JP2012174571A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2012174571A
JP2012174571A JP2011036597A JP2011036597A JP2012174571A JP 2012174571 A JP2012174571 A JP 2012174571A JP 2011036597 A JP2011036597 A JP 2011036597A JP 2011036597 A JP2011036597 A JP 2011036597A JP 2012174571 A JP2012174571 A JP 2012174571A
Authority
JP
Japan
Prior art keywords
battery
unit
assembled battery
unit cells
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011036597A
Other languages
Japanese (ja)
Inventor
Koji Nitta
耕司 新田
Shinji Inazawa
信二 稲澤
Shoichiro Sakai
将一郎 酒井
Atsushi Fukunaga
篤史 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011036597A priority Critical patent/JP2012174571A/en
Publication of JP2012174571A publication Critical patent/JP2012174571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating type battery pack that is constituted by the combination of a plurality of unit cells, improves heat conduction between the unit cells, and can achieves the stable operation.SOLUTION: The battery pack is housed in a housing so as to be constituted by the combination of a plurality of unit cells, and operated at a temperature higher than a room temperature. In the battery pack, a case that constitutes the unit cell includes a plane facing another adjacent unit cell, and adjacent unit cells are assembled in a state in which the planes come into contact with each other. Specifically, the battery pack can be applied to a molten salt battery that uses a molten salt that melts at a temperature higher than a room temperature, as an electrolyte.

Description

本発明は、室温より高い温度にて動作させられる組電池の構造に関する発明であって、特に溶融塩電池に適した組電池の構造に関する。   The present invention relates to an assembled battery structure that can be operated at a temperature higher than room temperature, and more particularly to an assembled battery structure that is suitable for a molten salt battery.

電力貯蔵や自動車用などに用いられる比較的大型の二次電池の開発が進められている。所望の電圧および所望の容量を得るためには、複数の素電池を直並列に組み合わせて一体型に構成した組電池が用いられる。リチウムイオン電池やニッケル水素電池等は常温で使用されるが、充放電に伴う発熱が電池性能の劣化を招くことから、組電池全体あるいは、個々の素電池を冷却する手段が種々考えられている。たとえば、特許文献1には側面に波状、矩形状等の凹凸をもつ空冷スペーサーを用いるリチウム二次電池が開示されている。また、特許文献2には、組電池内に冷媒を導入する構造を備えたフレームを用いて組み立てられる組電池が開示されている。
一方、室温よりも高い温度に加熱して動作させる加熱型電池としては、ナトリウム硫黄電池が知られている。かかる電池は、複数のナトリウム硫黄単電池を集合させて断熱容器に収納した構造をなし、約300℃の高温で運転される。安全性の問題から各単電池の間には砂等を充填し、局所的な異常加熱や活物質の漏洩を防止している(特許文献3)。
Development of relatively large secondary batteries used for power storage, automobiles, and the like is underway. In order to obtain a desired voltage and a desired capacity, an assembled battery in which a plurality of unit cells are combined in series and parallel to form an integrated type is used. Lithium ion batteries, nickel metal hydride batteries, and the like are used at room temperature. However, since heat generated by charging and discharging causes deterioration of battery performance, various means for cooling the entire assembled battery or individual unit cells have been considered. . For example, Patent Document 1 discloses a lithium secondary battery that uses an air-cooled spacer having corrugations such as corrugations and rectangles on its side surface. Patent Document 2 discloses an assembled battery assembled using a frame having a structure for introducing a refrigerant into the assembled battery.
On the other hand, a sodium-sulfur battery is known as a heating type battery that operates by heating to a temperature higher than room temperature. Such a battery has a structure in which a plurality of sodium-sulfur single cells are assembled and accommodated in a heat insulating container, and is operated at a high temperature of about 300 ° C. Due to safety problems, each cell is filled with sand or the like to prevent local abnormal heating or leakage of the active material (Patent Document 3).

特開平10−112301号公報Japanese Patent Laid-Open No. 10-112301 特許第4062273号公報Japanese Patent No. 4062273 特開2000−215908号公報JP 2000-215908 A

上述の通り、従来の二次電池においては組電池を構成するに際して、異常加熱を防止し、あるいは運転時の温度を低く維持する必要がある。このため、組電池を構成する素電池間に熱がこもらないように、あるいは熱が波及しないように、素電池間に冷却構造や断熱構造が設けられている。
本発明者らは、100℃以下の温度で動作し、過熱時の安全性の高い溶融塩電池を開発している。かかる溶融塩電池は、常温では固体の塩を比較的低温に加熱して溶融塩とし、電解質として用いる。このため、加熱手段を備えることで、電解質を溶融状態に維持しつつ運転する必要がある。また、運転停止時から運転状態にするためには、できるだけ早く運転温度まで加熱することも求められる。個々の素電池毎に加熱手段を設ければ良いが、組電池全体の大きさが大きくなり、またコスト増となり好ましくない。さらに、加熱手段から近い部分と遠い部分での温度差が生じると、電解液である溶融塩の温度にばらつきが生じる。この結果、電池の内部抵抗の不均一が発生し、特定の電池のみに過大な電流が流れるなどの負荷の分布による特性の低下、寿命の低下が生じることが判った。さらに温度分布が大きい場合には、一部の電池の溶融塩が固化したり、過熱分解したりする可能性も生じ得る。
As described above, when forming a battery pack in a conventional secondary battery, it is necessary to prevent abnormal heating or keep the temperature during operation low. For this reason, a cooling structure or a heat insulating structure is provided between the unit cells so that heat does not accumulate between the unit cells constituting the assembled battery or heat does not spread.
The present inventors have developed a molten salt battery that operates at a temperature of 100 ° C. or less and has high safety during overheating. Such a molten salt battery is used as an electrolyte by heating a solid salt at a relatively low temperature to a molten salt at room temperature. For this reason, it is necessary to operate | move, maintaining a electrolyte in a molten state by providing a heating means. Moreover, in order to make it into an operation state from the time of an operation stop, it is calculated | required to heat to operation temperature as soon as possible. Heating means may be provided for each individual unit cell, but this is not preferable because the overall size of the assembled battery increases and the cost increases. Furthermore, when a temperature difference occurs between a portion close to the heating means and a portion far from the heating means, the temperature of the molten salt that is the electrolytic solution varies. As a result, it was found that the internal resistance of the battery is non-uniform, and the characteristics are deteriorated and the life is shortened due to load distribution such that an excessive current flows only in a specific battery. Further, when the temperature distribution is large, there is a possibility that the molten salt of some batteries may solidify or undergo thermal decomposition.

