reforming layer is formed is an inner wall on an opening end side of the slit of the T-die for guiding the molten material to the outside.

Description

本発明は、溶融材料をスリットから押し出して外部に吐出させるためのガイド部、代表的には各種フィルム類を溶融押し出し成形により製造する場合などに用いられるTダイに関する。とりわけ、溶融材料を押し出す先端エッジ部を金属基材の表面に溶射法によって形成された超硬合金層を改質して形成するガイド部材に関する。 The present invention relates to a guide part for extruding a molten material from a slit and discharging it to the outside, typically a T-die used for manufacturing various films by melt extrusion. In particular, the present invention relates to a guide member in which a tip edge portion for extruding a molten material is formed by modifying a cemented carbide layer formed on a surface of a metal substrate by a thermal spraying method.

従来より、溶融された材料を外部に押し出して樹脂フィルムや太陽電池用フィルム等の各種フィルムを生成するTダイ等のガイド部材が存在する。このTダイ等を用いた押出成形法により製造される樹脂フィルムは厚み偏差やいわゆるダイスジがないものが求められており、これに伴いTダイの品質特性も重要となってきている。特に溶融材料が吐出させられるリップの先端をシャープエッジに形成することができて、しかもエッジ欠けや傷、摩耗が発生しないように、硬度や強度、耐摩耗性の高い材質としてエッジ部にWCを主成分とした高硬度で耐摩耗性の高い超硬合金の使用が要求される。 Conventionally, there is a guide member such as a T die that extrudes a melted material to the outside and generates various films such as a resin film and a film for a solar cell. A resin film produced by an extrusion method using a T die or the like is required to have no thickness deviation or a so-called die streak, and along with this, quality characteristics of the T die have become important. In particular, it is possible to form the tip of the lip from which the molten material is discharged with a sharp edge, and to prevent the occurrence of chipping, scratching, or abrasion, WC is applied to the edge as a material with high hardness, strength, and wear resistance. The use of cemented carbide with high hardness and high wear resistance as the main component is required.

この超硬合金の使用について、例えば特許文献1では、リップ自体を超硬合金の加圧焼結体で製造されたTダイが提供されている。このTダイの場合、クラックや剥がれを生じることなくエッジ部をシャープで高精度に仕上げることができる点で有利である。その一方、超硬合金は主としてタングステン、コバルトおよびニッケル等の希少元素から構成されており、価格や省資源の観点からも問題があり、超硬合金焼結体により製造されるTダイの大きさや形状は焼結装置によって制限されてしまうという問題がある。 Regarding the use of this cemented carbide, for example, Patent Document 1 provides a T die in which the lip itself is manufactured from a pressure sintered body of cemented carbide. This T-die is advantageous in that the edge portion can be sharpened with high accuracy without causing cracks or peeling. On the other hand, cemented carbide is mainly composed of rare elements such as tungsten, cobalt, and nickel, which is problematic from the viewpoint of cost and resource saving. There is a problem that the shape is limited by the sintering apparatus.

この問題を克服する手法として、例えば特許文献2、3に記載のように溶射法を用いた超硬合金層の形成技術を活用し、超硬合金層を基材に形成させるTダイも提供されている。このTダイの場合、超硬合金焼結体により製造する場合と比較して超硬合金の使用量を低減できるだけでなく、種々の形状および大きさに対応させることが可能となる。
しかしながら、特許文献2、3に記載のようにスリットの内壁面の開口側のエッジ部に超硬を溶射被覆しようとすると、摩擦低減目的で表面処理された内壁面と超硬合金層のWCとは密着性が悪いため、これらの継ぎ目で面荒れやクラック、段差が生じてしまい、成形された樹脂フィルム等にダイスジを発生させる原因となってしまう。また、溶射によって超硬を被覆するとWCを主成分とする粉末材料を溶融して吹き付けることになるので、溶射後に研削・みがき加工を施してエッジ部を仕上げる際に粉末材料の粒子の剥がれやクラックが発生し易く、シャープエッジに仕上げることが困難となるという問題がある。
As a technique for overcoming this problem, there is also provided a T die for forming a cemented carbide layer on a base material by utilizing a technique of forming a cemented carbide layer using a thermal spraying method as described in Patent Documents 2 and 3, for example. ing. In the case of this T die, it is possible not only to reduce the amount of cemented carbide used, but also to cope with various shapes and sizes as compared with the case of manufacturing with a cemented carbide sintered body.
However, as described in Patent Documents 2 and 3, when trying to thermally spray coat the edge of the inner wall of the slit on the opening side, the inner wall surface treated for the purpose of reducing friction and the WC of the cemented carbide layer Since the adhesiveness is poor, surface roughness, cracks, and steps are generated at these joints, which may cause die lines on the molded resin film and the like. Also, if the carbide is coated by thermal spraying, the powder material mainly composed of WC will be melted and sprayed. Therefore, when the edge part is finished by applying grinding and polishing after thermal spraying, particles of the powder material will be peeled off or cracked. There is a problem that it is easy to occur and it is difficult to finish with a sharp edge.

特開2006−224462号公報JP 2006-224462 A 特開2007−196630号公報JP 2007-196630 A 特開2000−334806号公報JP 2000-334806 A

本発明は上記課題に鑑みなされたものであり、溶融材料を押し出す際の外部との境界近傍(例えば、スリット先端のエッジ部の内壁面)の金属基材に溶射超硬合金層を被覆し、これを改質させた構成を有するTダイ等のガイド部材を提供することを目的とする。 The present invention has been made in view of the above problems, and coats a thermal sprayed cemented carbide layer on a metal substrate in the vicinity of the boundary with the outside when extruding the molten material (for example, the inner wall surface of the edge portion of the slit tip), An object of the present invention is to provide a guide member such as a T-die having a modified structure.

本発明のガイド部材は、溶融材料をスリットから外部に吐出させるためのものである。このガイド部材の外部に溶融材料が吐出する境界のエッジ部は、溶射法を用いて金属基材の表面に形成した超硬合金層に摩擦攪拌プロセスを施し、該超硬合金層に含まれる結合相の結晶粒を微細化することで改質された超硬合金改質層で形成される。 The guide member of the present invention is for discharging the molten material from the slit to the outside. The edge part of the boundary where the molten material is discharged to the outside of the guide member is subjected to a friction stir process on the cemented carbide layer formed on the surface of the metal substrate using a thermal spraying method, and the bond contained in the cemented carbide layer It is formed of a cemented carbide modified layer modified by refining phase crystal grains.

また、上記ガイド部材は、溶融材料の押し出し成形に使用するTダイであり、前記超硬合金改質層が形成されるエッジ部は、溶融材料を外部まで案内するTダイのスリットの開口端側の内壁であることが好ましい。 The guide member is a T-die used for extrusion molding of a molten material, and an edge portion where the cemented carbide alloy modified layer is formed has an opening end side of a slit of the T die that guides the molten material to the outside. It is preferable that it is an inner wall.

