JP2012174685A - Dye sensitized solar battery - Google Patents

Dye sensitized solar battery Download PDF

Info

Publication number
JP2012174685A
JP2012174685A JP2012009131A JP2012009131A JP2012174685A JP 2012174685 A JP2012174685 A JP 2012174685A JP 2012009131 A JP2012009131 A JP 2012009131A JP 2012009131 A JP2012009131 A JP 2012009131A JP 2012174685 A JP2012174685 A JP 2012174685A
Authority
JP
Japan
Prior art keywords
conductive substrate
dye
sensitized solar
solar cell
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012009131A
Other languages
Japanese (ja)
Inventor
Ho-Gyong Yun
豪 ▲卿▼ 尹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JP2012174685A publication Critical patent/JP2012174685A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To provide a dye sensitized solar battery capable of maximizing energy conversion efficiency.SOLUTION: A dye sensitized solar battery includes a first conductive substrate 10 and a third conductive substrate 70 opposed to each other; a second conductive substrate 40 opposed to the third conductive substrate, having at least one through hole, and arranged between the first conductive substrate and the third conductive substrate; a photoelectric conversion part arranged between the second conductive substrate and the third conductive substrate and including a first photoelectric conversion part 51 contacting the third conductive substrate and a second photoelectric conversion part 52 contacting the second conductive substrate; a catalyst layer 20 isolated from the second conductive substrate and arranged on the first conductive substrate; and an electrolyte layer 80 interposed between the catalyst layer and the third conductive substrate.

Description

本発明は太陽電池に関し、より詳細には染料感応太陽電池に関する。   The present invention relates to solar cells, and more particularly to dye-sensitized solar cells.

太陽電池は太陽から放出される光エネルギーを電気エネルギーに転換する光電エネルギー変換システム(photovoltaic energy conversion system)である。現在、主に使用されるシリコン太陽電池は前記光電エネルギー変換をするためにシリコン内に形成されるp−n接合ダイオード(p−n junction diode)を利用するが、電子及びホールの早熟再結合(premature recombination)を防止するために、使用されるシリコンは高い純度及び低い欠陥を有しなければならない。このような技術的要求は使用される材料費用の増加を起こすので、シリコン太陽電池の場合電力当たり製造費用が高い。   A solar cell is a photoelectric energy conversion system that converts light energy emitted from the sun into electrical energy. Currently, mainly used silicon solar cells use a pn junction diode formed in silicon to perform the photoelectric energy conversion, but premature recombination of electrons and holes ( In order to prevent premature recombination, the silicon used must have high purity and low defects. Such technical requirements cause an increase in the cost of the materials used, so that the production cost per electric power is high for silicon solar cells.

これに加えて、バンドギャップ以上のエネルギーを有する光子(photons)のみが電流を生成するのに寄与するので、シリコン太陽電池のシリコンはできるだけ低いバンドギャップ(bandgap)を有するようにドーピングされる。しかし、このように低くなったバンドギャップのために青色光又は紫外線によって励起された電子(excited electrons)は過度なエネルギーを有するようになって、電流生産に寄与することより熱として消耗される。また、光子(photon)が捕獲される(capturing)可能性を増加させるためにp形層(p−type layer)は十分に厚くなければならない。しかし、このような厚いp形層は励起された電子がp−n接合に到達する前に正孔と再結合される可能性を増加させるので、シリコン太陽電池の効率に限界が示される。   In addition, since only photons having energy above the bandgap contribute to the generation of current, the silicon of the silicon solar cell is doped to have as low a bandgap as possible. However, due to the lowered band gap, the excited electrons excited by blue light or ultraviolet light have excessive energy and are consumed as heat rather than contributing to current production. Also, the p-type layer must be thick enough to increase the likelihood that photons will be captured. However, such a thick p-type layer increases the likelihood that excited electrons will recombine with holes before reaching the pn junction, thus limiting the efficiency of silicon solar cells.

米国特許公開第2005/0274412号公報US Patent Publication No. 2005/0274412

本発明が解決しようとする一技術的課題はエネルギー変換効率を最大化できる染料感応太陽電池を提供することにある。   One technical problem to be solved by the present invention is to provide a dye-sensitized solar cell capable of maximizing energy conversion efficiency.

前記一技術的課題を達成するために、本発明の一実施形態による染料感応太陽電池は、互に対向された第1伝導性基板及び第3伝導性基板と、前記第3伝導性基板と対向され、少なくとも1つの貫通ホールを有しながら前記第1伝導性基板と前記第3伝導性基板との間に配置された第2伝導性基板と、前記第2伝導性基板と前記第3伝導性基板との間に配置され、前記第3伝導性基板と接触する第1光電変換部及び前記第2伝導性基板と接触する第2光電変換部を含む光電変換部と、前記第2伝導性基板と離隔されて前記第1伝導性基板の上に配置された触媒層と、前記触媒層と前記第3伝導性基板との間に介在された電解質層と、を含む。   In order to achieve the one technical problem, a dye-sensitized solar cell according to an embodiment of the present invention includes a first conductive substrate, a third conductive substrate, and a third conductive substrate facing each other. A second conductive substrate disposed between the first conductive substrate and the third conductive substrate with at least one through-hole, and the second conductive substrate and the third conductive material. A photoelectric conversion unit including a first photoelectric conversion unit disposed between the substrate and the third conductive substrate; and a second photoelectric conversion unit contacting the second conductive substrate; and the second conductive substrate. And a catalyst layer disposed on the first conductive substrate and an electrolyte layer interposed between the catalyst layer and the third conductive substrate.

前記光電変換部は酸化物半導体粒子及び前記酸化物半導体粒子に吸着され、前記第1光電変換部と前記第2光電変換部とで吸収するスペクトルの分布が相異なる染料物質を含む。   The photoelectric conversion part is adsorbed by the oxide semiconductor particles and the oxide semiconductor particles, and includes dye substances having different spectrum distributions absorbed by the first photoelectric conversion part and the second photoelectric conversion part.

前記染料物質はRuthenium 535−bisTBA(N719)、Ruthenium 620−1H3TBA(Black dye)、有機染料(Organic dye)、量子点(Quantum−dot)又は自然染料(Natural dye)の中で少なくとも1つである。   The dye material is at least one of Ruthenium 535-bisTBA (N719), Ruthenium 620-1H3TBA (Black dye), Organic dye, Quantum-dot, or Natural dye. .

前記第2伝導性基板は前記貫通ホール以外の領域で均一な厚さを有する金属薄膜又は金属ホイル(metal foil)である。   The second conductive substrate is a metal thin film or a metal foil having a uniform thickness in a region other than the through hole.

前記第2伝導性基板はその上面又はその下面の中で少なくとも1つから延長される少なくとも1つの突出部をさらに含む。   The second conductive substrate further includes at least one protrusion extending from at least one of the upper surface or the lower surface thereof.