本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、複数の素電池を組み合わせてなる加熱型の組電池において、素電池間の熱伝導を良くし、安定した動作を実現することができる組電池を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to improve the heat conduction between the unit cells in a heating type assembled battery obtained by combining a plurality of unit cells, and to stabilize the unit cell. Another object of the present invention is to provide an assembled battery that can realize the above operation.

上記目的を達成するため、本願発明の組電池は、複数の素電池が組み合わされて筐体内に収納され、室温より高い温度にて動作させられる組電池であって、前記素電池を形成するケースが、隣接する他の前記素電池と対向する平面を有しており、前記隣接する素電池は、互いに前記平面を密着する状態で組み付けられていることを特徴とする組電池とした(請求項1)。本発明によれば、素電池間の熱伝導が良くなるため、隣接する素電池の温度が均衡しやすく、結果として組電池全体の温度が均一に安定し易い。このため、電池寿命向上、電池立ち上り時間短縮、レート特性向上(電解質全体が良好に動作し、電流密度が上げられる)などの効果がある。ここで、密着とは、通常の意味において顕著な隙間無く面と面が接している状態をいうものであり、言い換えれば面と面の間を流体が容易に流動しない程度に接している状態である。すなわち、密着の程度において、他の主に室温で使用される電池において冷却を目的とするために素電池と素電池の間に冷却媒体や空気が流通しやすいように構成されていることと対照的に、故意に面と面を接することで熱伝導を向上させるという意図に即して解釈されるものである。   In order to achieve the above object, the assembled battery of the present invention is a assembled battery in which a plurality of unit cells are combined and housed in a housing and operated at a temperature higher than room temperature, and the unit cell is formed. However, it has a plane opposite to the other adjacent unit cells, and the adjacent unit cells are assembled in a state where the planes are in close contact with each other. 1). According to the present invention, since the heat conduction between the unit cells is improved, the temperatures of the adjacent unit cells are easily balanced, and as a result, the temperature of the entire assembled cell is easily stabilized uniformly. For this reason, there are effects such as improvement in battery life, reduction in battery rise time, and improvement in rate characteristics (the entire electrolyte operates well and current density can be increased). Here, the close contact means a state in which the surfaces are in contact with each other without a noticeable gap in a normal sense, in other words, in a state in which the fluid does not easily flow between the surfaces. is there. That is, in contrast to the degree of adhesion, the cooling medium and the air are configured to easily flow between the unit cells for the purpose of cooling in other batteries that are mainly used at room temperature. Therefore, it is interpreted in line with the intention of improving heat conduction by intentionally contacting surfaces.

特に、素電池が室温より高い温度で溶融する溶融塩を電解質として用いた溶融塩電池であると、本発明の効果が著しく好ましい(請求項2)。特に、内部に電熱ヒーターを設けた溶融塩電池では、電熱ヒーターに近い部分は高温となり、遠い部分は低温となるので、溶融塩電池内の温度が不均一となりやすい。一般に、溶融塩は温度が高いほど導電性が向上するので、温度が高いほど例えば溶融塩電池の出力性能は向上する。内部の温度が不均一な状態で溶融塩電池を使用した場合は、内部の温度の内で低い方の温度が溶融塩電池の性能に大きく影響してしまう。また電池モジュール内の高温の部分は、過充電又は過放電の状態になり易く、高温部分の劣化が早くなる。本発明のように素電池間の熱伝導を良くし、組電池全体の温度を均一に安定させることで、溶融塩電池全体の効率を上げ、また寿命を延ばすことが可能となる。   In particular, the effect of the present invention is remarkably preferable when the unit cell is a molten salt battery in which a molten salt that melts at a temperature higher than room temperature is used as an electrolyte. In particular, in a molten salt battery provided with an electric heater inside, the temperature in the molten salt battery tends to be non-uniform because the portion near the electric heater becomes high temperature and the far portion becomes low temperature. In general, the higher the temperature, the higher the conductivity of the molten salt. Therefore, the higher the temperature, the higher the output performance of the molten salt battery, for example. When the molten salt battery is used in a state in which the internal temperature is not uniform, the lower one of the internal temperatures greatly affects the performance of the molten salt battery. In addition, the high temperature portion in the battery module is likely to be overcharged or overdischarged, and the high temperature portion is quickly deteriorated. By improving the heat conduction between the unit cells as in the present invention and stabilizing the temperature of the entire assembled battery uniformly, the efficiency of the entire molten salt battery can be increased and the life can be extended.

素電池ケースの材質は金属であり、前記密着される面の表面粗さRaが5μm以下であることが好ましい(請求項3)。素電池間の熱伝導の効果を上げるため、ケースの材質は金属が好ましく、ケースの軽量化の要請や耐食性等も考慮すると、特に、アルミニウム、マグネシウムが好ましく用いられる。素電池の面同士が密着する様に、平面の加工精度を高くすることが好ましい。結果として、表面粗さRaを5μm以下に加工すると密着の観点から好ましい。   It is preferable that the material of the unit cell case is metal, and the surface roughness Ra of the surface to be adhered is 5 μm or less. In order to increase the effect of heat conduction between the unit cells, the case is preferably made of metal, and aluminum and magnesium are particularly preferably used in consideration of the requirement for weight reduction of the case and corrosion resistance. It is preferable to increase the processing accuracy of the flat surface so that the surfaces of the unit cells are in close contact with each other. As a result, the surface roughness Ra is preferably processed to 5 μm or less from the viewpoint of adhesion.