また、ガイド部材のエッジ部の表面の被改質材は溶射超硬合金層であり、摩擦攪拌プロセスにより金属基材と溶射超硬合金層が冶金的に接合され、摩擦攪拌プロセス条件によっては溶射超硬合金層と金属基材との界面近傍における金属基材の硬度が摩擦攪拌プロセス前よりも高くなる。 In addition, the material to be modified on the surface of the edge portion of the guide member is a sprayed cemented carbide layer, and the metal base material and the sprayed cemented carbide layer are metallurgically joined by a friction stirring process. The hardness of the metal substrate in the vicinity of the interface between the cemented carbide layer and the metal substrate is higher than before the friction stirring process.

処理可能な超硬合金の種類は特に限定されず、種々の結合相および硬質粒子を有するものを対象とするが、機械的特性を向上させることが比較的困難であるニッケル系の結合相を有する超硬合金であることが好ましい。 The kind of cemented carbide that can be processed is not particularly limited, and is intended for those having various binder phases and hard particles, but has a nickel-based binder phase that is relatively difficult to improve mechanical properties. A cemented carbide is preferred.

また、本発明のガイド部材は、前記摩擦攪拌プロセスに超硬合金製のツールを用い、前記ツールの硬度が前記超硬合金の硬度よりも高いことが好ましく、上記超硬合金の改質方法によって改質された超硬合金に含まれる結合相の平均結晶粒径は1μm以下であることが好ましい。 Further, the guide member of the present invention preferably uses a cemented carbide tool for the friction stir process, and the hardness of the tool is preferably higher than the hardness of the cemented carbide. The average crystal grain size of the binder phase contained in the modified cemented carbide is preferably 1 μm or less.

本発明のガイド部材では溶融材料の出口のエッジ部付近の金属基材の表面において、溶射法で生成された超硬合金層(「溶射超硬合金皮膜」とも称する)に摩擦攪拌プロセスを施し、この超硬合金層に含まれる結合相の結晶粒を微細化することで改質させている。これにより結合相が高強度化し、溶射超硬合金皮膜の高硬度、高靭性および高耐摩耗特性等の機械的特性を向上させることができる。したがって、本発明のガイド部材は、その出口付近の金属基材の表面に通常の溶射超硬合金皮膜を被覆しただけの場合と比べて優れた機械的特性を有することとなる。すなわち、本発明では高価で大型化に対応し難い超硬合金焼結体を使用しなくても、安価で大型化し易い鉄鋼材を基材として先端のエッジ部のみに溶射超硬合金層を被覆し、摩擦攪拌プロセスを施すことで耐磨耗特性等の高いガイド部材を提供することができる。とりわけ本発明を各種フィルムシート成形用のTダイのスリットの開口端側の内壁におけるエッジ部への使用に適している。 In the guide member of the present invention, a friction stir process is performed on the cemented carbide layer (also referred to as “sprayed cemented carbide coating”) generated by a thermal spraying method on the surface of the metal base near the edge of the molten material outlet, The cemented carbide layer contained in the cemented carbide layer is refined by refining the crystal grains. As a result, the strength of the binder phase is increased, and mechanical properties such as high hardness, high toughness, and high wear resistance of the sprayed cemented carbide coating can be improved. Therefore, the guide member of the present invention has excellent mechanical characteristics as compared with the case where the surface of the metal base near the outlet is simply coated with a normal sprayed cemented carbide film. That is, in the present invention, a thermal sprayed cemented carbide layer is coated only on the edge portion of the tip using a steel material that is inexpensive and easily scaled up as a base material, without using a cemented carbide sintered body that is expensive and difficult to cope with upsizing. In addition, a guide member having high wear resistance and the like can be provided by performing a friction stirring process. In particular, the present invention is suitable for use on the edge portion of the inner wall on the opening end side of the slit of a T-die for forming various film sheets.

また、これに加え本発明のガイド部材では通常の溶射超硬合金で不可避的に存在する空隙等の欠陥を消失させることができるとともに、超硬合金層を金属基材に対して冶金的に接合するにより基材との密着性を向上させることもでき、長寿命のガイド部材の提供に有利である。 In addition to this, the guide member of the present invention can eliminate defects such as voids that are unavoidably present in ordinary sprayed cemented carbide, and metallurgically bond the cemented carbide layer to the metal substrate. As a result, the adhesion to the substrate can be improved, which is advantageous in providing a long-life guide member.

Tダイ3を用いた樹脂等のフィルム製造装置1の概略図を示している。The schematic of the film manufacturing apparatuses 1, such as resin using the T die 3, is shown. 図1のTダイ3の右側方からの断面概略図を示している。The cross-sectional schematic from the right side of T-die 3 of FIG. 1 is shown. 図1のTダイ3の先端の図1の紙面垂直方向の略断面概略図を示している。FIG. 2 is a schematic cross-sectional schematic view in the direction perpendicular to the plane of FIG. 超硬合金の改質方法の模式図である。It is a schematic diagram of the modification method of a cemented carbide. 超硬合金の改質方法を施した超硬合金の断面模式図である。It is a cross-sectional schematic diagram of the cemented carbide which performed the modification | reformation method of a cemented carbide. 本発明のガイド部材のエッジ部において、超硬合金の改質方法を溶射超硬合金層に施す場合の模式図である。It is a schematic diagram in the case of applying the method for modifying the cemented carbide to the sprayed cemented carbide layer at the edge portion of the guide member of the present invention. 本発明のガイド部材のエッジ部に超硬合金の改質方法を施した溶射超硬合金層の断面模式図である。It is a cross-sectional schematic diagram of the sprayed cemented carbide layer which performed the modification | reformation method of the cemented carbide to the edge part of the guide member of this invention. 実施例1で得られたTダイのエッジ部の断面のSEM写真である。2 is a SEM photograph of a cross section of an edge portion of a T die obtained in Example 1. FIG. 実施例1で得られたTダイのエッジ部の溶射超硬合金層の一部を拡大したSEM写真である。2 is an SEM photograph in which a part of a sprayed cemented carbide layer at an edge portion of a T die obtained in Example 1 is enlarged. Tダイのエッジ部の溶射超硬合金層に対して各荷重でツールを圧入して摩擦攪拌プロセスを施した場合のSEM写真である。具体的には(a)は図9と同一であり摩擦攪拌プロセスを施していない場合、(b)は溶射超硬合金層に0.5tfの荷重でツールを圧入した場合、(c)は溶射超硬合金層に1.0tfの荷重でツールを圧入した場合における溶射超硬合金層の拡大写真を示している。It is a SEM photograph at the time of carrying out a friction stir process by pressing-in a tool with each load to a thermal-sprayed cemented carbide layer of the edge part of T die. Specifically, (a) is the same as FIG. 9 and the friction stirring process is not performed, (b) is a case where a tool is press-fitted with a load of 0.5 tf into a thermal sprayed cemented carbide layer, and (c) is a thermal spray. An enlarged photograph of the thermal sprayed cemented carbide layer when a tool is press-fitted into the cemented carbide layer with a load of 1.0 tf is shown. Tダイのエッジ部の溶射超硬合金層に対して各荷重でツールを圧入して摩擦攪拌プロセスを施した場合のSEM写真である。具体的には(d)は溶射超硬合金層に2.0tfの荷重でツールを圧入した場合、(e)は溶射超硬合金層に3.0tfの荷重でツールを圧入した場合における溶射超硬合金層の拡大写真を示している。It is a SEM photograph at the time of carrying out a friction stir process by pressing-in a tool with each load to a thermal-sprayed cemented carbide layer of the edge part of T die. Specifically, (d) shows a case where a tool is pressed into a thermal sprayed cemented carbide layer with a load of 2.0 tf, and (e) shows a case where a tool is pressed into a thermal sprayed cemented carbide layer with a load of 3.0 tf. An enlarged photograph of the hard alloy layer is shown. 摩擦攪拌プロセスなし及び各ツール荷重で摩擦攪拌プロセスを施した溶射超硬合金層のビッカース硬度である。It is the Vickers hardness of a thermal-sprayed cemented carbide layer that was subjected to the friction stir process without the friction stir process and with each tool load. (a)に摩擦攪拌プロセスを施していないTダイのエッジ部近傍の溶射超硬合金皮膜の写真、(b)に3.0tfのツール荷重で摩擦攪拌プロセスを施したTダイエッジ部近傍の溶射超硬合金皮膜の写真を示している。(A) is a photograph of a thermal sprayed cemented carbide film in the vicinity of the edge portion of a T die that has not been subjected to the friction stirring process, and (b) is a thermal spray coating in the vicinity of the T die edge portion that has been subjected to the frictional stirring process with a tool load of 3.0 tf A photograph of the hard alloy film is shown.

