JP2012175112A - Thin film solar cell and method of manufacturing the same - Google Patents

Thin film solar cell and method of manufacturing the same Download PDF

Info

Publication number
JP2012175112A
JP2012175112A JP2012036982A JP2012036982A JP2012175112A JP 2012175112 A JP2012175112 A JP 2012175112A JP 2012036982 A JP2012036982 A JP 2012036982A JP 2012036982 A JP2012036982 A JP 2012036982A JP 2012175112 A JP2012175112 A JP 2012175112A
Authority
JP
Japan
Prior art keywords
semiconductor film
film
type semiconductor
solar cell
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012036982A
Other languages
Japanese (ja)
Inventor
Seon Yoon
善 尹
Jung Wook Lim
貞 旭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JP2012175112A publication Critical patent/JP2012175112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film solar cell improved in light efficiency and a method of manufacturing the thin film solar cell.SOLUTION: In a first cell of a thin film solar cell, a first amorphous intrinsic semiconductor film 133 with a continuously graded hydrogen content is inserted between a first n-type impurity semiconductor film 135 and a first p-type impurity semiconductor film 131. The hydrogen content of the first amorphous intrinsic semiconductor film 133 decreases in a continuous manner from a first interface 133a with the first p-type impurity semiconductor film 131 arranged on a light incident side toward a second interface 133b with the first n-type impurity semiconductor film 135 arranged on a side opposite to the light incident side.

Description

本発明は太陽光を電気に変換する薄膜太陽電池及びその製造方法に関する。   The present invention relates to a thin-film solar cell that converts sunlight into electricity and a method for manufacturing the same.

太陽電池は太陽光を電気エネルギーに変換させ得る。太陽電池は実質的に無限である太陽光をソースとして使用して電力を発生させ、電力の発生の時に有害な物質が発生されないという長所を有する。これによって、現在の化石燃料を代替できる代表的な未来の親環境エネルギー源として脚光を浴びている。但し、太陽電池の光電エネルギー変換効率がまた低いので、太陽電池を実用化するのにおいて、用途が制限されている。したがって、太陽電池の光電エネルギー変換効率を向上させるために多くの研究が遂行されている。   Solar cells can convert sunlight into electrical energy. Solar cells have the advantage that they generate power using sunlight, which is virtually infinite, as a source, and no harmful substances are generated when the power is generated. This has attracted attention as a representative future environmental energy source that can replace the current fossil fuel. However, since the photoelectric energy conversion efficiency of the solar cell is also low, the use is limited in putting the solar cell into practical use. Therefore, much research has been conducted to improve the photoelectric energy conversion efficiency of solar cells.

韓国特許公開第10−2011−0004059号公報Korean Patent Publication No. 10-2011-064059

本発明の目的は光効率が向上された薄膜太陽電池及びその製造方法を提供することにある。   An object of the present invention is to provide a thin-film solar cell with improved light efficiency and a method for manufacturing the same.

本発明の他の目的は追加的な工程や装備が必要としない、工程費用を減少させ得る薄膜太陽電池及びその製造方法を提供することにある。   Another object of the present invention is to provide a thin-film solar cell that does not require additional processes and equipment and can reduce process costs, and a method for manufacturing the same.

本発明のその他の目的は光吸収係数が大きい非晶質真性半導体膜を含む光劣化を最小化できる薄膜太陽電池及びその製造方法を提供することにある。   Another object of the present invention is to provide a thin-film solar cell capable of minimizing light degradation including an amorphous intrinsic semiconductor film having a large light absorption coefficient, and a method for manufacturing the same.

前記目的を達成するための本発明による薄膜太陽電池及びその製造方法は明らかな界面が形成されなくて特性が連続的に変わる真性半導体膜を含む単一接合セル又は多重接合セルを形成することを特徴とする。本発明による薄膜太陽電池及びその製造方法は可視光線波長の太陽光を吸収できる真性半導体膜を含む太陽電池セルを形成することを他の特徴とする。本発明による薄膜太陽電池及びその製造方法は追加的な工程や装備無しで優れた特性を有する真性半導体膜を含む太陽電池セルを形成することをその他の特徴とする。本発明による薄膜太陽電池及びその製造方法は光吸収係数が大きい非晶質真性半導体膜を含むことをその他の特徴とする。   In order to achieve the above object, a thin film solar cell and a method of manufacturing the same according to the present invention form a single-junction cell or a multi-junction cell including an intrinsic semiconductor film whose characteristics are continuously changed without forming an obvious interface. Features. Another feature of the thin-film solar cell and the method for manufacturing the same according to the present invention is that a solar cell including an intrinsic semiconductor film capable of absorbing sunlight having a visible light wavelength is formed. Another feature of the thin film solar cell and the method for manufacturing the same according to the present invention is to form a solar cell including an intrinsic semiconductor film having excellent characteristics without additional steps or equipment. Another feature of the thin-film solar cell and the method of manufacturing the same according to the present invention is that it includes an amorphous intrinsic semiconductor film having a large light absorption coefficient.

前記特徴を具現できる本発明の一実施形態による薄膜太陽電池は基板と、前記基板の上に配置された水素含有量が連続的に変わる真性半導体を含む非晶質膜を有する太陽電池セルと、を包含できる。前記非晶質膜は光が入射される入射面とその反対面を含み、前記水素含有量は前記入射面から前記反対面に行くほど、連続的に小さくなり得る。   A thin-film solar cell according to an embodiment of the present invention that can implement the above features, a solar cell having a substrate, and an amorphous film including an intrinsic semiconductor, the hydrogen content continuously disposed on the substrate, Can be included. The amorphous film includes an incident surface on which light is incident and an opposite surface thereof, and the hydrogen content may continuously decrease from the incident surface to the opposite surface.

一実施形態による薄膜太陽電池において、前記基板は前記入射面に隣接配置された透明基板を包含できる。前記水素含有量は前記透明基板との距離が多くなるほど、連続的に小さくなり得る。   In the thin film solar cell according to an embodiment, the substrate may include a transparent substrate disposed adjacent to the incident surface. The hydrogen content can be continuously reduced as the distance from the transparent substrate increases.

一実施形態による薄膜太陽電池において、前記太陽電池セルは、前記透明基板の上に配置されたp形半導体膜と、前記p形半導体膜の上に配置された、前記連続的に変わる前記水素含有量を有する前記非晶質膜と、前記非晶質膜上に配置されたn形半導体膜と、を包含できる。前記水素含有量は前記非晶質膜と前記p形半導体膜との第1の界面から前記非晶質膜と前記n形半導体膜との第2の界面に行くほど、連続的に小さくなり得る。   In one embodiment, the solar cell includes a p-type semiconductor film disposed on the transparent substrate, and the continuously changing hydrogen-containing material disposed on the p-type semiconductor film. The amorphous film having an amount and an n-type semiconductor film disposed on the amorphous film can be included. The hydrogen content can be continuously reduced from the first interface between the amorphous film and the p-type semiconductor film to the second interface between the amorphous film and the n-type semiconductor film. .

一実施形態による薄膜太陽電池において、前記透明基板と前記太陽電池セルとの間に配置された透明電極と、前記太陽電池セルの上に配置された金属電極と、をさらに包含できる。   The thin film solar cell according to an embodiment may further include a transparent electrode disposed between the transparent substrate and the solar cell, and a metal electrode disposed on the solar cell.

一実施形態による薄膜太陽電池において、前記太陽電池セルと前記金属電極との間に配置された反射膜をさらに包含できる。   The thin film solar battery according to an embodiment may further include a reflective film disposed between the solar battery cell and the metal electrode.

一実施形態による薄膜太陽電池において、前記基板は透明基板の代わりに前記反対面に隣接配置された不透明基板包含できる。前記水素含有量は前記不透明基板との距離が小さくなるほど、連続的に小さくなり得る。   In one embodiment, the substrate may include an opaque substrate disposed adjacent to the opposite surface instead of a transparent substrate. The hydrogen content can continuously decrease as the distance from the opaque substrate decreases.

一実施形態による薄膜太陽電池において、前記太陽電池セルは、前記不透明基板の上に配置されたn形半導体膜と、前記p形半導体膜の上に配置された、前記連続的に変わる前記水素含有量を有する前記非晶質膜と、前記非晶質膜の上に配置されたp形半導体膜と、を包含できる。前記水素含有量は前記非晶質膜と前記p形半導体膜との第1の界面から前記非晶質膜と前記n形半導体膜との第2の界面に行くほど、連続的に小さくなり得る。   In one embodiment, the solar cell includes an n-type semiconductor film disposed on the opaque substrate and the continuously changing hydrogen-containing material disposed on the p-type semiconductor film. The amorphous film having an amount and a p-type semiconductor film disposed on the amorphous film can be included. The hydrogen content can be continuously reduced from the first interface between the amorphous film and the p-type semiconductor film to the second interface between the amorphous film and the n-type semiconductor film. .

一実施形態による薄膜太陽電池において、前記不透明基板と前記太陽電池セルとの間に配置された金属電極と、前記太陽電池セルの上に配置されて前記光が入射される透明電極と、をさらに包含できる。   In the thin film solar cell according to one embodiment, a metal electrode disposed between the opaque substrate and the solar cell, and a transparent electrode disposed on the solar cell and incident with the light. Can be included.

一実施形態による薄膜太陽電池において、前記金属電極と前記太陽電池セルとの間に反射膜をさらに包含できる。   The thin film solar cell according to an embodiment may further include a reflective film between the metal electrode and the solar cell.

一実施形態による薄膜太陽電池において、前記非晶質膜のバンドギャップエネルギー及び光吸収係数は前記入射面から前記反対面に行くほど、連続的に小さくなり得る。   In the thin film solar cell according to an embodiment, the band gap energy and the light absorption coefficient of the amorphous film may continuously decrease from the incident surface to the opposite surface.

一実施形態による薄膜太陽電池において、前記非晶質膜の密度は前記入射面から前記反対面に行くほど、連続的に大きくなり得る。   In the thin film solar cell according to an embodiment, the density of the amorphous film may increase continuously from the incident surface to the opposite surface.

一実施形態による薄膜太陽電池において、前記真性半導体はSiを包含できる。   In the thin film solar cell according to an embodiment, the intrinsic semiconductor may include Si.

一実施形態による薄膜太陽電池において、前記非晶質膜はSi、SiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を包含できる。   In one embodiment, the amorphous film may include Si, SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof.

前記特徴を具現できる本発明の他の実施形態による薄膜太陽電池は基板と、前記基板の上に配置された、第1のn形不純物半導体膜と第1のp形不純物半導体膜と、前記第1のn形不純物半導体膜と前記第1のp形不純物半導体膜との間に連続的に変わる水素含有量を有する真性半導体を含む第1の非晶質膜と、が挿入された第1のセルと、前記第1のn形不純物半導体膜に隣接する金属電極と、前記第1のp形不純物半導体膜に隣接する透明電極と、を包含できる。前記第1の非晶質膜の前記水素含有量は光が入射される方に配置される前記第1のp形不純物半導体膜との第1の界面から前記光が入射される方と反対になる方に配置される前記第1のn形不純物半導体膜との第2の界面に行くほど、連続的に小さくなり得る。   A thin-film solar cell according to another embodiment of the present invention that can implement the above features includes a substrate, a first n-type impurity semiconductor film and a first p-type impurity semiconductor film disposed on the substrate, A first amorphous film including an intrinsic semiconductor having a continuously changing hydrogen content between one n-type impurity semiconductor film and the first p-type impurity semiconductor film; A cell, a metal electrode adjacent to the first n-type impurity semiconductor film, and a transparent electrode adjacent to the first p-type impurity semiconductor film can be included. The hydrogen content of the first amorphous film is opposite to the light incident from the first interface with the first p-type impurity semiconductor film disposed on the light incident side. The closer to the second interface with the first n-type impurity semiconductor film that is arranged, the smaller the distance can be.