素電池ケースが略直方体形状であり、前記密着される面とは異なる面に、電極を有するようにすると良い(請求項4)。組電池の構成において、素電池には互いを直列または並列に接続するための電極や互いを固着するための連結機構などが必要である。また、端子の他に圧力弁の様な突起部、ケースの蓋の噛みあわせや溶接部など、わずかに盛り上がる箇所などが存在し得る。このような突起部を隣接する素電池と密着する面に有さない構造とすることが密着させる上で好ましい。特に、電極は外部に接続する配線等が必要になるため、密着される面側に存在すると、密着構造を構成し難い。最も好ましくは、密着される面には何も設けない構造が良いが、突起部が存在しても、それが互いに嵌合する構造や、突起部を避ける構造となって、密着する平面を十分に確保できる構造であっても良い。なお、ここで略直方体としたのは、全体的に直方体であるが端子部や蓋部等の細部は平面でないために厳密な直方体では無いという意味である。   It is preferable that the unit cell case has a substantially rectangular parallelepiped shape and has an electrode on a surface different from the surface to be adhered. In the configuration of the assembled battery, the unit cell needs an electrode for connecting each other in series or in parallel, a coupling mechanism for fixing them to each other, and the like. In addition to the terminals, there may be a slightly raised portion such as a protrusion such as a pressure valve, a case lid meshing or a welded portion. It is preferable to make such a protrusion not have a structure on a surface that is in close contact with an adjacent unit cell. In particular, since the electrode requires wiring or the like to be connected to the outside, it is difficult to form a close contact structure when it exists on the close contact surface side. Most preferably, a structure that does not provide anything on the surface to be in contact is good, but even if there is a protrusion, it is a structure that fits to each other, or a structure that avoids the protrusion, so that the surface to be in contact is sufficient It may be a structure that can be secured to Here, the term “substantially rectangular parallelepiped” means that it is a rectangular parallelepiped as a whole, but details such as the terminal portion and the lid portion are not flat and are not a strict rectangular parallelepiped.

さらに、素電池が密着する方向に素電池を加圧する加圧手段を筐体内に有することが好ましい(請求項5)。密着の効果が高まるからである。筐体内には筐体自体がその構造の一部として加圧手段を有する場合も含まれる。また、上述の通り素電池を加熱するヒーターを備える場合に密着の効果が発揮されやすい(請求項6)。ヒーターは特に限定されないが板状ヒーターであると構成が容易であり、素電池の側面(例えば最も面積が大きく鉛直な面)に平行になる様に組電池の中に複数個設置しやすい。ヒーターとしては、セラミックヒーター等が挙げられる。   Furthermore, it is preferable that the casing has a pressurizing means for pressurizing the unit cell in a direction in which the unit cell is in close contact. This is because the adhesion effect is enhanced. The case includes a case where the case itself has a pressurizing means as a part of its structure. In addition, as described above, the effect of adhesion is easily exhibited when a heater for heating the unit cell is provided (claim 6). The heater is not particularly limited, but a plate-shaped heater is easy to configure, and a plurality of heaters are easily installed in the assembled battery so as to be parallel to the side surface of the unit cell (for example, the largest surface and the vertical surface). Examples of the heater include a ceramic heater.

以上の本発明の具体的な構成形態として、素電池を形成するケースが略直方体形状をなし、前記素電池がn個直列に接続され、当該直列に接続された素電池の組がm個並列に接続されてなり、前記直列に接続される素電池のケース同士、および/または前記並列に接続される素電池の組のケース同士が、その隣接する面を密着する状態で組み付けられており、前記並列に接続されたm個の素電池の組の間に、少なくとも1つの加熱手段を備える組電池が挙げられる(請求項7)。   As a specific configuration form of the present invention as described above, a case forming a unit cell has a substantially rectangular parallelepiped shape, n unit cells are connected in series, and m sets of unit cells connected in series are arranged in parallel. The case of the unit cells connected in series and / or the case of the set of unit cells connected in parallel are assembled in a state in which their adjacent surfaces are in close contact with each other, An assembled battery provided with at least one heating means is provided between the set of m unit cells connected in parallel (Claim 7).

本発明によれば、複数の素電池を組み合わせてなる加熱型の組電池において、素電池間の熱伝導を良くし、安定した動作を実現することができるという優れた効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, in the heating type assembled battery which combines a several unit cell, there exists an outstanding effect that heat conduction between unit cells is improved and stable operation | movement can be implement | achieved.

本発明に係る組電池の一例としての全体構造を説明する斜視図である。It is a perspective view explaining the whole structure as an example of the assembled battery which concerns on this invention. 図1のA−A’部で切った断面を模式的に示した図である。It is the figure which showed typically the cross section cut in the A-A 'part of FIG. 本発明に係る組電池の一例として、図1に用いる単位組電池の構成を説明する図である。It is a figure explaining the structure of the unit assembled battery used for FIG. 1 as an example of the assembled battery which concerns on this invention. 本発明の組電池に用いる素電池の一例としての溶融塩電池の構成を示す図であり、Aは溶融塩電池の内部構成を模式的に示す上面図、Bは同縦断面図である。It is a figure which shows the structure of the molten salt battery as an example of the unit cell used for the assembled battery of this invention, A is a top view which shows typically the internal structure of a molten salt battery, B is the longitudinal cross-sectional view.

以下本発明をその実施の形態を示す図面に基づき説明する。図1は、本願発明に係る組電池の全体構造を説明する斜視図であり、内部を説明するために一部を開口して表現している。図1は、素電池が4個直列に接続されてなる単位組電池を9個並列に接続されてなる組電池の構成例である。図1において、組電池10を構成する筐体2内には、9個の単位組電池1が収納されている。単位組電池1は直方体形状であり、両端部側面に充放電のための端子が形成されている。本例において筐体2の大きさは700×280×420mmである。9個の各単位組電池1は、並列に並べられ、接続端子板4aおよび4bにボルト5によりそれぞれ固定されて電気的に並列に接続されている。接続端子板はその端部を筐体2の外部に引き出す構造になっており、接続端子板4aがプラス極、接続端子板4bがマイナス極として利用される。また各単位組電池1は複数のヒーター3により加熱される。ヒーターは外部からの配線(図示せず)により通電され、その発熱により組電池10を室温よりも高温状態に維持できるように加熱する。温度調節は温度センサと制御回路による既知の制御手段により行うことができる。   The present invention will be described below with reference to the drawings showing embodiments thereof. FIG. 1 is a perspective view illustrating the entire structure of the assembled battery according to the present invention, and a part of the assembled battery is expressed in order to explain the inside. FIG. 1 is a configuration example of an assembled battery in which nine unit assembled batteries each having four unit cells connected in series are connected in parallel. In FIG. 1, nine unit assembled batteries 1 are accommodated in a housing 2 constituting the assembled battery 10. The unit assembled battery 1 has a rectangular parallelepiped shape, and terminals for charging and discharging are formed on the side surfaces of both ends. In this example, the size of the housing 2 is 700 × 280 × 420 mm. The nine unit assembled batteries 1 are arranged in parallel, fixed to the connection terminal plates 4a and 4b by bolts 5 and electrically connected in parallel. The connection terminal plate has a structure in which an end thereof is drawn out of the housing 2, and the connection terminal plate 4a is used as a positive electrode and the connection terminal plate 4b is used as a negative electrode. Each unit assembled battery 1 is heated by a plurality of heaters 3. The heater is energized by an external wiring (not shown), and heats the assembled battery 10 so that the assembled battery 10 can be maintained at a temperature higher than room temperature. The temperature adjustment can be performed by a known control means including a temperature sensor and a control circuit.

図2を用いて内部構成をさらに説明する。図2は図1のA−A’部で切った断面を模式的に示した図である。筐体2の内面は断熱材7に覆われ、筐体内全体を保温するように構成されている。筐体2および断熱材7の材質は特に限定されず、組電池全体の機械的保護、保温等の観点で選択される材料を用いることができる。たとえば筺体2をアルミニウム合金で構成すると軽量化および強度の両立の点で好ましい。内部には9個の単位組電池1が並べられ、その3個毎の単位組電池間に、および両端側面にヒーター3として板状ヒーターが配置されている。単位組電池1およびヒーター3は、互いに密着するように配置され、その密着を確実にするため板バネ6によって並列方向に加圧付勢されている。ヒーターは板状ヒーターを例示しており、これに限定されるものではないが、個々の単位組電池、あるいはその構成要素となる個々の素電池を効率よく、また出来るだけ均一に加熱するために、単位組電池の側面と同程度に面積の大きな板状ヒーターが好ましい。また配置は本例のように単位組電池の間に挟み込むものに限定されず、またその数も本例に限定されるものではない。加熱の点で最も好ましくは個々の単位組電池毎にヒーターを設ける方が良い。しかしヒーターの数を増やすと組電池全体のコスト増および容積増を招く。逆に例えばヒーターを筐体内面だけに設けることもでき、コストや容積の点で好ましいが、内蔵する個々の電池とヒーターとの距離による温度差が生じやすくなる。本例はそのバランスを考慮して3個毎の単位組電池1の間にヒーター3を配置した例を示したものである。   The internal configuration will be further described with reference to FIG. FIG. 2 is a diagram schematically showing a cross section taken along the line A-A ′ of FIG. 1. The inner surface of the housing 2 is covered with a heat insulating material 7 so as to keep the entire inside of the housing warm. The material of the housing | casing 2 and the heat insulating material 7 is not specifically limited, The material selected from viewpoints, such as mechanical protection of the whole assembled battery, heat insulation, can be used. For example, it is preferable that the casing 2 is made of an aluminum alloy in terms of both weight reduction and strength. Nine unit assembled batteries 1 are arranged inside, and plate heaters are arranged as heaters 3 between every three unit assembled batteries and on both side surfaces. The unit assembled battery 1 and the heater 3 are disposed so as to be in close contact with each other, and are pressed and urged in the parallel direction by the leaf spring 6 in order to ensure the close contact. The heater is exemplified by a plate heater, and is not limited to this, but in order to heat each unit assembled battery or each unit cell constituting the unit efficiently and as uniformly as possible. A plate heater having an area as large as the side surface of the unit assembled battery is preferable. Further, the arrangement is not limited to that sandwiched between unit assembled batteries as in this example, and the number is not limited to this example. From the viewpoint of heating, it is most preferable to provide a heater for each unit assembled battery. However, when the number of heaters is increased, the cost and volume of the entire assembled battery are increased. Conversely, for example, a heater can be provided only on the inner surface of the housing, which is preferable in terms of cost and volume, but a temperature difference due to the distance between each built-in battery and the heater tends to occur. This example shows an example in which the heater 3 is arranged between every three unit assembled batteries 1 in consideration of the balance.

本例において、単位組電池1の隣り合う面同士(例えば図2の最も右に図示される単位組電池1の面11aとその左となりの単位組電池1の面11b)は電極等の突起を有さない平面で構成されており、互いに密着している。ここで、密着とは、通常の意味において顕著な隙間無く、面と面が互いに接している状態をいうものであり、言い換えれば面と面の間を流体が容易に流動しない程度に接している状態である。板バネ6は密着するように並べられた単位組電池1とヒーター3のそれぞれの間に隙間が生じないように付勢するものである。同様の加圧手段であれば板バネに限定されるものではない。加圧手段を設けることにより、密着の程度がさらに向上し、また組電池全体の振動や断熱材等の長期的な変形などがあっても密着が崩れない効果がある。   In this example, adjacent surfaces of the unit assembled battery 1 (for example, the surface 11a of the unit assembled battery 1 shown on the right in FIG. 2 and the surface 11b of the unit assembled battery 1 on the left side thereof) have projections such as electrodes. It consists of flat surfaces that do not have, and is in close contact with each other. Here, the close contact means a state in which the surfaces are in contact with each other without a noticeable gap in a normal sense. In other words, the surfaces are in contact with each other so that the fluid does not easily flow between the surfaces. State. The leaf spring 6 biases the unit assembled battery 1 and the heater 3 arranged so as to be in close contact with each other so that no gap is generated. If it is the same pressurization means, it will not be limited to a leaf | plate spring. By providing the pressurizing means, the degree of adhesion is further improved, and there is an effect that the adhesion does not collapse even if there is a long-term deformation such as vibration of the whole assembled battery or a heat insulating material.

本構成において、上述のように板バネなどの加圧手段を設ける場合には、単位組電池を連結している接続端子板4aおよび4bは、加圧を阻害しない構成とすることが好ましい。例えば接続端子板におけるボルト5を貫通するための穴を長穴として、単位組電池1がその並列方向に若干スライド可能に固定する。この際、接続端子板との電気的接触は保持できる構造として、ボルト5と接続端子板4aまたは4bとの間に皿バネやコイルバネを介在させるなどが可能である。一方、板バネなどの加圧手段を設けない場合においては、単位組電池1が密着する状態で接続端子板4a、4bをボルト5によってしっかりと締め付け固定することが好ましい。   In this configuration, when a pressurizing unit such as a leaf spring is provided as described above, it is preferable that the connection terminal plates 4a and 4b connecting the unit assembled batteries have a configuration that does not inhibit pressurization. For example, a hole for penetrating the bolt 5 in the connection terminal plate is a long hole, and the unit assembled battery 1 is fixed so as to be slightly slidable in the parallel direction. At this time, as a structure capable of maintaining electrical contact with the connection terminal plate, a disc spring or a coil spring can be interposed between the bolt 5 and the connection terminal plate 4a or 4b. On the other hand, when no pressing means such as a leaf spring is provided, it is preferable that the connection terminal plates 4a and 4b are firmly tightened and fixed by the bolts 5 in a state where the unit assembled battery 1 is in close contact.

単位組電池の表面は金属が好ましい。単位組電池の表面は後述の例のように単位組電池を構成する素電池の表面そのものであっても良いし、素電池の組を収納する別なケースの表面であってもよい。金属は熱伝導が良好であることから好ましく用いられる。電池全体の軽量化も考慮すると、ケースにはアルミニウムまたはその合金が好ましく用いられる。さらに軽量化を目的としてマグネシウム合金を用いることも好ましい。また、ケースの前記密着される面の表面粗さRaが5μm以下であると好ましい。密着の度合いが高まり、効果的に熱が伝わるからである。本例では具体的にはアルミニウム合金(材質A5052)を用い、表面を研磨して、表面粗さをRa4.8μmとした。ここで表面粗さRaはJIS−B0601−2001によって測定される算術平均粗さ(高さ)である。   The surface of the unit assembled battery is preferably a metal. The surface of the unit assembled battery may be the surface of the unit cell constituting the unit assembled battery as in the example described later, or may be the surface of another case that houses the unit cell set. A metal is preferably used because of its good heat conduction. Considering weight reduction of the entire battery, aluminum or an alloy thereof is preferably used for the case. It is also preferable to use a magnesium alloy for the purpose of weight reduction. Moreover, it is preferable that surface roughness Ra of the surface to which the case is closely attached is 5 μm or less. This is because the degree of adhesion increases and heat is effectively transmitted. In this example, specifically, an aluminum alloy (material A5052) was used, the surface was polished, and the surface roughness was Ra 4.8 μm. Here, the surface roughness Ra is an arithmetic average roughness (height) measured according to JIS-B0601-2001.

このように単位組電池同士を密着させて構成することで、以下の効果がある。まず、室温状態から加熱して電池を作動させる場合において、ヒーター3のそれぞれに通電を開始してから、9個の単位組電池が動作可能な温度になる過程を考える。ヒーター3自体が均一に発熱すると過程した場合であっても、ヒーターに接している単位組電池と、ヒーターとは直接には接していない単位組電池とでは、ヒーターに接している単位組電池の方が先に温度が上がる。組電池全体が作動するには、最もヒーターから遠い部分での温度が動作可能な温度に達するのを待つ必要がある。単位組電池同士が密着していない場合には、これらの温度差が顕著に表れ、ヒーター通電開始から組電池の動作開始までに時間がかかる。単位組電池同士が密着する構造とすることで、このような時間を短くすることが可能となる。また、運転状態においても、密着により熱伝導を良好に保つことで、単位組電池同士の温度差を小さく保つことができ、全体の特性を効果的に引き出すことが可能となる。   Thus, it has the following effects by comprising unit assembled batteries in close contact. First, in the case where a battery is operated by heating from a room temperature state, a process is considered in which nine unit assembled batteries reach an operable temperature after energization of each heater 3 is started. Even when the heater 3 itself heats up uniformly, the unit assembled battery that is in contact with the heater and the unit assembled battery that is not in direct contact with the heater have a unit assembled battery that is in contact with the heater. The temperature goes up first. In order for the entire assembled battery to operate, it is necessary to wait for the temperature at the part farthest from the heater to reach an operable temperature. When the unit assembled batteries are not in close contact with each other, these temperature differences appear remarkably, and it takes time from the start of heater energization to the start of operation of the assembled battery. Such a time can be shortened by adopting a structure in which the unit assembled batteries are in close contact with each other. Further, even in the operating state, by maintaining good heat conduction by adhesion, the temperature difference between unit assembled batteries can be kept small, and the entire characteristics can be effectively extracted.

図3は、上記の単位組電池1の内部構造を説明する縦断面図である。単位組電池1は、複数の素電池を電気的に直列接続して電池電圧を高くした組電池である。単位組電池自体も本発明の組電池となる。本例では図3のように4つの素電池20を連結した例を示すが、連結数は4つに限定されるものではない。例えば素電池が電圧3Vの溶融塩電池であれば連結数を4つとすることで、単位組電池としての公称電圧が12Vとなり、既存の自動車用鉛蓄電池等に相当する電池として使用でき、また既存の電池に用いられる機器(例えば充電器)の流用が容易にできる点で好ましく用いられる。図4は、図3を構成する素電池20としての溶融塩電池の構造を説明する図であり、図4のAは溶融塩電池の内部構成を模式的に示す上面図、Bは同溶融塩電池の構成を模式的に示す縦断面図である。   FIG. 3 is a longitudinal sectional view for explaining the internal structure of the unit assembled battery 1. The unit assembled battery 1 is an assembled battery in which a plurality of unit cells are electrically connected in series to increase the battery voltage. The unit assembled battery itself is also an assembled battery of the present invention. In this example, an example in which four unit cells 20 are connected as shown in FIG. 3 is shown, but the number of connections is not limited to four. For example, if the unit cell is a molten salt battery with a voltage of 3 V, the number of connections is set to four, so that the nominal voltage as a unit assembled battery is 12 V, and it can be used as a battery corresponding to an existing lead acid battery for automobiles, etc. It is preferably used because it can be easily used for a device (for example, a charger) used for the battery. FIG. 4 is a diagram for explaining the structure of a molten salt battery as the unit cell 20 constituting FIG. 3. FIG. 4A is a top view schematically showing the internal structure of the molten salt battery, and B is the molten salt battery. It is a longitudinal cross-sectional view which shows the structure of a battery typically.

まず図4および図3を参照して素電池20から説明する。本例の溶融塩電池では、複数(図では6つ)の矩形平板状の負極21と、袋状のセパレータに各別に収容された複数(図では5つ)の矩形平板状の正極41とが、上下方向に沿う状態で交互に対向して横方向(図では前後方向)に並設されている。1組の負極21、セパレータ31及び正極41が1つの発電要素を構成し、本実施の形態では5つの発電要素及び1つの他の負極21が積層されて、直方体状のアルミニウム合金からなる電池容器内に収容されている。電池容器は、上面に開口部を有する容器本体25と、容器本体25の開口部の内周に形成された段部に内嵌されて開口部を塞ぐ矩形平板状の蓋体26とを有している。電池容器の内側は、フッ素樹脂コーティングによって絶縁処理が施されている。   First, the unit cell 20 will be described with reference to FIGS. In the molten salt battery of this example, a plurality (six in the figure) of negative electrodes 21 of a rectangular flat plate and a plurality (five in the figure) of positive electrodes 41 of a rectangular flat plate respectively accommodated in a bag-like separator. They are arranged in parallel in the horizontal direction (front-rear direction in the figure) so as to alternately face each other along the vertical direction. One set of negative electrode 21, separator 31 and positive electrode 41 constitute one power generation element, and in this embodiment, five power generation elements and one other negative electrode 21 are laminated to form a battery container made of a rectangular parallelepiped aluminum alloy. Is housed inside. The battery container includes a container body 25 having an opening on the upper surface, and a rectangular flat plate-like cover body 26 that is fitted in a step formed on the inner periphery of the opening of the container body 25 to close the opening. ing. The inside of the battery container is insulated by a fluororesin coating.

負極21のそれぞれの上端部には、容器本体25の短辺側に位置する一方の側壁25Aに近い側に、電流を取り出すための矩形のアルミニウム合金からなる接続タブ22の下端部がそれぞれ接合されている。接続タブ22及びその上部は、平面視が側壁25B側に開いたコの字状をなす接続部材23が有する2つの腕部231及び231の相対向する2面に夫々溶接されている。接続部材23は、面方向が腕部231と平行な矩形の接続板部232を有し、該接続板部232の上部中央には、側壁25Aに開設された貫通孔25Hと対向する取付孔233が設けられている。   The lower end portions of the connection tabs 22 made of a rectangular aluminum alloy for taking out current are joined to the upper end portions of the negative electrodes 21 on the side close to the one side wall 25A located on the short side of the container body 25, respectively. ing. The connection tab 22 and the upper part thereof are welded to two opposing surfaces of the two arm portions 231 and 231 included in the connection member 23 having a U-shape that is open to the side wall 25B in plan view. The connection member 23 has a rectangular connection plate portion 232 whose surface direction is parallel to the arm portion 231, and an attachment hole 233 that faces the through hole 25 </ b> H formed in the side wall 25 </ b> A at the upper center of the connection plate portion 232. Is provided.

正極41のそれぞれの上端部には、容器本体25の短辺側に位置する他方の側壁25Bに近い側に、電流を取り出すための矩形のアルミニウム合金からなる接続タブ42の下端部がそれぞれ接合されている。接続タブ42及びその上部は、平面視が側壁25A側に開いたコの字状をなす接続部材43が有する2つの腕部431及び431の相対向する2面に夫々溶接されている。接続部材43は、面方向が腕部431と平行な矩形の接続板部432を有し、該接続板部432の上部中央には、側壁25Bに開設された貫通孔25Hと対向する取付孔433が設けられている。このように、上述した5つの発電要素及び1つの負極21が電気的に並列接続されて、電池容量が大きい溶融塩電池を構成する。   The lower end portions of the connection tabs 42 made of a rectangular aluminum alloy for taking out current are joined to the upper end portions of the positive electrodes 41 on the side close to the other side wall 25B located on the short side of the container body 25, respectively. ing. The connection tab 42 and the upper part thereof are welded to two opposing surfaces of the two arm portions 431 and 431 included in the connection member 43 having a U-shape that is open to the side wall 25A in plan view. The connection member 43 has a rectangular connection plate portion 432 whose surface direction is parallel to the arm portion 431, and an attachment hole 433 facing the through hole 25 </ b> H provided in the side wall 25 </ b> B at the upper center of the connection plate portion 432. Is provided. In this way, the above-described five power generation elements and one negative electrode 21 are electrically connected in parallel to constitute a molten salt battery having a large battery capacity.

負極21は、負極活物質である錫がメッキされたアルミニウム箔からなる。アルミニウムは、正/負各電極の集電体に適した材料であり、且つ溶融塩に対して耐腐食性を有する。負極21は活物質を含めた厚さが約0.14mmであり、縦方向及び横方向夫々の寸法が、100mm及び120mmである。なお容器本体の大きさは150×180×38mmである。   The negative electrode 21 is made of an aluminum foil plated with tin, which is a negative electrode active material. Aluminum is a material suitable for the current collector of each positive / negative electrode, and has corrosion resistance against molten salt. The thickness of the negative electrode 21 including the active material is about 0.14 mm, and the dimensions in the vertical direction and the horizontal direction are 100 mm and 120 mm, respectively. The size of the container body is 150 × 180 × 38 mm.

正極41は、アルミニウム合金の多孔質体を集電体とし、該集電体にバインダと導電助剤と正極活物質であるNaCrOとを含む合剤を充填して、約1mmの板厚に形成してある。正極41の縦方向及び横方向夫々の寸法は、デンドライトの発生を防止するために、負極21の縦方向及び横方向の寸法より小さくしてあり、正極41の外縁が、セパレータ31を介して負極21の周縁部に対向するようになっている。尚、正極41の集電体は、例えば、繊維状のアルミからなる不織布であってもよい。 The positive electrode 41 uses an aluminum alloy porous body as a current collector, and the current collector is filled with a mixture containing a binder, a conductive auxiliary agent, and NaCrO 2 as a positive electrode active material, and has a thickness of about 1 mm. It is formed. The vertical dimension and the horizontal dimension of the positive electrode 41 are smaller than the vertical and horizontal dimensions of the negative electrode 21 in order to prevent the generation of dendrites. The outer edge of the positive electrode 41 is connected to the negative electrode via the separator 31. It opposes the peripheral part of 21. FIG. The current collector of the positive electrode 41 may be a non-woven fabric made of fibrous aluminum, for example.

セパレータ31は、溶融塩電池が動作する温度で溶融塩に対する耐性を有するフッ素樹脂の膜からなり、多孔質に且つ袋状をなすように形成されている。セパレータ31は、負極21及び正極41と共に、直方体状の電池容器内に満たされた溶融塩30の液面下約10mmの位置から下側に浸漬されている。これにより、多少の液面低下が許容される。   The separator 31 is made of a fluororesin film that is resistant to molten salt at a temperature at which the molten salt battery operates, and is formed so as to be porous and in a bag shape. The separator 31 is immersed together with the negative electrode 21 and the positive electrode 41 from a position of about 10 mm below the liquid level of the molten salt 30 filled in a rectangular parallelepiped battery container. Thereby, a slight drop in the liquid level is allowed.

接続部材23及び43の夫々は、負極21及び正極41と外部の電気回路とを接続するための外部電極の役割を果たすものであり、溶融塩30の液面より上側に位置するようにしてある。溶融塩30は、FSI(ビスフルオロスルフォニルイミド)又はTFSI(ビストリフルオロメチルスルフォニルイミド)系アニオンと、ナトリウム及び/又はカリウムのカチオンとからなるが、これに限定されるものではない。   Each of the connection members 23 and 43 serves as an external electrode for connecting the negative electrode 21 and the positive electrode 41 to an external electric circuit, and is located above the liquid surface of the molten salt 30. . The molten salt 30 is composed of an FSI (bisfluorosulfonylimide) or TFSI (bistrifluoromethylsulfonylimide) anion and a cation of sodium and / or potassium, but is not limited thereto.

上述した構成において、外部の加熱手段を用いて電池容器全体を85℃〜95℃に加熱することにより、溶融塩30が融解して、接続部材23,43を介しての充電及び放電が可能となる。   In the above-described configuration, by heating the entire battery container to 85 ° C. to 95 ° C. using an external heating means, the molten salt 30 is melted, and charging and discharging through the connecting members 23 and 43 are possible. Become.

以下、単位組電池1について図3および図4を参照して説明する。素電池20としての4つの溶融塩電池が、隣り合う容器本体25の短辺側の側壁同士が密着するように配置される。各容器本体25内には、接続部材23,43によって並列接続された前記5つの発電要素(負極21、セパレータ31に包まれた正極41)及び1つの負極21と溶融塩30とが組み込まれている。密着された側壁の上部中央には、横方向に貫通する貫通孔25Hが設けられており、この貫通孔25Hにテフロン(登録商標)等からなる絶縁性のブッシング(軸受筒)を解して、アルミニウム合金からなるボルト51が挿通されている。ボルト51は、同じくアルミニウム合金からなるナット52により締め付けられ、素電池20が固定されると共に電気的に直列に接続される。   Hereinafter, the unit assembled battery 1 will be described with reference to FIGS. 3 and 4. Four molten salt batteries as the unit cells 20 are arranged so that the side walls on the short side of the adjacent container bodies 25 are in close contact with each other. In each container body 25, the five power generating elements (the negative electrode 21, the positive electrode 41 wrapped in the separator 31) and one negative electrode 21 and the molten salt 30 connected in parallel by the connecting members 23 and 43 are incorporated. Yes. A through-hole 25H penetrating in the lateral direction is provided in the upper center of the adhered side wall, and an insulating bushing (bearing cylinder) made of Teflon (registered trademark) or the like is opened in the through-hole 25H. A bolt 51 made of an aluminum alloy is inserted. The bolt 51 is fastened by a nut 52 made of aluminum alloy, and the unit cell 20 is fixed and electrically connected in series.

次に、溶融塩電池に用いた導電材料について説明する。溶融塩30のような電解質に接する部位にイオン化傾向が異なる金属(導電材料)を置いた場合、一方の金属から他の金属に電流が流れることによって電蝕が発生する。このため、本実施の形態では、上述したように、接続タブ22,42、接続部材23,43、ボルト51及びナット52は、負極21及び正極41と同種の導電材料(本実施の形態ではアルミニウム合金)を含むようにしてあり、電蝕の発生が防止されている。上述したように、電池容器もアルミニウム合金からなる。   Next, the conductive material used for the molten salt battery will be described. When a metal (conductive material) having a different ionization tendency is placed at a site in contact with the electrolyte, such as the molten salt 30, electric corrosion occurs due to current flowing from one metal to the other. For this reason, in this embodiment, as described above, the connection tabs 22 and 42, the connection members 23 and 43, the bolt 51 and the nut 52 are made of the same conductive material as the negative electrode 21 and the positive electrode 41 (in this embodiment, aluminum). Alloy) and the occurrence of electrolytic corrosion is prevented. As described above, the battery container is also made of an aluminum alloy.

以上の通り、素電池20同士はその電池容器の側面を密着させるように配置されて単位組電池1を構成し、また、単位組電池1同士はその構成要素としての素電池20の側面を密着させるように配置されて全体の組電池10を構成している。これにより、加熱手段であるヒーター3により生じた熱が、それぞれの密着面を介して隣接する単位組電池あるいは素電池に効率よく伝わる。よって、このように加熱手段を伴い常温よりも高温の状態に保持して運転される電池に特有の効果として、組み込まれた各素電池の温度を均一に保ち、また短時間で昇温することにより運転開始時間を短くすることができるなどの利点が得られる。   As described above, the unit cells 20 are arranged so that the side surfaces of the battery containers are in close contact with each other to form the unit assembled battery 1, and the unit assembled cells 1 are in close contact with the side surfaces of the unit cells 20 as the constituent elements. Thus, the entire assembled battery 10 is arranged. Thereby, the heat generated by the heater 3 which is a heating means is efficiently transmitted to the adjacent unit assembled battery or unit cell via the respective contact surfaces. Therefore, as an effect peculiar to a battery that is operated while being held at a temperature higher than room temperature with a heating means in this way, the temperature of each incorporated unit cell is kept uniform and the temperature is raised in a short time. As a result, advantages such as shortening the operation start time can be obtained.

以上本発明の実施の形態について説明を行ったが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれらに限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited thereto. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

1 単位組電池
2 筐体
3 ヒーター
4a,4b 接続端子板
5 ボルト
6 板バネ
7 断熱材
10 組電池
11a,11b 面
20 素電池
21 負極
22,42 接続タブ
23,43 接続部材
231,431 腕部
232,432 接続板部
233,433 取付孔
25 容器本体
25A,25B 側壁
25H 貫通孔
26 蓋体
30 溶融塩
31 セパレータ
41 正極
51 ボルト
52 ナット
DESCRIPTION OF SYMBOLS 1 Unit assembled battery 2 Housing | casing 3 Heater 4a, 4b Connection terminal board 5 Bolt 6 Leaf spring 7 Heat insulating material 10 Assembly battery 11a, 11b Surface 20 Unit cell 21 Negative electrode 22, 42 Connection tab 23, 43 Connection member 231,431 Arm 232, 432 Connecting plate portion 233, 433 Mounting hole 25 Container body 25A, 25B Side wall 25H Through hole 26 Lid 30 Molten salt 31 Separator 41 Positive electrode 51 Bolt 52 Nut

Claims (7)

複数の素電池が組み合わされて筐体内に収納され、室温より高い温度にて動作させられる組電池であって、
前記素電池を形成するケースが、隣接する他の前記素電池と対向する平面を有しており、
前記隣接する素電池は、互いに前記平面を密着する状態で組み付けられていることを特徴とする組電池。
A battery pack in which a plurality of unit cells are combined and housed in a housing and operated at a temperature higher than room temperature,
The case forming the unit cell has a flat surface facing the other unit cell adjacent thereto,
The adjacent unit cells are assembled in a state in which the flat surfaces are in close contact with each other.
前記素電池は、室温より高い温度で溶融する溶融塩を電解質として用いた溶融塩電池であることを特徴とする請求項1に記載の組電池。   The assembled battery according to claim 1, wherein the unit cell is a molten salt battery using a molten salt that melts at a temperature higher than room temperature as an electrolyte. 前記ケースの材質は金属であり、前記密着される面の表面粗さRaが5μm以下であることを特徴とする請求項2に記載の組電池。   The assembled battery according to claim 2, wherein a material of the case is metal, and a surface roughness Ra of the surface to be adhered is 5 µm or less. 前記ケースが略直方体形状であり、前記密着される面とは異なる面に、電極を有することを特徴とする請求項1〜3のいずれか1項に記載の組電池。   The assembled battery according to claim 1, wherein the case has a substantially rectangular parallelepiped shape, and has an electrode on a surface different from the surface to be adhered. 前記素電池が密着する方向に前記素電池を加圧する加圧手段を前記筐体内に有することを特徴とする、請求項1〜4のいずれか1項に記載の組電池。   The assembled battery according to any one of claims 1 to 4, further comprising: a pressurizing unit that pressurizes the unit cell in a direction in which the unit cell is in close contact. 前記筐体内に前記素電池を加熱するヒーターを備えることを特徴とする請求項1〜5のいずれか1項に記載の組電池。   The assembled battery according to any one of claims 1 to 5, further comprising a heater for heating the unit cell in the housing. 素電池を形成するケースが略直方体形状をなし、
前記素電池がn個直列に接続され、当該直列に接続された素電池の組がm個並列に接続されてなり、
前記直列に接続される素電池のケース同士、および/または前記並列に接続される素電池の組のケース同士が、その隣接する面を密着する状態で組み付けられており、
前記並列に接続されたm個の素電池の組の間に、少なくとも1つの加熱手段を備えることを特徴とする組電池。
The case forming the unit cell has a substantially rectangular parallelepiped shape,
The n unit cells are connected in series, and a set of the unit cells connected in series is connected in parallel.
Cases of unit cells connected in series and / or cases of a set of unit cells connected in parallel are assembled in a state in which their adjacent surfaces are in close contact with each other,
An assembled battery comprising at least one heating means between the set of m unit cells connected in parallel.
JP2011036597A 2011-02-23 2011-02-23 Battery pack Pending JP2012174571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036597A JP2012174571A (en) 2011-02-23 2011-02-23 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036597A JP2012174571A (en) 2011-02-23 2011-02-23 Battery pack

Publications (1)

Publication Number Publication Date
JP2012174571A true JP2012174571A (en) 2012-09-10

Family

ID=46977298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036597A Pending JP2012174571A (en) 2011-02-23 2011-02-23 Battery pack

Country Status (1)

Country Link
JP (1) JP2012174571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101551403B1 (en) * 2013-12-26 2015-09-09 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306552A (en) * 1996-05-20 1997-11-28 Mitsubishi Heavy Ind Ltd High temperature operation battery apparatus
JP2002509342A (en) * 1997-12-12 2002-03-26 イドロ−ケベック Lithium-polymer type battery and control system
JP2002329483A (en) * 2001-05-02 2002-11-15 Daiwa Kasei Ind Co Ltd Battery case and its manufacturing method
JP2003151620A (en) * 2001-11-16 2003-05-23 Ngk Insulators Ltd Sodium-sulfur battery
JP2011014436A (en) * 2009-07-03 2011-01-20 Panasonic Corp Battery heating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306552A (en) * 1996-05-20 1997-11-28 Mitsubishi Heavy Ind Ltd High temperature operation battery apparatus
JP2002509342A (en) * 1997-12-12 2002-03-26 イドロ−ケベック Lithium-polymer type battery and control system
JP2002329483A (en) * 2001-05-02 2002-11-15 Daiwa Kasei Ind Co Ltd Battery case and its manufacturing method
JP2003151620A (en) * 2001-11-16 2003-05-23 Ngk Insulators Ltd Sodium-sulfur battery
JP2011014436A (en) * 2009-07-03 2011-01-20 Panasonic Corp Battery heating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014031643; 社団法人 金属表面技術協会: 金属表面技術便覧 2版, 19771225, 13-16ページ, 日刊工業新聞社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101551403B1 (en) * 2013-12-26 2015-09-09 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery module

Similar Documents

Publication Publication Date Title
JP5209036B2 (en) Battery assembly, electric vehicle, and battery housing
KR101307992B1 (en) Battery module with cooling structure of high efficiency
JP2012174572A (en) Battery pack
KR101914797B1 (en) Power storage module
JP6564949B2 (en) Battery module, battery pack including the same, and automobile
KR101106103B1 (en) Battery Module of Improved Safety
KR101501026B1 (en) Battery Module with Excellent Cooling Efficiency and Compact Structure
KR101252944B1 (en) Battery pack with enhanced radiating ability
KR101252963B1 (en) Battery pack with enhanced radiating ability
CN108352588B (en) Battery module, battery pack having the same, and vehicle
KR20140039350A (en) Battery module of improved cooling efficiency
KR102026386B1 (en) Battery module
JP2018536975A (en) Battery module, battery pack including the same, and automobile
WO2020054228A1 (en) Power supply device
KR20190049682A (en) A battery carrier comprising a phase change material
US11843101B2 (en) Battery pack
JP6954213B2 (en) Control method of filling member, assembled battery and heat transfer
JP2012174570A (en) Battery pack
JP2012174571A (en) Battery pack
JP5691932B2 (en) Secondary battery
JP7343419B2 (en) Solid state battery cells and solid state battery modules
JP2012238492A (en) Battery pack
JP7085555B2 (en) Battery pack
JP2009016235A (en) Power storage device
JP6499043B2 (en) Electrochemical devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141215