≪Tダイ等の基本構成≫
まず、本発明のガイド部材の一例としてのTダイ3について概説するとともにTダイ3の従来技術の問題点について再度詳述する。
上述するようにTダイ3は、樹脂フィルムや太陽電池用フィルム等の各種フィルムを生成するために溶融された樹脂材料を外部に押し出すガイド部材である。
図1はTダイ3を用いた樹脂等のフィルム製造装置1の概略図、図2は図1のTダイ3の右側方向の断面概略図、図3は図1のTダイ3の先端の紙面方向の略断面概略図を示している。具体的には、フィルム製造装置1の押出機2はその先端に直線状のリップ4を持つTダイ3(鉄鋼材の金型)が配設され、Tダイ3から樹脂材料が平たく押し出されて連続的に樹脂フィルム6が成型される。Tダイ3の基本構造は片面に刻まれたT字型の溝を向かい合わせに二枚重ねたもので(図2、図3は二枚のうちの図1紙面左側が示されている)、上方の樹脂流入口4aから溶融した樹脂を投入し、図2に示す横方向に延びるプレッシャーマニホールド4bを介して樹脂がダイの端部まで広がり、リップ4のスリット8の開口端からフィルム状に吐出される。
≪Basic configuration of T-die etc.≫
First, the T die 3 as an example of the guide member of the present invention will be outlined and the problems of the prior art of the T die 3 will be described in detail again.
As described above, the T die 3 is a guide member that pushes out a molten resin material to produce various films such as a resin film and a film for solar cells.
FIG. 1 is a schematic view of an apparatus 1 for producing a film such as a resin using a T-die 3, FIG. 2 is a schematic cross-sectional view of the right side of the T-die 3 in FIG. 1, and FIG. 1 shows a schematic cross-sectional schematic view of a direction. Specifically, the extruder 2 of the film manufacturing apparatus 1 is provided with a T die 3 (steel material mold) having a linear lip 4 at its tip, and a resin material is extruded flatly from the T die 3. The resin film 6 is continuously molded. The basic structure of the T-die 3 is one in which two T-shaped grooves carved on one side are stacked facing each other (FIGS. 2 and 3 show the left side of FIG. 1 of the two sheets), The molten resin is introduced from the resin inlet 4a, and the resin spreads to the end of the die via the pressure manifold 4b extending in the lateral direction shown in FIG. 2, and is discharged in the form of a film from the opening end of the slit 8 of the lip 4. .

樹脂フィルム6は鏡面処理された冷却ローラー5(チルドロール)を通して冷却し、最終的に巻き取られるまでの過程で端部の切り落としなどを行い樹脂フィルム6の幅を調整する。Tダイ3を用いた押出成形法により製造される樹脂フィルム6は厚み偏差やいわゆるダイスジがないものが求められており、これに伴いTダイ3の品質特性も重要となってきている。特に溶融材料が吐出させられるリップ4のエッジ部4dは、シャープエッジに形成することができて、しかもエッジ部4dの欠けや傷、摩耗が発生しないように、硬度や強度、耐摩耗性の高い材質として、加工精度や離型性を向上させることが要求されている。例えば、スリット内壁面(プレッシャーマニホールド4b付近)に溶融樹脂との摩擦を低減するための硬質クロムめっき4fを施す一方で、リップ部先端のリップランド4cから先端底部4gにわたる範囲の表面、とりわけエッジ部4dの近傍にはWCを主成分とした高硬度で耐摩耗性の高い超硬合金の使用が要求される。なお、硬質クロムめっき4fの替わりにステライト等の溶射皮膜を施す場合も存在する。 The resin film 6 is cooled through a mirror-finished cooling roller 5 (chilled roll), and the width of the resin film 6 is adjusted by cutting off the end portion until it is finally wound. The resin film 6 produced by the extrusion method using the T die 3 is required to have no thickness deviation or so-called die streak, and along with this, the quality characteristics of the T die 3 have become important. In particular, the edge portion 4d of the lip 4 through which the molten material is discharged can be formed with a sharp edge, and the hardness, strength, and wear resistance are high so that the edge portion 4d is not chipped, scratched or worn. As a material, it is required to improve processing accuracy and releasability. For example, while the hard chrome plating 4f for reducing friction with the molten resin is applied to the inner wall surface of the slit (near the pressure manifold 4b), the surface in the range from the lip land 4c at the tip of the lip to the bottom 4g of the tip, particularly the edge portion In the vicinity of 4d, it is required to use a cemented carbide with high hardness and high wear resistance mainly composed of WC. In some cases, a sprayed coating such as stellite is applied instead of the hard chrome plating 4f.

この超硬合金の使用要求に対してTダイのリップ4自体を超硬合金の加圧焼結体で製造する方法も存在するが、超硬合金が高価な希少資源であり大型化に対応できない点は上述したとおりである。一方、超硬合金の使用量を低減しつつ大型化にも対応可能なように溶射法を用いた超硬合金層4eの形成技術を活用し、超硬合金層4eを安価な金属基材に被覆したTダイ3を製造する方法も考えられる。クロムめっき4fと超硬合金層4eとは面一になるように継ぎ合わされている。しかしながら、この溶射超硬合金層4eを被覆する方法の場合、上述したように摩擦低減目的の内壁面と超硬合金層4eのWCとは密着性が悪いため、これらの継ぎ目で面荒れやクラック、段差が生じてしまい、成形された樹脂フィルム等にダイスジを発生させる原因となってしまう。また、溶射によって超硬を被覆するとWCを主成分とする粉末材料を溶融して吹き付けることになるので、溶射後に研削・みがき加工を施してエッジ部を仕上げる際に粉末材料の粒子の剥がれやクラックが発生し易く、シャープエッジに仕上げることが困難となるという問題がある。 Although there is a method of manufacturing the lip 4 of the T die with a pressure sintered body of cemented carbide in response to the use requirement of the cemented carbide, cemented carbide is an expensive rare resource and cannot cope with an increase in size. The point is as described above. On the other hand, the formation technique of the cemented carbide layer 4e using the thermal spraying method is utilized so that it can cope with the enlargement while reducing the amount of the cemented carbide used, and the cemented carbide layer 4e is made into an inexpensive metal substrate. A method of manufacturing the coated T die 3 is also conceivable. The chromium plating 4f and the cemented carbide layer 4e are joined together so as to be flush with each other. However, in the case of the method of coating the thermal sprayed cemented carbide layer 4e, as described above, the inner wall surface for friction reduction and the WC of the cemented carbide layer 4e have poor adhesion. A step is generated, which causes a die streak in the molded resin film or the like. Also, if the carbide is coated by thermal spraying, the powder material mainly composed of WC will be melted and sprayed. Therefore, when the edge part is finished by applying grinding and polishing after thermal spraying, particles of the powder material will be peeled off or cracked. There is a problem that it is easy to occur and it is difficult to finish with a sharp edge.