他の実施形態による薄膜太陽電池において、前記基板は透明基板を包含できる。前記透明基板の上に前記透明電極、前記第1のp形半導体膜、前記第1の非晶質膜、前記第1のn形半導体膜及び前記金属電極が順に積層され得る。前記透明基板へ光が入射され得る。   In the thin film solar cell according to another embodiment, the substrate may include a transparent substrate. The transparent electrode, the first p-type semiconductor film, the first amorphous film, the first n-type semiconductor film, and the metal electrode may be sequentially stacked on the transparent substrate. Light may be incident on the transparent substrate.

他の実施形態による薄膜太陽電池において、前記第1のセルと前記金属電極との間に、第2のp形半導体膜と、連続的に変わる水素含有量を有する第2の真性半導体膜と、第2のn形半導体膜とが前記第1のn形半導体膜の上で順に積層された第2のセルを少なくとも1つさらに包含できる。前記第2の真性半導体膜は真性シリコンを含む非晶質膜及び結晶質膜の中で少なくともいずれか1つを包含できる。前記第2の真性半導体膜の前記水素含有量は前記透明基板との距離が多くなるほど連続的に小さくなり得る。   In a thin film solar cell according to another embodiment, between the first cell and the metal electrode, a second p-type semiconductor film, and a second intrinsic semiconductor film having a continuously changing hydrogen content, It may further include at least one second cell in which a second n-type semiconductor film is sequentially stacked on the first n-type semiconductor film. The second intrinsic semiconductor film may include at least one of an amorphous film containing intrinsic silicon and a crystalline film. The hydrogen content of the second intrinsic semiconductor film can continuously decrease as the distance from the transparent substrate increases.

他の実施形態による薄膜太陽電池において、前記金属電極と前記第1のセルとの間に配置された後面反射膜をさらに包含できる。   The thin film solar cell according to another embodiment may further include a rear reflective film disposed between the metal electrode and the first cell.

他の実施形態による薄膜太陽電池において、前記基板は不透明基板を包含できる。前記不透明基板の上に前記金属電極、前記第1のn形半導体膜、前記第1の非晶質膜、前記第1のp形半導体膜、及び前記透明電極が順に積層され得る。前記透明電極へ光が入射され得る。   In a thin film solar cell according to another embodiment, the substrate may include an opaque substrate. The metal electrode, the first n-type semiconductor film, the first amorphous film, the first p-type semiconductor film, and the transparent electrode may be sequentially stacked on the opaque substrate. Light may be incident on the transparent electrode.

他の実施形態による薄膜太陽電池において、前記第1のセルと前記金属電極との間に、第2のn形半導体膜と、連続的に変わる水素含有量を有する第2の真性半導体膜と、第2のp形半導体膜とが前記金属電極の上に順に積層された第2のセルを少なくとも1つさらに包含できる。前記第2の真性半導体膜は真性非晶質膜、真性微晶質シリコン膜、及び結晶質膜の中で少なくともいずれか1つを包含できる。前記第2の真性半導体膜の前記水素含有量は前記不透明基板との距離が小さくなるほど、連続的に小さくなり得る。   In a thin film solar cell according to another embodiment, a second n-type semiconductor film and a second intrinsic semiconductor film having a continuously changing hydrogen content between the first cell and the metal electrode, It may further include at least one second cell in which a second p-type semiconductor film is sequentially stacked on the metal electrode. The second intrinsic semiconductor film may include at least one of an intrinsic amorphous film, an intrinsic microcrystalline silicon film, and a crystalline film. The hydrogen content of the second intrinsic semiconductor film may continuously decrease as the distance from the opaque substrate decreases.

他の実施形態による薄膜太陽電池において、前記金属電極と前記第1のセルとの間に配置された後面反射膜をさらに包含できる。   The thin film solar cell according to another embodiment may further include a rear reflective film disposed between the metal electrode and the first cell.

他の実施形態による薄膜太陽電池において、前記第1の非晶質膜は、前記シリコンで構成され得る。又はSiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を包含できる。   In the thin film solar cell according to another embodiment, the first amorphous film may be composed of the silicon. Or SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or combinations thereof.

前記特徴を具現できる本発明の一実施形態による薄膜太陽電池の製造方法は基板を提供し、前記基板の上に、p形半導体膜とn形半導体膜と、及び前記p形半導体膜と前記n形半導体膜との間に配置された連続的に変わる水素含有量を有する真性半導体を含む非晶質膜を含むセルを形成し、前記p形半導体膜と隣接する透明電極を形成し、前記n形半導体膜と隣接する金属電極を形成することを包含できる。前記非晶質膜は光が入射される入射面とその反対面を含み、前記水素含有量は前記入射面から前記反対面に行くほど、連続的に小さくなり得る。   A method of manufacturing a thin-film solar cell according to an embodiment of the present invention that can implement the above-described features provides a substrate, and a p-type semiconductor film, an n-type semiconductor film, and the p-type semiconductor film and the n on the substrate. Forming a cell including an amorphous film including an intrinsic semiconductor having a continuously changing hydrogen content disposed between the p-type semiconductor film and forming a transparent electrode adjacent to the p-type semiconductor film; Forming a metal electrode adjacent to the shaped semiconductor film. The amorphous film includes an incident surface on which light is incident and an opposite surface thereof, and the hydrogen content may continuously decrease from the incident surface to the opposite surface.

一実施形態による方法において、前記非晶質膜はSi、SiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC又はこれらの組合を包含できる。   In one embodiment, the amorphous film may include Si, SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof.

一実施形態による方法において、前記基板は前記入射面に隣接配置される透明基板を包含できる。この場合、前記セルを形成することは、前記透明基板の上に前記p形半導体膜を形成し、前記p形半導体膜の上に半導体ソースガスを水素で希釈させた反応ガスを提供し、前記水素の希釈比を漸進的に増やしながら前記非晶質膜を形成し、前記非晶質膜の上に前記n形半導体膜を形成することを包含できる。   In one embodiment, the substrate may include a transparent substrate disposed adjacent to the incident surface. In this case, forming the cell provides a reaction gas in which the p-type semiconductor film is formed on the transparent substrate, and a semiconductor source gas is diluted with hydrogen on the p-type semiconductor film, The method may include forming the amorphous film while gradually increasing the dilution ratio of hydrogen, and forming the n-type semiconductor film on the amorphous film.

一実施形態による方法において、前記基板は前記反対面に隣接配置される不透明基板を包含できる。この場合、前記セルを形成することは、前記不透明基板の上に前記n形半導体膜を形成し、前記n形半導体膜の上に半導体ソースガスを水素で希釈させた反応ガスを提供し、前記水素の希釈比を漸進的に減りながら前記非晶質膜を形成し、前記非晶質膜の上に前記p形半導体膜を形成することを包含できる。   In one embodiment, the substrate can include an opaque substrate disposed adjacent to the opposite surface. In this case, forming the cell includes forming the n-type semiconductor film on the opaque substrate, providing a reaction gas obtained by diluting a semiconductor source gas with hydrogen on the n-type semiconductor film, and The method may include forming the amorphous film while gradually reducing the hydrogen dilution ratio, and forming the p-type semiconductor film on the amorphous film.

本発明によると、真性半導体膜の特性を急激な変化無しで連続的に変化させることによって、優れた光効率を得ることができる効果がある。さらに、追加的な工程や装備無しで連続的な特性を有する真性半導体膜を形成できるので、工程費用を減少させ得る効果がある。また、真性半導体膜を非晶質膜で形成することによって、結晶質真性半導体膜に比べて光吸収係数を増加させ得るものであり、これによって、太陽電池の光効率を向上させ得る。   According to the present invention, it is possible to obtain excellent light efficiency by continuously changing the characteristics of the intrinsic semiconductor film without abrupt changes. Further, since an intrinsic semiconductor film having continuous characteristics can be formed without additional processes and equipment, there is an effect that process costs can be reduced. Further, by forming the intrinsic semiconductor film as an amorphous film, the light absorption coefficient can be increased as compared with the crystalline intrinsic semiconductor film, and thus the light efficiency of the solar cell can be improved.

本発明の一実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by one Embodiment of this invention. 本発明の一実施形態による薄膜太陽電池の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the thin film solar cell by one Embodiment of this invention. 本発明の一実施形態による薄膜太陽電池のセルを示した断面図である。It is sectional drawing which showed the cell of the thin film solar cell by one Embodiment of this invention. 本発明の一実施形態による薄膜太陽電池の動作原理を説明する断面図である。It is sectional drawing explaining the operation principle of the thin film solar cell by one Embodiment of this invention. 本発明の他の実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by other embodiment of this invention. 本発明の他の実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by other embodiment of this invention. 本発明の他の実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by other embodiment of this invention. 本発明の変形実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by the deformation | transformation embodiment of this invention. 本発明の変形実施形態による薄膜太陽電池の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the thin film solar cell by the deformation | transformation embodiment of this invention. 本発明の変形実施形態による薄膜太陽電池のセルを示した断面図である。It is sectional drawing which showed the cell of the thin film solar cell by the deformation | transformation embodiment of this invention. 本発明の変形実施形態による薄膜太陽電池の動作原理を説明する断面図である。It is sectional drawing explaining the operation | movement principle of the thin film solar cell by the deformation | transformation embodiment of this invention. 本発明のその他の実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by other embodiment of this invention. 本発明のその他の実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by other embodiment of this invention. 本発明のその他の実施形態による薄膜太陽電池を示した断面図である。It is sectional drawing which showed the thin film solar cell by other embodiment of this invention.

以下、本発明による薄膜太陽電池及びその製造方法を添付した図面を参照して詳細に説明する。   Hereinafter, a thin film solar cell and a manufacturing method thereof according to the present invention will be described in detail with reference to the accompanying drawings.

本発明と従来技術と比較した長所は添付された図面を参照した詳細な説明と特許請求の範囲とを通じて明確になり得る。特に、本発明は特許請求の範囲で明確に請求される。しかし、本発明は添付された図面と関連して次の詳細な説明を参照することによって、最もよく理解できる。図面において、同一な参照符号は多様な図面を通じて同一な構成要素を示す。   Advantages of the present invention compared to the prior art may become apparent through the detailed description and appended claims with reference to the accompanying drawings. In particular, the invention is claimed explicitly in the claims. However, the invention can best be understood by referring to the following detailed description in conjunction with the accompanying drawings. In the drawings, like reference numerals designate like elements throughout the various views.

