JP2012174833A - Electromagnetic wave absorption sheet - Google Patents

Electromagnetic wave absorption sheet Download PDF

Info

Publication number
JP2012174833A
JP2012174833A JP2011034311A JP2011034311A JP2012174833A JP 2012174833 A JP2012174833 A JP 2012174833A JP 2011034311 A JP2011034311 A JP 2011034311A JP 2011034311 A JP2011034311 A JP 2011034311A JP 2012174833 A JP2012174833 A JP 2012174833A
Authority
JP
Japan
Prior art keywords
carbon nanotube
electromagnetic wave
sheet
dispersion
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011034311A
Other languages
Japanese (ja)
Other versions
JP2012174833A5 (en
Inventor
Akihiko Ito
彰彦 伊藤
Yoshiyuki Terajima
良幸 寺島
Masahiko Shibuya
昌彦 渋谷
Tomoyuki Unno
朋行 海野
Taketsugu Oya
剛嗣 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOI TECHNO KK
Yokohama National University NUC
KJ Specialty Paper Co Ltd
Original Assignee
AOI TECHNO KK
Yokohama National University NUC
KJ Specialty Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOI TECHNO KK, Yokohama National University NUC, KJ Specialty Paper Co Ltd filed Critical AOI TECHNO KK
Priority to JP2011034311A priority Critical patent/JP2012174833A/en
Publication of JP2012174833A publication Critical patent/JP2012174833A/en
Publication of JP2012174833A5 publication Critical patent/JP2012174833A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easy-to-manufacture light and thin sheet having a sufficient electromagnetic wave noise suppression performance.SOLUTION: An electromagnetic wave suppression sheet containing multilayer carbon nanotubes is coated with an aqueous dispersion of the multilayer carbon nanotubes, which may contain or not contain a resin aqueous dispersion or the resin aqueous dispersion and a flame retardant, so that the multilayer carbon nanotubes exist 1 g/mor more in a substrate.

Description

本発明は、コンピューター、携帯電話等の通信機器や電子機器から発生する不要電磁波の外部への漏洩や内部回路間での相互干渉による誤動作を防止するため、また外部からの電磁波の悪影響を防止するため、所謂電磁波のノイズ対策として用いられるノイズ抑制シートとして好適な、軽量で薄く、更に簡単に作製することができる電磁波吸収シートに関する。 The present invention prevents leakage of unnecessary electromagnetic waves generated from communication devices and electronic devices such as computers and mobile phones to the outside and malfunction due to mutual interference between internal circuits, and also prevents adverse effects of external electromagnetic waves. Therefore, the present invention relates to an electromagnetic wave absorbing sheet that is suitable as a noise suppression sheet used as a countermeasure against so-called electromagnetic noise, and is light and thin and can be easily manufactured.

従来、通信機器や電子機器に対する電磁波ノイズ対策として種々の電磁波吸収シートが用いられてきた。近年はこの性能の向上、使用の利便性の向上、あるいは製造方法の容易性を付与する方法等が提案されている。 Conventionally, various electromagnetic wave absorbing sheets have been used as a countermeasure against electromagnetic noise for communication devices and electronic devices. In recent years, there have been proposed methods for improving this performance, improving the convenience of use, or imparting the ease of manufacturing methods.

電磁波吸収素材としては磁性吸収材料、誘電性吸収材料及び抵抗性吸収材料がある。これらの吸収材料を単独あるいは複合体として樹脂等の他素材と共にシート化したり、基材シートに塗工したり、あるいは紙に内添したりして電磁波吸収シートを作製する方法が提案されている。また、難燃性が要求される場合には、これらに難燃剤を加えた電磁波吸収シートが提案されている。 Examples of the electromagnetic wave absorbing material include a magnetic absorbing material, a dielectric absorbing material, and a resistive absorbing material. There has been proposed a method for producing an electromagnetic wave absorbing sheet by forming a sheet of these absorbing materials alone or as a composite together with other materials such as a resin, coating on a base sheet, or adding them internally to paper. . In addition, when flame retardancy is required, an electromagnetic wave absorbing sheet obtained by adding a flame retardant to these has been proposed.

磁性吸収材料では軟磁性体であるFe−Cr−Al合金扁平粉とアクリルゴムを主成分として、あるいはこれに水酸化アルミニウム等の難燃剤を加えて混練し加熱プレスでシート化することにより電磁波吸収シートを得る方法が提案されている(特許文献1)。しかしながら、十分な電磁波吸収性能を得るためにはシートを厚くする必要があると共に軟磁性体の密度が高いことからシートが重くなるという問題がある。 Magnetic absorbing material absorbs electromagnetic waves by softening Fe-Cr-Al alloy flat powder and acrylic rubber as main components, or adding a flame retardant such as aluminum hydroxide to this and kneading it into a sheet with a heating press. A method for obtaining a sheet has been proposed (Patent Document 1). However, in order to obtain sufficient electromagnetic wave absorption performance, it is necessary to make the sheet thicker and there is a problem that the sheet becomes heavy because the density of the soft magnetic material is high.