≪超硬合金の改質原理≫
本発明のTダイ3では、リップ4の先端のリップランド4c(特にエッジ部4d)を鉄鋼材等の金属基材に溶射超硬合金層を被覆し、この溶射超硬合金層を改質させている。
この超硬合金の改質原理について図4の模式図で説明する。
高速回転する円筒状の摩擦攪拌プロセス用ツール30を超硬合金10に圧入し、摩擦攪拌プロセス用ツール30を任意の方向に移動させることで超硬合金10の改質を行う。なお、摩擦攪拌プロセス用ツール30を圧入後、移動させることなく引き抜いた場合には、摩擦攪拌プロセス用ツール30の底面形状に対応した改質領域が得られる。摩擦攪拌プロセス用ツール30で攪拌された領域には塑性流動が生じ、超硬合金10に存在する空隙等の欠陥を消失させると共に結合相の結晶粒を微細化することができる。
≪Reforming principle of cemented carbide≫
In the T die 3 of the present invention, the lip land 4c (particularly the edge portion 4d) at the tip of the lip 4 is coated with a metal base material such as a steel material with a sprayed cemented carbide layer, and this sprayed cemented carbide layer is modified. ing.
The reforming principle of this cemented carbide will be described with reference to the schematic diagram of FIG.
A cylindrical friction stirring process tool 30 that rotates at high speed is press-fitted into the cemented carbide 10 and the friction stirring process tool 30 is moved in an arbitrary direction to modify the cemented carbide 10. When the friction stir process tool 30 is pulled out without being moved after being press-fitted, a modified region corresponding to the bottom shape of the friction stir process tool 30 is obtained. Plastic flow is generated in the region stirred by the friction stirring process tool 30, and defects such as voids existing in the cemented carbide 10 can be eliminated and the crystal grains of the binder phase can be refined.

摩擦攪拌プロセスは、1991年に英国のTWI(The Welding Institute)で考案された接合技術である摩擦攪拌接合法を、金属材の表面改質法として応用したものである。摩擦攪拌接合は高速で回転する円柱状のツールを接合したい領域に圧入(ツール底面にプローブと呼ばれる突起を有しており、該プローブが圧入される)し、摩擦熱によって軟化した被接合材を攪拌しながら接合したい方向に走査することで接合を達成する技術である。回転するツールによって攪拌された領域は一般的に攪拌部と呼ばれ、接合条件によっては材料の均質化および結晶粒径の減少に伴う機械的特性の向上がもたらされる。摩擦攪拌による材料の均質化および結晶粒径の減少に伴う機械的特性の向上を表面改質として用いる技術が摩擦攪拌プロセスであり、近年広く研究の対象になっている。なお、本発明で用いる摩擦攪拌プロセス用ツール30の底面には、必ずしもプローブを有している必要はなく、プローブを有さない所謂フラットツールを用いることができる。 The friction stir process is an application of the friction stir welding method, which is a joining technique devised by TWI (The Welding Institute) in 1991, as a surface modification method for metal materials. Friction stir welding is performed by press-fitting into a region where a cylindrical tool rotating at a high speed is to be joined (having a protrusion called a probe on the bottom of the tool, and the probe is press-fitted), and softened by frictional heat. This technique achieves joining by scanning in the direction of joining while stirring. The region agitated by the rotating tool is generally called an agitator, and depending on the joining conditions, the material is homogenized and the mechanical properties are improved with the reduction of the crystal grain size. A technique that uses as a surface modification a material homogenization by friction stirrer and an improvement in mechanical properties accompanying a decrease in crystal grain size is a friction stir process, and has been widely studied in recent years. The bottom surface of the friction stir process tool 30 used in the present invention does not necessarily have a probe, and a so-called flat tool without a probe can be used.

超硬合金10には種々の結合相および硬質セラミックス粒子を有する超硬合金を用いることができる。結合相としては鉄族金属(Fe,Ni,Co)やその固溶体を例示でき、硬質セラミックス粒子としてはWC、TiC、VC、Mo2C、ZrC、HfC、NbC、TaC、Cr3C2、SiC等の炭化物、Si3N4等の窒化物、TiB2等のホウ化物およびAl2O3等の酸化物等を例示することができる。 The cemented carbide 10 can be a cemented carbide having various binder phases and hard ceramic particles. Examples of the binder phase include iron group metals (Fe, Ni, Co) and solid solutions thereof. Examples of the hard ceramic particles include carbides such as WC, TiC, VC, Mo2C, ZrC, HfC, NbC, TaC, Cr3C2, and SiC, and Si3N4. Examples thereof include nitrides such as TiB2, borides such as TiB2, and oxides such as Al2O3.

摩擦攪拌プロセス用ツール30には、超硬合金10よりも機械的特性(硬度、耐熱衝撃性および摩擦攪拌プロセス時の温度における変形抵抗等)に優れたものを使用することができる。摩擦攪拌プロセス時に摩擦攪拌プロセス用ツール30の破片が超硬合金10に混入する場合を考慮すると、摩擦攪拌プロセス用ツール30は超硬合金製であることが好ましい。超硬合金製の摩擦攪拌プロセス用ツール30は超硬合金10よりも機械的特性に優れたものを使用する必要があり、例えば、超硬合金10よりも高硬度のものを選択する必要がある。 As the friction stir process tool 30, a tool superior in mechanical properties (hardness, thermal shock resistance, deformation resistance at a temperature during the friction stir process, etc.) than the cemented carbide 10 can be used. Considering the case where fragments of the friction stir process tool 30 are mixed into the cemented carbide 10 during the friction stir process, the friction stir process tool 30 is preferably made of cemented carbide. It is necessary to use a friction stir process tool 30 made of cemented carbide having a mechanical property superior to that of cemented carbide 10. For example, a tool having higher hardness than cemented carbide 10 needs to be selected. .

図5に本発明の超硬合金の改質方法を施した超硬合金の断面模式図を示す。超硬合金10の表面近傍に、摩擦攪拌プロセス用ツール30の圧入によって形成された改質領域20が存在する。改質領域20に含まれる結合相の結晶粒は微細化されており、平均結晶粒径が1μm以下であることが好ましい。 FIG. 5 shows a schematic sectional view of a cemented carbide subjected to the method for modifying a cemented carbide of the present invention. In the vicinity of the surface of the cemented carbide 10, there is a modified region 20 formed by press-fitting the friction stirring process tool 30. The crystal grains of the binder phase contained in the modified region 20 are refined, and the average crystal grain size is preferably 1 μm or less.