<実施形態1>
図1Aは本発明の一実施形態による薄膜太陽電池を示した断面図である。図1Bは本発明の一実施形態による薄膜太陽電池の製造方法を示すフローチャートである。図1Cは本発明の一実施形態による薄膜太陽電池のセルの概念図を示した断面図である。
<Embodiment 1>
FIG. 1A is a cross-sectional view illustrating a thin film solar cell according to an embodiment of the present invention. FIG. 1B is a flowchart illustrating a method for manufacturing a thin-film solar cell according to an embodiment of the present invention. FIG. 1C is a cross-sectional view showing a conceptual diagram of a cell of a thin-film solar battery according to an embodiment of the present invention.

図1Aを参照すれば、薄膜太陽電池100は透明基板110の上に透明電極120と、p−i−n構造のセル乃至太陽電池セル130と、金属電極170とが薄膜形態に順に積層された単一接合(single junction)のスーパーストレート(superstrate)構造であり得る。一例として、pinダイオード構造のセル130は透明電極120の上に順に積層されたp形半導体膜131、真性半導体膜133、及びn形半導体膜135を包含できる。他の例として、セル130は透明電極120の上に順に積層されたn形半導体膜135、真性半導体膜133、及びp形半導体膜131を包含できる。pinセル130と金属電極170との間に後面反射膜160がさらに提供できる。太陽光は透明基板110へ入射され得る。   Referring to FIG. 1A, a thin-film solar battery 100 includes a transparent electrode 120, a p-i-n cell or a solar battery cell 130, and a metal electrode 170, which are sequentially stacked in a thin film form on a transparent substrate 110. It may be a single junction superstrate structure. As an example, the cell 130 having a pin diode structure may include a p-type semiconductor film 131, an intrinsic semiconductor film 133, and an n-type semiconductor film 135 that are sequentially stacked on the transparent electrode 120. As another example, the cell 130 may include an n-type semiconductor film 135, an intrinsic semiconductor film 133, and a p-type semiconductor film 131 that are sequentially stacked on the transparent electrode 120. A rear reflective film 160 may be further provided between the pin cell 130 and the metal electrode 170. Sunlight can be incident on the transparent substrate 110.

図1Bを図1Aと共に参照すれば、透明基板110を提供し(S110)、提供された透明基板110の上に前面電極として透明電極120を形成できる(S120)。透明基板110は光を透過させ得る透明性材質、例えばガラス、プラスチックや樹脂で構成され得る。透明電極120は透明基板110を通じて入射される太陽光を透過させるために透明な伝導性酸化膜(transparent conductive oxide)、例えば金属イオンが添加されたZnO、ITO、SnOx(x<2)、例えばAl、Ga、In、Bが添加されたZnO膜、Fが添加されたSnO膜等をスパッタリング或いは金属有機化学気相蒸着法(MOCVD)等を利用して形成できる。   Referring to FIG. 1B together with FIG. 1A, a transparent substrate 110 is provided (S110), and a transparent electrode 120 may be formed on the provided transparent substrate 110 as a front electrode (S120). The transparent substrate 110 may be made of a transparent material that can transmit light, for example, glass, plastic, or resin. The transparent electrode 120 is a transparent conductive oxide, for example, ZnO, ITO, SnOx (x <2) to which metal ions are added to transmit sunlight incident through the transparent substrate 110, for example, Al. A ZnO film to which Ga, In, and B are added, a SnO film to which F is added, and the like can be formed by sputtering, metal organic chemical vapor deposition (MOCVD), or the like.

透明電極120の上にp形半導体膜131を形成できる(S131)。p形半導体膜131は4族元素に、例えばホウ素Bのような3B族元素がドーピングされたp形半導体を物理気相蒸着法(PVD)或いは化学気相蒸着法(CVD)等を利用して形成できる。物理気相蒸着法は水素雰囲気で進行され得る。化学気相蒸着法はプラズマ化学気相蒸着法(PECVD)、ホットウォール化学気相蒸着法(hot−wall CVD)、ホットワイヤー化学気相蒸着法(hot−wire CVD)、常圧化学気相蒸着法(APCVD)等を包含できる。本明細書では特別な言及がない限り、蒸着或いは蒸着工程であるとは前記多様な蒸着法を意味する。   A p-type semiconductor film 131 can be formed on the transparent electrode 120 (S131). The p-type semiconductor film 131 is a p-type semiconductor doped with a Group 4 element, for example, a Group 3B element such as boron B, using physical vapor deposition (PVD) or chemical vapor deposition (CVD). Can be formed. Physical vapor deposition can proceed in a hydrogen atmosphere. Chemical vapor deposition methods include plasma enhanced chemical vapor deposition (PECVD), hot wall chemical vapor deposition (hot-wall CVD), hot wire chemical vapor deposition (hot-wire CVD), and atmospheric pressure chemical vapor deposition. Law (APCVD) and the like. In the present specification, unless otherwise specified, the term “deposition or deposition process” refers to the various deposition methods.

p形半導体膜131を構成する半導体はSiを包含できる。p形半導体膜131はSi以外に、SiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を包含できる。一例として、p形半導体膜131はSiHとHガス、そしてp形ドーパント(例:B)を利用するプラズマ化学気相蒸着法(PECVD)でp−Siを蒸着して形成できる。p形半導体膜131は非晶質、単結晶質、多結晶質、又は微細結晶質(或いはナノ結晶質)であり得る。本明細書で“半導体膜“とは“半導体で構成された膜”のみでなく“半導体を含む膜”を意味する。 The semiconductor constituting the p-type semiconductor film 131 can include Si. In addition to Si, the p-type semiconductor film 131 can include SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof. As an example, the p-type semiconductor film 131 may be formed by depositing p-Si by plasma enhanced chemical vapor deposition (PECVD) using SiH 4 and H 2 gas and a p-type dopant (eg, B 2 H 6 ). . The p-type semiconductor film 131 may be amorphous, single crystalline, polycrystalline, or fine crystalline (or nanocrystalline). In this specification, “semiconductor film” means not only “a film made of a semiconductor” but also “a film containing a semiconductor”.

p形半導体膜131の上に光吸収層として真性半導体膜133を形成できる(S133)。真性半導体膜133はSiを包含できる。真性半導体膜133はSi以外に、SiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を蒸着して形成できる。真性半導体膜133は非晶質、単結晶質、多結晶質、マイクロ結晶質(或いはナノ結晶質)又はこれらの組合であり得る。本実施形態によれば、真性半導体膜133は結晶質又は微細結晶質が全然形成されていない非晶質シリコン膜を包含できる。   An intrinsic semiconductor film 133 can be formed as a light absorption layer on the p-type semiconductor film 131 (S133). The intrinsic semiconductor film 133 can include Si. The intrinsic semiconductor film 133 can be formed by vapor-depositing SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof in addition to Si. The intrinsic semiconductor film 133 may be amorphous, single crystalline, polycrystalline, microcrystalline (or nanocrystalline), or a combination thereof. According to the present embodiment, the intrinsic semiconductor film 133 can include an amorphous silicon film in which no crystalline or fine crystalline is formed.

真性半導体膜133の特性は均一でなくて真性半導体膜133の厚さ方向に沿って連続的に変化されるように形成され得る。例えば、SiH、Si、SiHCl、SiHCl、SiHCl、又はその組合のようなSiソースガスにHを添加したプラズマ化学気相蒸着法(PECVD)でp形半導体膜131の上にi−Siを蒸着して真性半導体膜133を形成できる。この時、水素希釈比、例えば[H]/[SiH]を漸進的に増加させて真性半導体膜133を形成できる。真性半導体膜133は非晶質であり得る。[SiH]は[SiH]、[Si]、[SiHCl]、[SiHCl]、又は[SiHCl]等に代替され得る。本実施形態によれば、本実施形態をこれに限定することではない一例として、水素希釈比は大略1乃至20であり得る。 The characteristics of the intrinsic semiconductor film 133 are not uniform and can be formed so as to be continuously changed along the thickness direction of the intrinsic semiconductor film 133. For example, a p-type semiconductor by plasma enhanced chemical vapor deposition (PECVD) in which H 2 is added to a Si source gas such as SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , SiH 3 Cl, SiHCl 3 , or a combination thereof. An intrinsic semiconductor film 133 can be formed by evaporating i-Si on the film 131. At this time, the intrinsic semiconductor film 133 can be formed by gradually increasing the hydrogen dilution ratio, for example, [H 2 ] / [SiH 4 ]. The intrinsic semiconductor film 133 may be amorphous. [SiH 4 ] can be replaced with [SiH 4 ], [Si 2 H 6 ], [SiH 2 Cl 2 ], [SiH 3 Cl], [SiHCl 3 ], or the like. According to this embodiment, as an example that is not limited to this embodiment, the hydrogen dilution ratio may be approximately 1 to 20.

本実施形態によれば、図1Cに図示されたように、太陽光が入射される入射面からその反対面に行くほど、即ちp形半導体膜131と真性半導体膜133との第1の界面133aからn形半導体膜135と真性半導体膜133との第2の界面133bに行くほど、水素希釈比Rが高くなり得る。これによって、水素希釈比Rは太陽光が入射される透明基板110との距離が大きくなるほど、及び/又は金属電極170との距離が小さくなるほど、連続的に大きくなり得る。水素希釈比Rを漸進的に増やしながら真性半導体膜133を形成すれば、真性半導体膜133に含まれる水素の含有量は第1の界面133aから第2の界面133bに行くほど、連続的に小さくなり得る。   According to the present embodiment, as illustrated in FIG. 1C, the first interface 133 a between the p-type semiconductor film 131 and the intrinsic semiconductor film 133 increases from the incident surface on which sunlight is incident to the opposite surface. The hydrogen dilution ratio R can increase from the second interface 133b between the n-type semiconductor film 135 and the intrinsic semiconductor film 133 to the second interface 133b. Accordingly, the hydrogen dilution ratio R can be continuously increased as the distance from the transparent substrate 110 on which sunlight is incident is increased and / or as the distance from the metal electrode 170 is decreased. If the intrinsic semiconductor film 133 is formed while gradually increasing the hydrogen dilution ratio R, the content of hydrogen contained in the intrinsic semiconductor film 133 decreases continuously as it goes from the first interface 133a to the second interface 133b. Can be.

前記のような条件に真性半導体膜133を形成すれば、i−Siに水素が含まれ、その水素は真性半導体膜133の欠陥と結合して欠陥を除去することによって、電子−正孔対が消滅されないので、電気を発生させるのに寄与できる。また、真性半導体膜133内での水素含有量が連続的に変わるので、水素含有量が互に異なる膜が積層された場合と異なりに界面が無いので、キャリヤーが界面で捕獲消耗される可能性が顕著に減少され得る。   When the intrinsic semiconductor film 133 is formed under the above-described conditions, hydrogen is contained in i-Si, and the hydrogen combines with defects in the intrinsic semiconductor film 133 to remove the defects. Since it is not extinguished, it can contribute to generating electricity. In addition, since the hydrogen content in the intrinsic semiconductor film 133 changes continuously, there is no interface unlike the case where films having different hydrogen contents are stacked, and carriers may be trapped and consumed at the interface. Can be significantly reduced.

