JP2012176125A - Tubular body used for artificial muscle, artificial muscle with the same, and method for manufacturing the tubular body - Google Patents

Tubular body used for artificial muscle, artificial muscle with the same, and method for manufacturing the tubular body Download PDF

Info

Publication number
JP2012176125A
JP2012176125A JP2011040933A JP2011040933A JP2012176125A JP 2012176125 A JP2012176125 A JP 2012176125A JP 2011040933 A JP2011040933 A JP 2011040933A JP 2011040933 A JP2011040933 A JP 2011040933A JP 2012176125 A JP2012176125 A JP 2012176125A
Authority
JP
Japan
Prior art keywords
cylindrical body
artificial muscle
rubber
axial direction
rubber layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011040933A
Other languages
Japanese (ja)
Other versions
JP5666944B2 (en
Inventor
Taro Nakamura
太郎 中村
Yuya Hidaka
裕也 樋▲高▼
Masato Yokoshima
真人 横島
Kazuki Adachi
和紀 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2011040933A priority Critical patent/JP5666944B2/en
Publication of JP2012176125A publication Critical patent/JP2012176125A/en
Application granted granted Critical
Publication of JP5666944B2 publication Critical patent/JP5666944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tubular body that can still be bent flexibly even with a fluid still remaining therein while sufficient contraction and durability necessary for an artificial muscle are still maintained, and to provide an artificial muscle with the tubular body, and a method for manufacturing the tubular body.SOLUTION: The tubular body includes: a tubular portion made of an elastic body, and having a bellows structure for expanding and contracting in an axial direction; and a fiber layer extendable in the axial direction along the peaks and troughs of the bellows of the tubular portion.

Description

本発明は、人工筋肉に用いられる筒状体及び当該筒状体を備えた人工筋肉に関し、特に、内部に流体を供給することにより伸縮する筒状体及び人工筋肉に関する。   The present invention relates to a cylindrical body used for an artificial muscle and an artificial muscle provided with the cylindrical body, and more particularly to a cylindrical body and an artificial muscle that expand and contract by supplying a fluid therein.

近年、例えば生体内に埋設可能な人工筋肉として、本願発明者らが提案した軸方向繊維強化型人工筋肉と呼ばれる人工筋肉が提案されている。当該人工筋肉は、ゴム製のチューブ内に軸方向に延長する複数の繊維を内挿し、チューブ及びガラスロービング繊維の両端部がターミナルにより固定されることによって形成される。そして、当該人工筋肉を収縮させる際には、ターミナルを介して空気などの流体をチューブ内に供給することによりゴムチューブを膨張させる。チューブは、内挿された複数の繊維により軸方向への伸長が規制されているため、径方向にのみに膨張し、径方向への膨張に伴って軸方向への高い収縮率を得ることができる。   In recent years, for example, an artificial muscle called an axial fiber reinforced artificial muscle proposed by the present inventors has been proposed as an artificial muscle that can be embedded in a living body. The artificial muscle is formed by inserting a plurality of fibers extending in the axial direction into a rubber tube and fixing both ends of the tube and the glass roving fiber with a terminal. When contracting the artificial muscle, the rubber tube is expanded by supplying a fluid such as air into the tube through the terminal. Since the tube is restricted from extending in the axial direction by a plurality of interpolated fibers, the tube expands only in the radial direction, and a high contraction rate in the axial direction can be obtained with the expansion in the radial direction. it can.

しかしながら、近年においては、人工筋肉の動作を応用して多様な医療機器等の推進装置等に用いる検討がなされており、例えば生体の腸内を進行可能な内視鏡の推進機構として応用しようとした場合には、従来の人工筋肉では、曲げ剛性が大きく、腸内で受動的に曲がることができないために推進機構の先端が腸の湾曲部に突っかかってしまい、進行できなくなる等、推進機構としての機能を十分に果たせないことがあった。   However, in recent years, studies have been made on the use of artificial muscles for various medical devices and other propulsion devices, and for example, an attempt is made to apply them as a propulsion mechanism for an endoscope that can travel in the intestine of a living body. In such a case, the conventional artificial muscle has a large bending rigidity and cannot bend passively in the intestine. There was a case where the function of could not be performed sufficiently.

WO 2008/140032 A1WO 2008/140032 A1 特開2009−240713号公報JP 2009-240713 A

そこで、本願発明は上記課題を解決するため、人工筋肉として要求される十分な収縮量,耐久性を担保したまま、流体が供給された状態においても柔軟に湾曲することが可能な筒状体、当該筒状体を備えた人工筋肉、及び、筒状体の製造方法を提供する。   Therefore, in order to solve the above problems, the present invention has a cylindrical body that can be flexibly curved even in a state where fluid is supplied while ensuring sufficient contraction amount and durability required as an artificial muscle, Provided are an artificial muscle provided with the tubular body, and a method for producing the tubular body.