図6に本発明の超硬合金の改質方法を溶射超硬合金層に適用する場合の模式図を示す。高速回転する円筒状の摩擦攪拌プロセス用ツール30を溶射超硬合金層14に圧入し、摩擦攪拌プロセス用ツール30を任意の方向に移動させることで溶射超硬合金層14の改質を行う。なお、摩擦攪拌プロセス用ツール30を圧入後、移動させることなく引き抜いた場合には、摩擦攪拌プロセス用ツール30の底面形状に対応した改質領域が得られる。摩擦攪拌プロセス用ツール30で攪拌された領域には塑性流動が生じ、溶射超硬合金層14に存在する空隙等の欠陥を消失させると共に結合相の結晶粒を微細化することができる。また、摩擦攪拌プロセス時に発生する塑性流動および入熱により、溶射超硬合金層14と金属基材12とは冶金的に接合される。加えて、摩擦攪拌プロセス条件によっては改質された溶射超硬合金層14と金属基材12との接合界面近傍において、金属基材12の硬度は摩擦攪拌プロセス前よりも高くなる。 FIG. 6 shows a schematic diagram when the method for modifying a cemented carbide of the present invention is applied to a sprayed cemented carbide layer. The cylindrical friction stir process tool 30 that rotates at high speed is press-fitted into the sprayed cemented carbide layer 14 and the friction stir process tool 30 is moved in an arbitrary direction to modify the sprayed cemented carbide layer 14. When the friction stir process tool 30 is pulled out without being moved after being press-fitted, a modified region corresponding to the bottom shape of the friction stir process tool 30 is obtained. Plastic flow is generated in the region stirred by the friction stir process tool 30, and defects such as voids existing in the sprayed cemented carbide layer 14 can be eliminated and the crystal grains of the binder phase can be refined. Further, the sprayed cemented carbide layer 14 and the metal substrate 12 are metallurgically joined by plastic flow and heat input generated during the friction stirring process. In addition, depending on the friction stir process conditions, the hardness of the metal base 12 is higher than that before the friction stir process near the joint interface between the modified sprayed cemented carbide layer 14 and the metal base 12.

摩擦攪拌プロセス用ツール30には、溶射超硬合金層14よりも機械的特性(硬度、耐熱衝撃性および摩擦攪拌プロセス時の温度における変形抵抗等)に優れたものを使用することができる。摩擦攪拌プロセス時に摩擦攪拌プロセス用ツール30の破片が溶射超硬合金層14に混入する場合を考慮すると、摩擦攪拌プロセス用ツール30は超硬合金製であることが好ましい。超硬合金製の摩擦攪拌プロセス用ツール30は溶射超硬合金層14よりも機械的特性に優れたものを使用する必要があり、例えば、溶射超硬合金層14よりも高硬度のものを選択する必要がある。具体的には、溶射超硬合金層14がWC−CrC−Ni系の場合、摩擦攪拌プロセス用ツール20にはWC−Co系等を用いることができる。 As the friction stir process tool 30, a tool superior in mechanical properties (hardness, thermal shock resistance, deformation resistance at a temperature during the friction stir process, etc.) can be used as compared with the sprayed cemented carbide layer 14. Considering the case where fragments of the friction stir process tool 30 are mixed into the sprayed cemented carbide layer 14 during the friction stir process, the friction stir process tool 30 is preferably made of cemented carbide. It is necessary to use a cemented carbide alloy friction stir process tool 30 having a mechanical property superior to that of the sprayed cemented carbide layer 14. For example, a tool having a higher hardness than the sprayed cemented carbide layer 14 is selected. There is a need to. Specifically, when the sprayed cemented carbide layer 14 is a WC-CrC-Ni system, a WC-Co system or the like can be used for the friction stirring process tool 20.

溶射超硬合金層14を形成する手法は特に限定されず、ガス燃焼エネルギーや電気エネルギー(プラズマ、アーク等)を利用した各種溶射法を用いることができる。具体的には、ガスフレーム溶射、高速ガスフレーム溶射(HVOF)、アーク溶射、プラズマ溶射、減圧プラズマ溶射(VPS)等を用いることができる。 The technique for forming the sprayed cemented carbide layer 14 is not particularly limited, and various spraying methods using gas combustion energy or electric energy (plasma, arc, etc.) can be used. Specifically, gas flame spraying, high-speed gas flame spraying (HVOF), arc spraying, plasma spraying, low pressure plasma spraying (VPS), or the like can be used.

摩擦攪拌プロセスは高速回転する摩擦攪拌プロセス用ツール30を被処理材に圧入して塑性流動を生じさせるプロセスであるため、被処理材が高い塑性変形抵抗を有する場合には適用が困難である。超硬合金は高い塑性変形抵抗を有する代表的な材料であり、一般的には摩擦攪拌プロセスの適用は困難である。ここで、溶射超硬合金層14は薄いことに加えて金属基材12との密着性に乏しいため、超硬合金焼結体と比較して塑性流動を生じさせ易く、容易に摩擦攪拌プロセスを施すことができる。 Since the friction stir process is a process in which the friction stir process tool 30 that rotates at high speed is pressed into the material to be processed to cause plastic flow, it is difficult to apply when the material to be processed has high plastic deformation resistance. Cemented carbide is a typical material having a high plastic deformation resistance, and it is generally difficult to apply a friction stir process. Here, since the sprayed cemented carbide layer 14 is thin and has poor adhesion to the metal substrate 12, it is more likely to cause plastic flow than the cemented carbide sintered body, and the friction stir process can be easily performed. Can be applied.

図7に本発明の超硬合金の改質方法を施した溶射超硬合金層の断面模式図を示す。溶射超硬合金層14に、摩擦攪拌プロセス用ツール30の圧入によって形成された改質領域20が存在する。溶射超硬合金層14の厚さおよび摩擦攪拌プロセスの条件によっては、改質領域20は金属基材12にまで広がって存在する場合もある。改質領域20に含まれる結合相の結晶粒は微細化されており、平均結晶粒径が1μm以下であることが好ましい。また、溶射超硬合金層14に存在する空隙等の欠陥は摩擦攪拌プロセスによって消失するため、改質領域20に含まれる欠陥は大幅に低減されている。加えて、溶射超硬合金層14と金属基材12とは冶金的に接合されており、改質された溶射超硬合金層14と金属基材12との接合界面近傍において、金属基材12の硬度は摩擦攪拌プロセス前よりも高くなっている。 FIG. 7 shows a schematic cross-sectional view of a sprayed cemented carbide layer subjected to the method for modifying a cemented carbide of the present invention. The thermally sprayed cemented carbide layer 14 has a modified region 20 formed by press-fitting the friction stir process tool 30. Depending on the thickness of the sprayed cemented carbide layer 14 and the conditions of the friction stir process, the modified region 20 may extend to the metal substrate 12. The crystal grains of the binder phase contained in the modified region 20 are refined, and the average crystal grain size is preferably 1 μm or less. Further, since defects such as voids existing in the sprayed cemented carbide layer 14 disappear by the friction stir process, the defects included in the modified region 20 are greatly reduced. In addition, the thermally sprayed cemented carbide layer 14 and the metal substrate 12 are metallurgically bonded, and the metal substrate 12 is disposed in the vicinity of the bonding interface between the modified sprayed cemented carbide layer 14 and the metal substrate 12. The hardness of is higher than before the friction stir process.