誘電性吸収材料では、鱗状黒鉛微粉末を樹脂中に分散させこれをPETフィルムに塗布し、樹脂を硬化後、フィルムを剥がして電磁波吸収性シートを得る方法が提案されている(特許文献2)。しかしながら、十分な電磁波吸収性能を得るためには黒鉛微粉末の割合を多くする(樹脂100部に対し100部以上)必要があり、シートを薄くすればシート強度が弱くなるという問題がある。 As a dielectric absorbing material, there has been proposed a method in which a scaly graphite fine powder is dispersed in a resin, applied to a PET film, cured, and then peeled off to obtain an electromagnetic wave absorbing sheet (Patent Document 2). . However, in order to obtain sufficient electromagnetic wave absorption performance, it is necessary to increase the ratio of the graphite fine powder (100 parts or more with respect to 100 parts of the resin), and there is a problem that the sheet strength becomes weaker if the sheet is made thinner.

抵抗性吸収材料では炭素繊維を紙に内添する方法が提案されている(特許文献3)。しかしながら、十分な電磁波吸収性能は得られていない。
抵抗性吸収材料のもう一つの例として、カーボンナノチューブと非導電性繊維とが互いにネットワーク構造を構成したシート(具体的にはカーボンナノチューブの分散液を紙に内添したシート)が提案されている。しかしながら、カーボンナノチューブ分散液を用いて内添抄紙すると、抄紙機(原料供給工程、シート形成工程並びに乾燥工程)が著しく汚れるため、抄紙後の掃除に時間がかかり、稼働率が著しく低下するという問題がある。
For the resistive absorbent material, a method of internally adding carbon fiber to paper has been proposed (Patent Document 3). However, sufficient electromagnetic wave absorption performance has not been obtained.
As another example of the resistive absorption material, a sheet in which carbon nanotubes and non-conductive fibers constitute a network structure with each other (specifically, a sheet in which a dispersion of carbon nanotubes is internally added to paper) has been proposed. . However, when paper is added internally using a carbon nanotube dispersion liquid, the paper machine (raw material supply process, sheet forming process and drying process) becomes extremely dirty, so it takes time to clean up after paper making and the operating rate is significantly reduced. There is.

特開2001−308583号公報JP 2001-308583 A 特開2009−54983号公報JP 2009-54983 A 特開2009−194341号公報JP 2009-194341 A 特開2010−40730号公報JP 2010-40730 A

本発明は、電磁波ノイズ抑制性能が十分にあり、かつ軽量で薄く、更に簡単に作製することが出来るシートを提供することを課題とする。 An object of the present invention is to provide a sheet that has sufficient electromagnetic wave noise suppression performance, is lightweight and thin, and can be easily manufactured.

上記課題は、多層カーボンナノチューブを含有するシートにおいて、該多層カーボンナノチューブの水分散液単独、又は該多層カーボンナノチューブ水分散液に樹脂水分散液、若しくは該樹脂水分散液と難燃剤を、該多層カーボンナノチューブが基材に1g/m2以上となるように塗工することで、得られるシートにより解決できる。 In the sheet containing multi-walled carbon nanotubes, the above-mentioned problem is that the multi-walled carbon nanotube aqueous dispersion alone, or the multi-walled carbon nanotube aqueous dispersion is mixed with the resin water dispersion, or the resin water dispersion and the flame retardant, By applying the carbon nanotubes to the base material so as to be 1 g / m 2 or more, the problem can be solved by the obtained sheet.

具体的には、
(1)多層カーボンナノチューブ水分散塗工液、多層カーボンナノチューブ水分散塗工液に樹脂水分散液を含む塗工液、又は多層カーボンナノチューブ水分散塗工液に樹脂水分散液及び難燃剤を含む塗工液を、多層カーボンナノチューブが基材に対して1g/m2以上となるように塗工されていることを特徴とする電磁波抑制シート、
(2)基材が紙、フィルム、不織布あるいは織布であることを特徴とする(1)の電磁波抑制シート、
(3)難燃性が付与されていることを特徴とする(1)の電磁波抑制シート、
(4)坪量が200g/m2以下あるいは厚さが200μm以下であることを特徴とする(1)の電磁波抑制シート、
を提供する。
In particular,
(1) Multi-walled carbon nanotube aqueous dispersion coating liquid, Multi-walled carbon nanotube water-dispersed coating liquid containing resin aqueous dispersion, or Multi-walled carbon nanotube water-dispersed coating liquid containing resin aqueous dispersion and flame retardant An electromagnetic wave suppression sheet, wherein the coating liquid is coated such that the multi-walled carbon nanotubes are 1 g / m 2 or more with respect to the base material,
(2) The electromagnetic wave suppression sheet according to (1), wherein the substrate is paper, film, nonwoven fabric or woven fabric,
(3) The electromagnetic wave suppression sheet according to (1), which is imparted with flame retardancy,
(4) The electromagnetic wave suppression sheet according to (1), wherein the basis weight is 200 g / m 2 or less or the thickness is 200 μm or less,
I will provide a.

本発明によれば、カーボンナノチューブを用いないタイプの電磁波ノイズ抑制シートより高性能でかつ軽量で薄い電磁波ノイズ抑制シートを得ることが出来る。また、カーボンナノチューブを内添したシートと比較する容易に作製することが出来る。
According to the present invention, it is possible to obtain an electromagnetic noise suppression sheet that is higher in performance, lighter and thinner than an electromagnetic noise suppression sheet of a type that does not use carbon nanotubes. Further, it can be easily produced as compared with a sheet containing carbon nanotubes.