上記課題を解決するための筒状体の態様として、弾性体からなり、軸方向において伸縮する蛇腹構造を有する筒部と、筒部に内包され、筒部の蛇腹における山と谷に沿って軸方向に延長する繊維層とを備えた態様とした。
本態様によれば筒部が蛇腹構造を有することにより、高い収縮量を維持したまま、柔軟性に富んだ筒状体を得ることができる。
また、筒状体の他の態様として、筒部が内側ゴム層と、当該内側ゴム層を覆う外側ゴム層とを有し、繊維層が内側ゴム層及び外側ゴム層との間に介挿された態様とした。
本態様によれば筒部が内側ゴム層と当該内側ゴム層を覆う外側ゴム層とを有することから、前記態様から生じる効果に加え、耐久性を向上させることができる。
また、筒状体を備えた人工筋肉の態様として、筒部の両端部を閉塞する蓋部材を備えた態様とした。
本態様によれば、筒状体に密閉空間が形成され、当該密閉空間内に圧力を印加することにより、高い収縮量を維持したまま、柔軟性に富んだ人工筋肉を得ることができる。
また、筒状体を前提とする他の態様として、外周面が軸方向に沿って蛇腹状に形成された型部材の表面に酸化水溶液を塗布する工程と、型部材を液状のゴムに浸漬する工程と、ゴムに浸漬した型部材を洗浄する工程を含む筒状体の製造方法とした。
本態様によれば、蛇腹状に形成された型部材の表面に残存するゴムが洗浄により除去されるので、軸方向に沿って厚さが均一な筒状体を得ることができる。
また、他の態様として、型部材の表面に付着したゴムの外周面に形成された蛇腹における山と谷に沿って軸方向に延長する繊維を貼り付けて繊維層を形成する工程と、繊維層が形成された型部材を再度液状のゴムに浸漬し、繊維層にゴムを付着させる工程を含む態様とした。
本態様によれば、高い収縮量と柔軟性とを有した筒状体を得ることができる。
また、他の態様として、繊維層にゴムを付着させる工程の前に、繊維層に酸化水溶液を塗布する工程を含む態様とした。
本態様によれば、繊維層の表面に液状のゴムを安定して定着させることができるとともに、残余のゴムを除去することにより厚さが均一な筒状体を得ることができる。
なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。
As an aspect of the cylindrical body for solving the above-mentioned problems, a cylindrical portion made of an elastic body and having a bellows structure that expands and contracts in the axial direction, and a shaft along a mountain and a valley in the bellows included in the cylindrical portion. And a fiber layer extending in the direction.
According to this aspect, since the cylindrical portion has a bellows structure, it is possible to obtain a flexible cylindrical body while maintaining a high contraction amount.
As another aspect of the cylindrical body, the cylindrical portion has an inner rubber layer and an outer rubber layer covering the inner rubber layer, and the fiber layer is interposed between the inner rubber layer and the outer rubber layer. It was set as the aspect.
According to this aspect, since the cylindrical portion has the inner rubber layer and the outer rubber layer covering the inner rubber layer, the durability can be improved in addition to the effects resulting from the aspect.
Moreover, it was set as the aspect provided with the cover member which obstruct | occludes the both ends of a cylinder part as an aspect of the artificial muscle provided with the cylindrical body.
According to this aspect, a sealed space is formed in the cylindrical body, and by applying pressure in the sealed space, an artificial muscle rich in flexibility can be obtained while maintaining a high contraction amount.
Further, as another mode premised on the cylindrical body, a step of applying an oxidizing aqueous solution to the surface of the mold member whose outer peripheral surface is formed in a bellows shape along the axial direction, and immersing the mold member in liquid rubber It was set as the manufacturing method of the cylindrical body including the process and the process of wash | cleaning the type | mold member immersed in rubber | gum.
According to this aspect, since the rubber remaining on the surface of the mold member formed in the bellows shape is removed by washing, a cylindrical body having a uniform thickness along the axial direction can be obtained.
As another aspect, a step of forming a fiber layer by attaching fibers extending in the axial direction along peaks and valleys in the bellows formed on the outer peripheral surface of the rubber attached to the surface of the mold member; The mold member formed with is immersed in liquid rubber again to include a step of attaching the rubber to the fiber layer.
According to this aspect, a cylindrical body having a high shrinkage amount and flexibility can be obtained.
Moreover, it was set as the aspect containing the process of apply | coating oxidation aqueous solution to a fiber layer before the process of attaching rubber | gum to a fiber layer as another aspect.
According to this aspect, liquid rubber can be stably fixed on the surface of the fiber layer, and a cylindrical body having a uniform thickness can be obtained by removing the remaining rubber.
The summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本発明の実施の形態に係る人工筋肉の構成を示す図である。It is a figure which shows the structure of the artificial muscle which concerns on embodiment of this invention. 人工筋肉用筒状体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the cylindrical body for artificial muscles. ディップ棒の一例を示す図である。It is a figure which shows an example of a dip stick. 酸化水溶液の塗布方法の一例を示す図である。It is a figure which shows an example of the coating method of oxidizing aqueous solution. ディップ棒の浸漬方法の一例を示す図である。It is a figure which shows an example of the immersion method of a dip stick. 繊維層の形成方法を示す図である。It is a figure which shows the formation method of a fiber layer. 人工筋肉の駆動方法を説明するための図である。It is a figure for demonstrating the drive method of an artificial muscle. 人工筋肉の動作を説明するための図である。It is a figure for demonstrating operation | movement of an artificial muscle. 圧力応答特性の測定に使用した人工筋肉を示す図である。It is a figure which shows the artificial muscle used for the measurement of a pressure response characteristic. 人工筋肉の軸方向への圧力応答特性を示す図である。It is a figure which shows the pressure response characteristic to the axial direction of an artificial muscle. 人工筋肉の曲げ状態を示す図である(空気圧無印加)。It is a figure which shows the bending state of an artificial muscle (no air pressure is applied). 人工筋肉の曲げ状態を示す図である(空気圧印加)。It is a figure which shows the bending state of an artificial muscle (application of air pressure).

以下、実施の形態を通じて本発明を詳説するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また、実施の形態の中で説明される特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described in detail through embodiments, but the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included. It is not necessarily essential for the solution of the invention.

図1(a)乃至(d)は、実施形態に係る人工筋肉10の構成を示す図である。
(a)は、側面図,(b)は、縦断面図,(c)は(a)図のA−A断面図,(d)は(a)図のB−B断面図である。
同図に示すように、人工筋肉10は、ゴム部材から成る蛇腹状の筒状体11と、当該筒状体11に内包される繊維層12と筒状体11の両端にそれぞれ取り付けられる蓋部材14a,14b、及び、締付バンド15a,15bを備える。筒状体11は、軸方向に沿って伸縮可能な蛇腹状であって、図1(c),(d)に示すように、繊維層12を挟んで径方向内側に位置する内側ゴム層11A、及び、径方向外側に位置する外側ゴム層11Bからなる筒部を有する。内側ゴム層11Aと外側ゴム層11Bとは、例えば天然ゴムラテックスから形成される。蛇腹を形成する内側ゴム層11A及び外側ゴム層11Bの山部同士、及び谷部同士は、互いに一致した状態で一体化されており、筒状体11は軸方向に沿って伸縮自在である。
Fig.1 (a) thru | or (d) are figures which show the structure of the artificial muscle 10 which concerns on embodiment.
(A) is a side view, (b) is a longitudinal sectional view, (c) is an AA sectional view of FIG. (A), and (d) is a BB sectional view of (a).
As shown in the figure, the artificial muscle 10 includes a bellows-like cylindrical body 11 made of a rubber member, a fiber layer 12 included in the cylindrical body 11, and lid members attached to both ends of the cylindrical body 11, respectively. 14a, 14b and fastening bands 15a, 15b. The cylindrical body 11 has a bellows shape that can be expanded and contracted along the axial direction, and as shown in FIGS. 1C and 1D, the inner rubber layer 11 </ b> A positioned radially inward with the fiber layer 12 interposed therebetween. And a cylindrical portion made of an outer rubber layer 11B located on the radially outer side. The inner rubber layer 11A and the outer rubber layer 11B are made of natural rubber latex, for example. The crests and troughs of the inner rubber layer 11A and the outer rubber layer 11B forming the bellows are integrated in a state of being coincident with each other, and the cylindrical body 11 is stretchable along the axial direction.