以下に本発明の実施例を図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。
本発明のガイド部材は、Tダイ等のガイド部材3の境界エッジ部を上述した溶射超硬合金層に摩擦攪拌プロセスを施して改質させる形成する。したがって、上述した図6、7の断面模式図を図3に照らすと、図6、7に示す溶射超硬合金層14が図3の超硬合金層4eに相当し、この超硬合金層4eに対して図6に示す摩擦攪拌プロセス用ツール30により改質させた改質領域20を作成していくこととなる。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments.
The guide member of the present invention is formed by modifying the boundary edge portion of the guide member 3 such as a T die by subjecting the above-mentioned sprayed cemented carbide layer to a friction stir process. Therefore, when the cross-sectional schematic diagrams of FIGS. 6 and 7 are illuminated in FIG. 3, the sprayed cemented carbide layer 14 shown in FIGS. 6 and 7 corresponds to the cemented carbide layer 4e in FIG. 3, and this cemented carbide layer 4e. On the other hand, the modified region 20 modified by the friction stirring process tool 30 shown in FIG. 6 is created.

≪実施例1 Tダイのエッジ部近傍の溶射超硬合金層の形成≫)
SKD61板材(17mm×175mm×230mm)に対し、高速フレーム溶射法を用いて膜厚が約300μmの溶射超硬合金層を形成させた。原料粉末にはガスアトマイズ法で製造された平均粒径40μmのWC−12mass%Co造粒粉を用いた。
Example 1 Formation of Thermal Sprayed Cemented Carbide Layer near Edge of T-Die
A sprayed cemented carbide layer having a film thickness of about 300 μm was formed on the SKD61 plate (17 mm × 175 mm × 230 mm) using a high-speed flame spraying method. As the raw material powder, WC-12 mass% Co granulated powder having an average particle diameter of 40 μm manufactured by a gas atomization method was used.

得られた試料に関する断面のSEM写真を図8に、図8の溶射超硬合金層(Cemented carbide layer)を拡大したSEM写真を図9に示す。SKD61板材表面に約300μmの厚さを有する溶射超硬合金層が形成されている。また、溶射超硬合金層には空隙等の欠陥が多数存在していることが確認できる。 FIG. 8 shows a cross-sectional SEM photograph of the obtained sample, and FIG. 9 shows an enlarged SEM photograph of the thermally sprayed cemented carbide layer of FIG. A sprayed cemented carbide layer having a thickness of about 300 μm is formed on the surface of the SKD61 plate. It can also be confirmed that the sprayed cemented carbide layer has a large number of defects such as voids.

≪実施例2 Tダイのエッジ部近傍の溶射超硬合金層への摩擦攪拌プロセス≫
ここでの摩擦攪拌プロセス条件(条件1)は下記の通りである。
SKD61板材に対し、高速フレーム溶射法を用いて前述と同様の溶射超硬合金層を形成させた後、該溶射超硬合金層に対して摩擦攪拌プロセスを施した。摩擦攪拌プロセスには直径が12mmの円柱形状をした超硬合金(WC−Co)製のツールを用い、600rpmの速度で回転する該ツールを0.5tf(500kgf)、1.0tf(1,000kgf)、2.0tf(2,000kgf)、3.0tf(3,000kgf)の4種類の荷重で溶射超硬合金層に圧入させた。ツールの移動速度は50mm/minとし、アルゴンガスを20l/minでフローさせることでツールおよび試料の酸化を防止した。
<< Example 2 Friction Stirring Process to Thermal Sprayed Cemented Carbide Layer near Edge of T-Die >>
The friction stirring process conditions (condition 1) here are as follows.
A sprayed cemented carbide layer similar to that described above was formed on the SKD61 plate material using a high-speed flame spraying method, and then a friction stirring process was applied to the sprayed cemented carbide layer. For the friction stir process, a cylindrical cemented carbide (WC-Co) tool having a diameter of 12 mm is used, and the tool rotating at a speed of 600 rpm is 0.5 tf (500 kgf), 1.0 tf (1,000 kgf). ), 2.0 tf (2,000 kgf), and 3.0 tf (3,000 kgf), it was press-fitted into the thermal sprayed cemented carbide layer. The tool moving speed was 50 mm / min, and argon gas was flowed at 20 l / min to prevent the tool and the sample from being oxidized.

図10、図11には、(a)溶射超硬合金層に摩擦攪拌プロセスを施さない場合(図9と同一)、(b)溶射超硬合金層に0.5tfの荷重でツールを圧入した場合、(c)溶射超硬合金層に1.0tfの荷重でツールを圧入した場合、(d)溶射超硬合金層に2.0tfの荷重でツールを圧入した場合、(e)溶射超硬合金層に3.0tfの荷重でツールを圧入した場合における溶射超硬合金層の拡大写真を示している。(a)に示すように摩擦攪拌プロセスを施す前の溶射超硬合金層には空隙等の欠陥が多数存在していたが、(b)〜(e)に示すように摩擦攪拌プロセスのツール荷重が大きくなるほど溶射超硬合金層の欠陥が減少していくことがわかる。 10 and 11, (a) When the thermal spray cemented carbide layer is not subjected to the friction stirring process (same as in FIG. 9), (b) The tool is press-fitted into the thermal spray cemented carbide layer with a load of 0.5 tf. (C) When a tool is press-fitted into the sprayed cemented carbide layer with a load of 1.0 tf, (d) When a tool is press-fitted into the sprayed cemented carbide layer with a load of 2.0 tf, (e) Thermal sprayed cemented carbide An enlarged photograph of the thermal sprayed cemented carbide layer when a tool is press-fitted into the alloy layer with a load of 3.0 tf is shown. As shown in (a), the sprayed cemented carbide layer before the friction stir process had many defects such as voids, but as shown in (b) to (e), the tool load of the friction stir process It can be seen that the defects in the sprayed cemented carbide layer decrease with increasing.

図10、図11の(a)〜(e)のSEM写真において欠陥の占める面積割合から溶射超硬合金層の気孔率(欠陥の割合)を算出したものを表1に示している。 Table 1 shows the porosity (defect ratio) of the thermal sprayed cemented carbide layer calculated from the area ratio of defects in the SEM photographs of FIGS. 10 and 11 (a) to (e).

図12には摩擦攪拌プロセスなし及び上記各ツール荷重(0.5tf,1.0tf,2.0tf,3.0tf)で摩擦攪拌プロセスを施した溶射超硬合金層のビッカース硬度が示されている。ビッカース硬度は2.94N(300gf)で保持時間15秒の条件で測定を行った。このグラフ図からも、摩擦攪拌プロセスを施すと溶射超硬合金層の硬度が大幅に上昇し、さらにツール荷重が大きいほど硬度が高くなることを示している。 FIG. 12 shows the Vickers hardness of the thermally sprayed cemented carbide layer without the friction stir process and subjected to the friction stir process with the above tool loads (0.5 tf, 1.0 tf, 2.0 tf, 3.0 tf). The Vickers hardness was 2.94 N (300 gf) and the measurement was performed under the condition of a holding time of 15 seconds. This graph also shows that when the friction stir process is performed, the hardness of the sprayed cemented carbide layer increases significantly, and the hardness increases as the tool load increases.