水素希釈比Rの連続的な変化にしたがって真性半導体膜133の他の特性も連続的に変化され得る。例えば、水素はSiソースガスを希釈させるので、真性半導体膜133の密度(density)を変化させ得る。水素希釈比Rが大きければ、i−Siの蒸着がより緩やかに生じ、それにしたがって規則的な配列が大きくなって密度が増加するか、或いは結晶性が大きくなり得る。したがって、水素希釈比Rが大きければ、微細結晶質や結晶質又は高密度の非晶質の真性半導体膜133が形成され得る。本実施形態によれば、水素希釈比Rが大きくなって膜の結晶性や密度が大きくなっても微細結晶質が形成される前の段階の非晶質の真性半導体膜133が形成され得る。非晶質の真性半導体膜133は第1の界面133aから第2の界面133bに行くほど、密度が大きくなり得る。非晶質の真性半導体膜133は結晶質の真性半導体膜に比べて光吸収係数(light absorption coefficient)が相対的に大きいので、これによって光変換効率が高くなり得る。光吸収層が非晶質であっても水素希釈比を増加させることによって、光誘導劣化(light−induced degration)を減少させ得る。水素希釈比Rが小さければ、これと反対に非晶質性が大きくなり、密度が小さい真性半導体膜133が形成され得る。   As the hydrogen dilution ratio R changes continuously, other characteristics of the intrinsic semiconductor film 133 can be changed continuously. For example, since hydrogen dilutes a Si source gas, the density of the intrinsic semiconductor film 133 can be changed. If the hydrogen dilution ratio R is large, the deposition of i-Si occurs more slowly, and the regular arrangement increases accordingly, the density increases, or the crystallinity increases. Therefore, if the hydrogen dilution ratio R is large, a fine crystalline, crystalline, or high-density amorphous intrinsic semiconductor film 133 can be formed. According to this embodiment, even if the hydrogen dilution ratio R is increased and the crystallinity and density of the film are increased, the amorphous intrinsic semiconductor film 133 at the stage before the formation of the fine crystalline can be formed. The density of the amorphous intrinsic semiconductor film 133 can increase as it goes from the first interface 133a to the second interface 133b. Since the amorphous intrinsic semiconductor film 133 has a relatively large light absorption coefficient compared to the crystalline intrinsic semiconductor film, the light conversion efficiency can be increased. Even if the light absorption layer is amorphous, light-induced degradation can be reduced by increasing the hydrogen dilution ratio. On the contrary, if the hydrogen dilution ratio R is small, the amorphousness becomes large, and the intrinsic semiconductor film 133 with a low density can be formed.

水素希釈比Rが大きいほど、真性半導体膜133のバンドギャップエネルギー(band−gap energy)は小さくなり得る。反対に、水素希釈比Rが小さくなるほど、真性半導体膜133のバンドギャップエネルギーは大きくなり得る。薄膜内の水素含有量が水素希釈比が大きくなるほど、小さくなるが、これにしたがって、バンドギャップが小さくなり得る。図1Cは前記結果を示すことであって、矢印方向に行くほど、特性値が大きくなることを示す。例えば、水素希釈比Rが大きくなるほど、真性半導体膜133の密度Dは大きくなり、バンドギャップエネルギーBと光吸収係数Aとは小さくなり得る。真性半導体膜133はそのバンドギャップエネルギー値にしたがって吸収できる太陽光の波長領域が変わられる。したがって、真性半導体膜133はそのバンドギャップエネルギーが連続的に変わるので、吸収できる太陽光(例:可視光線)の波長帯域が大きくなり得る。真性半導体膜133が非晶質状態を維持しても、水素希釈比を増加させることによって、バンドギャップエネルギーは約2.0eV乃至約1.5eVの間の値を有し得る。   The higher the hydrogen dilution ratio R, the smaller the band gap energy of the intrinsic semiconductor film 133 can be. On the contrary, the band gap energy of the intrinsic semiconductor film 133 can increase as the hydrogen dilution ratio R decreases. Although the hydrogen content in the thin film decreases as the hydrogen dilution ratio increases, the band gap can be reduced accordingly. FIG. 1C shows the result, and shows that the characteristic value increases as the direction of the arrow increases. For example, as the hydrogen dilution ratio R increases, the density D of the intrinsic semiconductor film 133 increases, and the band gap energy B and the light absorption coefficient A can decrease. Intrinsic semiconductor film 133 changes the wavelength range of sunlight that can be absorbed according to its band gap energy value. Accordingly, since the band gap energy of the intrinsic semiconductor film 133 changes continuously, the wavelength band of sunlight (eg, visible light) that can be absorbed can be increased. Even if the intrinsic semiconductor film 133 remains in an amorphous state, the bandgap energy may have a value between about 2.0 eV and about 1.5 eV by increasing the hydrogen dilution ratio.

p形半導体膜131のように太陽光が入射される薄膜の上にi−Siを蒸着して真性半導体膜133を形成する時、一般的な方法のように水素希釈比を固定させた場合に獲得できる光効率(例:大略9%)に比べて本実施形態のように水素希釈比を漸進的に増加させた場合には真性半導体膜133の特性が連続的乃至漸進的に変化させることによって高い光効率(例:大略9.8%)を得られる。この光効率はp−Si膜131と、水素含有量が連続的に変わる真性非晶質Si膜133と、そしてn−Si膜135を積層し、p−Si膜131とi−Si膜133との第1の界面133aに隣接するi−Si膜133内の水素含有量がi−Si膜133とn−Si膜135との第2の界面133bに隣接するi−Si膜133内の水素含有量より大きくなるように製作した単一接合非晶質Si薄膜太陽電池100から得た値である。ここで、水素含有量が変わる方向が非常に重要であり得る。例えば、p−Si膜131とi−Si膜133との第1の界面133aに隣接するi−Si膜133内の水素含有量がi−Si膜133とn−Si膜135との第2の界面133bに隣接するi−Si膜133内の水素含有量より小さくなるように製作した場合、光変換効率は大略5.8%に過ぎない値が獲得できる。   When the intrinsic semiconductor film 133 is formed by depositing i-Si on a thin film on which sunlight is incident, such as the p-type semiconductor film 131, when the hydrogen dilution ratio is fixed as in a general method. When the hydrogen dilution ratio is gradually increased as in the present embodiment as compared with the obtainable light efficiency (eg, approximately 9%), the characteristics of the intrinsic semiconductor film 133 are changed continuously or gradually. High light efficiency (eg, approximately 9.8%) can be obtained. This light efficiency is obtained by laminating a p-Si film 131, an intrinsic amorphous Si film 133 whose hydrogen content changes continuously, and an n-Si film 135, and p-Si film 131 and i-Si film 133 The hydrogen content in the i-Si film 133 adjacent to the first interface 133a is equal to the hydrogen content in the i-Si film 133 adjacent to the second interface 133b between the i-Si film 133 and the n-Si film 135. It is a value obtained from the single-junction amorphous Si thin film solar cell 100 manufactured to be larger than the amount. Here, the direction in which the hydrogen content changes can be very important. For example, the hydrogen content in the i-Si film 133 adjacent to the first interface 133 a between the p-Si film 131 and the i-Si film 133 is a second value between the i-Si film 133 and the n-Si film 135. When manufactured so as to be smaller than the hydrogen content in the i-Si film 133 adjacent to the interface 133b, a light conversion efficiency of only about 5.8% can be obtained.

再び図1A及び図1Bを参照すれば、真性半導体膜133の上にn形半導体膜135を形成できる(S135)。n形半導体膜135は4族元素に、例えば燐Pのような5B族元素がドーピングされたn形半導体を蒸着して形成できる。n形半導体膜135を構成する半導体はSiを包含できる。p形半導体膜131はSi以外に、SiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を包含できる。一例として、n形半導体膜135はSiHとHとのガス、そしてn形ドーパント前駆体ガス(例:PH)を利用するプラズマ化学気相蒸着法(PECVD)でn−Siを蒸着して形成できる。n形半導体膜135は非晶質、単結晶質、多結晶質、マイクロ結晶質(或いはナノ結晶質)、又は非晶質ーナノ結晶質の混合構造であり得る。このように、透明電極120の上にp形半導体膜131と、真性半導体膜133と、n形半導体膜135とを順に積層してp−i−nダイオード構造のセル130を形成できる。 Referring to FIGS. 1A and 1B again, the n-type semiconductor film 135 can be formed on the intrinsic semiconductor film 133 (S135). The n-type semiconductor film 135 can be formed by vapor-depositing an n-type semiconductor in which a Group 4 element is doped with a Group 5B element such as phosphorus P. The semiconductor constituting the n-type semiconductor film 135 can include Si. In addition to Si, the p-type semiconductor film 131 can include SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof. As an example, the n-type semiconductor film 135 is formed by depositing n-Si by plasma enhanced chemical vapor deposition (PECVD) using a gas of SiH 4 and H 2 and an n-type dopant precursor gas (eg, PH 3 ). Can be formed. The n-type semiconductor film 135 may be amorphous, monocrystalline, polycrystalline, microcrystalline (or nanocrystalline), or a mixed structure of amorphous and nanocrystalline. As described above, the p-type diode structure cell 130 can be formed by sequentially stacking the p-type semiconductor film 131, the intrinsic semiconductor film 133, and the n-type semiconductor film 135 on the transparent electrode 120.

n形半導体膜135の上に後面反射膜160を形成できる(S160)。後面反射膜160は太陽光の反射損失を減り、光捕獲効果(light trapping effect)を極大化させて太陽電池100の効率を向上させるために形成され得る。後面反射膜160は例えば先に列挙した酸化物透明電極120と同一又は類似な物質(例:ZnO、Zn:Al、ZnO:Ga、ZnO:B、及びZnOを含む膜)等をスパッタ蒸着、化学気相蒸着工程や電子ビーム蒸発法(E−beam evaporation)を利用して形成できる。   A rear reflective film 160 can be formed on the n-type semiconductor film 135 (S160). The rear reflective film 160 may be formed to reduce the reflection loss of sunlight, maximize the light trapping effect, and improve the efficiency of the solar cell 100. For example, the rear reflective film 160 is formed by sputtering or chemical deposition of a material (for example, a film containing ZnO, Zn: Al, ZnO: Ga, ZnO: B, and ZnO) that is the same as or similar to the oxide transparent electrode 120 listed above. It can be formed using a vapor deposition process or an electron beam evaporation method (E-beam evaporation).

後面反射膜160の上に後面電極として金属電極170を形成できる(S170)。金属電極170は透明性或いは不透明性物質を単一膜或いは多重膜構造で形成できる。一例として、金属電極170はAl、Ag、Cu、ZnO/Ag、ZnO/Al、Ni/Al等を蒸着して形成できる。前記一連の過程を通じて図1Aの薄膜太陽電池100を形成できる。   A metal electrode 170 may be formed on the rear reflective film 160 as a rear electrode (S170). The metal electrode 170 may be formed of a transparent or opaque material with a single film or multiple film structure. As an example, the metal electrode 170 can be formed by evaporating Al, Ag, Cu, ZnO / Ag, ZnO / Al, Ni / Al, or the like. Through the series of processes, the thin film solar cell 100 of FIG. 1A can be formed.

<実施形態1の動作原理>
図1Dは本発明の一実施形態による薄膜太陽電池の動作原理を説明する断面図である。
<Operation Principle of First Embodiment>
FIG. 1D is a cross-sectional view illustrating the operating principle of a thin film solar cell according to an embodiment of the present invention.

図1Dを参照すれば、太陽光は透明基板110へ入射され得る。入射された太陽光は真性半導体膜133に吸収されて複数の電子と複数の正孔とが生成される。真性半導体膜133はp形半導体膜131及びn形半導体膜135によって、空乏(depletion)され得るので、その内部に電気場(電場)が発生できる。真性半導体膜133で生成された電子(e−)と正孔(h+)とは内部電気場によって、n形半導体膜135とp形半導体膜131とへ各々ドリフト(drift)され得る。これによってp形半導体膜131には正孔(h+)が蓄積され、n形半導体膜135には電子(e−)が蓄積されることによって、p形半導体膜131とn形半導体膜135との間に光起電力(photovoltage)が発生できる。正孔(h+)を収集できる透明電極120と電子(e−)を収集できる金属電極170との間に負荷180を連結すれば、電流が流れ得る。   Referring to FIG. 1D, sunlight may be incident on the transparent substrate 110. Incident sunlight is absorbed by the intrinsic semiconductor film 133 to generate a plurality of electrons and a plurality of holes. Since the intrinsic semiconductor film 133 can be depleted by the p-type semiconductor film 131 and the n-type semiconductor film 135, an electric field (electric field) can be generated therein. Electrons (e−) and holes (h +) generated in the intrinsic semiconductor film 133 can be drifted to the n-type semiconductor film 135 and the p-type semiconductor film 131 by the internal electric field. As a result, holes (h +) are accumulated in the p-type semiconductor film 131 and electrons (e−) are accumulated in the n-type semiconductor film 135, thereby forming the p-type semiconductor film 131 and the n-type semiconductor film 135. In the meantime, photovoltaic can be generated. If a load 180 is connected between the transparent electrode 120 that can collect holes (h +) and the metal electrode 170 that can collect electrons (e−), a current can flow.

<実施形態1の変形形態>
図1E乃至図1Gは本発明の他の実施形態による薄膜太陽電池を示した断面図である。
<Modification of Embodiment 1>
1E to 1G are cross-sectional views illustrating thin film solar cells according to other embodiments of the present invention.

図1Eを参照すれば、薄膜太陽電池102はテクスチャーされた表面(textured surface)を有する透明電極120を包含できる。透明電極120の表面をテクスチャリングすれば、入射される太陽光の反射を低減させ得るものであり、光吸収率を高くすることができる。テクスチャリングは透明電極120の蒸着の時、或いは蒸着の後にエッチング工程で作られる。以外に、セル130、後面反射膜160、及び金属電極170の中で少なくともいずれか1つはテクスチャリング表面を有することができる。   Referring to FIG. 1E, the thin film solar cell 102 may include a transparent electrode 120 having a textured surface. If the surface of the transparent electrode 120 is textured, reflection of incident sunlight can be reduced, and the light absorption rate can be increased. Texturing is made by an etching process when the transparent electrode 120 is deposited or after deposition. In addition, at least one of the cell 130, the rear reflective film 160, and the metal electrode 170 may have a texturing surface.

図1Fを参照すれば、薄膜太陽電池104は二重接合(double junction)のスーパーストレート構造であり得る。一例として、薄膜太陽電池104はp−i−n構造の第1のセル130の上にp−i−n構造の第2のセル140をさらに包含できる。第1のセル130は図1Aのセル130と実質的に同一な構造であり得る。   Referring to FIG. 1F, the thin film solar cell 104 may have a double junction super straight structure. As an example, the thin film solar cell 104 may further include a second cell 140 having a pin structure on the first cell 130 having a pin structure. The first cell 130 may be substantially the same structure as the cell 130 of FIG. 1A.

第2のセル140は第1のn形半導体膜135の上に第2のp形半導体膜141、第2の真性半導体膜143、及び第2のn形半導体膜145を順に蒸着して形成できる。第2のp形半導体膜141は第1のp形半導体膜131と、第2のn形半導体膜145は第1のn形半導体膜135と実質的に同一であるか、或いは類似に形成できる。第2の真性半導体膜143は第1の真性半導体膜133と実質的に同一であるか、或いは類似に実質的に同一な水素希釈比を利用して形成された非晶質膜であり得る。   The second cell 140 can be formed by sequentially depositing a second p-type semiconductor film 141, a second intrinsic semiconductor film 143, and a second n-type semiconductor film 145 on the first n-type semiconductor film 135. . The second p-type semiconductor film 141 may be substantially the same as or similar to the first p-type semiconductor film 131 and the second n-type semiconductor film 145 may be formed in the same manner as the first n-type semiconductor film 135. . The second intrinsic semiconductor film 143 may be substantially the same as the first intrinsic semiconductor film 133, or may be an amorphous film that is formed using the substantially same hydrogen dilution ratio.

他の例として、第2の真性半導体膜143は第1の真性半導体膜133と同様に非晶質膜で形成するが、相異なる水素希釈比を利用して形成できる。例えば、第1の真性半導体膜143の水素希釈比が1乃至10であり、第2の真性半導体膜143の水素希釈比は10乃至20であるか、或いはその逆もあり得る。前記水素希釈比が蒸着の工程の中で互いに異なることによって、第1の真性半導体膜133と第2の真性半導体膜143との中でいずれか1つは低密度の非晶質膜であり、他の1つは高密度の非晶質膜であり得る。水素希釈比は太陽光が入射される方向に沿って行くほど、大きくなり得る。ここでの水素希釈比の数値は単なる一例であるが、本発明をこれに限定しようとする意図ではない。   As another example, the second intrinsic semiconductor film 143 is formed of an amorphous film similarly to the first intrinsic semiconductor film 133, but can be formed using different hydrogen dilution ratios. For example, the hydrogen dilution ratio of the first intrinsic semiconductor film 143 may be 1 to 10, and the hydrogen dilution ratio of the second intrinsic semiconductor film 143 may be 10 to 20, or vice versa. Since the hydrogen dilution ratios are different from each other in the deposition process, one of the first intrinsic semiconductor film 133 and the second intrinsic semiconductor film 143 is a low-density amorphous film, The other can be a dense amorphous film. The hydrogen dilution ratio can increase as it goes along the direction in which sunlight is incident. The value of the hydrogen dilution ratio here is merely an example, but is not intended to limit the present invention.

その他の例として、第1の真性半導体膜133と第2の真性半導体膜143との中でいずれか1つは非晶質膜であり、他の1つは結晶質膜(例:微細結晶質膜、単結晶膜、多結晶膜)であり得る。その他の例として、第1の真性半導体膜133と第2の真性半導体膜143との中でいずれか1つは非晶質膜であり、他の1つは結晶質膜と非晶質膜との混合膜であり得る。   As another example, one of the first intrinsic semiconductor film 133 and the second intrinsic semiconductor film 143 is an amorphous film, and the other is a crystalline film (eg, a fine crystalline material). Film, single crystal film, polycrystalline film). As another example, one of the first intrinsic semiconductor film 133 and the second intrinsic semiconductor film 143 is an amorphous film, and the other is a crystalline film and an amorphous film. It may be a mixed film.

図1Gを参照すれば、薄膜太陽電池106は三重接合(triple junction)のスーパーストレート構造であり得る。例えば、薄膜太陽電池106はp−i−n構造の第1のセル130の上にp−i−n構造の第2のセル140とp−i−n構造の第3のセル150とをさらに包含できる。第1のセル130は図1Aのセル130と実質的に同一な構造であり得る。   Referring to FIG. 1G, the thin film solar cell 106 may have a triple junction super straight structure. For example, the thin film solar cell 106 further includes a second cell 140 having a pin structure and a third cell 150 having a pin structure on the first cell 130 having a pin structure. Can be included. The first cell 130 may be substantially the same structure as the cell 130 of FIG. 1A.

第2のセル140は第1のn形半導体膜135の上に第2のp形半導体膜141、第2の真性半導体膜143、及び第2のn形半導体膜145を順に蒸着して形成できる。第2のp形半導体膜141は第1のp形半導体膜131と、第2のn形半導体膜145は第1のn形半導体膜135と実質的に同一であるか、或いは類似に形成できる。   The second cell 140 can be formed by sequentially depositing a second p-type semiconductor film 141, a second intrinsic semiconductor film 143, and a second n-type semiconductor film 145 on the first n-type semiconductor film 135. . The second p-type semiconductor film 141 may be substantially the same as or similar to the first p-type semiconductor film 131 and the second n-type semiconductor film 145 may be formed in the same manner as the first n-type semiconductor film 135. .

第3のセル150は第2のn形半導体膜145の上に第3のp形半導体膜151、第3の真性半導体膜153、及び第3のn形半導体膜155を順に蒸着して形成できる。第3のセル150は第1のセル130及び/又は第2のセル140と実質的に同一であるか、或いは類似に形成できる。第3のp形半導体膜151は第1のp形半導体膜131及び/又は第2のp形半導体膜141と、第3のn形半導体膜155は第1のn形半導体膜135及び/又は第2のn形半導体膜145と実質的に同一であるか、或いは類似に形成できる。第3の真性半導体膜153は第1の真性半導体膜133及び/又は第2の真性半導体膜143と実質的に同一であるか、或いは類似に形成できる。   The third cell 150 can be formed by sequentially depositing a third p-type semiconductor film 151, a third intrinsic semiconductor film 153, and a third n-type semiconductor film 155 on the second n-type semiconductor film 145. . The third cell 150 may be substantially the same as or similar to the first cell 130 and / or the second cell 140. The third p-type semiconductor film 151 is the first p-type semiconductor film 131 and / or the second p-type semiconductor film 141, and the third n-type semiconductor film 155 is the first n-type semiconductor film 135 and / or The second n-type semiconductor film 145 may be substantially the same as or similar to the second n-type semiconductor film 145. The third intrinsic semiconductor film 153 can be substantially the same as or similar to the first intrinsic semiconductor film 133 and / or the second intrinsic semiconductor film 143.