繊維層12は、内側ゴム層11Aと外側ゴム層11Bとの間に介挿される層であって、複数の繊維12kにより形成される。繊維12kは、筒状体11の軸方向に沿って延在する。より詳細には、内側ゴム層11Aと外側ゴム層11Bとにより形成される蛇腹の山部と谷部の間に沿うように延在する。つまり、繊維層12も蛇腹構造を有している。繊維12kは、例えば、機械的な撚りをかけずに収束された無撚り繊維が好適である。本例では、繊維12kとして、5〜15μm程度の直径を有し、強度の高いカーボンロービング繊維を用いた。   The fiber layer 12 is a layer interposed between the inner rubber layer 11A and the outer rubber layer 11B, and is formed of a plurality of fibers 12k. The fiber 12k extends along the axial direction of the cylindrical body 11. More specifically, it extends so as to extend between the ridges and valleys of the bellows formed by the inner rubber layer 11A and the outer rubber layer 11B. That is, the fiber layer 12 also has a bellows structure. The fiber 12k is preferably, for example, a non-twisted fiber that is converged without being mechanically twisted. In this example, a carbon roving fiber having a diameter of about 5 to 15 μm and a high strength was used as the fiber 12k.

蓋部材14a,14bは、筒状体11の両端開口を閉塞し、内部を密閉状態に維持する部材である。締付バンド15a,15bは、筒状体11の両端部の外周面に締結され、蓋部材14a,14bと筒状体11との間に隙間ができないように筒状体11を締め付ける。つまり、筒状体11は、蓋部材14a,14b及び締付バンド15a,15bにより、密閉状態に維持され、密閉空間内に圧縮空気が導入されることにより収縮する。また、蓋部材14bには、内外に貫通する空気注入孔ha及び空気排出孔hbが開設され、空気注入孔haには、後述する圧縮空気注入管31aが嵌挿され、空気排出孔hbには空気排出管31bが嵌挿される。   The lid members 14a and 14b are members that close both end openings of the cylindrical body 11 and maintain the inside in a sealed state. The fastening bands 15a and 15b are fastened to the outer peripheral surfaces of both ends of the cylindrical body 11, and tighten the cylindrical body 11 so that there is no gap between the lid members 14a and 14b and the cylindrical body 11. That is, the cylindrical body 11 is maintained in a sealed state by the lid members 14a and 14b and the fastening bands 15a and 15b, and contracts when compressed air is introduced into the sealed space. The lid member 14b has an air injection hole ha and an air discharge hole hb penetrating inside and outside, and a compressed air injection pipe 31a described later is fitted into the air injection hole ha, and the air discharge hole hb is inserted into the air discharge hole hb. The air discharge pipe 31b is inserted.

次に、上記構成から成る人工筋肉10に用いられる筒状体11の製造方法について、図2のフローチャートを参照して説明する。
まず、S11において筒状体11の型部材となるディップ棒21を準備する。図3(a),(b)は、ディップ棒21の一例を示す図である。ディップ棒21は、例えば、押出成形法を用いて成形されたABS樹脂などの樹脂からなり、内側ゴム層11Aの内径と同じ外径を有する塗布部21aと、塗布部21aの両端にそれぞれ設けられた把持部21bとを備える。ディップ棒21の塗布部21aの表面は、軸方向に沿って蛇腹状に形成されており、当該塗布部21aの形状が内側ゴム層11A、外側ゴム層11B及び繊維層12の蛇腹形状と対応する。
Next, the manufacturing method of the cylindrical body 11 used for the artificial muscle 10 having the above configuration will be described with reference to the flowchart of FIG.
First, a dip bar 21 to be a mold member of the cylindrical body 11 is prepared in S11. 3A and 3B are diagrams showing an example of the dip bar 21. FIG. The dip bar 21 is made of, for example, a resin such as ABS resin formed by an extrusion molding method, and is provided on each of the application part 21a having the same outer diameter as the inner diameter of the inner rubber layer 11A and both ends of the application part 21a. And a gripping portion 21b. The surface of the application part 21a of the dip bar 21 is formed in a bellows shape along the axial direction, and the shape of the application part 21a corresponds to the bellows shape of the inner rubber layer 11A, the outer rubber layer 11B, and the fiber layer 12. .

次に、S12において、ディップ棒21の塗布部21aの外周面に、例えば硝酸とエタノールとを混合した硝酸アルコールなどの酸化水溶液を均一に塗布する前処理を実行する。
次に、S13において、図5に示すように、前処理が実行されたディップ棒21を容器25内に収容された天然ゴムラテックス液(以下、単にゴム液という)26中に所定時間浸漬するディッピング処理を行う。ディッピング処理に際しては、人為的に把持部21bを把持して行ってもよいが、例えば、ディップ棒21の一方の把持部21bを把持部材27で把持し、把持部材27を図示しない昇降手段により連続して下降させるようにすることが好ましい。次に、S14においてディッピング処理から所定時間経過後に、ディップ棒21をゴム液26中から引き上げ、例えば水を収容した容器内に投入することでディップ棒21の外周面に未定着の残余のゴム液26を除去し、S15において所定の時間乾燥させる。なお、乾燥の際は、ディップ棒21をモーター等と接続して継続的に回転させることが好ましい。当該工程を経ることにより、内側ゴム層11Aが形成される。
Next, in S <b> 12, a pretreatment for uniformly applying an oxidizing aqueous solution such as nitric alcohol mixed with nitric acid and ethanol to the outer peripheral surface of the application portion 21 a of the dip bar 21 is executed.
Next, in S13, as shown in FIG. 5, the dipping bar 21 in which the pretreatment is performed is dipped in a natural rubber latex liquid (hereinafter simply referred to as a rubber liquid) 26 contained in the container 25 for a predetermined time. Process. The dipping process may be performed by manually gripping the gripping portion 21b. For example, one gripping portion 21b of the dip bar 21 is gripped by the gripping member 27, and the gripping member 27 is continuously moved by a lifting means (not shown). It is preferable to make it descend. Next, after a predetermined time has elapsed from the dipping process in S14, the dip bar 21 is lifted out of the rubber liquid 26 and put into a container containing water, for example, to leave a remaining rubber liquid unfixed on the outer peripheral surface of the dip bar 21. 26 is removed and dried in S15 for a predetermined time. During drying, it is preferable that the dip bar 21 is connected to a motor or the like and continuously rotated. Through this process, the inner rubber layer 11A is formed.