また、下記表2に摩擦攪拌後におけるSKD61板材に関し、溶射超硬合金層との接合界面から深さ方向へのビッカース硬度を示す。ここでは、ビッカース硬度は荷重2.94N(300gf)、保持時間15秒の条件で測定を行った。摩擦攪拌プロセスを施さない場合のSKD61板材の硬度は400〜450HV程度であるが、摩擦攪拌プロセスを施した溶射超硬合金の直下では800HV以上の高硬度を示している。溶射超硬合金層から基材内部への緩やかな硬度変化は、Tダイ等のガイド部材のエッジ部として極めて理想的である。 Table 2 below shows the Vickers hardness in the depth direction from the bonding interface with the sprayed cemented carbide layer for the SKD61 plate material after friction stirring. Here, the Vickers hardness was measured under the conditions of a load of 2.94 N (300 gf) and a holding time of 15 seconds. The hardness of the SKD61 plate material when not subjected to the friction stirring process is about 400 to 450 HV, but shows a high hardness of 800 HV or more just below the sprayed cemented carbide subjected to the friction stirring process. The gradual change in hardness from the sprayed cemented carbide layer to the inside of the base material is extremely ideal as an edge portion of a guide member such as a T die.

なお、ここでは摩擦攪拌プロセス条件は、上述したものと異なる(条件2)。具体的には、SKD61板材に対し、高速フレーム溶射法を用いて溶射超硬合金層(WC−20mass%CrC−7mass%Ni)を形成させた後、該溶射超硬合金層に対して摩擦攪拌プロセスを施した。摩擦攪拌プロセスには直径が12mmの円柱形状をした超硬合金(WC−Co)製のツールを用い、600rpmの速度で回転する該ツールを3400kgの荷重で溶射超硬合金層に圧入させた。ツールの移動速度は50mm/minとし、アルゴンガスをフローさせることでツールおよび試料の酸化を防止した。なお、未処理の溶射超硬合金皮膜の硬度が約1200HVであったのに対して、摩擦攪拌プロセスを施した溶射超硬合金皮膜の硬度は約1800HVとなっていた。 Here, the friction stirring process conditions are different from those described above (condition 2). Specifically, a thermal sprayed cemented carbide layer (WC-20 mass% CrC-7 mass% Ni) is formed on the SKD61 plate material by using a high-speed flame spraying method, and then frictional stirring is performed on the thermal sprayed cemented carbide layer. The process was performed. A tool made of cemented carbide (WC-Co) having a cylindrical shape with a diameter of 12 mm was used for the friction stirring process, and the tool rotating at a speed of 600 rpm was pressed into the sprayed cemented carbide layer with a load of 3400 kg. The moving speed of the tool was 50 mm / min, and the oxidation of the tool and the sample was prevented by flowing argon gas. The hardness of the untreated sprayed cemented carbide film was about 1200 HV, whereas the hardness of the sprayed cemented carbide film subjected to the friction stirring process was about 1800 HV.

≪実施例3 摩擦攪拌プロセス前後のTダイのエッジ部近傍の評価≫
次に、図13は、(a)に摩擦攪拌プロセスを施していないTダイのエッジ部近傍の溶射超硬合金皮膜(WC−20mass%CrC−7mass%Ni)の写真、(b)に3.0tfのツール荷重で摩擦攪拌プロセス(条件1)を施したTダイエッジ部近傍の溶射超硬合金皮膜の写真を示している。ここでは鏡面研磨した溶射超硬合金皮膜に20kgfの荷重でビッカース圧子を圧入し、圧痕の四隅から発生するクラックの差異が確認される。摩擦攪拌プロセスを施さない(a)に比べて摩擦攪拌プロセスを施した(b)の方がクラックが小さいことがわかる。すなわち、エッジ部近傍の溶射超硬合金層に摩擦攪拌プロセスを施した本発明のTダイ等のガイド部材は、優れた破壊靭性を有しているといえる。
Example 3 Evaluation of the vicinity of the edge portion of the T-die before and after the friction stirring process
Next, FIG. 13 is a photograph of a sprayed cemented carbide film (WC-20 mass% CrC-7 mass% Ni) in the vicinity of an edge portion of a T die that has not been subjected to the friction stir process in FIG. The photograph of the thermal spraying cemented carbide film of the T-die edge part vicinity which performed the friction stirring process (condition 1) with the tool load of 0 tf is shown. Here, a Vickers indenter is press-fitted with a load of 20 kgf into a mirror-polished cemented carbide alloy film, and a difference in cracks generated from four corners of the indentation is confirmed. It can be seen that cracks are smaller in (b) subjected to the friction stirring process than in (a) not subjected to the friction stirring process. That is, it can be said that the guide member such as the T die of the present invention in which the thermal sprayed cemented carbide layer near the edge portion is subjected to the friction stirring process has excellent fracture toughness.

ここで本発明のガイド部材の代表例として説明してきたTダイの標準的な評価基準について言及する。
一般にTダイはそのエッジ部に存在する基準値サイズの大きさ以上の欠損の数で評価され、現状では長さ100mmのエッジ部の長さあたりにおいて基準値(幅40μm、深さ15μm、奥行き15μm)より大きな欠損が2個以上存在すると合格基準を満足しない。今回の実施例において摩擦攪拌プロセスを施す前のTダイの欠損を測定すると、基準値サイズよりも大きな欠損の個数は1個/100mmであり、基準値サイズよりも小さな欠損の数は17個/100mmであった。一方、200tfの荷重の摩擦攪拌プロセスを施した後のTダイの欠損を測定すると、基準値サイズよりも大きな欠損の個数は0個/100mmであり、基準値サイズよりも小さな欠損の数は6個/100mmであった。したがって、摩擦攪拌プロセスを施さないときには合格基準より少々上回っていた程度の溶射超硬合金層エッジのTダイが、摩擦攪拌プロセスを施すことで評価基準を大幅に上回るものとなることが理解される。
Here, reference will be made to the standard evaluation criteria of the T die that have been described as representative examples of the guide member of the present invention.
In general, a T-die is evaluated by the number of defects that are larger than the reference value size existing at the edge portion. At present, the reference value (width 40 μm, depth 15 μm, depth 15 μm) per edge length of 100 mm length. ) If there are two or more larger defects, the acceptance criteria are not satisfied. When the defect of the T-die before the friction stir process is measured in this example, the number of defects larger than the reference value size is 1/100 mm, and the number of defects smaller than the reference value size is 17 / It was 100 mm. On the other hand, when the defect of the T die after the friction stirring process with a load of 200 tf is measured, the number of defects larger than the reference value size is 0/100 mm, and the number of defects smaller than the reference value size is 6 Piece / 100 mm. Therefore, it is understood that when the friction stir process is not performed, the T-die of the thermal sprayed cemented carbide layer edge, which is slightly higher than the acceptance standard, greatly exceeds the evaluation standard by performing the friction stir process. .

以上、本発明のガイド部材の実施形態およびその概念について説明してきたが本発明はこれに限定されるものではなく特許請求の範囲および明細書等に記載の精神や教示を逸脱しない範囲で他の変形例、改良例が得られることは当業者は理解できるであろう。 As mentioned above, although embodiment of the guide member of this invention and its concept were demonstrated, this invention is not limited to this, Other in the range which does not deviate from the mind and teaching as described in a claim, a description, etc. Those skilled in the art will understand that variations and improvements can be obtained.