以下、本発明を詳細に説明する。
カーボンナノチューブには単層と多層があるが、本願では、多層のカーボンナノチューブを用いる。多層カーボンナノチューブを用いることで、既存の他素材からなる電磁波抑制シートより性能で優れ、安価な電磁波抑制シートが得られる。カーボンナノチューブの製造法にはCVD法、レーザー蒸発法、アーク放電法等があり、いずれの製造法で製造されたカーボンナノチューブであってもよい。これらのカーボンナノチューブは一般に多数のナノチューブが凝集した状態で製造され販売されている。
Hereinafter, the present invention will be described in detail.
There are single-walled and multi-walled carbon nanotubes. In this application, multi-walled carbon nanotubes are used. By using multi-walled carbon nanotubes, an electromagnetic wave suppressing sheet that is superior in performance and cheaper than an electromagnetic wave suppressing sheet made of other existing materials can be obtained. The carbon nanotube production method includes a CVD method, a laser evaporation method, an arc discharge method, and the like, and may be a carbon nanotube produced by any production method. These carbon nanotubes are generally produced and sold in a state where a large number of nanotubes are aggregated.

本発明のカーボンナノチューブ水分散塗工液とは、このカーボンナノチューブを塗工する前に水中で分散したものである。カーボンナノチューブの分散には分散剤と分散器具が用いられる。分散剤としては、ナフタレンスルホン酸系ホルマリン縮合物のナトリウム塩、ポリスチレンスルホン酸ナトリウム、ドデシルジフェニルエーテルスルホン酸ジナトリウム等の合成系の化合物や天然物からの水溶性キシランがある。これらの分散剤を添加して超音波ホモジナイザー等を用いれば比較的簡単にカーボンナノチューブを分散することが出来る。 The carbon nanotube water-dispersed coating solution of the present invention is a solution dispersed in water before coating the carbon nanotubes. A dispersing agent and a dispersing device are used for dispersing the carbon nanotubes. Examples of the dispersant include synthetic compounds such as sodium salt of naphthalene sulfonic acid formalin condensate, sodium polystyrene sulfonate, disodium dodecyl diphenyl ether sulfonate, and water-soluble xylan from natural products. If these dispersing agents are added and an ultrasonic homogenizer or the like is used, the carbon nanotubes can be dispersed relatively easily.

分散剤の量は固形分でカーボンナノチューブに対し20%〜100%である。20%以下では分散が困難になる。100%を超えても分散は可能であるが分散性は向上しない。上記の分散剤を用いてカーボンナノチューブの濃度が5%程度までの分散液を作製することができる。
カーボンナノチューブの分散程度については、分散液の量により分散性を調整することができる。分散の確認には、200メッシュの濾布を用いて濾過したものを塗工することで可能である。
The amount of the dispersant is 20% to 100% with respect to the carbon nanotube in solid content. Dispersion becomes difficult below 20%. Even if it exceeds 100%, dispersion is possible, but dispersibility is not improved. A dispersion having a carbon nanotube concentration of up to about 5% can be prepared using the above dispersant.
About the dispersion degree of a carbon nanotube, dispersibility can be adjusted with the quantity of a dispersion liquid. The dispersion can be confirmed by applying a filter using a 200 mesh filter cloth.

本発明の電磁波吸収性能はカーボンナノチューブの塗工量を1g/m以上であるが、好ましくは、2g/m以上である。塗工は複数回行なってもよい。塗工量が1g/m2より少ないと十分な電磁波吸収性能が得られない。 In the electromagnetic wave absorption performance of the present invention, the coating amount of the carbon nanotube is 1 g / m 2 or more, preferably 2 g / m 2 or more. The coating may be performed a plurality of times. If the coating amount is less than 1 g / m 2 , sufficient electromagnetic wave absorption performance cannot be obtained.

また、カーボンナノチューブの基材への密着性を向上させるために、カーボンナノチューブ水分散液にバインダー樹脂として、樹脂水分散液を含ませることができる。本願の樹脂水分散液とは水分散性の樹脂である。例えば、基材が紙系であればSBRやアクリル系のエマルジョンが、基材がプラスチック系であればそのプラスチックとの密着性の良い樹脂が用いられる。基材がポリエステル系であれば、ポリエステル系樹脂分散液やウレタン系樹脂分散液を用いることができる。また、プラスチックとの密着性を更に向上させるためには表面の粗面化あるいはコロナ処理をすることもできる。 Moreover, in order to improve the adhesiveness of the carbon nanotube to the base material, a resin aqueous dispersion can be included as a binder resin in the carbon nanotube aqueous dispersion. The resin aqueous dispersion of the present application is a water-dispersible resin. For example, if the base material is paper, SBR or acrylic emulsion is used. If the base material is plastic, a resin having good adhesion to the plastic is used. If the substrate is a polyester, a polyester resin dispersion or a urethane resin dispersion can be used. In order to further improve the adhesion to the plastic, the surface can be roughened or corona treated.

塗工にはワイヤーバーコーター、ナイフコーター、エアーナイフコーター、ブレードコーター、リバースロールコーター、ダイコーター等を用いることが出来る。数%のカーボンナノチューブ濃度の塗工液をカーボンナノチューブ固形分で1g/m2以上塗工できるタイプの塗工機であればよい。 For the coating, a wire bar coater, knife coater, air knife coater, blade coater, reverse roll coater, die coater or the like can be used. Any coating machine that can apply a coating solution having a carbon nanotube concentration of several percent with a carbon nanotube solid content of 1 g / m 2 or more is acceptable.