前記第2伝導性基板は交差しながら織られたワイヤーを含むメッシュ構造体(mesh structure)、粉末が互に連結された焼結体(sintered structure)、多孔質の伝導性物質層及びナノチューブを含む導電性膜の中で少なくとも1つである。   The second conductive substrate includes a mesh structure including wires woven while intersecting, a sintered structure in which powders are connected to each other, a porous conductive material layer, and a nanotube. At least one of the conductive films.

前記第2伝導性基板と前記第3伝導性基板とは電気的に連結される。   The second conductive substrate and the third conductive substrate are electrically connected.

前記第1伝導性基板、前記第2伝導性基板及び前記第3伝導性基板は軟性(flexible)である。   The first conductive substrate, the second conductive substrate, and the third conductive substrate are flexible.

前記第3伝導性基板は透明伝導性物質で形成される。   The third conductive substrate is formed of a transparent conductive material.

前記触媒層と前記第2伝導性基板との間又は前記第2伝導性基板と前記第3伝導性基板との間の中で少なくとも1つに配置される絶縁性支持体をさらに含む。   It further includes an insulating support disposed at least one between the catalyst layer and the second conductive substrate or between the second conductive substrate and the third conductive substrate.

前記絶縁性支持体は多孔質絶縁性物質を含み、前記電解質層は前記多孔質絶縁性物質の絶縁性支持体に含浸(impregnate)される。   The insulating support includes a porous insulating material, and the electrolyte layer is impregnated into the insulating support of the porous insulating material.

前記第1伝導性基板と前記第2伝導性基板との間の縁に配置される第1封止材と、前記第2伝導性基板の上の縁に配置される第2封止材をさらに含み、前記貫通ホールは前記第1封止材及び前記第2封止材の間の領域を除外した前記第2伝導性基板内に形成される。   A first sealing material disposed at an edge between the first conductive substrate and the second conductive substrate; and a second sealing material disposed at an upper edge of the second conductive substrate. In addition, the through hole is formed in the second conductive substrate excluding a region between the first sealing material and the second sealing material.

本発明の一実施形態による染料感応太陽電池は、2つの伝導性基板の間に分離配置され、接触される伝導性基板にしたがって、酸化物半導体粒子に吸収するスペクトルの分布が相異なる染料物質が吸着された光電変換部を具備することができる。これにしたがって、染料感応太陽電池に吸収される波長を最大化して染料感応太陽電池のエネルギー変換効率の最大化を通じて高効率の染料感応太陽電池を製作できる。   According to an embodiment of the present invention, a dye-sensitized solar cell includes dye materials having different spectral distributions absorbed by oxide semiconductor particles according to a conductive substrate that is separately disposed between two conductive substrates. An adsorbed photoelectric conversion unit can be provided. Accordingly, a highly efficient dye-sensitized solar cell can be manufactured through maximizing the energy conversion efficiency of the dye-sensitized solar cell by maximizing the wavelength absorbed by the dye-sensitized solar cell.

本発明の一実施形態による染料感応太陽電池の断面図である。It is sectional drawing of the dye-sensitized solar cell by one Embodiment of this invention. 柔軟性を有する本発明の一実施形態による染料感応太陽電池の断面図である。It is sectional drawing of the dye-sensitized solar cell by one Embodiment of this invention which has a softness | flexibility. 本発明の実施形態による第2伝導性基板を図示する斜視図である。FIG. 5 is a perspective view illustrating a second conductive substrate according to an embodiment of the present invention. 本発明の実施形態による第2伝導性基板を図示する斜視図である。FIG. 5 is a perspective view illustrating a second conductive substrate according to an embodiment of the present invention. 本発明の一実施形態による第2伝導性基板の形成方法を示す図面である。3 is a view illustrating a method of forming a second conductive substrate according to an exemplary embodiment of the present invention. 本発明の他の実施形態による染料感応太陽電池の断面図である。It is sectional drawing of the dye-sensitized solar cell by other embodiment of this invention. 本発明の他の実施形態による染料感応太陽電池の断面図である。It is sectional drawing of the dye-sensitized solar cell by other embodiment of this invention. 本発明の他の実施形態による染料感応太陽電池の断面図である。It is sectional drawing of the dye-sensitized solar cell by other embodiment of this invention. 本発明の他の実施形態による染料感応太陽電池の断面図である。It is sectional drawing of the dye-sensitized solar cell by other embodiment of this invention.

以上の本発明の目的、他の目的、特徴及び長所は添付された図面と関連された以下の望ましい実施形態を通じて容易に理解できる。しかし、本発明はここで説明される実施形態に限定されず、他の形態に具体化され得る。むしろ、ここで紹介される実施形態は開示された内容が徹底して完全になり得るようにそして、当業者に本発明の思想が十分に伝達できるようにするために提供されるものである。   The above and other objects, features, and advantages of the present invention can be easily understood through the following preferred embodiments in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments described herein, and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed contents can be thoroughly and completely transmitted, and to fully convey the spirit of the present invention to those skilled in the art.

また、本明細書である膜が他の膜、または基板上にあると言及される場合、それは他の膜、または基板上に直接形成されることができ、或いはその間に第3の膜が介在され得ることを意味する。また、図面において、膜及び領域の厚さは技術的内容を効果的に説明するために誇張されたことである。また、本明細書の多様な実施形態で第1、第2、第3等の用語が多様な領域、膜等を記述するために使用されたが、これらの領域、膜がこのような用語によって限定されない。これら用語は単なるある所定の領域、又は膜を他の領域又は膜と区別させるために使用されただけである。したがって、いずれか一実施形態の第1膜に言及された膜が他の実施形態では第2膜に言及されることもあり得る。単数の表現は文脈の上に明確に異なるように意味しない限り、複数の表現を含む。ここに説明され、例示される各実施形態はそれの相補的な実施形態も含む。明細書全体に掛けて同一な参照番号に表示された部分は同一な構成要素を示す。   Also, when a film herein is referred to as being on another film or substrate, it can be formed directly on the other film or substrate, or a third film interposed therebetween It can be done. In the drawings, the thickness of the film and the region is exaggerated in order to effectively explain the technical contents. In addition, in the various embodiments of the present specification, terms such as first, second, and third are used to describe various regions, films, and the like. It is not limited. These terms are only used to distinguish one given region or film from another region or film. Accordingly, the film referred to as the first film in any one embodiment may be referred to as the second film in other embodiments. The singular form includes the plural form unless the context clearly dictates otherwise. Each embodiment described and illustrated herein includes its complementary embodiments. Parts denoted by the same reference numerals throughout the specification indicate the same components.

図1は本発明の一実施形態による染料感応太陽電池の断面図であり、図2は柔軟性を有する本発明の一実施形態による染料感応太陽電池の断面図であり、図3A及び図3Bは本発明の実施形態による第2伝導性基板を図示する斜視図である。   FIG. 1 is a cross-sectional view of a dye-sensitized solar cell according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a flexible dye-sensitive solar cell according to an embodiment of the present invention, and FIGS. FIG. 5 is a perspective view illustrating a second conductive substrate according to an embodiment of the present invention.