つまり、S12乃至S14の工程は、ゴム液26を酸化水溶液と反応させることで蛇腹状の塗布部21aの表面上において早期に定着させ(酸凝固法)、さらに、ディップ棒21を水の入った容器に浸させて、蛇腹の谷の間に溜まり易い固化前の未定着のゴム液26を洗い流すことにより、ディップ棒21の蛇腹形状を精密に反映しつつ、厚さにムラがない蛇腹形状の内側ゴム層11Aを形成する工程である。
なお、本実施形態における内側ゴム層11Aの厚さ(0.4mm程度)であれば、十数秒程度の短い時間で内側ゴム層11Aを形成することができる。
また、ディップ棒21の塗布部21aに酸化水溶液を均一に塗布するために、例えば、図4に示すように、ディップ棒21の把持部21bとモーター22の出力軸22Jとを連結部材23で連結させてディップ棒21を回転させながら、塗布部21aの外周面に酸化水溶液を含ませた刷毛等の塗布手段24により塗布すれば好適である。
That is, in the steps S12 to S14, the rubber liquid 26 is reacted with an oxidizing aqueous solution to fix it quickly on the surface of the bellows-shaped application portion 21a (acid coagulation method), and the dip rod 21 is filled with water. By immersing in the container and washing away the unfixed rubber liquid 26 before solidification that easily collects between the bellows valleys, the bellows shape of the dip bar 21 is accurately reflected and the bellows shape has no unevenness in thickness. This is a step of forming the inner rubber layer 11A.
In addition, if the thickness of the inner rubber layer 11A in this embodiment (about 0.4 mm), the inner rubber layer 11A can be formed in a short time of about ten or more seconds.
Further, in order to uniformly apply the oxidizing aqueous solution to the application part 21a of the dip bar 21, for example, as shown in FIG. 4, the grip part 21b of the dip bar 21 and the output shaft 22J of the motor 22 are connected by a connecting member 23. It is preferable that the coating is performed by a coating means 24 such as a brush containing an oxidizing aqueous solution on the outer peripheral surface of the coating part 21a while rotating the dip bar 21.

次に、S16において、乾燥後の内側ゴム層11Aの外周面にカーボンロービング繊維から成る繊維12kをディップ棒21の軸方向に沿って貼り付け、繊維層12を形成する。
具体的には、例えば図6に示すように、繊維12kを接着材等により収斂し、シート状に成形した繊維シート12Sを内側ゴム層11A軸方向に沿って貼り付ける。繊維シート12Sは、内側ゴム層11Aの全周に亘って隙間なく貼り付ける。例えば、1枚当りの繊維シート12Sの幅を周長の1/30〜1/10程度、かつ、1枚当りの繊維シート12Sの長さLを内側ゴム層11Aの軸方向長さよりも短くカットし、複数枚の繊維シート12Sを円周上に沿って少しずつ貼り付ける。このとき、内側ゴム層11Aの山部と谷部との差を埋めてしまわないように、山部と谷部との間の表面に沿うように繊維シート12Sを密着させる。つまり、繊維12kは、内側ゴム層11Aの蛇腹形状に沿って軸方向に延長する。
また、繊維シート12Sを貼り付ける際には、ゴム液26を内側ゴム層11Aの外周面、或いは、繊維シート12Sにおける内側ゴム層11Aの外周面と対向する面に塗布しながら貼り付けることが好ましい。これにより、繊維12kと内側ゴム層11Aを構成する天然ゴムラテックス液とを馴染ませながら強固に一体化することができる。
Next, in S16, the fiber 12k which consists of carbon roving fiber is affixed on the outer peripheral surface of 11 A of inner side rubber layers after drying along the axial direction of the dip stick 21, and the fiber layer 12 is formed.
Specifically, for example, as shown in FIG. 6, the fibers 12k are converged by an adhesive or the like, and the fiber sheet 12S formed into a sheet shape is attached along the axial direction of the inner rubber layer 11A. The fiber sheet 12S is affixed without a gap over the entire circumference of the inner rubber layer 11A. For example, the width of the fiber sheet 12S per sheet is cut to about 1/30 to 1/10 of the circumferential length, and the length L of the fiber sheet 12S per sheet is cut shorter than the axial length of the inner rubber layer 11A. Then, a plurality of fiber sheets 12S are attached little by little along the circumference. At this time, the fiber sheet 12S is brought into close contact with the surface between the peak and the valley so as not to fill the difference between the peak and the valley of the inner rubber layer 11A. That is, the fiber 12k extends in the axial direction along the bellows shape of the inner rubber layer 11A.
Moreover, when affixing the fiber sheet 12S, it is preferable to apply the rubber liquid 26 while applying it to the outer peripheral surface of the inner rubber layer 11A or the outer surface of the inner rubber layer 11A in the fiber sheet 12S. . Thereby, the fiber 12k and the natural rubber latex liquid constituting the inner rubber layer 11A can be firmly integrated with each other.

次にS17以降の工程により、外側ゴム層11Bを形成する。まず、S17において、S16により形成された繊維層12の外周面に硝酸アルコールなどの酸化水溶液を均一に塗布する前処理を行った後、S18において、再度ゴム液26中にディップ棒21を浸漬するディッピング処理を行う。当該ディッピング処理においては、ゴム液26が各繊維12kの隙間にも浸透するので、内側ゴム層11Aと繊維層12と外側ゴム層11Bとを一体化させることができる。つまり、繊維層12を内包した状態の筒状体11を得ることが可能となる。
なお、上記S17においては、繊維層12の表面に直接酸化水溶液を塗布するものとしたが、繊維層12の上にゴム液26をディップして薄いゴム層を形成した後に、当該ゴム層の表面に酸化水溶液を塗布することにより外側ゴム層11Bを形成してもよい。
次に、S19において、所定時間浸漬したディップ棒21をゴム液26中から引き上げ、水を収容した容器内に投入し、未定着の残余のゴム液26を除去する。当該工程により、蛇腹形状の繊維層12にゴム液26を確実に定着させつつ、谷部に溜まり易い未定着の残余のゴム液26を洗い流すことができる。よって、ディップ棒21の蛇腹形状が精密に反映された外側ゴム層11Bを形成することができる。
Next, the outer rubber layer 11B is formed by the steps after S17. First, in S17, a pretreatment for uniformly applying an oxidizing aqueous solution such as alcohol nitrate to the outer peripheral surface of the fiber layer 12 formed in S16 is performed, and then in S18, the dip rod 21 is immersed again in the rubber liquid 26. Perform dipping processing. In the dipping process, the rubber liquid 26 penetrates into the gaps between the fibers 12k, so that the inner rubber layer 11A, the fiber layer 12, and the outer rubber layer 11B can be integrated. That is, it becomes possible to obtain the cylindrical body 11 in a state in which the fiber layer 12 is included.
In S17, the oxidizing aqueous solution is applied directly to the surface of the fiber layer 12. However, after the rubber liquid 26 is dipped on the fiber layer 12 to form a thin rubber layer, the surface of the rubber layer is The outer rubber layer 11B may be formed by applying an oxidizing aqueous solution onto the outer rubber layer 11B.
Next, in S19, the dip bar 21 immersed for a predetermined time is pulled up from the rubber liquid 26 and put into a container containing water, and the remaining unfixed rubber liquid 26 is removed. By this step, the unfixed residual rubber liquid 26 that easily collects in the valleys can be washed away while the rubber liquid 26 is reliably fixed to the bellows-shaped fiber layer 12. Therefore, the outer rubber layer 11B in which the bellows shape of the dip bar 21 is accurately reflected can be formed.