1 フィルム製造装置
2 押出機
3 Tダイ(ガイド部材)
4 リップ
4a 樹脂流入口
4b プレッシャーマニホールド
4c リップランド
4d リップエッジ(エッジ部)
4e 超硬合金層
4f クロムめっき
4g 先端底部
5 ローラー
6 樹脂フィルム
8 スリット
10 超硬合金
12 金属基材(鉄鋼材)
14 溶射超硬合金層
20 改質領域
30 摩擦攪拌プロセス用ツール

DESCRIPTION OF SYMBOLS 1 Film manufacturing apparatus 2 Extruder 3 T die (guide member)
4 Lip 4a Resin inlet 4b Pressure manifold 4c Lip land 4d Lip edge (edge part)
4e Cemented carbide layer 4f Chromium plating 4g Tip bottom 5 Roller 6 Resin film 8 Slit 10 Cemented carbide 12 Metal substrate (steel)
14 Thermal sprayed cemented carbide layer 20 Modified region 30 Friction stir process tool

Claims (6)

溶融材料をスリットから外部に吐出させるためのガイド部材であって、
外部に溶融材料が吐出する境界のエッジ部には、
溶射法を用いて金属基材の表面に形成した超硬合金層に摩擦攪拌プロセスを施し、
該超硬合金層に含まれる結合相の結晶粒を微細化することで改質された超硬合金改質層で形成される、ことを特徴とするガイド部材。
A guide member for discharging the molten material to the outside from the slit,
At the edge of the boundary where the molten material is discharged to the outside,
Friction stir process is applied to the cemented carbide layer formed on the surface of the metal substrate using the thermal spraying method,
A guide member formed of a cemented carbide modified layer modified by refining crystal grains of a binder phase contained in the cemented carbide layer.
前記ガイド部材は、溶融材料の押し出し成形に使用するTダイであり、
前記超硬合金改質層が形成されるエッジ部は、溶融材料を外部まで案内するTダイのスリットの開口端側の内壁である、ことを特徴とする請求項1に記載のガイド部材。
The guide member is a T die used for extrusion molding of a molten material,
The guide member according to claim 1, wherein the edge portion on which the cemented carbide alloy modified layer is formed is an inner wall on the opening end side of a slit of a T die that guides the molten material to the outside.
前記金属基材と前記超硬合金層が冶金的に接合される、ことを特徴とする請求項1〜2いずれか1項に記載のガイド部材。 The guide member according to claim 1, wherein the metal base material and the cemented carbide layer are metallurgically joined. 前記超硬合金層と前記金属基材との界面近傍における前記金属基材の硬度が前記摩擦攪拌プロセスを施す前と比較して高くなっている、ことを特徴とする請求項1〜3いずれか1項に記載のガイド部材。 The hardness of the said metal base material in the interface vicinity of the said cemented carbide layer and the said metal base material is high compared with before performing the said friction stirring process, The any one of Claims 1-3 characterized by the above-mentioned. The guide member according to Item 1. 前記結合相がニッケルである、ことを特徴とする請求項1〜4いずれか1項に記載のガイド部材。 The guide member according to any one of claims 1 to 4, wherein the binder phase is nickel. 前記摩擦攪拌プロセスに超硬合金製のツールを用い、
前記ツールの硬度が前記超硬合金の硬度よりも高い、ことを特徴とする請求項1〜5いずれか1項に記載のガイド部材。



Using a cemented carbide tool for the friction stirring process,
The guide member according to any one of claims 1 to 5, wherein a hardness of the tool is higher than a hardness of the cemented carbide.



JP2011040834A 2011-02-25 2011-02-25 Wear-resistant member Withdrawn JP2012176556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040834A JP2012176556A (en) 2011-02-25 2011-02-25 Wear-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040834A JP2012176556A (en) 2011-02-25 2011-02-25 Wear-resistant member

Publications (1)

Publication Number Publication Date
JP2012176556A true JP2012176556A (en) 2012-09-13

Family

ID=46978768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040834A Withdrawn JP2012176556A (en) 2011-02-25 2011-02-25 Wear-resistant member

Country Status (1)

Country Link
JP (1) JP2012176556A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038143A (en) * 2009-08-10 2011-02-24 Osaka Municipal Technical Research Institute Reforming method of cemented carbide, and cemented carbide reformed by the method
CN103846544A (en) * 2012-11-30 2014-06-11 中国科学院沈阳自动化研究所 Welding with trailing extrusion device for friction stir welding and welding with trailing extrusion method thereof
JP2017094476A (en) * 2015-11-27 2017-06-01 株式会社Amc Scissors made of cemented carbide and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038143A (en) * 2009-08-10 2011-02-24 Osaka Municipal Technical Research Institute Reforming method of cemented carbide, and cemented carbide reformed by the method
CN103846544A (en) * 2012-11-30 2014-06-11 中国科学院沈阳自动化研究所 Welding with trailing extrusion device for friction stir welding and welding with trailing extrusion method thereof
JP2017094476A (en) * 2015-11-27 2017-06-01 株式会社Amc Scissors made of cemented carbide and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9943929B2 (en) Metal matrix composite creation
JP5308426B2 (en) Cemented carbide and cutting tools
JP5809901B2 (en) Laminate and method for producing laminate
Oyelola et al. Machining of functionally graded Ti6Al4V/WC produced by directed energy deposition
Chromik et al. Tribological coatings prepared by cold spray
JP7018603B2 (en) Manufacturing method of clad layer
Ana et al. Accumulative roll bonding (ARB) of the composite coated strips to fabricate multi-component Al-based metal matrix composites
JPWO2012086037A1 (en) Cold spray nozzle and cold spray device using the cold spray nozzle
JP2008155206A (en) Method for coating metal matrix composite material
Li et al. Effect of TiC content on Ni/TiC composites by direct laser fabrication
JP5175449B2 (en) Sliding member with film
JP2012176556A (en) Wear-resistant member
JP5371102B2 (en) Method for modifying cemented carbide and cemented carbide modified by the method
JP2017094474A (en) Cutter made of cemented carbide and manufacturing method thereof
WO2018093178A1 (en) Method for coating electrode for resistance welding, and electrode for resistance welding
Ochonogor et al. Microstructure characterization of laser-deposited titanium carbide and zirconium-based titanium metal matrix composites
Nie et al. Development of manufacturing technology on WC–Co hardmetals
Winnicki et al. Effect of gas pressure and temperature on stereometric properties of Al+ Al 2 O 3 composite coatings deposited by LPCS method
KR20150017363A (en) Structure with embedded pipe and manufacturing method therefor
Ramesh et al. Air jet erosion wear behavior of Al6061-SiC-Carbon fibre hybrid composite
JP5745437B2 (en) Die for pellet manufacturing
CN213739692U (en) Diamond-like carbon composite coating of powder metallurgy die
WO2019202720A1 (en) Nozzle for cold spray and cold-splay device
JP2000001763A (en) Carbide cermet thermal spraying material, coated member therewith and production of the member
JP5505886B2 (en) Metal material, manufacturing method thereof, and die using the metal material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513