基材としては、紙、フィルム、不織布あるいは織布が用いられる。紙としては上質紙、樹脂含浸紙、塗工紙等を用いることが出来る。厚さを下げるためにカーボンナノチューブ等の塗工前あるいは塗工後にキャレンダー処理してもよい。フィルムとしては、ポリエステル、ナイロン、オレフィン、ポリカーボネート、あるいはアラミドを用いることが出来る。不織布としてはポリエステル、アクリル、オレフィン等のスパンボンドを用いることが出来る。織布としては不織布と同様な素材並びに木綿等の天然素材あるいはレーヨン等の再生繊維を用いることができる。シートとしての強度が維持できる範囲で基材の坪量は軽い方が、また厚さは薄い方がよい。シートの坪量は200g/m2以下、好ましくは100g/m2以下である。また、シートの厚さは200μm以下、好ましくは100μm以下である。シートの坪量が200g/m2を越えるとシートが重くなり、また厚さが200μmを越えると設置場所の容積を占める割合が多くなり好ましくない。 As the substrate, paper, film, nonwoven fabric or woven fabric is used. As the paper, fine paper, resin-impregnated paper, coated paper, and the like can be used. In order to reduce the thickness, a calendar process may be performed before or after the coating of carbon nanotubes or the like. As the film, polyester, nylon, olefin, polycarbonate, or aramid can be used. As the nonwoven fabric, spunbonds such as polyester, acrylic and olefin can be used. As the woven fabric, the same material as the non-woven fabric, natural materials such as cotton, or recycled fibers such as rayon can be used. As long as the strength as a sheet can be maintained, the basis weight of the base material should be light and the thickness should be thin. The basis weight of the sheet is 200 g / m 2 or less, preferably 100 g / m 2 or less. The thickness of the sheet is 200 μm or less, preferably 100 μm or less. If the basis weight of the sheet exceeds 200 g / m 2 , the sheet becomes heavier, and if the thickness exceeds 200 μm, the proportion of the volume of the installation place increases.

シートを難燃化するためには難燃性の基材を用いる。難燃性の基材は、紙の場合は難燃剤を内添、含浸、塗工あるいはこれらを組み合わせることにより得られる。フィルムの場合は樹脂中に難燃剤を混合してスリットから押し出し成形することにより得られる。また、不織布の場合は樹脂中に難燃剤を混合してノズルから押し出した繊維をそのままシート化するか、一旦短繊維化して二次工程でシート化することにより得られる。織布の場合は不織布と同様に難燃剤を繊維内に含有させるか、後処理により難燃化することにより得られる。カーボンナノチューブ水分散液に樹脂水分散液を含有させて塗工する場合はシートとしての難燃性が低下する場合がある。この場合には難燃剤をカーボンナノチューブ塗工液に添加する。難燃剤としては、既知のものが使用できる。具体的には、ポリリン酸アンモニウム、ポリリン酸メラミン、硫酸メラミン、水酸化アルミニウム、水酸化マグネシウム、メラミンシアヌレート等が挙げられるが、これに限定されるものではない。
In order to make the sheet flame retardant, a flame retardant base material is used. In the case of paper, the flame-retardant substrate is obtained by internally adding, impregnating, coating, or combining these flame retardants. In the case of a film, it is obtained by mixing a flame retardant in a resin and extruding from a slit. Moreover, in the case of a nonwoven fabric, it can be obtained by mixing a flame retardant into a resin and forming the fiber extruded from the nozzle as it is, or by shortening the fiber once and forming it in a secondary process. In the case of a woven fabric, it can be obtained by containing a flame retardant in the fiber as in the case of the non-woven fabric, or by making it flame retardant by post-treatment. When the carbon nanotube aqueous dispersion is coated with a resin aqueous dispersion, the flame retardancy as a sheet may be lowered. In this case, a flame retardant is added to the carbon nanotube coating solution. Known flame retardants can be used. Specific examples include ammonium polyphosphate, melamine polyphosphate, melamine sulfate, aluminum hydroxide, magnesium hydroxide, and melamine cyanurate, but are not limited thereto.

以下に実施例を挙げて本発明を具体的に説明する。
なお、本発明の実施例における物性は以下の方法で評価した。
The present invention will be specifically described below with reference to examples.
In addition, the physical property in the Example of this invention was evaluated with the following method.

(ノイズ抑制効果)
マイクロストリップライン法に基づいて伝送減衰率を測定した。下式による。
伝送減衰率=透過/(入射−反射)
Rtp=10log{10S 21 /10/(1−10S 11 /10)}
(Noise suppression effect)
The transmission attenuation rate was measured based on the microstrip line method. According to the following formula.
Transmission attenuation factor = transmission / (incident-reflection)
R tp = 10log {10 S 21 /10 / (1-10 S 11/10)}

(難燃性)
UL94規格の垂直燃焼試験に基づいて実施した。
(Flame retardance)
Based on the UL94 standard vertical combustion test.

(坪量)
JIS P 8124に基づいて測定した。
(Basis weight)
Measured based on JIS P 8124.

(厚さ)
マイクロメーターにより測定した。
(thickness)
Measured with a micrometer.

(カーボンナノチューブ分散液の調製)
カーボンナノチューブ分散液調製1:
カーボンナノチューブ(nanocyl製NC-7000)を分散剤 (花王製デモールN)を用いて超音波ホモジナイザーで分散した。カーボンナノチューブ濃度4%、分散剤濃度2%とした。
(Preparation of carbon nanotube dispersion)
Preparation of carbon nanotube dispersion 1:
Carbon nanotubes (NC-7000 manufactured by nanocyl) were dispersed with an ultrasonic homogenizer using a dispersant (Damol N made by Kao). The carbon nanotube concentration was 4% and the dispersant concentration was 2%.