次に、S20において所定の時間乾燥させた後、S21において、型部材であるディップ棒21を内側ゴム層11Aから引き抜き、内側ゴム層11A、繊維層12及び外側ゴム層11Bからなる蛇腹構造を有する筒状体11を得ることができる。上記工程を経て製造された筒状体11は、蛇腹状のディップ棒21の形状が精密に反映されているため、柔軟性に富み、曲げ方向の力が加わることにより、座屈することなく湾曲可能である。また、S22において、筒状体11を必要な長さに切断することにより、複数の筒状体11を同時に製造することができる。
そして、得られた筒状体11の両端部に蓋部材14a,14bをそれぞれ挿入した後、締付バンド15a,15bで筒状体11を締め付けることにより、図1に示した密閉空間を有する人工筋肉10を得ることができる。
Next, after drying for a predetermined time in S20, the dip rod 21 as a mold member is pulled out from the inner rubber layer 11A in S21 to have a bellows structure composed of the inner rubber layer 11A, the fiber layer 12, and the outer rubber layer 11B. The cylindrical body 11 can be obtained. The cylindrical body 11 manufactured through the above steps is highly flexible because the shape of the bellows-shaped dip bar 21 is accurately reflected, and can be bent without buckling by applying a force in the bending direction. It is. Moreover, in S22, the several cylindrical body 11 can be manufactured simultaneously by cut | disconnecting the cylindrical body 11 to required length.
And after inserting lid member 14a, 14b into the both ends of the obtained cylindrical body 11, respectively, by tightening the cylindrical body 11 with the fastening bands 15a, 15b, the artificial which has the sealed space shown in FIG. Muscle 10 can be obtained.

次に、上記工程を経て製造された筒状体11を用いた人工筋肉10の動作について説明する。
まず、図7に示すように、人工筋肉10と駆動装置30とを接続する。駆動装置30は、圧縮空気注入管31aと、空気排出管31bと、空気注入用の電磁弁32aと、空気排気用の電磁弁32bと、圧縮空気供給手段33と、制御手段34とを備える。
圧縮空気注入管31aと空気排出管31bとは、一方の蓋部材14bに開設された空気注入孔haと空気排出孔hbとに嵌挿される。圧縮空気注入管31aは、注入用の電磁弁32aを介して圧縮空気を供給する圧縮空気供給手段33と連結され、空気排出管31bは排気用の電磁弁32bと連結される。なお、空気注入と排出とを両方行える電磁弁を利用し、蓋部材14bの孔を単一のものとしてもよい。制御手段34は、注入用の電磁弁32aの開閉と排気用の電磁弁32bの開閉とを制御して、筒状体11の膨張・収縮を制御する。
Next, operation | movement of the artificial muscle 10 using the cylindrical body 11 manufactured through the said process is demonstrated.
First, as shown in FIG. 7, the artificial muscle 10 and the driving device 30 are connected. The drive device 30 includes a compressed air injection pipe 31a, an air discharge pipe 31b, an electromagnetic valve 32a for air injection, an electromagnetic valve 32b for air exhaust, a compressed air supply means 33, and a control means 34.
The compressed air injection pipe 31a and the air discharge pipe 31b are fitted and inserted into an air injection hole ha and an air discharge hole hb opened in one lid member 14b. The compressed air injection pipe 31a is connected to a compressed air supply means 33 that supplies compressed air via an electromagnetic valve 32a for injection, and the air discharge pipe 31b is connected to an electromagnetic valve 32b for exhaust. In addition, the hole of the cover member 14b is good also as a single thing using the solenoid valve which can perform both air injection | pouring and discharge | emission. The control means 34 controls the expansion / contraction of the cylindrical body 11 by controlling the opening / closing of the electromagnetic valve 32a for injection and the opening / closing of the electromagnetic valve 32b for exhaust.

図8は、人工筋肉10を固定するための固定部材35に蓋部材14bを固定し、蓋部材14bとの距離を伸縮させる無負荷往復運動の概要を示す。
図8(a)に示す状態から制御手段34が注入用の電磁弁32aを開き、圧縮空気供給手段33から送出される圧縮空気が圧縮空気注入管31aを介して筒状体11の密閉空間内に導入されると、筒状体11を構成する内側ゴム層11Aと外側ゴム層11Bとは、導入された圧縮空気の圧力により全方向、すなわち、径方向と軸方向との両方に膨張しようとする。一方で、内側ゴム層11Aと外側ゴム層11Bとの間に介挿されている繊維層12は、内側ゴム層11Aと外側ゴム層11Bとの軸方向への膨張を拘束する。よって、筒状体11の膨張は、径方向に限定され、筒状体11は、図8(b)に示す状態となり、軸方向へ収縮する。なお、詳細は後述するが、圧縮空気の導入初期においては、筒状体11は軸方向へ僅かに伸長し、その後に軸方向に収縮することが確認されている。つまり、圧縮空気の導入初期においては、筒状体11の軸方向への膨張が僅かに許容され、その後に軸方向への膨張が拘束される。
すなわち、人工筋肉10の筒状体11は、繊維層12が内側ゴム層11Aと外側ゴム層11Bとの軸方向への膨張を拘束するので、蛇腹の山部と谷部との差が縮まるように径方向に膨張しながら軸方向に収縮する。このように、人工筋肉10においては、圧縮空気の給排が繰り返されることにより繰り返しの収縮動作を行うことができ、例えば生体の関節における腱の代替要素や、腸内を進行するための推進機構として組み込むことが可能となる。
FIG. 8 shows an outline of a no-load reciprocating motion in which the lid member 14b is fixed to the fixing member 35 for fixing the artificial muscle 10 and the distance from the lid member 14b is expanded and contracted.
From the state shown in FIG. 8A, the control means 34 opens the injection electromagnetic valve 32a, and the compressed air sent from the compressed air supply means 33 passes through the compressed air injection pipe 31a in the sealed space of the cylindrical body 11. The inner rubber layer 11 </ b> A and the outer rubber layer 11 </ b> B constituting the cylindrical body 11 try to expand in all directions, that is, in both the radial direction and the axial direction, due to the pressure of the introduced compressed air. To do. On the other hand, the fiber layer 12 interposed between the inner rubber layer 11A and the outer rubber layer 11B restrains the expansion of the inner rubber layer 11A and the outer rubber layer 11B in the axial direction. Therefore, the expansion of the cylindrical body 11 is limited to the radial direction, and the cylindrical body 11 enters the state shown in FIG. 8B and contracts in the axial direction. In addition, although mentioned later for details, it is confirmed that the cylindrical body 11 expand | extends slightly to an axial direction at the initial stage of introduction of compressed air, and contracts to an axial direction after that. That is, in the initial stage of introduction of the compressed air, the tubular body 11 is allowed to slightly expand in the axial direction, and thereafter, the expansion in the axial direction is restricted.
That is, in the cylindrical body 11 of the artificial muscle 10, the fiber layer 12 restrains the expansion of the inner rubber layer 11A and the outer rubber layer 11B in the axial direction so that the difference between the bellows peak portion and the valley portion is reduced. It contracts in the axial direction while expanding in the radial direction. As described above, the artificial muscle 10 can perform repeated contraction operations by repeatedly supplying and discharging compressed air. For example, a tendon substitute element in a joint of a living body or a propulsion mechanism for progressing in the intestine It becomes possible to incorporate as.