他の例として、第3の真性半導体膜153は第1の真性半導体膜133及び/又は第2の真性半導体膜143と類似に非晶質膜で形成し、相異なる水素希釈比を利用して形成できる。例えば、第1の真性半導体膜133の水素希釈比は1乃至7、第2の真性半導体膜143の水素希釈比は7乃至15、そして第3の真性半導体膜153の水素希釈比は15乃至20であり得る。他の例として、第1の真性半導体膜133及び第3の真性半導体膜153の中でいずれか1つの水素希釈比は7乃至15であり、他の1つの水素希釈比は15乃至20であり、第2の真性半導体膜143の水素希釈比は1乃至7であり得る。その他の例として、第1の真性半導体膜133及び第3の真性半導体膜153の中でいずれか1つの水素希釈比は1乃至7であり、他の1つの水素希釈比は7乃至15であり、第2の真性半導体膜133の水素希釈比は15乃至20であり得る。他の例として、第1乃至第3の真性半導体膜133、143、153の中で少なくともいずれか1つは水素希釈比が連続的に異なる工程条件で形成され得る。水素希釈比は太陽光が入射される方向に沿って行くほど、大きくなり得る。   As another example, the third intrinsic semiconductor film 153 is formed of an amorphous film similarly to the first intrinsic semiconductor film 133 and / or the second intrinsic semiconductor film 143, and uses different hydrogen dilution ratios. Can be formed. For example, the hydrogen dilution ratio of the first intrinsic semiconductor film 133 is 1 to 7, the hydrogen dilution ratio of the second intrinsic semiconductor film 143 is 7 to 15, and the hydrogen dilution ratio of the third intrinsic semiconductor film 153 is 15 to 20. It can be. As another example, one of the first intrinsic semiconductor film 133 and the third intrinsic semiconductor film 153 has a hydrogen dilution ratio of 7 to 15, and the other one has a hydrogen dilution ratio of 15 to 20. The hydrogen dilution ratio of the second intrinsic semiconductor film 143 may be 1 to 7. As another example, one of the first intrinsic semiconductor film 133 and the third intrinsic semiconductor film 153 has a hydrogen dilution ratio of 1 to 7, and the other one of the hydrogen dilution ratios is 7 to 15. The hydrogen dilution ratio of the second intrinsic semiconductor film 133 may be 15-20. As another example, at least one of the first to third intrinsic semiconductor films 133, 143, and 153 may be formed under process conditions having continuously different hydrogen dilution ratios. The hydrogen dilution ratio can increase as it goes along the direction in which sunlight is incident.

その他の例として、第1乃至第3の真性半導体膜133、143、153の中で少なくともいずれか1つは非晶質膜であり、残りは結晶質膜であり得る。その他の例として、第1乃至第3の真性半導体膜133、143、153の中で少なくともいずれか1つは非晶質膜であり、残りは結晶質膜と非晶質膜との混合膜であり得る。   As another example, at least one of the first to third intrinsic semiconductor films 133, 143, and 153 may be an amorphous film, and the remaining may be a crystalline film. As another example, at least one of the first to third intrinsic semiconductor films 133, 143, and 153 is an amorphous film, and the remaining is a mixed film of a crystalline film and an amorphous film. possible.

<実施形態2>
図2Aは本発明の変形実施形態による薄膜太陽電池を示した断面図である。図2Bは本発明の変形実施形態による薄膜太陽電池の製造方法を示すフローチャートである。図2Cは本発明の変形実施形態による薄膜太陽電池のセルを示した断面図である。
<Embodiment 2>
FIG. 2A is a cross-sectional view illustrating a thin film solar cell according to a modified embodiment of the present invention. FIG. 2B is a flowchart showing a method for manufacturing a thin-film solar cell according to a modified embodiment of the present invention. FIG. 2C is a cross-sectional view illustrating a cell of a thin-film solar battery according to a modified embodiment of the present invention.

図2Aを参照すれば、薄膜太陽電池200は不透明基板210の上に金属電極270と、n−i−p構造のセル230と、透明電極220とが薄膜形態に順に積層された単一接合(single junction)のサブストレート(substrate)構造であり得る。一例として、セル230は金属電極270の上に順に積層されたn形半導体膜235、真性半導体膜233、及びp形半導体膜231を包含できる。他の例として、セル230は金属電極270の上に順に積層されたp形半導体膜231、真性半導体膜233、及びn形半導体膜235を包含できる。後面反射膜260は金属電極270とセル230との間に配置され得る。太陽光は透明電極220へ入射され得る。   Referring to FIG. 2A, a thin film solar cell 200 is a single junction in which a metal electrode 270, a nip structure cell 230, and a transparent electrode 220 are sequentially stacked on an opaque substrate 210 in a thin film form. It can be a single junction substrate structure. As an example, the cell 230 may include an n-type semiconductor film 235, an intrinsic semiconductor film 233, and a p-type semiconductor film 231 that are sequentially stacked on the metal electrode 270. As another example, the cell 230 may include a p-type semiconductor film 231, an intrinsic semiconductor film 233, and an n-type semiconductor film 235 that are sequentially stacked on the metal electrode 270. The rear reflective film 260 may be disposed between the metal electrode 270 and the cell 230. Sunlight can be incident on the transparent electrode 220.

図2Bを図2Aと共に参照すれば、不透明基板210を提供し(S210)、その不透明基板210の上に後面電極として金属電極270を形成できる(S270)。金属電極270はAl、Ag、Cu、ZnO/Ag、ZnO/Al、Ni/Al等のような透明性或いは不透明性物質を単一膜或いは多重膜構造で形成できる。   Referring to FIG. 2B together with FIG. 2A, an opaque substrate 210 may be provided (S210), and a metal electrode 270 may be formed on the opaque substrate 210 as a rear electrode (S270). The metal electrode 270 may be formed of a transparent or opaque material such as Al, Ag, Cu, ZnO / Ag, ZnO / Al, or Ni / Al in a single film or multiple film structure.

金属電極270の上に後面反射膜260を形成できる(S260)。本実施形態によれば、太陽光は透明電極220へ入射されるので、金属基板のような不透明基板210を使用しても妨げる。他の例として、不透明基板210代わりに図1Aのような透明基板を採択することができる。後面反射膜260は先に列挙した酸化物透明電極120と同一又は類似な物質、例えば、Zn:Al、ZnO:Ga、ZnO:B、及びZnOを含む膜等に形成できる。   The rear reflective film 260 can be formed on the metal electrode 270 (S260). According to the present embodiment, since sunlight is incident on the transparent electrode 220, the use of an opaque substrate 210 such as a metal substrate is prevented. As another example, a transparent substrate as shown in FIG. 1A can be adopted instead of the opaque substrate 210. The rear reflective film 260 can be formed of the same or similar material as the oxide transparent electrode 120 listed above, for example, a film containing Zn: Al, ZnO: Ga, ZnO: B, and ZnO.

金属電極270の上にn形半導体膜235を形成し(S235)、n形半導体膜235の上に真性半導体膜233を形成し(S233)、そして真性半導体膜233の上にp形半導体膜231を形成して(S231)、n−i−p構造のセル230を形成できる。n形半導体膜235とp形半導体膜231とを形成することは図1Aのn形半導体膜135とp形半導体膜131とを形成することと実質的に同一であるか、或いは類似であり得る。例えば、n形半導体膜235及びp形半導体膜231の中で少なくともいずれか1つはSi、SiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を含む非晶質膜、微細結晶質膜、単結晶膜、多結晶質膜、又は非晶質膜−ナノ結晶質の混合膜であり得る。   An n-type semiconductor film 235 is formed on the metal electrode 270 (S235), an intrinsic semiconductor film 233 is formed on the n-type semiconductor film 235 (S233), and a p-type semiconductor film 231 is formed on the intrinsic semiconductor film 233. (S231), a cell 230 having an nip structure can be formed. The formation of the n-type semiconductor film 235 and the p-type semiconductor film 231 may be substantially the same as or similar to the formation of the n-type semiconductor film 135 and the p-type semiconductor film 131 of FIG. 1A. . For example, at least one of the n-type semiconductor film 235 and the p-type semiconductor film 231 is amorphous including Si, SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof. It may be a crystalline film, a fine crystalline film, a single crystalline film, a polycrystalline film, or an amorphous film-nanocrystalline mixed film.

真性半導体膜233は図1Aの真性半導体膜133と実質的に同一であるか、或いは類似にその厚さ方向に沿って特性が連続的に変化される非晶質膜に形成できる。例えば、太陽光が入射される方向に沿って行くほど(即ち、太陽光が入射される面から遠くなるほど)、水素希釈比が漸進的に高くなるように形成できる。本実施形態によれば、SiH、Si、SiHCl、SiHCl、SiHCl等のようなSi前躯体ソースガスにHを添加してプラズマ化学気相蒸着法(PECVD)でn形半導体膜235の上にi−Siを蒸着して真性半導体膜233を形成できる。真性半導体膜233はSi以外にSiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を包含できる。本実施形態によれば、水素希釈比を漸進的に減少させて真性半導体膜233を形成できる。図2Cに示したように、真性半導体膜233において、太陽光が入射される方向に沿って行くほど、水素希釈比Rが高くなり、水素含有量は低くなり得る。即ち、水素希釈比Rは第1の界面233aから第2の界面233bに行くほど、明らかな界面の形成無しで連続的に大きくなり得るものであり、水素含有量は連続的に小さくなり得る。例えば、水素希釈比Rは、本発明をこれに限定することではない一例として、1乃至20であり得る。このように水素希釈比Rは太陽光が入射される透明電極220との距離が遠くなるほど、及び/又は不透明基板210との距離が小さくなるほど、連続的に大きくなり得る。真性半導体膜233において、水素希釈比Rの漸進的変化の以外に第1の界面233aから第2の界面233bに行くほど、真性半導体膜233のバンドギャップエネルギーBと光吸収係数Aとは漸進的に小さくなり、密度Dは漸進的に大きくなり得る。 The intrinsic semiconductor film 233 can be formed to be substantially the same as the intrinsic semiconductor film 133 of FIG. 1A, or similarly, an amorphous film whose characteristics are continuously changed along its thickness direction. For example, it can be formed such that the hydrogen dilution ratio gradually increases as it goes along the direction in which sunlight is incident (that is, the distance from the surface on which sunlight is incident). According to the present embodiment, H 2 is added to a Si precursor source gas such as SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , SiH 3 Cl, SiHCl 3, etc., and plasma enhanced chemical vapor deposition (PECVD). The intrinsic semiconductor film 233 can be formed by evaporating i-Si on the n-type semiconductor film 235. The intrinsic semiconductor film 233 can include SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof in addition to Si. According to the present embodiment, the intrinsic semiconductor film 233 can be formed by gradually reducing the hydrogen dilution ratio. As shown in FIG. 2C, in the intrinsic semiconductor film 233, the hydrogen dilution ratio R increases and the hydrogen content decreases as it goes along the direction in which sunlight is incident. That is, the hydrogen dilution ratio R increases continuously from the first interface 233a to the second interface 233b without the formation of an obvious interface, and the hydrogen content can decrease continuously. For example, the hydrogen dilution ratio R may be 1 to 20 as an example that does not limit the present invention. Thus, the hydrogen dilution ratio R can be continuously increased as the distance from the transparent electrode 220 to which sunlight is incident is increased and / or as the distance from the opaque substrate 210 is decreased. In the intrinsic semiconductor film 233, the band gap energy B and the light absorption coefficient A of the intrinsic semiconductor film 233 gradually increase from the first interface 233a to the second interface 233b in addition to the gradual change of the hydrogen dilution ratio R. The density D can gradually increase.

再び図2A及び図2Bを参照すれば、p形半導体膜231の上に前面電極として透明電極220を形成できる(S220)。透明電極220は入射される太陽光を透過させるために金属イオンが添加されたZnO、ITO、SnOx(x<2)等のような透明な伝導性酸化膜TCO、例えばAl、Ga、In、Bが添加されたZnO膜、Fが添加されたSnO膜等をスパッタリング或いは金属有機化学気相蒸着法(MOCVD)等で形成できる。前記一連の過程を通じて図2Aの薄膜太陽電池200を形成できる。   Referring to FIGS. 2A and 2B again, the transparent electrode 220 can be formed on the p-type semiconductor film 231 as a front electrode (S220). The transparent electrode 220 is a transparent conductive oxide film TCO such as ZnO, ITO, SnOx (x <2) or the like to which metal ions are added to transmit incident sunlight, for example, Al, Ga, In, B ZnO film to which F is added, SnO film to which F is added, and the like can be formed by sputtering, metal organic chemical vapor deposition (MOCVD), or the like. Through the series of processes, the thin film solar cell 200 of FIG. 2A can be formed.

<実施形態2の動作原理>
図2Dは本発明の変形実施形態による薄膜太陽電池の動作原理を説明する断面図である。
<Operation Principle of Embodiment 2>
FIG. 2D is a cross-sectional view illustrating the operating principle of a thin film solar cell according to a modified embodiment of the present invention.

図2Dを参照すれば、太陽光は透明電極220へ入射され得る。入射された太陽光は真性半導体膜233に吸収されて複数の電子と複数の正孔とが生成され得る。真性半導体膜233の内部電気場によって電子(e−)はn形半導体膜235へドリフトされて蓄積され、正孔(h+)はp形半導体膜231へドリフトされて蓄積され得る。これによって、p形半導体膜231とn形半導体膜235との間に光起電力(photovoltage)が発生できるので、透明電極220と金属電極27との0間に負荷280が連結されれば、電流が流れることができる。   Referring to FIG. 2D, sunlight may be incident on the transparent electrode 220. Incident sunlight can be absorbed by the intrinsic semiconductor film 233 to generate a plurality of electrons and a plurality of holes. Electrons (e−) can be drifted and accumulated in the n-type semiconductor film 235 and holes (h +) can be drifted and accumulated in the p-type semiconductor film 231 by the internal electric field of the intrinsic semiconductor film 233. Accordingly, a photovoltaic voltage can be generated between the p-type semiconductor film 231 and the n-type semiconductor film 235, so that if a load 280 is connected between the transparent electrode 220 and the metal electrode 27, the current Can flow.

<実施形態2の変形形態>
図2E乃至図2Gは本発明のその他の実施形態による薄膜太陽電池の示した断面図である。
<Modification of Embodiment 2>
2E to 2G are cross-sectional views illustrating thin film solar cells according to other embodiments of the present invention.

図2Eを参照すれば、薄膜太陽電池202はテクスチャリングされた構造を包含できる。一例として、透明電極220、セル230、後面反射膜260、及び金属電極270の中で少なくともいずれか1つはテクスチャリング表面を有することができる。   Referring to FIG. 2E, the thin film solar cell 202 can include a textured structure. As an example, at least one of the transparent electrode 220, the cell 230, the rear reflective film 260, and the metal electrode 270 may have a texturing surface.

図2Fを参照すれば、薄膜太陽電池204は二重接合(double junction)のサブストレート構造であり得る。一例として、薄膜太陽電池204はn−i−p構造の第1のセル230の上にn−i−p構造の第2のセル240をさらに包含できる。第1のセル230は図2Aのセル230と実質的に同一又は類似な構造であり得る。第2のセル240は第1のp形半導体膜231の上に第2のn形半導体膜245、第2の真性半導体膜243、及び第2のp形半導体膜241を順に蒸着して形成できる。第2のp形半導体膜241は第1のp形半導体膜231と、第2のn形半導体膜245は第1のn形半導体膜235と実質的に同一であるか、或いは類似に形成できる。   Referring to FIG. 2F, the thin film solar cell 204 may have a double junction substrate structure. As an example, the thin-film solar cell 204 may further include a second cell 240 having an nip structure on the first cell 230 having an nip structure. The first cell 230 may have a structure that is substantially the same or similar to the cell 230 of FIG. 2A. The second cell 240 can be formed by sequentially depositing the second n-type semiconductor film 245, the second intrinsic semiconductor film 243, and the second p-type semiconductor film 241 on the first p-type semiconductor film 231. . The second p-type semiconductor film 241 can be formed substantially the same as or similar to the first p-type semiconductor film 231 and the second n-type semiconductor film 245 can be formed in the same manner. .

第2の真性半導体膜243は第1の真性半導体膜233と実質的に同一又は類似に、或いは相違なりに形成できる。一例として、非晶質の第2の真性半導体膜233の水素希釈比と非晶質の第2の真性半導体膜243の水素希釈比は同一であるか、或いは、或いはいずれかの一方が他方に比べて大きくなり得る。他の例として、第1の真性半導体膜233と第2の真性半導体膜243との中でいずれか1つは非晶質膜であり、他の1つは結晶質膜(例:微細結晶質膜、単結晶質膜、多結晶質膜)であるか、或いは結晶質膜と非晶質膜の混合膜であり得る。   The second intrinsic semiconductor film 243 can be formed substantially the same as, similar to, or different from the first intrinsic semiconductor film 233. As an example, the hydrogen dilution ratio of the amorphous second intrinsic semiconductor film 233 and the hydrogen dilution ratio of the amorphous second intrinsic semiconductor film 243 are the same, or one of them is the other. It can be larger than that. As another example, one of the first intrinsic semiconductor film 233 and the second intrinsic semiconductor film 243 is an amorphous film, and the other is a crystalline film (eg, a fine crystalline material). Film, monocrystalline film, polycrystalline film), or a mixed film of a crystalline film and an amorphous film.

図2Gを参照すれば、薄膜太陽電池206は三重接合(triple junction)のサブストレート構造であり得る。例えば、薄膜太陽電池206はn−i−p構造の第1のセル230と金属電極270の間にn−i−p構造の第2のセル240とn−i−p構造の第3のセル250とをさらに包含できる。第3のセル250は金属電極270の上に第3のn形半導体膜255、第3の真性半導体膜253、及び第3のp形半導体膜251を順に蒸着して形成できる。第3のセル250は第1のセル230及び/又は第2のセル240と実質的に同一であるか、或いは類似に形成できる。   Referring to FIG. 2G, the thin film solar cell 206 may have a triple junction substrate structure. For example, the thin film solar cell 206 includes a second cell 240 having an nip structure and a third cell having an nip structure between a first cell 230 having an nip structure and a metal electrode 270. 250 can be further included. The third cell 250 can be formed by sequentially depositing a third n-type semiconductor film 255, a third intrinsic semiconductor film 253, and a third p-type semiconductor film 251 on the metal electrode 270. The third cell 250 may be substantially the same as or similar to the first cell 230 and / or the second cell 240.

第1乃至第3の真性半導体膜233、243、253の水素希釈比は互に同一であるか、或いは相異であり得る。一例として、第1乃至第3の真性半導体膜233、243、253の積層順に水素希釈比が大きくなるか、或いは小さくなる非晶質膜であり得る。他の例として、第1乃至第3の真性半導体膜233、243、253の積層順に水素希釈比が増加した後に減少されるか、或いは或いは減少した後、増加される非晶質膜であり得る。 他の例として、第1乃至 第3の真性半導体膜233、243、253の中で少なくともいずれか1つは水素希釈比が連続的に異なる工程条件で形成され得る。   The hydrogen dilution ratios of the first to third intrinsic semiconductor films 233, 243, and 253 may be the same or different from each other. As an example, the first to third intrinsic semiconductor films 233, 243, and 253 may be amorphous films in which the hydrogen dilution ratio increases or decreases in the stacking order. As another example, the first to third intrinsic semiconductor films 233, 243, and 253 may be an amorphous film that is decreased after the hydrogen dilution ratio is increased or increased after the decrease. . As another example, at least one of the first to third intrinsic semiconductor films 233, 243, and 253 may be formed under process conditions with continuously different hydrogen dilution ratios.

その他の例として、第1乃至第3の真性半導体膜233、243、253の中で少なくともいずれか1つは非晶質膜であり、残りは結晶質膜或いは結晶質膜と非晶質膜の混合膜であり得る。   As another example, at least one of the first to third intrinsic semiconductor films 233, 243, and 253 is an amorphous film, and the remaining is a crystalline film or a crystalline film and an amorphous film. It can be a mixed membrane.

以上の発明の詳細な説明は開示された実施状態に本発明を制限しようとする意図ではないし、本発明の要旨を逸脱しない範囲内で多様な他の組合、変更、及び環境で使用することができる。添付された請求の範囲は他の実施状態も含むこととして解析しなければならない。   The foregoing detailed description is not intended to limit the invention to the disclosed embodiments, but may be used in various other combinations, modifications, and environments without departing from the spirit of the invention. it can. The appended claims should be parsed as including other implementations.

100、102、104、106、200、202、204、206・・・薄膜太陽電池
110、210・・・基板
120、220・・・透明電極
130、140、150、230、240、250・・・セル
131、141、151、231、241、251・・・p形半導体膜
133、143、153、233、243、253・・・真性半導体膜
135、145、155、235、235、255・・・n形半導体膜
160、260・・・後面反射膜
170、270・・・金属電極
180、280・・・負荷

100, 102, 104, 106, 200, 202, 204, 206 ... thin film solar cell 110, 210 ... substrate 120, 220 ... transparent electrode 130, 140, 150, 230, 240, 250 ... Cells 131, 141, 151, 231, 241, 251 ... p-type semiconductor films 133, 143, 153, 233, 243, 253 ... intrinsic semiconductor films 135, 145, 155, 235, 235, 255 ... n-type semiconductor film 160, 260... rear reflective film 170, 270... metal electrode 180, 280.

Claims (9)

基板と、
前記基板の上に配置された、第1のn形不純物半導体膜と第1のp形不純物半導体膜と、前記第1のn形不純物半導体膜と前記第1のp形不純物半導体膜との間に連続的に変わる水素含有量を有する真性半導体を含む第1の非晶質膜と、が挿入された第1のセルと、
前記第1のn形不純物半導体膜に隣接する金属電極と、
前記第1のp形不純物半導体膜に隣接する透明電極と、を含み、
前記第1の非晶質膜の前記水素含有量は光が入射される方に配置される前記第1のp形不純物半導体膜との第1の界面から前記光が入射される方と反対になる方に配置される前記第1のn形不純物半導体膜との第2の界面に行くほど、連続的に小さくなる薄膜太陽電池。
A substrate,
Between the first n-type impurity semiconductor film, the first p-type impurity semiconductor film, and the first n-type impurity semiconductor film and the first p-type impurity semiconductor film disposed on the substrate. A first amorphous film including an intrinsic semiconductor having a hydrogen content that continuously changes, and a first cell in which is inserted,
A metal electrode adjacent to the first n-type impurity semiconductor film;
A transparent electrode adjacent to the first p-type impurity semiconductor film,
The hydrogen content of the first amorphous film is opposite to the light incident from the first interface with the first p-type impurity semiconductor film disposed on the light incident side. The thin film solar cell which becomes continuously smaller as it goes to the second interface with the first n-type impurity semiconductor film disposed on the opposite side.
前記基板は透明基板を含み、
前記透明基板の上に前記透明電極、前記第1のp形半導体膜、前記第1の非晶質膜、前記第1のn形半導体膜及び前記金属電極が順に積層され、
前記透明基板へ光が入射される請求項1に記載の薄膜太陽電池。
The substrate includes a transparent substrate;
The transparent electrode, the first p-type semiconductor film, the first amorphous film, the first n-type semiconductor film, and the metal electrode are sequentially stacked on the transparent substrate,
The thin film solar cell according to claim 1, wherein light is incident on the transparent substrate.
前記第1のセルと前記金属電極との間に、
第2のp形半導体膜と、連続的に変わる水素含有量を有する第2の真性半導体膜と、第2のn形半導体膜とが前記第1のn形半導体膜の上で順に積層された第2のセルを少なくとも1つさらに含み、
前記第2の真性半導体膜は真性シリコンを含む非晶質膜及び結晶質膜の中で少なくともいずれか1つを含み、
前記第2の真性半導体膜の前記水素含有量は前記透明基板との距離が多くなるほど、連続的に小さくなる請求項2に記載の薄膜太陽電池。
Between the first cell and the metal electrode,
A second p-type semiconductor film, a second intrinsic semiconductor film having a continuously changing hydrogen content, and a second n-type semiconductor film are sequentially stacked on the first n-type semiconductor film. Further comprising at least one second cell;
The second intrinsic semiconductor film includes at least one of an amorphous film containing intrinsic silicon and a crystalline film,
The thin film solar cell according to claim 2, wherein the hydrogen content of the second intrinsic semiconductor film continuously decreases as the distance from the transparent substrate increases.
前記基板は不透明基板を含み、
前記不透明基板の上に前記金属電極、前記第1のn形半導体膜、前記第1の非晶質膜、前記第1のp形半導体膜、及び前記透明電極が順に積層され、
前記透明電極へ光が入射される請求項1に記載の薄膜太陽電池。
The substrate includes an opaque substrate;
The metal electrode, the first n-type semiconductor film, the first amorphous film, the first p-type semiconductor film, and the transparent electrode are sequentially stacked on the opaque substrate,
The thin film solar cell according to claim 1, wherein light is incident on the transparent electrode.
前記第1のセルと前記金属電極との間に、
第2のn形半導体膜と、連続的に変わる水素含有量を有する第2の真性半導体膜と、第2のp形半導体膜とが前記金属電極の上に順に積層された第2のセルを少なくとも1つさらに含み、
前記第2の真性半導体膜は真性非晶質膜、真性微晶質シリコン膜、及び真性結晶質膜の中で少なくともいずれか1つを含み、
前記第2の真性半導体膜の前記水素含有量は前記不透明基板との距離が小さくなるほど、連続的に小さくなる請求項4に記載の薄膜太陽電池。
Between the first cell and the metal electrode,
A second cell in which a second n-type semiconductor film, a second intrinsic semiconductor film having a continuously changing hydrogen content, and a second p-type semiconductor film are sequentially stacked on the metal electrode. At least one further,
The second intrinsic semiconductor film includes at least one of an intrinsic amorphous film, an intrinsic microcrystalline silicon film, and an intrinsic crystalline film;
The thin film solar cell according to claim 4, wherein the hydrogen content of the second intrinsic semiconductor film continuously decreases as the distance from the opaque substrate decreases.
前記第1の非晶質膜は、
前記シリコンで構成されるか、又は
SiGe、SiC、SiO、SiN、SiON、SiCN、SiGeO、SiGeN、SiGeC、又はこれらの組合を含む請求項1に記載の薄膜太陽電池。
The first amorphous film includes:
The thin film solar cell according to claim 1, which is made of silicon or includes SiGe, SiC, SiO, SiN, SiON, SiCN, SiGeO, SiGeN, SiGeC, or a combination thereof.
基板を提供し、
前記基板の上に、p形半導体膜と、n形半導体膜と、前記p形半導体膜と前記n形半導体膜との間に配置された連続的に変わる水素含有量を有する真性半導体を含む非晶質膜とを含むセルを形成し、
前記p形半導体膜に隣接する透明電極を形成し、
前記n形半導体膜に隣接する金属電極を形成することを含み、
前記非晶質膜は光が入射される入射面とその反対面を含み、前記水素含有量は前記入射面から前記反対面に行くほど、連続的に小さくなる薄膜太陽電池の製造方法。
Providing the substrate,
On the substrate, a p-type semiconductor film, an n-type semiconductor film, and a non-intrinsic semiconductor having a continuously changing hydrogen content disposed between the p-type semiconductor film and the n-type semiconductor film are included. Forming a cell containing a crystalline film,
Forming a transparent electrode adjacent to the p-type semiconductor film;
Forming a metal electrode adjacent to the n-type semiconductor film;
The amorphous film includes an incident surface on which light is incident and an opposite surface thereof, and the hydrogen content decreases continuously from the incident surface toward the opposite surface.
前記基板は前記入射面に隣接配置される透明基板を含み、
前記セルを形成することは、
前記透明基板の上に前記p形半導体膜を形成し、
前記p形半導体膜の上に半導体ソースガスを水素で希釈させた反応ガスを提供し、前記水素の希釈比を漸進的に増やしながら前記非晶質膜を形成し、
前記非晶質膜の上に前記n形半導体膜を形成することを含む請求項7に記載の薄膜太陽電池の製造方法。
The substrate includes a transparent substrate disposed adjacent to the incident surface;
Forming the cell comprises:
Forming the p-type semiconductor film on the transparent substrate;
Providing a reaction gas obtained by diluting a semiconductor source gas with hydrogen on the p-type semiconductor film, and forming the amorphous film while gradually increasing the dilution ratio of the hydrogen;
The method of manufacturing a thin film solar cell according to claim 7, comprising forming the n-type semiconductor film on the amorphous film.
前記基板は前記反対面に隣接配置される不透明基板を含み、
前記セルを形成することは、
前記不透明基板の上に前記n形半導体膜を形成し、
前記n形半導体膜の上に半導体ソースガスを水素で希釈させた反応ガスを提供し、前記水素の希釈比を漸進的に減りながら前記非晶質膜を形成し、
前記非晶質膜の上に前記p形半導体膜を形成することを含む請求項7に記載の薄膜太陽電池の製造方法。

The substrate includes an opaque substrate disposed adjacent to the opposite surface;
Forming the cell comprises:
Forming the n-type semiconductor film on the opaque substrate;
Providing a reaction gas obtained by diluting a semiconductor source gas with hydrogen on the n-type semiconductor film, and forming the amorphous film while gradually reducing the dilution ratio of the hydrogen;
The method for manufacturing a thin-film solar cell according to claim 7, comprising forming the p-type semiconductor film on the amorphous film.

JP2012036982A 2011-02-23 2012-02-23 Thin film solar cell and method of manufacturing the same Pending JP2012175112A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110016090 2011-02-23
KR10-2011-0016090 2011-02-23
KR1020110136575A KR101573029B1 (en) 2011-02-23 2011-12-16 Thin film solar cells and methods for fabricating the same
KR10-2011-0136575 2011-12-16

Publications (1)

Publication Number Publication Date
JP2012175112A true JP2012175112A (en) 2012-09-10

Family

ID=46886675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036982A Pending JP2012175112A (en) 2011-02-23 2012-02-23 Thin film solar cell and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2012175112A (en)
KR (1) KR101573029B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636893B1 (en) * 2015-05-12 2016-07-06 주식회사 테스 Manufacturing method of solar cell module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471182A (en) * 1987-08-19 1989-03-16 Energy Conversion Devices Inc Thin film solar cell containing spatially modulated intrinthic layer
JPH04255273A (en) * 1991-02-07 1992-09-10 Canon Inc Photovoltaic element
JP2002076409A (en) * 2000-09-05 2002-03-15 Sanyo Electric Co Ltd Photovoltaic device
JP2002246317A (en) * 2001-02-16 2002-08-30 Sanyo Electric Co Ltd Thin-film forming method by plasma cvd method
US20100059119A1 (en) * 2008-09-09 2010-03-11 Electronics And Telecommunications Research Institute Solar cell and method of manufacturing the same
JP2010534938A (en) * 2007-07-24 2010-11-11 アプライド マテリアルズ インコーポレイテッド Multijunction solar cell and method and apparatus for forming multijunction solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471182A (en) * 1987-08-19 1989-03-16 Energy Conversion Devices Inc Thin film solar cell containing spatially modulated intrinthic layer
JPH04255273A (en) * 1991-02-07 1992-09-10 Canon Inc Photovoltaic element
JP2002076409A (en) * 2000-09-05 2002-03-15 Sanyo Electric Co Ltd Photovoltaic device
JP2002246317A (en) * 2001-02-16 2002-08-30 Sanyo Electric Co Ltd Thin-film forming method by plasma cvd method
JP2010534938A (en) * 2007-07-24 2010-11-11 アプライド マテリアルズ インコーポレイテッド Multijunction solar cell and method and apparatus for forming multijunction solar cell
US20100059119A1 (en) * 2008-09-09 2010-03-11 Electronics And Telecommunications Research Institute Solar cell and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636893B1 (en) * 2015-05-12 2016-07-06 주식회사 테스 Manufacturing method of solar cell module
WO2016182128A1 (en) * 2015-05-12 2016-11-17 주식회사 테스 Method for manufacturing solar cell module

Also Published As

Publication number Publication date
KR101573029B1 (en) 2015-12-03
KR20120096867A (en) 2012-08-31

Similar Documents

Publication Publication Date Title
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
US9231146B2 (en) Silicon photovoltaic element and fabrication method
JP2008021993A (en) Photovoltaic device including all-back-contact configuration, and related method
US8609982B2 (en) Thin film solar cell with graded bandgap structure
AU2007254673A8 (en) Nanowall solar cells and optoelectronic devices
CN102064216A (en) Novel crystalline silicon solar cell and manufacturing method thereof
US20120211069A1 (en) Thin-film solar cells and methods of fabricating the same
AU2008200051A1 (en) Method and apparatus for a semiconductor structure forming at least one via
US20120312361A1 (en) Emitter structure and fabrication method for silicon heterojunction solar cell
US20100037940A1 (en) Stacked solar cell
CN117059691A (en) Heterojunction solar cell
US8981203B2 (en) Thin film solar cell module
JP2024503613A (en) solar cells
JP2012175112A (en) Thin film solar cell and method of manufacturing the same
US20110220177A1 (en) Tandem photovoltaic device with dual function semiconductor layer
CN110383496B (en) Solar cell apparatus and method for forming single, tandem and heterojunction system solar cell apparatus
EP2834856B1 (en) Thin film solar cell
KR101640815B1 (en) Thin film solar cell and method for fabricaitng the same
KR101644056B1 (en) Solar cell and method for fabricaitng the same
US20240063314A1 (en) A solar cell
JP2003142705A (en) Photovoltaic element
CN116344680A (en) Heterojunction solar cell preparation method and heterojunction solar cell
AU2022429985A1 (en) Solar cell and method for forming the same
CN117810313A (en) Preparation method of solar cell, solar cell and photovoltaic device
KR20110077752A (en) Thin film tandem solar cell and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161014

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161228