カーボンナノチューブ分散液調製2:
カーボンナノチューブ(昭和電工製VGCF-X)を分散剤 (江崎グリコ製水溶性キシラン)を用いて超音波ホモジナイザーで分散した。カーボンナノチューブ濃度4%、分散剤濃度1%とした。
Preparation of carbon nanotube dispersion 2:
Carbon nanotubes (VGCF-X manufactured by Showa Denko) were dispersed with an ultrasonic homogenizer using a dispersant (water-soluble xylan manufactured by Ezaki Glico). The carbon nanotube concentration was 4% and the dispersant concentration was 1%.

カーボンナノチューブ分散液調製3:
カーボンナノチューブ(Cnano Technology製Flo Tube 9000)を分散剤 (江崎グリコ製水溶性キシラン)を用いて超音波ホモジナイザーで分散した。カーボンナノチューブ濃度4%分散剤濃度1%とした。
Preparation of carbon nanotube dispersion 3:
Carbon nanotubes (Flo Tube 9000 manufactured by Cnano Technology) were dispersed with an ultrasonic homogenizer using a dispersant (water-soluble xylan manufactured by Ezaki Glico). The carbon nanotube concentration was 4%, and the dispersant concentration was 1%.

実施例1
上質紙(坪量65g/m2)の片面にカーボンナノチューブ分散液調製1で調製したカーボンナノチューブ分散液をワイヤーバーで塗工してカーボンナノチューブ塗工量3.6g/m2の塗工紙を得た。この0.1〜3GHzの伝送減衰率を測定した。測定結果を表1に示した。
Example 1
The carbon nanotube dispersion prepared in Carbon Nanotube Dispersion Preparation 1 is coated on one side of high-quality paper (basis weight 65g / m 2 ) with a wire bar to obtain a coated paper with a carbon nanotube coating amount of 3.6g / m 2 It was. The transmission attenuation factor of 0.1 to 3 GHz was measured. The measurement results are shown in Table 1.

実施例2
上質紙(坪量65g/m2)の片面にカーボンナノチューブ分散液調製2で調製したカーボンナノチューブ分散液をワイヤーバーで塗工してカーボンナノチューブ塗工量4.2g/m2の塗工紙を得た。この0.1〜3GHzの伝送減衰率を測定した。測定結果を表1に示した。
Example 2
The carbon nanotube dispersion prepared in Carbon Nanotube Dispersion Preparation 2 is coated on one side of high-quality paper (basis weight 65g / m 2 ) with a wire bar to obtain a coated paper with a carbon nanotube coating amount of 4.2g / m 2 It was. The transmission attenuation factor of 0.1 to 3 GHz was measured. The measurement results are shown in Table 1.

実施例3
上質紙(坪量65g/m2)の片面にカーボンナノチューブ分散液調製3で調製したカーボンナノチューブ分散液に増粘剤CMC2%を加えてワイヤーバーで塗工してカーボンナノチューブ塗工量4.2g/m2の塗工紙を得た。この0.1〜3GHzの伝送減衰率を測定した。測定結果を表1に示した。
Example 3
Thickener CMC2% is added to the carbon nanotube dispersion prepared in Carbon Nanotube Dispersion Preparation 3 on one side of fine paper (basis weight 65g / m 2 ) and coated with a wire bar. Carbon nanotube coating amount 4.2g / A coated paper of m 2 was obtained. The transmission attenuation factor of 0.1 to 3 GHz was measured. The measurement results are shown in Table 1.

実施例4
上質紙(坪量65g/m2)の片面にカーボンナノチューブ分散液調製1で調製したカーボンナノチューブ分散液をワイヤーバーで2回塗工してカーボンナノチューブ塗工量9.8g/m2の塗工紙を得た。この0.1〜3GHzの伝送減衰率を測定した。測定結果を表1に示した。
Example 4
The carbon nanotube dispersion prepared in Carbon Nanotube Dispersion Preparation 1 is coated twice on one side of a fine paper (basis weight 65 g / m 2 ) with a wire bar, and the coated paper has a carbon nanotube coating amount of 9.8 g / m 2. Got. The transmission attenuation factor of 0.1 to 3 GHz was measured. The measurement results are shown in Table 1.

実施例5
微塗工紙(坪量50g/m2)の片面にカーボンナノチューブ分散液調製2で調製したカーボンナノチューブ分散液にアクリル系樹脂エマルジョン(昭和高分子製ポリゾールOLZ-1899)をカーボンナノチューブに対し固形分比で100%となるように加えた。この液をワイヤーバーで塗工して総塗工量13.6g/m2、カーボンナノチューブ塗工量6.0g/m2の塗工紙を得た。この0.1〜3GHzの伝送減衰率を測定した。測定結果を表1に示した。
Example 5
On one side of fine coated paper (basis weight 50g / m 2 ), an acrylic resin emulsion (Polysol OLZ-1899 manufactured by Showa Polymer Co., Ltd.) was added to the carbon nanotube dispersion prepared in carbon nanotube dispersion preparation 2. The ratio was added to be 100%. This liquid was coated with a wire bar to obtain a coated paper having a total coating amount of 13.6 g / m 2 and a carbon nanotube coating amount of 6.0 g / m 2 . The transmission attenuation factor of 0.1 to 3 GHz was measured. The measurement results are shown in Table 1.

実施例6
NBKP100%、叩解度550mlCSFのパルプにサイズ剤及び硫酸バンドを加えた紙料を手漉きして坪量50g/m2の手漉紙を作製した。ポリリン酸メラミンに水及び少量の分散剤(東亜合成製アロンT-50)を加えて高速ホモジナイザーで分散し、濃度30%のポリリン酸メラミン分散液を作製した。これにアクリル系樹脂エマルジョン(三井化学製ボンロンXCF-113)を固形分比でポリリン酸メラミン/SBR=85/15となるように加えた。この難燃剤塗工液を手漉紙の両面合わせて35g/m2塗工し、難燃紙を作製した。この難燃塗工紙の片面にカーボンナノチューブ分散液調製2で調製したカーボンナノチューブ分散液をワイヤーバーで塗工してカーボンナノチューブ塗工量5.0g/m2の塗工紙を得た。この塗工紙の難燃性はUL94難燃試験においてV-0であった。この塗工紙の0.1〜3GHzの伝送減衰率を測定した。 測定結果を表1に示した。
Example 6
A handmade paper having a basis weight of 50 g / m 2 was prepared by manually pulverizing a paper material obtained by adding a sizing agent and a sulfuric acid band to NBKP 100% pulp having a beating degree of 550 ml CSF. Water and a small amount of a dispersant (Aron T-50 manufactured by Toa Gosei Co., Ltd.) were added to melamine polyphosphate and dispersed with a high-speed homogenizer to prepare a melamine polyphosphate dispersion with a concentration of 30%. To this was added an acrylic resin emulsion (Bonlon XCF-113 made by Mitsui Chemicals) so that the solid content ratio was melamine polyphosphate / SBR = 85/15. This flame retardant coating solution was applied to both sides of handsheets at 35 g / m 2 to prepare flame retardant paper. The carbon nanotube dispersion prepared in Carbon Nanotube Dispersion Preparation 2 was coated on one side of the flame-retardant coated paper with a wire bar to obtain a coated paper having a carbon nanotube coating amount of 5.0 g / m 2 . The flame retardancy of this coated paper was V-0 in UL94 flame retardancy test. The transmission attenuation factor of 0.1 to 3 GHz of this coated paper was measured. The measurement results are shown in Table 1.

実施例7
ポリエステル不織布(旭化成製プレシゼAF-110)にカーボンナノチューブ分散液調製1で調製したカーボンナノチューブ分散液をワイヤーバーで塗工し、総塗工量7.9g/m2、カーボンナノチューブ塗工量5.3g/m2のシートを得た。このシートの0.1〜3GHzの伝送減衰率を測定した。測定結果を表1に示した。
Example 7
The carbon nanotube dispersion prepared in Carbon Nanotube Dispersion Preparation 1 is applied to a polyester non-woven fabric (Asahi Kasei Precise AF-110) with a wire bar. The total coating amount is 7.9 g / m 2 and the carbon nanotube coating amount is 5.3 g / A sheet of m 2 was obtained. The transmission attenuation factor of 0.1 to 3 GHz of this sheet was measured. The measurement results are shown in Table 1.

実施例8
カーボンナノチューブ分散液調製2で調製したカーボンナノチューブ分散液に水分散ポリエステル樹脂(東洋紡績製バイロナールMD-1245)を固形分で対CNT50%添加した。難燃性ポリエステルフィルム(三菱樹脂製ダイアラミー50ミクロン)の表面を粗面化した後、CNT塗工液をワイヤーバーで塗工し、総塗工量10.0g/m2、カーボンナノチューブ塗工量5.7g/m2のシートを得た。このシートの伝送減衰率を測定した。このシートの難燃性はUL94難燃試験においてV-1であった。測定結果を表1に示した。
Example 8
A water-dispersed polyester resin (Toyobo's Vylonal MD-1245) was added to the carbon nanotube dispersion prepared in Carbon Nanotube Dispersion Preparation 2 at a solid content of 50% CNT. After roughening the surface of the flame-retardant polyester film (Mitsubishi Resin dialymy 50 microns), the CNT coating solution was applied with a wire bar, the total coating amount was 10.0 g / m 2 , and the carbon nanotube coating amount was 5.7. A sheet of g / m 2 was obtained. The transmission attenuation factor of this sheet was measured. The flame retardancy of this sheet was V-1 in the UL94 flame retardancy test. The measurement results are shown in Table 1.

実施例9
カーボンナノチューブ分散液調製2で調製したカーボンナノチューブ分散液に水分散ポリエステル樹脂(東洋紡績製バイロナールMD-1245)及び実施例6で作製した濃度30%のポリリン酸メラミン分散液を固形分比でカーボンナノチューブ:ポリエステル樹脂:ポリリン酸メラミン=1:1:5となるように混合した液を作製し、難燃性ポリエステルフィルム(三菱樹脂製ダイアラミー50ミクロン)にワイヤーバーで塗工し、総塗工量17g/m2、カーボンナノチューブ塗工量2.2g/m2のシートを作製した。このシートの難燃性はUL94難燃試験においてV-0であった。伝送減衰率を測定した。この結果を表1に示す。
Example 9
To the carbon nanotube dispersion prepared in Preparation 2 of carbon nanotube dispersion, a water-dispersed polyester resin (Vylonal MD-1245 manufactured by Toyobo Co., Ltd.) and the melamine polyphosphate dispersion of 30% concentration prepared in Example 6 were added at a solid content ratio. : Polyester resin: Melamine polyphosphate = 1: 1: 5 mixed liquid was prepared and applied to a flame-retardant polyester film (Mitsubishi Resin dialymy 50 microns) with a wire bar, total coating weight 17g / m 2, to prepare a sheet of carbon nanotube coating amount 2.2 g / m 2. The flame retardancy of this sheet was V-0 in the UL94 flame retardancy test. The transmission attenuation factor was measured. The results are shown in Table 1.

比較例1
上質紙(坪量65g/m2)の片面にカーボンナノチューブ分散液調製3で調製したカーボンナノチューブ分散液にアクリル系樹脂エマルジョン(昭和高分子製ポリゾールOLZ-1899)及び増粘剤CMC2%を加えてワイヤーバーで塗工して総塗工量3g/m2、CNT塗工量0.5g/m2の塗工紙を得た。この0.1〜3GHzの伝送減衰率を測定した。測定結果を表1に示した。電磁波吸収性不十分であった。
Comparative Example 1
Add acrylic resin emulsion (Polysol OLZ-1899 made by Showa Polymer Co., Ltd.) and thickener CMC2% to the carbon nanotube dispersion prepared in carbon nanotube dispersion preparation 3 on one side of fine paper (basis weight 65g / m 2 ) Coating was performed with a wire bar to obtain a coated paper having a total coating amount of 3 g / m 2 and a CNT coating amount of 0.5 g / m 2 . The transmission attenuation factor of 0.1 to 3 GHz was measured. The measurement results are shown in Table 1. The electromagnetic wave absorption was insufficient.

比較例2
市販の薄物の軟磁性体含有薄物シートの伝送減衰率を測定した。この測定結果を表1に示した。電磁波吸収性不十分であった。
Comparative Example 2
The transmission attenuation factor of a commercially available thin sheet containing a soft magnetic material was measured. The measurement results are shown in Table 1. The electromagnetic wave absorption was insufficient.

比較例3
市販の軟磁性体含有厚物シートの伝送減衰率を測定した。測定結果を表1に示した。電磁波吸収性能は十分であるが、非常に重い。
Comparative Example 3
The transmission attenuation factor of a commercially available thick sheet containing soft magnetic material was measured. The measurement results are shown in Table 1. Electromagnetic wave absorption performance is sufficient, but very heavy.

Figure 2012174833
Figure 2012174833

本発明による電磁波抑制シートは電磁波吸収性能が十分あり、かつ軽量であるのでコンピューター、携帯電話等の通信機器や電子機器に適用できる。 Since the electromagnetic wave suppression sheet according to the present invention has sufficient electromagnetic wave absorption performance and is lightweight, it can be applied to communication devices and electronic devices such as computers and mobile phones.

Claims (4)

多層カーボンナノチューブ水分散塗工液、多層カーボンナノチューブ水分散塗工液に樹脂水分散液を含む塗工液、又は多層カーボンナノチューブ水分散塗工液に樹脂水分散液及び難燃剤を含む塗工液を、多層カーボンナノチューブが基材に対して1g/m2以上となるように塗工されていることを特徴とする電磁波抑制シート。 Multi-walled carbon nanotube water-dispersed coating liquid, multi-walled carbon nanotube water-dispersed coating liquid containing resin aqueous dispersion, or multi-walled carbon nanotubes water-dispersed coating liquid containing resin water-dispersed liquid and flame retardant Is coated so that the multi-walled carbon nanotube is 1 g / m 2 or more with respect to the base material. 基材が紙、フィルム、不織布あるいは織布であることを特徴とする請求項1の電磁波抑制シート。 2. The electromagnetic wave suppression sheet according to claim 1, wherein the substrate is paper, film, nonwoven fabric or woven fabric. 難燃性が付与されていることを特徴とする請求項1の電磁波抑制シート。 2. The electromagnetic wave suppression sheet according to claim 1, which is imparted with flame retardancy. 坪量が200g/m2以下あるいは厚さが200μm以下であることを特徴とする請求項1の電磁波抑制シート。 The electromagnetic wave suppression sheet according to claim 1, wherein the basis weight is 200 g / m 2 or less or the thickness is 200 μm or less.
JP2011034311A 2011-02-21 2011-02-21 Electromagnetic wave absorption sheet Pending JP2012174833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034311A JP2012174833A (en) 2011-02-21 2011-02-21 Electromagnetic wave absorption sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034311A JP2012174833A (en) 2011-02-21 2011-02-21 Electromagnetic wave absorption sheet

Publications (2)

Publication Number Publication Date
JP2012174833A true JP2012174833A (en) 2012-09-10
JP2012174833A5 JP2012174833A5 (en) 2012-10-18

Family

ID=46977480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034311A Pending JP2012174833A (en) 2011-02-21 2011-02-21 Electromagnetic wave absorption sheet

Country Status (1)

Country Link
JP (1) JP2012174833A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080754A1 (en) * 2012-11-20 2014-05-30 Kagawa Seiji Electromagnetic wave absorption film and method for manufacturing same
JP2014125634A (en) * 2012-12-26 2014-07-07 Akihiko Ito Conductive film
JP2017529298A (en) * 2014-07-30 2017-10-05 ジェネラル ナノ、エルエルシーGeneral Nano,LLC Carbon nanotube sheet structure and manufacturing method thereof
WO2018066574A1 (en) * 2016-10-04 2018-04-12 日本ゼオン株式会社 Electromagnetic shielding structure and method for producing same
CN113150600A (en) * 2021-03-31 2021-07-23 华南理工大学 Expanded perlite loaded with carbon nano tubes, preparation method thereof and application of expanded perlite in preparation of sound absorption coating
KR20230154060A (en) 2021-03-19 2023-11-07 호쿠에츠 코포레이션 가부시키가이샤 Electromagnetic noise suppression sheet and manufacturing method thereof
KR20230154059A (en) 2021-03-19 2023-11-07 호쿠에츠 코포레이션 가부시키가이샤 Electromagnetic noise suppression sheet and manufacturing method thereof
US11839069B2 (en) 2018-09-28 2023-12-05 Zeon Corporation Electromagnetic wave absorbing sheet and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113303A1 (en) * 2009-04-01 2010-10-07 特種製紙株式会社 Electromagnetic wave absorption structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113303A1 (en) * 2009-04-01 2010-10-07 特種製紙株式会社 Electromagnetic wave absorption structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607688B (en) * 2012-11-20 2017-12-01 Seiji Kagawa Electromagnetic wave absorption film and its manufacturing method
US9550206B2 (en) 2012-11-20 2017-01-24 Seiji Kagawa Electromagnetic-wave-absorbing film and its production method
KR102031611B1 (en) 2012-11-20 2019-10-14 세이지 까가와 Electromagnetic wave absorption film and method for manufacturing same
CN104798453A (en) * 2012-11-20 2015-07-22 加川清二 Electromagnetic wave absorption film and method for manufacturing same
WO2014080754A1 (en) * 2012-11-20 2014-05-30 Kagawa Seiji Electromagnetic wave absorption film and method for manufacturing same
EP2925108A4 (en) * 2012-11-20 2016-07-13 Seiji Kagawa Electromagnetic wave absorption film and its production method for manufacturing same
JP2014103283A (en) * 2012-11-20 2014-06-05 Seiji Kagawa Method of producing electromagnetic wave absorption film
KR20150087351A (en) * 2012-11-20 2015-07-29 세이지 까가와 Electromagnetic wave absorption film and method for manufacturing same
JP2014125634A (en) * 2012-12-26 2014-07-07 Akihiko Ito Conductive film
JP2017529298A (en) * 2014-07-30 2017-10-05 ジェネラル ナノ、エルエルシーGeneral Nano,LLC Carbon nanotube sheet structure and manufacturing method thereof
WO2018066574A1 (en) * 2016-10-04 2018-04-12 日本ゼオン株式会社 Electromagnetic shielding structure and method for producing same
CN109792857A (en) * 2016-10-04 2019-05-21 日本瑞翁株式会社 Electromagnetic wave screening structure body and its manufacturing method
US11839069B2 (en) 2018-09-28 2023-12-05 Zeon Corporation Electromagnetic wave absorbing sheet and method of manufacturing the same
KR20230154060A (en) 2021-03-19 2023-11-07 호쿠에츠 코포레이션 가부시키가이샤 Electromagnetic noise suppression sheet and manufacturing method thereof
KR20230154059A (en) 2021-03-19 2023-11-07 호쿠에츠 코포레이션 가부시키가이샤 Electromagnetic noise suppression sheet and manufacturing method thereof
CN113150600A (en) * 2021-03-31 2021-07-23 华南理工大学 Expanded perlite loaded with carbon nano tubes, preparation method thereof and application of expanded perlite in preparation of sound absorption coating

Similar Documents

Publication Publication Date Title
JP2012174833A (en) Electromagnetic wave absorption sheet
Kumar et al. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding
CN107075804B (en) Diaphragm comprising cellulose microfibre layer
JP5390001B2 (en) Carbon nanotube aqueous dispersion and composite sheet obtained using the same
KR101307378B1 (en) Thermoplastic resin composition having good EMI shielding property
US20170129145A1 (en) Acoustic prepregs, cores and composite articles and methods of using them
KR20180100618A (en) Prepregs, cores and composite articles comprising synergistic and blended flame retardant materials
JP2013099939A (en) Decorative laminate
JP4716348B2 (en) Radio wave absorber
US11839069B2 (en) Electromagnetic wave absorbing sheet and method of manufacturing the same
JP2008186997A (en) Noise suppressing sheet
Zhang et al. Structural effects of AgNWs/MXene in artificial nacre‐Like hybrid cellulose nanofiber films on electromagnetic interference (EMI) shielding performance
JP5317261B2 (en) Sheet
JP5637961B2 (en) Electromagnetic wave absorbing sheet
JP2014037652A (en) Base fabric for foamed plastic-based insulation surface material and production method of the same
CN105670042A (en) Flexible flame-retardant high-dielectric nano composite film
JPWO2017002863A1 (en) Flame retardant paper for radio wave absorber members
JP6089625B2 (en) Sheet material for radio wave absorber and radio wave absorber using the same
WO2022014459A1 (en) Flame-resistant paper for radio wave absorber member and production method for same
JP2005063994A (en) Electromagnetic wave absorption material
JP2020023759A (en) Flame-retardant paper
JP2013002003A (en) Flame-resistant paper for radio-wave absorbent member and radio-wave absorbent member
JP2017123390A (en) Electromagnetic wave noise suppression member and method for producing the same
KR101863514B1 (en) Nonflammable interior material of building
JP2010067744A (en) Electromagnetic wave shielding nonwoven fabric

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617