以下、上記構成からなる人工筋肉の優位性を示す実験結果について説明する。
図9は、本実施形態に係る蛇腹構造を有する人工筋肉10と、従来に係る軸方向繊維強化型の人工筋肉50A、50Bを示す模式図である。図9(a)に示すように、人工筋肉10における可動長は(締付バンド15a,15b間の筒状体長さ)、62mmに設定し、谷部の直径が23mm、山部の直径が31mm、ピッチが15.5mmである。図9(b)に示す人工筋肉50Aの可動長は、62mmであり、蛇腹構造を有していない。図9(c)に示す人工筋肉50Bの可動長は、人工筋肉10に内挿された繊維を緊張させた長さに相当する72mmであり、蛇腹構造を有していない。また、いずれの人工筋肉10,50A,50Bにおいても径方向厚さは、0.8mmである。
Hereinafter, experimental results showing the superiority of the artificial muscle having the above configuration will be described.
FIG. 9 is a schematic diagram showing the artificial muscle 10 having the bellows structure according to the present embodiment and the conventional axial fiber reinforced artificial muscles 50A and 50B. As shown in FIG. 9A, the movable length of the artificial muscle 10 (the length of the cylindrical body between the fastening bands 15a and 15b) is set to 62 mm, the valley diameter is 23 mm, and the peak diameter is 31 mm. The pitch is 15.5 mm. The movable length of the artificial muscle 50A shown in FIG. 9B is 62 mm and does not have a bellows structure. The movable length of the artificial muscle 50B shown in FIG. 9C is 72 mm, which corresponds to the length of the tensioned fiber inserted in the artificial muscle 10, and has no bellows structure. The radial thickness of any artificial muscle 10, 50A, 50B is 0.8 mm.

図10(a),(b)は、上記各人工筋肉10,50A,50Bの軸方向への圧力応答特性である圧力−収縮量特性、及び、径方向への圧力応答特性である圧力−膨張量特性を測定した結果を示すグラフである。
各グラフの横軸は密閉空間内に導入された空気の圧力(MPa)であり、縦軸は、それぞれ軸方向への収縮量(mm)、径方向への膨張量(mm)である。なお、人工筋肉10では、筒状体11の中央の谷部の変位量を膨張量とし、人工筋肉50A,50Bでは、筒状体11の中央部の径方向への変位量を膨張量とした。また、測定においては、空気の圧力を0(MPa)から0.005(MPa)間隔で印加していき、各人工筋肉10,50A,50Bが破損したときを終了とした。
図10(a),(b)において、三角マークが本実施形態に係る人工筋肉10(bellows)の測定データで、菱形マークが人工筋肉50A(n−short)、四角マークが人工筋肉50B(n−long)の測定データである。
FIGS. 10A and 10B are pressure-contraction characteristics that are pressure response characteristics in the axial direction and pressure-expansion that are pressure response characteristics in the radial direction of each of the artificial muscles 10, 50A, and 50B. It is a graph which shows the result of having measured quantity characteristics.
The horizontal axis of each graph is the pressure (MPa) of air introduced into the sealed space, and the vertical axis is the amount of contraction (mm) in the axial direction and the amount of expansion (mm) in the radial direction, respectively. In the artificial muscle 10, the amount of displacement at the central valley of the cylindrical body 11 is defined as the amount of expansion, and in the artificial muscles 50A and 50B, the amount of displacement in the radial direction of the central portion of the cylindrical body 11 is defined as the amount of expansion. . In the measurement, the air pressure was applied at intervals of 0 (MPa) to 0.005 (MPa), and the process was terminated when each of the artificial muscles 10, 50A, 50B was damaged.
10A and 10B, the triangular mark is the measurement data of the artificial muscle 10 (bells) according to the present embodiment, the diamond mark is the artificial muscle 50A (n-short), and the square mark is the artificial muscle 50B (n -Long) measurement data.

上記測定結果からも明らかなように、蛇腹構造を有する人工筋肉10は、従来の人工筋肉50A,50Bとの比較において、略同程度の収縮量及び膨張量が維持されており、応用が検討される推進機構としての機能を十分に発揮し得る。また、上記測定結果において顕著な事実として、図10(a)に示すように、人工筋肉10では、0.025(MPa)までの収縮量がマイナスの値をとっている。
当該事実は、圧力導入初期において人工筋肉10の山部が圧力によって軸方向に引き伸ばされるために起こる現象であると考えられ、当該期間においては、筒状体11の軸方向への伸長動作が観察された。当該測定結果は、人工筋肉10が空気圧無印加時において、バネ特性を有していることを示すものであり、人工筋肉10は、従来の人工筋肉50A,50Bと比較して柔軟性が向上していることがわかる。
As is apparent from the above measurement results, the artificial muscle 10 having the bellows structure maintains substantially the same amount of contraction and expansion as compared with the conventional artificial muscles 50A and 50B, and its application is studied. The function as a propulsion mechanism can be fully demonstrated. Further, as a remarkable fact in the measurement result, as shown in FIG. 10A, in the artificial muscle 10, the contraction amount up to 0.025 (MPa) takes a negative value.
This fact is considered to be a phenomenon that occurs because the peak portion of the artificial muscle 10 is stretched in the axial direction by pressure in the initial stage of pressure introduction, and during this period, the extension operation in the axial direction of the cylindrical body 11 is observed. It was done. The measurement result shows that the artificial muscle 10 has a spring characteristic when no air pressure is applied. The artificial muscle 10 has improved flexibility compared to the conventional artificial muscles 50A and 50B. You can see that

次に、図11及び図12を参照して人工筋肉10の柔軟性を評価するための曲げ試験について説明する。
同図に示すように、曲げ試験は、蓋部材14b側を固定板36に固定し、蓋部材14a側に人工筋肉10の中心軸に沿って延長する押棒37を取り付け、この押棒37を軸方向に対して鉛直上向きに押し、このときの曲り方を観察した。また、各図における(b)は、従来の人工筋肉50Aの状態を示す。観察は、人工筋肉10,50Aに空気圧を印加しない場合(図11参照)と、0.01(MPa)を印加した場合(図12参照)の2通りである。
Next, a bending test for evaluating the flexibility of the artificial muscle 10 will be described with reference to FIGS. 11 and 12.
As shown in the figure, in the bending test, the lid member 14b side is fixed to the fixing plate 36, and a push rod 37 extending along the central axis of the artificial muscle 10 is attached to the lid member 14a side. It was pushed vertically upward to observe the way of bending at this time. Moreover, (b) in each figure shows the state of the conventional artificial muscle 50A. There are two types of observation: when no air pressure is applied to the artificial muscles 10, 50A (see FIG. 11) and when 0.01 (MPa) is applied (see FIG. 12).