図1及び図2を参照すれば、本発明の一実施形態による染料感応太陽電池100は、互に対向された第1及び第3伝導性基板10、70、前記第3伝導性基板70と対向され、少なくとも1つの貫通ホール42を有しながら前記第1伝導性基板10と前記第3伝導性基板70との間に配置された第2伝導性基板40、及び前記第2伝導性基板40と前記第3伝導性基板70との間で1つは前記第3伝導性基板70と接触し、残りの1つは前記第2伝導性基板40と接触する第1及び第2光電変換部51、52を含む光電変換部50を含む。   Referring to FIGS. 1 and 2, a dye-sensitized solar cell 100 according to an embodiment of the present invention is opposed to first and third conductive substrates 10 and 70 facing each other and the third conductive substrate 70. A second conductive substrate 40 having at least one through hole 42 and disposed between the first conductive substrate 10 and the third conductive substrate 70, and the second conductive substrate 40. The first and second photoelectric conversion units 51, one in contact with the third conductive substrate 70 and in contact with the third conductive substrate 70, and the other in contact with the second conductive substrate 40, The photoelectric conversion unit 50 including 52 is included.

これに加えて、前記第1伝導性基板10の上面に触媒層20が配置され、前記触媒層20と前記第2伝導性基板40との間の縁に第1封止材30が配置され、前記第2伝導性基板40と前記第3伝導性基板70との間の縁に第2封止材60が配置され、前記触媒層20と前記第3伝導性基板70との間の空間には電解質層(electrolyte layer)80が介在される。   In addition, the catalyst layer 20 is disposed on the upper surface of the first conductive substrate 10, and the first sealing material 30 is disposed on the edge between the catalyst layer 20 and the second conductive substrate 40, A second sealing material 60 is disposed at an edge between the second conductive substrate 40 and the third conductive substrate 70, and a space between the catalyst layer 20 and the third conductive substrate 70 is disposed in the space. An electrolyte layer 80 is interposed.

本発明の一実施形態によれば、前記光電変換部50は前記第3伝導性基板70と接触する第1光電変換部51及び前記第2伝導性基板40と接触しながら前記第1光電変換部51と対向する第2光電変換部52を包含できる。この時、前記第2光電変換部52は前記第1光電変換部51から一定の間隔で離隔されて配置される。これにしたがって、前記第1光電変換部51と前記第2光電変換部52とは互に分離される。   According to an embodiment of the present invention, the photoelectric conversion unit 50 is in contact with the first photoelectric conversion unit 51 and the second conductive substrate 40 in contact with the third conductive substrate 70, and the first photoelectric conversion unit. A second photoelectric conversion unit 52 facing 51 can be included. At this time, the second photoelectric conversion unit 52 is spaced apart from the first photoelectric conversion unit 51 at a predetermined interval. Accordingly, the first photoelectric conversion unit 51 and the second photoelectric conversion unit 52 are separated from each other.

前記第1光電変換部51は第1酸化物半導体粒子53及び前記第1酸化物半導体粒子53の表面に吸着される第1染料物質54を包含できる。前記第1光電変換部51は第1酸化物半導体粒子53及び前記第1酸化物半導体粒子53の表面に吸着される第1染料物質54を包含できる。この時、前記第1染料物質54は前記第2染料物質56と吸収するスペクトルの分布が相異なり得る。   The first photoelectric conversion unit 51 may include a first oxide semiconductor particle 53 and a first dye material 54 adsorbed on the surface of the first oxide semiconductor particle 53. The first photoelectric conversion unit 51 may include a first oxide semiconductor particle 53 and a first dye material 54 adsorbed on the surface of the first oxide semiconductor particle 53. At this time, the first dye material 54 may have a different absorption spectrum from the second dye material 56.

前記第1酸化物半導体粒子53及び前記第2酸化物半導体粒子55は遷移金属酸化物を含む金属酸化物の中で少なくとも1つであり得る。例えば、前記遷移金属酸化物はチタニウム酸化物TiO、錫酸化物SnO、ジルコニウム酸化物ZrO、シリコン酸化物SiO、マグネシウム酸化物MgO、ニオビウム酸化物Nb及び亜鉛酸化物ZnO等になされたグループで選択された少なくとも1つであり得る。前記第1酸化物半導体粒子53と前記第2酸化物半導体粒子55とは同一な物質であるか、或いは他の物質であり得る。前記第1酸化物半導体粒子53及び前記第2酸化物半導体粒子55は、例えば、約5乃至30nmのナノ級サイズの粒子大きさを有することができる。 The first oxide semiconductor particles 53 and the second oxide semiconductor particles 55 may be at least one of metal oxides including a transition metal oxide. For example, the transition metal oxide includes titanium oxide TiO 2 , tin oxide SnO 2 , zirconium oxide ZrO 2 , silicon oxide SiO 2 , magnesium oxide MgO, niobium oxide Nb 2 O 5 and zinc oxide ZnO. It may be at least one selected in the group made in the above. The first oxide semiconductor particles 53 and the second oxide semiconductor particles 55 may be the same material or other materials. The first oxide semiconductor particles 53 and the second oxide semiconductor particles 55 may have a nano-sized particle size of about 5 to 30 nm, for example.

前記第1染料物質54及び前記第2染料物質56は光エネルギーを電気的エネルギーに転換させ得るルテニウム錯体のような染料分子でなされ得る。例えば、前記第1染料物質54及び前記第2染料物質56はRuthenium 535−bisTBA(N719)、Ruthenium 620−1H3TBA(Black dye)、有機染料(Organic dye)、量子点(Quantum−dot)又は自然染料(Natural dye)等のように、前記第1酸化物半導体粒子53又は前記第2酸化物半導体粒子55に吸着されて太陽光によって電子を発生させる機能を有する、多様な染料の中の少なくとも1つであり得る。   The first dye material 54 and the second dye material 56 may be made of dye molecules such as a ruthenium complex capable of converting light energy into electrical energy. For example, the first dye material 54 and the second dye material 56 may be Ruthenium 535-bisTBA (N719), Ruthenium 620-1H3TBA (Black dye), an organic dye, a quantum dot, or a natural dye. As in (Natural dye), at least one of various dyes having a function of being adsorbed by the first oxide semiconductor particles 53 or the second oxide semiconductor particles 55 and generating electrons by sunlight. It can be.

前記第1伝導性基板10及び前記第2伝導性基板40は金属及び金属合金の中の少なくとも1つを含む金属薄膜(thin film)又は金属ホイル(foil)で形成され得る。例えば、前記第1伝導性基板10及び前記第2伝導性基板40はチタニウム、ステンレススチール(stainless steel)、アルミニウム及び銅の中で少なくとも1つを含んで形成でき、以外に他の多様な金属性物質を含んで形成され得る。また、前記第1伝導性基板10の下面は絶縁性薄膜(図示せず)でコーティングされ得る。前記第1伝導性基板10及び前記第2伝導性基板40はワイヤー90を通じて電気的に連結され得る。   The first conductive substrate 10 and the second conductive substrate 40 may be formed of a metal thin film or a metal foil including at least one of a metal and a metal alloy. For example, the first conductive substrate 10 and the second conductive substrate 40 may be formed to include at least one of titanium, stainless steel, aluminum, and copper. It can be formed including a substance. In addition, the lower surface of the first conductive substrate 10 may be coated with an insulating thin film (not shown). The first conductive substrate 10 and the second conductive substrate 40 may be electrically connected through a wire 90.

前記第3伝導性基板70は受光基板として、透明伝導性物質で形成され得る。例えば、前記第3伝導性基板70は透明伝導層がコーティングされたガラス又は透明伝導層がコーティングされた高分子フィルムで形成され得る。例えば、前記透明伝導層はITO(Indium Tin Oxide)又はSnOでなされ得り、前記第1光電変換部51と接触される。 The third conductive substrate 70 may be formed of a transparent conductive material as a light receiving substrate. For example, the third conductive substrate 70 may be formed of glass coated with a transparent conductive layer or a polymer film coated with a transparent conductive layer. For example, the transparent conductive layer may be made of ITO (Indium Tin Oxide) or SnO 2 and is in contact with the first photoelectric conversion unit 51.

図1に図示したように、前記第1伝導性基板10、前記第2伝導性基板40及び前記第3伝導性基板70は強性(rigid)の特性を有することができる。これとは異なるように、図2に図示したように、前記第1伝導性基板10、前記第2伝導性基板40及び前記第3伝導性基板70は軟性(flexible)の特性を有することができる。前記第1伝導性基板10、前記第2伝導性基板40及び前記第3伝導性基板70が軟性であれば、前記染料感応太陽電池100は柔軟(flexible)な特性を有することができる。即ち、製品の外形を変形させ得る外力(external force)の下でも、前記染料感応太陽電池100は実質的な機能喪失、又は製品破損無しで正常的に動作できる。前記染料感応太陽電池100が柔軟な特性を有するとき、例えば、前記第1伝導性基板10、前記第2伝導性基板40及び前記第3伝導性基板70は数マイクロメータ乃至数ミリメータの厚さで形成でき、さらに具体的な厚さは該当物質の種類にしたがって異なることがあり得る。   As shown in FIG. 1, the first conductive substrate 10, the second conductive substrate 40, and the third conductive substrate 70 may have a rigid characteristic. Unlike this, as shown in FIG. 2, the first conductive substrate 10, the second conductive substrate 40, and the third conductive substrate 70 may have flexible characteristics. . If the first conductive substrate 10, the second conductive substrate 40, and the third conductive substrate 70 are flexible, the dye-sensitized solar cell 100 may have flexible characteristics. That is, the dye-sensitized solar cell 100 can operate normally without substantial loss of function or product damage even under an external force that can deform the outer shape of the product. When the dye-sensitized solar cell 100 has flexible characteristics, for example, the first conductive substrate 10, the second conductive substrate 40, and the third conductive substrate 70 have a thickness of several micrometers to several millimeters. Further, the specific thickness may be different according to the type of the material.

前記電解質層80は前記第1封止材30及び前記第2封止材60によって区画された前記触媒層20と前記第3伝導性基板70との間の空間で液体、準固体又は固体状態の電解質で満たされ得る。例えば、前記電解質層80はヨウ化物系酸化還元電解質(redox iodide electrolyte)を包含できる。例えば、前記電解質層80は0.7Mの1−ビニール−3−ヘキシル−イミダゾリウムヨウ化物(1−vinyl−3−hexyl−imidazolium iodide)、0.1MのLiI及び40mMのI(Iodine)を3−メトキシプロピオニトリル(3−Methoxypropionitrile)に溶解させたI /Iの電解液、0.6Mのブチルメチルイミダゾリウム(butylmethylimidazolium)、0.02MのI、0.1Mのグアニジニウムチオシアネート(Guanidinium thiocyanate)及び0.5Mの4−ターシャリー−ブチルピリジン(4−tert−butylpyridine)を含むアセトニトリル(acetonitrile)溶液、アルキルイミダゾーリウムヨウ化物(alkylimidazolium iodides)又はテトラ−アルキルアンモニウムヨウ化物(tetra−alkylammonium iodides)の中でいずれか1つを包含できる。 The electrolyte layer 80 is in a liquid, quasi-solid or solid state in a space between the catalyst layer 20 and the third conductive substrate 70 partitioned by the first sealing material 30 and the second sealing material 60. Can be filled with electrolyte. For example, the electrolyte layer 80 may include an iodide-based redox electrolyte. For example, the electrolyte layer 80 includes 0.7 M 1-vinyl-3-hexyl-imidazolium iodide, 0.1 M LiI, and 40 mM I 2 (Iodine). I 3 / I electrolyte dissolved in 3-methoxypropionitrile, 0.6 M butylmethylimidazolium, 0.02 M I 2 , 0.1 M guanidinium An acetonitrile solution containing guanidinium thiocynate and 0.5 M 4-tert-butylpyridine, an alkyl, Any one of loumidazolium iodides or tetra-alkylammonium iodides can be included.

前記電解質層80は表面添加剤をさらに包含できる。例えば、前記表面添加剤はターシャリー−ブチルピリジン(tert−butylpyridin;TBP)、ベンズイミダゾール(benzimidazole;BI)及びNメチルベンズイミダゾール(NMethylbenzimidazole;NMBI)の中で少なくとも1つであり得る。   The electrolyte layer 80 may further include a surface additive. For example, the surface additive may be at least one of tertiary-butylpyridine (TBP), benzimidazole (BI), and N-methylbenzimidazole (NMBI).

前記電解質層80はアセトニトリル(acetonitrile)溶液、プロピオニトリル(propionitrile)溶液、又はアセトニトリル(acetonitrile)とバレロニトリル(valeronitrile)との混合液の中で1つを溶媒として使用することができる。   For the electrolyte layer 80, one of acetonitrile, propionitrile, or a mixture of acetonitrile and valeronitrile can be used as a solvent.

前記触媒層20は電解質の還元過程に参与できるように前記電解質層80と接触する。前記触媒層20は前記第2伝導性基板40と一定の間隔で離隔されて前記第1伝導性基板10の表面の上に形成され得る。前記電解質層80が前記ヨウ化物系酸化還元電解質を含むと、前記触媒層20は白金Ptで形成され得る。   The catalyst layer 20 contacts the electrolyte layer 80 so that it can participate in the electrolyte reduction process. The catalyst layer 20 may be formed on the surface of the first conductive substrate 10 so as to be spaced apart from the second conductive substrate 40 at a predetermined interval. If the electrolyte layer 80 includes the iodide-based redox electrolyte, the catalyst layer 20 may be formed of platinum Pt.

前記第3伝導性基板70を通じて太陽光の中でスペクトルの分布が相異なる光が前記第1光電変換部51と前記第2光電変換部52とへ入射されれば、前記第1及び第2染料物質54、56の電子は入射された光によって励起(excited)されて前記第1又は第2酸化物半導体粒子53、55の伝導帯(conduction band)へ注入された後、前記第2又は第3伝導性基板40、70、所定の負荷L(load)、及び前記第1伝導性基板10を経由して前記電解質層80で還元される。このような過程は前記染料感応太陽電池100の電子循環体系と称される。   If light having different spectral distributions in sunlight is incident on the first photoelectric conversion unit 51 and the second photoelectric conversion unit 52 through the third conductive substrate 70, the first and second dyes are used. The electrons of the materials 54 and 56 are excited by incident light and injected into the conduction band of the first or second oxide semiconductor particles 53 and 55, and then the second or third. Reduction is performed on the electrolyte layer 80 via the conductive substrates 40 and 70, a predetermined load L (load), and the first conductive substrate 10. Such a process is called an electronic circulation system of the dye-sensitized solar cell 100.

本発明の一実施形態によれば、前記染料感応太陽電池100は前記第1光電変換部51と前記第2光電変換部52とを通じてスペクトルの分布が相異なる光を吸収することができる。即ち、前記染料感応太陽電池100は前記第1光電変換部51を通じて入射された光の一部を吸収し、前記第1光電変換部51で吸収されなかった光の一部を前記第2光電変換部52を通じて吸収することができる。このように前記第1光電変換部51と前記第2光電変換部52とを通じて吸収された光は各々前記第3伝導性基板70と前記第2伝導性基板40とを経由して合わせて電解質の還元過程に使われ得る。その結果、前記染料感応太陽電池100に吸収される波長の領域を広くして前記染料感応太陽電池100のエネルギー変換効率を最大化され得り、これを通じて高効率の前記染料感応太陽電池100を製作できる。   According to an embodiment of the present invention, the dye-sensitized solar cell 100 can absorb light having different spectrum distributions through the first photoelectric conversion unit 51 and the second photoelectric conversion unit 52. That is, the dye-sensitized solar cell 100 absorbs a part of light incident through the first photoelectric conversion unit 51 and a part of the light not absorbed by the first photoelectric conversion unit 51 in the second photoelectric conversion. It can be absorbed through part 52. In this way, the light absorbed through the first photoelectric conversion unit 51 and the second photoelectric conversion unit 52 is combined through the third conductive substrate 70 and the second conductive substrate 40, respectively, to form an electrolyte. Can be used in the reduction process. As a result, it is possible to maximize the energy conversion efficiency of the dye-sensitized solar cell 100 by widening the wavelength range absorbed by the dye-sensitive solar cell 100, and thereby manufacturing the dye-sensitive solar cell 100 with high efficiency. it can.

一方、電解質の還元過程又は前記染料感応太陽電池100の電子循環過程が持続的に行われるためには、前記光電変換部50で電子を失ったイオンが還元過程が行う前記触媒層20へ拡散されなければならない。このため、本発明の一実施形態によれば、前記光電変換部50と前記触媒層20との間に配置される前記第2伝導性基板40は少なくとも1つの貫通ホール42を有する。   On the other hand, in order for the electrolyte reduction process or the electron circulation process of the dye-sensitized solar cell 100 to be continuously performed, ions that have lost electrons in the photoelectric conversion unit 50 are diffused into the catalyst layer 20 where the reduction process is performed. There must be. For this reason, according to an embodiment of the present invention, the second conductive substrate 40 disposed between the photoelectric conversion unit 50 and the catalyst layer 20 has at least one through hole 42.

前記複数の貫通ホール42は前記第2伝導性基板40の一部領域の内で規則的に配列され得る。図3Aに図示したように、前記貫通ホール42が規則的に形成されるとき、1つの貫通ホール42とそれと隣接する貫通ホール42との間の相対的位置及び距離がは平行でない2つのベクトルa、bによって表現できる。また、複数の隣接する他の貫通ホール42の間の相対的位置及び距離がは前記2つのベクトルa、bによって同様に表現できる。このように、前記貫通ホール42が前記第2伝導性基板40の内に規則的に配列される場合、前記イオンが前記触媒層20へ均一に拡散され得る。その結果、還元過程が均一であり、効率的に行われるので、製品の光電性能(photovoltaic performance)が向上され得る。   The plurality of through holes 42 may be regularly arranged in a partial region of the second conductive substrate 40. As shown in FIG. 3A, when the through-holes 42 are regularly formed, two vectors a in which the relative position and distance between one through-hole 42 and the adjacent through-hole 42 are not parallel are shown. , B. Further, the relative position and distance between a plurality of other adjacent through holes 42 can be similarly expressed by the two vectors a and b. As described above, when the through holes 42 are regularly arranged in the second conductive substrate 40, the ions can be uniformly diffused into the catalyst layer 20. As a result, since the reduction process is uniform and performed efficiently, the photoelectric performance of the product can be improved.

一方、前記第2伝導性基板40の内に形成される全ての貫通ホール42の配置は所定のベクトルで構成されるベクトル集合を含む複数のベクトル集合によって実質的に完全に表現できる。前記貫通ホール42の配置を定義する前記ベクトル集合の数が増加する場合、前記貫通ホール42は減少された規則性を有し、配置されるか、或いは無作為的に配置され得る。即ち、前記貫通ホール42の配置での規則性水準は多様であり得る。前記貫通ホール42の幅は前記第1及び第2酸化物半導体粒子53、55の平均直径より小さいか、或いはその数倍であり得る。例えば、前記貫通ホール42の幅は約数ナノメーター乃至数センチメーターであり得る。   Meanwhile, the arrangement of all the through holes 42 formed in the second conductive substrate 40 can be substantially completely expressed by a plurality of vector sets including a vector set including predetermined vectors. If the number of vector sets that define the placement of the through-holes 42 increases, the through-holes 42 have reduced regularity and can be placed or randomly placed. That is, the regularity level in the arrangement of the through holes 42 may vary. The width of the through hole 42 may be smaller than or several times the average diameter of the first and second oxide semiconductor particles 53 and 55. For example, the width of the through hole 42 may be about several nanometers to several centimeters.

本発明の一実施形態によれば、図3Aに図示したように、前記第2伝導性基板40は前記貫通ホール42を除外した全ての領域で実質的に均一な厚さに形成され得る。これとは異なるように、図3Bに図示したように、前記第2伝導性基板40はその上面から延長される少なくとも1つの突出部45を包含できる。しかし、前記突出部45は図3Bに示した実施形態から多様に変形できる。例えば、前記突出部45は前記第2伝導性基板40の下面から下方へ延長される部分又は前記第2伝導性基板40の上面から上方へ延長される部分の中で少なくとも1つを包含できる。また、前記突出部45が配置される位置及び厚さもやはり多様に変形できる。   According to an embodiment of the present invention, as shown in FIG. 3A, the second conductive substrate 40 may be formed to a substantially uniform thickness in all regions except the through hole 42. Unlike this, as shown in FIG. 3B, the second conductive substrate 40 may include at least one protrusion 45 extending from an upper surface thereof. However, the protrusion 45 can be variously modified from the embodiment shown in FIG. 3B. For example, the protrusion 45 may include at least one of a portion extending downward from the lower surface of the second conductive substrate 40 or a portion extending upward from the upper surface of the second conductive substrate 40. Also, the position and thickness where the protrusion 45 is disposed can be variously modified.

図4に図示したように、前記貫通ホール42は前記貫通ホール42の位置を定義する少なくとも1つの開口部95を含む蝕刻マスクEMを通じて前記第2伝導性基板40用金属膜が蝕刻99されて形成され得る。例えば、前記食刻は前記第2伝導性基板40用金属膜の上面又は下面の中で少なくとも1つの面を食刻する湿式蝕刻(wet etch)であり得る。   As shown in FIG. 4, the through hole 42 is formed by etching 99 a metal film for the second conductive substrate 40 through an etching mask EM including at least one opening 95 defining the position of the through hole 42. Can be done. For example, the etching may be a wet etch that etches at least one of the upper and lower surfaces of the metal layer for the second conductive substrate 40.

前記蝕刻マスクEMは再使用できる物質、例えば、高分子化合物又はセラミックで形成され得る。このように再使用できる蝕刻マスクを使用すれば、前記貫通ホール42を有する第2伝導性基板40の準備費用が節減できるのみでなく前記貫通ホール42の位置が製造される染料感応太陽電池の全てで実質的に同一であり得る。前記貫通ホール42の位置的変異(variation)減少は、製造される染料感応太陽電池の製品特性での均一性を向上させ得る。   The etching mask EM may be formed of a reusable material such as a polymer compound or ceramic. If a reusable etching mask is used in this way, not only the preparation cost of the second conductive substrate 40 having the through holes 42 can be reduced, but also all of the dye-sensitized solar cells in which the positions of the through holes 42 are manufactured. Can be substantially the same. The reduction in the positional variation of the through hole 42 may improve the uniformity in product characteristics of the dye-sensitized solar cell to be manufactured.

図5乃至図8は本発明の他の実施形態による染料感応太陽電池の断面図である。説明を簡単にするために、図1、図2、図3A及び図3Bを参照して説明された実施形態と重複される技術的特徴に対する説明は省略される。   5 to 8 are sectional views of a dye-sensitized solar cell according to another embodiment of the present invention. For the sake of simplicity, descriptions of technical features that are duplicated with the embodiments described with reference to FIGS. 1, 2, 3A, and 3B are omitted.

図5乃至図7を参照すれば、触媒層20と第3伝導性基板70との間には第1支持体82又は第2支持体84の中で少なくとも1つがさらに配置され得る。具体的に、図5に図示したように、前記第1支持体82が前記触媒層20と前記第2伝導性基板40との間に配置され得る。図6に図示したように、前記第2支持体84が前記第2伝導性基板40と前記第3伝導性基板70との間に配置され得る。図7に図示したように、前記第1支持体82が前記触媒層20と前記第2伝導性基板40との間に配置され、前記第2支持体84が前記第2伝導性基板40と前記第3伝導性基板70との間に配置され得る。   Referring to FIGS. 5 to 7, at least one of the first support 82 and the second support 84 may be disposed between the catalyst layer 20 and the third conductive substrate 70. Specifically, as shown in FIG. 5, the first support 82 may be disposed between the catalyst layer 20 and the second conductive substrate 40. As shown in FIG. 6, the second support 84 may be disposed between the second conductive substrate 40 and the third conductive substrate 70. As shown in FIG. 7, the first support 82 is disposed between the catalyst layer 20 and the second conductive substrate 40, and the second support 84 is connected to the second conductive substrate 40 and the second conductive substrate 40. It may be disposed between the third conductive substrate 70.

前記第1支持体82は前記触媒層20から前記第2伝導性基板40を物理的/電気的に離隔させるスペーサー(spacer)であり得る。前記第1支持体82は絶縁性物質、例えば、ガラス、セラミック又はプラスチックで形成され得る。前記第1支持体82はボール(ball)又はバー(bar)形状を有することができる。ここで、前記第1支持体82はバー形状で図示された。しかし、前記第1支持体82の物質及び形状は多様に変形できる。   The first support 82 may be a spacer that physically / electrically separates the second conductive substrate 40 from the catalyst layer 20. The first support 82 may be formed of an insulating material such as glass, ceramic, or plastic. The first support 82 may have a ball shape or a bar shape. Here, the first support 82 is illustrated in a bar shape. However, the material and shape of the first support 82 can be variously modified.

このような絶縁性の前記第1支持体82によって、前記触媒層20と前記第2伝導性基板40との直接的な接触(即ち、電気的ショート)が予防でき、前記触媒層20と前記第2伝導性基板40との間の間隔が一定に維持され得る。これにしたがって、前記第3伝導性基板70又は前記第1伝導性基板10へ外力が作用する場合にも、電気的ショートによる製品損傷が予防できる。   The insulating first support 82 can prevent direct contact (ie, electrical short) between the catalyst layer 20 and the second conductive substrate 40, and the catalyst layer 20 and the first support 82 can be prevented. The distance between the two conductive substrates 40 can be kept constant. Accordingly, even when an external force acts on the third conductive substrate 70 or the first conductive substrate 10, product damage due to an electrical short can be prevented.

これとは異なるように、前記第1支持体82又は前記第2支持体84は多孔質の絶縁性物質で形成され得る。例えば、前記第1支持体82又は前記第2支持体84は微細な吸収孔(pores)(図示せず)を有する高分子物質又はセラミックであり得る。このような実施形態によれば、電解質層80は前記第1支持体82又は前記第2支持体84の吸収孔を満たしながら前記触媒層20と前記第3伝導性基板70との間に介在され得る。即ち、前記電解質層80は前記第1支持体82又は前記第2支持体84へ含浸(impregnate)され得る。   In contrast, the first support 82 or the second support 84 may be formed of a porous insulating material. For example, the first support 82 or the second support 84 may be a polymer material or ceramic having fine absorption holes (not shown). According to such an embodiment, the electrolyte layer 80 is interposed between the catalyst layer 20 and the third conductive substrate 70 while filling the absorption holes of the first support 82 or the second support 84. obtain. That is, the electrolyte layer 80 can be impregnated into the first support 82 or the second support 84.

一実施形態によれば、前記光電変換部50で電子を失ったイオンが還元過程が行う前記触媒層20へ拡散できるように、前記第1支持体82の吸収孔は連続的に連結され得る。   According to an exemplary embodiment, the absorption holes of the first support 82 may be continuously connected so that ions that have lost electrons in the photoelectric conversion unit 50 can diffuse into the catalyst layer 20 that undergoes a reduction process.

図8を参照すれば、貫通ホール42は図1及び図2を参照して説明された実施形態のそれとは異なる構造の第2伝導性基板40によって提供され得る。この時、前記第2伝導性基板40は交差しながら織られたワイヤー(intercrossed and woven wires)を含むメッシュ構造体(mesh structure)、粉末が互に連結された焼結体(sintered structure)、多孔質の伝導性物質層及びナノチューブ(nano tube)を含む導電性膜の中で少なくともいずれか1つであり得る。   Referring to FIG. 8, the through hole 42 may be provided by the second conductive substrate 40 having a structure different from that of the embodiment described with reference to FIGS. 1 and 2. At this time, the second conductive substrate 40 includes a mesh structure including interwoven and woven wires, a sintered structure in which powders are connected to each other, a porous structure, and a porous structure. It may be at least one of a conductive film including a quality conductive material layer and a nanotube.

図8のように変形された実施形態によれば、前記第2伝導性基板40の上面又は下面は局所的に扁平できないこともあり得る。即ち、前記第2伝導性基板40の厚さは位置にしたがって異なり得り、このような厚さの不均一であることは第1封止材30及び第2封止材60の間でも表れ得る。この時、電解質層80が漏出されることを防止するために、前記第1封止材30及び前記第2封止材60と前記第2伝導性基板40との間には良好な接着特性を有することができる。   According to the modified embodiment as shown in FIG. 8, the upper or lower surface of the second conductive substrate 40 may not be locally flattened. That is, the thickness of the second conductive substrate 40 may vary depending on the position, and such a non-uniform thickness may appear between the first sealing material 30 and the second sealing material 60. . At this time, in order to prevent the electrolyte layer 80 from leaking, good adhesive properties are provided between the first sealing material 30 and the second sealing material 60 and the second conductive substrate 40. Can have.

これに加えて、図1、図4乃至図8に図示したように、前記貫通ホール42は、前記第1封止材30及び前記第2封止材60の間に介在される、前記第2伝導性基板40の縁領域には形成されないこともあり得る。即ち、前記第2伝導性基板40の縁の領域は前記貫通ホール42がない扁平な膜であり得る。この場合、前記電解質層80の外部流出が効果的に抑制され得る。   In addition, as shown in FIGS. 1 and 4 to 8, the through hole 42 is interposed between the first sealing material 30 and the second sealing material 60. It may not be formed in the edge region of the conductive substrate 40. That is, the edge region of the second conductive substrate 40 may be a flat film without the through hole 42. In this case, the outflow of the electrolyte layer 80 can be effectively suppressed.

一方、図示せずが、図8で前記触媒層20と前記第2伝導性基板40との間又は前記第2伝導性基板40と前記第3伝導性基板70との中で少なくとも1つに前記第1支持体82又は前記第2支持体84がさらに配置され得る。   Meanwhile, although not shown in FIG. 8, at least one of the catalyst layer 20 and the second conductive substrate 40 or at least one of the second conductive substrate 40 and the third conductive substrate 70 in FIG. The first support 82 or the second support 84 may be further disposed.

また、前記第3伝導性基板70は前記電解質層80を注入するための注入口(図示せず)をさらに包含できる。前記注入口は前記電解質層80が形成された後、密封される。   In addition, the third conductive substrate 70 may further include an inlet (not shown) for injecting the electrolyte layer 80. The inlet is sealed after the electrolyte layer 80 is formed.

これに加えて、図4乃至図8において、前記第1伝導性基板10、前記第2伝導性基板40及び前記第3伝導性基板70の厚さ調節を通じて図2のように柔軟性を有する染料感応太陽電池を製作できるのは勿論である。   In addition, in FIGS. 4 to 8, the dye having flexibility as shown in FIG. 2 through thickness adjustment of the first conductive substrate 10, the second conductive substrate 40, and the third conductive substrate 70. Of course, sensitive solar cells can be manufactured.

本発明の一実施形態では前記第1封止材30が前記触媒層20と前記第2伝導性基板40との間に配置されることとして説明したが、これとは異なるように前記第1封止材30は一側は前記第1伝導性基板10と接触し、他側は前記第2伝導性基板40と接触して前記第1伝導性基板10と前記第2伝導性基板40との間に配置され得る。   In one embodiment of the present invention, the first sealing material 30 has been described as being disposed between the catalyst layer 20 and the second conductive substrate 40. However, the first sealing material 30 is different from the first sealing material 30. One side of the stopper 30 is in contact with the first conductive substrate 10, and the other side is in contact with the second conductive substrate 40 between the first conductive substrate 10 and the second conductive substrate 40. Can be arranged.

本発明は上述した実施形態及び添付された図面によって限定されることではなく、添付された請求の範囲によって限定しようとする。したがって、請求の範囲に記載された本発明の技術的思想を逸脱しない範囲内で当該技術分野の通常の知識を有する者によって多様な形態の置換、変形及び変更ができることであり、これは本発明の範囲に属するべきである。   The present invention is not limited by the above-described embodiments and the accompanying drawings, but is intended to be limited by the appended claims. Accordingly, various forms of substitution, modification, and change can be made by persons having ordinary knowledge in the technical field without departing from the technical idea of the present invention described in the claims. Should belong to the range.

10 第1伝導性基板
20 触媒層
30 第1封止材
40 第2伝導性基板
42 貫通ホール
45 突出部
50 光電変換部
51 第1光電変換部
52 第2光電変換部
53 第1酸化物半導体粒子
54 第1染料物質
53 第1酸化物半導体粒子
56 第2染料物質
60 第2封止材
70 第3伝導性基板
80 電解質層
82 第1支持体
84 第2支持体
90 ワイヤー
95 開口部
100 染料感応太陽電池
DESCRIPTION OF SYMBOLS 10 1st conductive substrate 20 Catalyst layer 30 1st sealing material 40 2nd conductive substrate 42 Through-hole 45 Protrusion part 50 Photoelectric conversion part 51 1st photoelectric conversion part 52 2nd photoelectric conversion part 53 1st oxide semiconductor particle 54 1st dye substance 53 1st oxide semiconductor particle 56 2nd dye substance 60 2nd sealing material 70 3rd conductive substrate 80 Electrolyte layer 82 1st support body 84 2nd support body 90 Wire 95 Opening part 100 Dye sensitivity Solar cell

Claims (9)

互に対向された第1伝導性基板及び第3伝導性基板と、
前記第3伝導性基板と対向され、少なくとも1つの貫通ホールを有しながら前記第1伝導性基板と前記第3伝導性基板との間に配置された第2伝導性基板と、
前記第2伝導性基板と前記第3伝導性基板との間に配置され、前記第3伝導性基板と接触する第1光電変換部及び前記第2伝導性基板と接触する第2光電変換部を含む光電変換部と、
前記第2伝導性基板と離隔されて前記第1伝導性基板の上に配置された触媒層と、
前記触媒層と前記第3伝導性基板との間に介在された電解質層と、を含む染料感応太陽電池。
A first conductive substrate and a third conductive substrate facing each other;
A second conductive substrate opposed to the third conductive substrate and having at least one through hole and disposed between the first conductive substrate and the third conductive substrate;
A first photoelectric conversion unit disposed between the second conductive substrate and the third conductive substrate and contacting the third conductive substrate; and a second photoelectric conversion unit contacting the second conductive substrate. Including a photoelectric conversion unit;
A catalyst layer disposed on the first conductive substrate and spaced apart from the second conductive substrate;
A dye-sensitized solar cell, comprising: an electrolyte layer interposed between the catalyst layer and the third conductive substrate.
前記光電変換部は酸化物半導体粒子及び前記酸化物半導体粒子に吸着され、前記第1光電変換部と前記第2光電変換部とで吸収するスペクトルの分布が相異なる染料物質を含む請求項1に記載の染料感応太陽電池。   The photoelectric conversion part includes dye substances adsorbed on the oxide semiconductor particles and the oxide semiconductor particles, and having different spectrum distributions absorbed by the first photoelectric conversion part and the second photoelectric conversion part. The dye-sensitized solar cell described. 前記第2伝導性基板は前記貫通ホール以外の領域で均一な厚さを有する金属薄膜又は金属ホイルである請求項1に記載の染料感応太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the second conductive substrate is a metal thin film or a metal foil having a uniform thickness in a region other than the through hole. 前記第2伝導性基板はその上面又はその下面の中で少なくとも1つから延長される少なくとも1つの突出部をさらに含む請求項3に記載の染料感応太陽電池。   4. The dye-sensitized solar cell according to claim 3, wherein the second conductive substrate further includes at least one protrusion extending from at least one of an upper surface or a lower surface thereof. 前記第2伝導性基板は交差しながら織られたワイヤーを含むメッシュ構造体、粉末が互に連結された焼結体、多孔質の伝導性物質層及びナノチューブを含む導電性膜の中で少なくとも1つである請求項1に記載の染料感応太陽電池。   The second conductive substrate includes at least one of a mesh structure including wires woven while intersecting, a sintered body in which powders are connected to each other, a porous conductive material layer, and a conductive film including nanotubes. The dye-sensitized solar cell according to claim 1, wherein 前記第2伝導性基板と前記第3伝導性基板とは電気的に連結される請求項1に記載の染料感応太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the second conductive substrate and the third conductive substrate are electrically connected. 前記触媒層と前記第2伝導性基板との間、又は前記第2伝導性基板と前記第3伝導性基板との間の中で少なくとも1つに配置される絶縁性支持体をさらに含む請求項1に記載の染料感応太陽電池。   The insulating support further comprises at least one insulating support disposed between the catalyst layer and the second conductive substrate, or between the second conductive substrate and the third conductive substrate. 1. The dye-sensitized solar cell according to 1. 前記絶縁性支持体は多孔質絶縁性物質を含み、前記電解質層は前記多孔質絶縁性物質の絶縁性支持体に含浸される請求項7に記載の染料感応太陽電池。   8. The dye-sensitized solar cell according to claim 7, wherein the insulating support includes a porous insulating material, and the electrolyte layer is impregnated in the insulating support of the porous insulating material. 前記第1伝導性基板と前記第2伝導性基板との間の縁に配置される第1封止材と、
前記第2伝導性基板の上の縁に配置される第2封止材を前記第2封止材と、をさらに含み、
前記貫通ホールは前記第1封止材及び前記第2封止材の間の領域を除外した前記第2伝導性基板の内に形成される請求項1に記載の染料感応太陽電池。
A first encapsulant disposed at an edge between the first conductive substrate and the second conductive substrate;
A second encapsulant disposed on an edge of the second conductive substrate, and the second encapsulant.
2. The dye-sensitized solar cell according to claim 1, wherein the through hole is formed in the second conductive substrate excluding a region between the first sealing material and the second sealing material.
JP2012009131A 2011-02-21 2012-01-19 Dye sensitized solar battery Pending JP2012174685A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110015170A KR20120095697A (en) 2011-02-21 2011-02-21 Dye sensitized solar cell
KR10-2011-0015170 2011-02-21

Publications (1)

Publication Number Publication Date
JP2012174685A true JP2012174685A (en) 2012-09-10

Family

ID=46886078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009131A Pending JP2012174685A (en) 2011-02-21 2012-01-19 Dye sensitized solar battery

Country Status (2)

Country Link
JP (1) JP2012174685A (en)
KR (1) KR20120095697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216309A (en) * 2013-04-25 2014-11-17 日本蓄電器工業株式会社 Dye-sensitized solar battery and electrode of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319698A (en) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
JP2007200559A (en) * 2006-01-23 2007-08-09 Sony Corp Photoelectric converter
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Pigment sensitized solar cell
JP2010277999A (en) * 2009-06-01 2010-12-09 Korea Electronics Telecommun Dye-sensitized solar cell and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319698A (en) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
JP2007200559A (en) * 2006-01-23 2007-08-09 Sony Corp Photoelectric converter
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Pigment sensitized solar cell
JP2010277999A (en) * 2009-06-01 2010-12-09 Korea Electronics Telecommun Dye-sensitized solar cell and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216309A (en) * 2013-04-25 2014-11-17 日本蓄電器工業株式会社 Dye-sensitized solar battery and electrode of the same

Also Published As

Publication number Publication date
KR20120095697A (en) 2012-08-29

Similar Documents

Publication Publication Date Title
KR100929812B1 (en) Solar cell having increased energy conversion efficiency and manufacturing method thereof
KR100934732B1 (en) Solar cell using quantum dots and manufacturing method thereof
US8809104B2 (en) Dye-sensitized solar cell and method of fabricating the same
US20160071655A1 (en) Electrochemical solar cells
JP5550540B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
EP2479766A2 (en) Dye sensitized solar cell, and method of manufacturing the same
KR101140784B1 (en) Preparation method of dye-sensitized solar cell module including scattering layers
TWI394309B (en) Dye-sensitized solar cell and method forming the same
KR20080052082A (en) Dye-sensitized solar cells having electron recombination protection layer and method for manufacturing the same
KR20090052696A (en) Dye-sensitized solar cells having substrate including p-n junction diode
US20100300523A1 (en) Dye-sensitized solar cell and method of fabricating the same
US20120012150A1 (en) Photoelectric Conversion Module
KR100908243B1 (en) Dye-Sensitized Solar Cell Including Electron Recombination Blocking Layer and Manufacturing Method Thereof
JPWO2005122322A1 (en) Dye-sensitized solar cell and method for producing the same
KR101272781B1 (en) Dye-Sensitized Solar Cell And Method Of Fabricating The Same
Han et al. A high efficiency dye-sensitized solar cell with a UV-cured polymer gel electrolyte and a nano-gel electrolyte double layer
JP2012174685A (en) Dye sensitized solar battery
US20110214730A1 (en) Dye-sensitized solar cell
KR101565687B1 (en) Titanium oxide having Hexagonal column shape, method of fabricating the same, solar cell comprising the same, and method of fabricating solar cell comprising the same
JP5153248B2 (en) Photoelectric conversion device and photovoltaic power generation device
KR20120072319A (en) Solar cell
KR101577169B1 (en) Titanium oxide having Hexagonal column shape, method of fabricating the same, solar cell comprising the same, and method of fabricating solar cell comprising the same
Hieu et al. Enhancement of dye-sensitized solar cell efficiency by spherical voids in nanocrystalline ZnO electrodes
KR101161515B1 (en) Dye sensitized solar cell using conductive sphere
KR101976377B1 (en) Hybrid dye sensitized solar cell and method of the manufacturing of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004