各図において、上側が初期状態、中央の図が最大曲げ状態、下側の図が座屈状態を示す。なお、最大曲げ状態とは、人工筋肉10,50Aが座屈を起こす直前の状態である。
図11及び図12の見た目からも明らかなように、人工筋肉10は、人工筋肉50Aと比較して、座屈が発生するまでの曲げが大きく、柔軟性が高いことがわかる。
また、空気圧印加時は、人工筋肉10及び人工筋肉50Aともに、無印加時に比べて剛性が高くなり、曲げに対する復元力は大きくなるものの、人工筋肉50Aと比較して人工筋肉10の方が加圧時の柔軟性が顕著であり、より大きく湾曲可能であることが確認された。
In each figure, the upper side shows the initial state, the center figure shows the maximum bending state, and the lower figure shows the buckling state. The maximum bending state is a state immediately before the artificial muscles 10, 50A are buckled.
As is apparent from the appearances of FIGS. 11 and 12, it can be seen that the artificial muscle 10 is more flexible and flexible than the artificial muscle 50A until buckling occurs.
In addition, when the air pressure is applied, both the artificial muscle 10 and the artificial muscle 50A have higher rigidity than the non-applied state and the restoring force against bending increases, but the artificial muscle 10 is more pressurized than the artificial muscle 50A. The flexibility at the time was remarkable, and it was confirmed that it can be bent larger.

このように、本実施形態に係る筒状体11は、圧力無印加時及び印加時の両方において柔軟性が極めて高く、当該筒状体11を備えた人工筋肉10は、例えば、生体の腸内を進行するための推進機構として応用する際に、腸の湾曲によって進行が阻害されるようなことがなく、極めて円滑に湾曲部内を進行することが可能である。また、本実施形態に係る筒状体11の製造方法にあっては、極めて精密に型部材の蛇腹構造を反映することができるため、柔軟性が極めて高い筒状体11を形成することが可能となる。   As described above, the cylindrical body 11 according to the present embodiment has extremely high flexibility both when no pressure is applied and when the pressure is applied, and the artificial muscle 10 including the cylindrical body 11 is, for example, in the intestine of a living body. When applied as a propulsion mechanism for advancing, the progress of the intestine is not hindered, and the inside of the curved portion can proceed extremely smoothly. Moreover, in the manufacturing method of the cylindrical body 11 according to the present embodiment, the bellows structure of the mold member can be reflected very precisely, so that the cylindrical body 11 having extremely high flexibility can be formed. It becomes.

なお、前記実施の形態では、内側ゴム層11A及び外側ゴム層11Bを天然ゴムラテックスとしたが、シリコーンゴムなど他の種類のゴムを用いてもよい。また、前記例では、筒状体11の繊維層12は一層としたが、複数の繊維層としてもよい。繊維層12を複数とし、複数の繊維層12の間にゴムからなる中間層を設ければ、繊維間の隙間によって生じる膨張時のゴムの破裂を確実に抑制することができるとともに、繊維12kによる軸方向の拘束を強靭にできるので、高負荷にも耐えることができる。   In the above embodiment, the inner rubber layer 11A and the outer rubber layer 11B are made of natural rubber latex, but other types of rubber such as silicone rubber may be used. Moreover, in the said example, although the fiber layer 12 of the cylindrical body 11 was made into one layer, it is good also as a several fiber layer. If a plurality of fiber layers 12 are provided and an intermediate layer made of rubber is provided between the plurality of fiber layers 12, it is possible to reliably suppress rubber bursting during expansion caused by gaps between the fibers, and the fiber 12k. Since the axial restraint can be strengthened, it can withstand high loads.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者にも明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

10 人工筋肉、11 筒状体、11A 内側ゴム層、11B 外側ゴム層、
12 繊維層、12k 繊維、12S 繊維シート、14a,14b 蓋部材、
15a,15b 締付バンド、21 ディップ棒、21a 塗布部、21b 把持部、
26 天然ゴムラテックス液、27 把持部材、30 駆動装置、
31a 圧縮空気注入管、31b 空気排出管、33 圧縮空気供給手段、
34 制御手段。
10 artificial muscles, 11 cylindrical body, 11A inner rubber layer, 11B outer rubber layer,
12 fiber layer, 12k fiber, 12S fiber sheet, 14a, 14b lid member,
15a, 15b Clamping band, 21 Dip bar, 21a Application part, 21b Grip part,
26 natural rubber latex liquid, 27 gripping member, 30 driving device,
31a Compressed air injection pipe, 31b Air discharge pipe, 33 Compressed air supply means,
34 Control means.

Claims (6)

人工筋肉に用いられる筒状体であって、
弾性体からなり、軸方向において伸縮する蛇腹構造を有する筒部と、
前記筒部に内包され、前記筒部の蛇腹における山と谷に沿って軸方向に延長する繊維層とを備えた筒状体。
A cylindrical body used for artificial muscles,
A cylindrical portion made of an elastic body and having a bellows structure that expands and contracts in the axial direction;
A cylindrical body including a fiber layer included in the cylindrical portion and extending in the axial direction along peaks and valleys in the bellows of the cylindrical portion.
前記筒部が、内側ゴム層と、当該内側ゴム層を覆う外側ゴム層とを有し、
前記繊維層が前記内側ゴム層及び外側ゴム層との間に介挿された請求項1記載の筒状体。
The cylindrical portion has an inner rubber layer and an outer rubber layer covering the inner rubber layer,
The cylindrical body according to claim 1, wherein the fiber layer is interposed between the inner rubber layer and the outer rubber layer.
前記請求項1又は請求項2記載の筒状体を備えた人工筋肉であって、
前記筒部の両端部を閉塞する蓋部材を備えた人工筋肉。
An artificial muscle comprising the cylindrical body according to claim 1 or 2,
An artificial muscle provided with a lid member that closes both ends of the cylindrical portion.
人工筋肉に用いられる筒状体の製造方法であって、
外周面が軸方向に沿って蛇腹状に形成された型部材の表面に酸化水溶液を塗布する工程と、
前記型部材を液状のゴムに浸漬する工程と、
前記ゴムに浸漬した型部材を洗浄する工程を含む筒状体の製造方法。
A method of manufacturing a cylindrical body used for artificial muscles,
Applying an oxidizing aqueous solution to the surface of the mold member whose outer peripheral surface is formed in a bellows shape along the axial direction;
Immersing the mold member in liquid rubber;
The manufacturing method of the cylindrical body including the process of wash | cleaning the mold member immersed in the said rubber | gum.
前記型部材の表面に付着したゴムの外周面に形成された蛇腹における山と谷に沿って軸方向に延長する繊維を貼り付けて繊維層を形成する工程と、
前記繊維層が形成された型部材を再度液状のゴムに浸漬し、前記繊維層にゴムを付着させる工程を含む請求項4記載の筒状体の製造方法。
Pasting fibers extending in the axial direction along peaks and valleys in the bellows formed on the outer peripheral surface of the rubber attached to the surface of the mold member, and forming a fiber layer;
The manufacturing method of the cylindrical body of Claim 4 including the process of immersing the type | mold member in which the said fiber layer was formed again in liquid rubber, and making rubber adhere to the said fiber layer.
前記繊維層にゴムを付着させる工程の前に、前記繊維層に酸化水溶液を塗布する工程を含む請求項5記載の筒状体の製造方法。










The manufacturing method of the cylindrical body of Claim 5 including the process of apply | coating oxidation aqueous solution to the said fiber layer before the process of attaching rubber | gum to the said fiber layer.










JP2011040933A 2011-02-25 2011-02-25 Cylindrical body used for artificial muscle, artificial muscle provided with the cylindrical body, and method of manufacturing the cylindrical body Expired - Fee Related JP5666944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040933A JP5666944B2 (en) 2011-02-25 2011-02-25 Cylindrical body used for artificial muscle, artificial muscle provided with the cylindrical body, and method of manufacturing the cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040933A JP5666944B2 (en) 2011-02-25 2011-02-25 Cylindrical body used for artificial muscle, artificial muscle provided with the cylindrical body, and method of manufacturing the cylindrical body

Publications (2)

Publication Number Publication Date
JP2012176125A true JP2012176125A (en) 2012-09-13
JP5666944B2 JP5666944B2 (en) 2015-02-12

Family

ID=46978437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040933A Expired - Fee Related JP5666944B2 (en) 2011-02-25 2011-02-25 Cylindrical body used for artificial muscle, artificial muscle provided with the cylindrical body, and method of manufacturing the cylindrical body

Country Status (1)

Country Link
JP (1) JP5666944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110906104A (en) * 2019-12-20 2020-03-24 中国科学院沈阳自动化研究所 Modular pipeline robot based on hydraulic artificial muscles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225707A (en) * 1987-03-13 1988-09-20 Fuji Seiki Kk Pneumatic actuator
JPH0543114U (en) * 1990-12-20 1993-06-11 オリンパス光学工業株式会社 Self-propelled device and self-propelled endoscope equipped with the same
JPH07113755A (en) * 1993-10-19 1995-05-02 Olympus Optical Co Ltd Pipe inside self-traveling device
JP2004337324A (en) * 2003-05-15 2004-12-02 Fuji Photo Optical Co Ltd Overtube
JP2006000294A (en) * 2004-06-16 2006-01-05 Toshirou Noritsugi Mounting type power assist device
JP2006169461A (en) * 2004-12-20 2006-06-29 Toray Ind Inc Thermoplastic resin composition containing polycarbonate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225707A (en) * 1987-03-13 1988-09-20 Fuji Seiki Kk Pneumatic actuator
JPH0543114U (en) * 1990-12-20 1993-06-11 オリンパス光学工業株式会社 Self-propelled device and self-propelled endoscope equipped with the same
JPH07113755A (en) * 1993-10-19 1995-05-02 Olympus Optical Co Ltd Pipe inside self-traveling device
JP2004337324A (en) * 2003-05-15 2004-12-02 Fuji Photo Optical Co Ltd Overtube
JP2006000294A (en) * 2004-06-16 2006-01-05 Toshirou Noritsugi Mounting type power assist device
JP2006169461A (en) * 2004-12-20 2006-06-29 Toray Ind Inc Thermoplastic resin composition containing polycarbonate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110906104A (en) * 2019-12-20 2020-03-24 中国科学院沈阳自动化研究所 Modular pipeline robot based on hydraulic artificial muscles
CN110906104B (en) * 2019-12-20 2024-03-01 中国科学院沈阳自动化研究所 Modularized pipeline robot based on hydraulic artificial muscle

Also Published As

Publication number Publication date
JP5666944B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
CN108291686B (en) High-voltage tube and method for producing the pipe
JP5246717B2 (en) Fluid injection type actuator
US20170067491A1 (en) Actuator, actuator apparatus, and method of driving actuator
JP2012223256A (en) Medical guide wire
JP5666944B2 (en) Cylindrical body used for artificial muscle, artificial muscle provided with the cylindrical body, and method of manufacturing the cylindrical body
EP2168471A3 (en) Flexible tube for endoscope and manufacturing method thereof
JP7068479B2 (en) Hydraulic muscle with wound hollow carbon nanotube yarn
JP2012176126A (en) Cylindrical body used for artificial muscle, artificial muscle with cylindrical body, and method for manufacturing cylindrical body
JP5410289B2 (en) Stent and manufacturing method thereof
CN108000900A (en) A kind of transparent university life equation motorcycle race suspension carbon fiber pipe and technique for sticking
US6280788B1 (en) Method and a system for manufacturing a catheter and a catheter manufactured by that method
EP1563985A3 (en) Flexible PVC hose and method of making
JP2014076374A (en) Medical guide wire
US20100030030A1 (en) Endoscope channel tube and method of producing the same
JP2012176124A (en) Method for manufacturing cylindrical body
RU95290U1 (en) APPARATUS FOR PRODUCING PIPES FROM COMPOSITE MATERIALS
JP3760369B2 (en) Method for producing fluororesin tube-coated belt
JP6354052B2 (en) Composite fluid pressure actuator
JP7407904B2 (en) Method for manufacturing a medical tubular structure, core material used in the manufacturing method for a medical tubular structure, and medical tubular structure
JP6655033B2 (en) Fishing rod sticking release device
JPS6223735A (en) Manufacture of fishing rod
JP2005024095A5 (en)
JPH08313821A (en) Flexible pipe of endoscope
JP6736625B2 (en) Condom and condom manufacturing method
KR101496693B1 (en) Drawing type rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R150 Certificate of patent or registration of utility model

Ref document number: 5666944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees