JP2012174570A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2012174570A
JP2012174570A JP2011036596A JP2011036596A JP2012174570A JP 2012174570 A JP2012174570 A JP 2012174570A JP 2011036596 A JP2011036596 A JP 2011036596A JP 2011036596 A JP2011036596 A JP 2011036596A JP 2012174570 A JP2012174570 A JP 2012174570A
Authority
JP
Japan
Prior art keywords
unit
unit cell
assembled battery
battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011036596A
Other languages
Japanese (ja)
Inventor
Koji Nitta
耕司 新田
Shinji Inazawa
信二 稲澤
Shoichiro Sakai
将一郎 酒井
Atsushi Fukunaga
篤史 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011036596A priority Critical patent/JP2012174570A/en
Publication of JP2012174570A publication Critical patent/JP2012174570A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack composed of plural unit cells capable of operating at temperatures above room temperature, which can keep the internal temperature of each unit cell uniform and furthermore can raise the temperature of each unit cell to an operating temperature quickly and also reduce the whole size of the battery accommodated in a heat insulated container to make it compact.SOLUTION: Inside an enclosure 2 as a heat insulated container constituting a battery pack 10 are accommodated nine pieces of a flat shaped unit battery pack 1 which are laminated in the thickness direction thereof. The unit battery packs 1 themselves are arranged in such a way that unit cells as the constituent elements thereof are stuck fast to each other's side faces to compose the whole battery pack 10. A heater 3 for heating the unit battery packs 1 is placed in between adjacent unit battery packs 1 in such a way that the wide face thereof is in contact with the wide faces of the unit battery packs 1.

Description

本発明は、室温より高い温度にて動作させられる素電池を複数接続した組電池に関し、特に溶融塩電池に適した組電池に関する。   The present invention relates to an assembled battery in which a plurality of unit cells operated at a temperature higher than room temperature are connected, and more particularly to an assembled battery suitable for a molten salt battery.

電力貯蔵や自動車向けの比較的大型の二次電池の開発が進められている。所望の電圧及び所望の容量を得るためには、複数の素電池(単電池)を直並列に接続した組電池が用いられる。
常温で動作させる組電池として、リチウムイオン電池やニッケルマンガン電池の素電池を複数接続した組電池が知られている。この組電池においては、充放電の際に組電池を構成する各素電池内で熱が発生するため、発生した熱を速やかに冷却できるように組電池の放熱性を確保することが要求される。例えば、特許文献1においては、隣接する各素電池間に放熱部材として機能し得る間隔保持板(スペーサ)を挟んで組電池の放熱性を高めている。
Development of relatively large secondary batteries for power storage and automobiles is ongoing. In order to obtain a desired voltage and a desired capacity, an assembled battery in which a plurality of unit cells (single cells) are connected in series and parallel is used.
As an assembled battery operated at room temperature, an assembled battery in which a plurality of unit cells of lithium ion batteries and nickel manganese batteries are connected is known. In this assembled battery, heat is generated in each unit cell constituting the assembled battery at the time of charging / discharging. Therefore, it is required to ensure the heat dissipation of the assembled battery so that the generated heat can be quickly cooled. . For example, in patent document 1, the heat dissipation of the assembled battery is enhanced by sandwiching a spacing plate (spacer) that can function as a heat dissipation member between adjacent unit cells.

また、室温よりも高い温度で動作させる組電池として、ナトリウム硫黄電池の素電池を複数接続した組電池が知られている。この組電池は保温のため真空断熱容器に収容されており、また、安全性の問題から各素電池の隙間には絶縁性の砂が充填され、各素電池を動揺しないように固定すると同時に局所的な異常加熱や活物質の漏洩を防止している。
また、この組電池の動作温度は300〜350℃という高温度であり、組電池をこの温度まで昇温する必要があるとともに、組電池を構成する各素電池の特性を十分に引き出すため、組電池を収容した断熱容器内の温度分布を均一にする必要がある。例えば、特許文献2や特許文献3においては、断熱容器内の底面や周壁面に電気ヒータを設置し、そのヒータにより断熱容器内の温度を制御している。
As an assembled battery operated at a temperature higher than room temperature, an assembled battery in which a plurality of sodium sulfur battery cells are connected is known. This assembled battery is housed in a vacuum insulation container for heat insulation, and for safety reasons, the gap between each unit cell is filled with insulating sand, and the unit cell is fixed so as not to shake, and at the same time, locally. Abnormal heating and leakage of active material are prevented.
In addition, the operating temperature of this assembled battery is a high temperature of 300 to 350 ° C., and it is necessary to raise the assembled battery to this temperature, and in order to fully draw out the characteristics of each unit cell constituting the assembled battery, It is necessary to make the temperature distribution in the insulated container containing the battery uniform. For example, in Patent Document 2 and Patent Document 3, an electric heater is installed on the bottom surface and the peripheral wall surface in the heat insulating container, and the temperature in the heat insulating container is controlled by the heater.

特開2006−48996号公報JP 2006-48996 A 特開平11−162507号公報JP 11-162507 A 特開2003−234132号公報JP 2003-234132 A

本発明者らは、100℃以下の温度で動作し、加熱時の安全性の高い溶融塩電池の素電池を複数接続した組電池を開発している。かかる溶融塩電池は、常温では固体の塩を比較的低温に加熱して溶融塩とし、電解質として用いる。このため、加熱手段を備えるとともに組電池を断熱容器に収容することで、電解質を溶融状態に維持しつつ運転する必要がある。
この溶融塩電池の組電池においては、各素電池内部の温度の均一性が要求される。電解質である溶融塩の温度にばらつきがあると、温度の高い部分では溶融塩の局所的な蓄熱により電池寿命の低下を引き起こし、また、温度の低い部分ではイオン伝導度が大きく低下して電池の内部抵抗の不均一が発生し、特定の電池のみに過大な電流が流れるなどの負荷の分布による特性の低下、電池寿命の低下を引き起こす。
また、溶融塩電池の組電池を電気自動車やハイブリッド自動車の二次電池に用いる場合には、組電池をできる限り早く動作温度まで昇温させる必要がある。また、断熱容器に収容した組電池全体の大きさを小型化することも要求される。
The present inventors have developed an assembled battery in which a plurality of unit cells of a molten salt battery that operate at a temperature of 100 ° C. or less and have high safety during heating are connected. Such a molten salt battery is used as an electrolyte by heating a solid salt at a relatively low temperature to a molten salt at room temperature. For this reason, it is necessary to operate | move, maintaining an electrolyte in a molten state by providing a heating means and accommodating an assembled battery in a heat insulation container.
In the battery pack of this molten salt battery, the uniformity of the temperature inside each unit cell is required. If the temperature of the molten salt, which is an electrolyte, varies, the battery life decreases due to local heat storage in the molten salt at high temperatures, and the ionic conductivity decreases significantly at low temperatures, causing the battery Unevenness of internal resistance occurs, leading to deterioration of characteristics due to load distribution such as excessive current flowing only to a specific battery, and reduction of battery life.
Moreover, when using the assembled battery of a molten salt battery for the secondary battery of an electric vehicle or a hybrid vehicle, it is necessary to raise the assembled battery to the operating temperature as soon as possible. In addition, it is required to reduce the size of the entire assembled battery housed in the heat insulating container.

しかしながら、上述のナトリウム硫黄電池の組電池のように、断熱容器内の底面や周壁面に加熱手段を備える場合、各素電池内部の温度を均一に保つためには断熱容器を構成する断熱材を厚くする必要があるため、断熱容器に収容した組電池全体の大きさが大型化するという問題がある。
また、底面や周壁面の加熱手段に近い素電池は早く動作温度まで昇温することができるが、加熱手段から遠い素電池は動作温度まで昇温するのに時間がかかるという問題がある。
However, when the heating means is provided on the bottom surface and the peripheral wall surface in the heat insulating container as in the above-mentioned sodium-sulfur battery assembled battery, in order to keep the temperature inside each unit cell uniform, the heat insulating material constituting the heat insulating container is used. Since it is necessary to make it thick, there exists a problem that the magnitude | size of the whole assembled battery accommodated in the heat insulation container will enlarge.
Moreover, although the unit cell close to the heating means on the bottom surface or the peripheral wall surface can be quickly raised to the operating temperature, there is a problem that it takes time to raise the unit cell far from the heating unit to the operating temperature.

本発明は斯かる事情に鑑みてなされたものであり、各素電池内部の温度を均一に保つことができるとともに、各素電池を動作温度まで早く昇温させることができ、かつ、断熱容器に収容した全体の大きさを小型化可能な組電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and can keep the temperature inside each unit cell uniform and can raise the temperature of each unit cell to the operating temperature quickly. It aims at providing the assembled battery which can reduce the magnitude | size of the whole accommodated.

本発明に係る組電池は、複数の扁平形状の素電池がその厚み方向に積層されて断熱容器に収容され、室温より高い温度にて動作させられる組電池であって、前記素電池を加熱する扁平形状の加熱手段を備え、前記加熱手段は、その幅広面が前記素電池の幅広面と接するように、隣接する前記素電池間に介在されている(請求項1)。   An assembled battery according to the present invention is an assembled battery in which a plurality of flat-shaped unit cells are stacked in the thickness direction and accommodated in a heat insulating container and operated at a temperature higher than room temperature, and the unit cell is heated. A flat heating means is provided, and the heating means is interposed between the adjacent unit cells so that the wide surface thereof is in contact with the wide surface of the unit cell (Claim 1).

本発明によれば、隣接する素電池間に加熱手段が介在されているため、組電池の内側から素電池を昇温することができる。このため、組電池の外側から加熱する従来の方法よりも、各素電池内部の温度を均一に保ち易く、また、各素電池を動作温度まで早く昇温させることができる。また、断熱容器を薄くすることができるため、断熱容器に収容した組電池全体の大きさを小さくすることができる。
なお、ここでいう断熱容器とは、断熱材を内部に備える容器であればよく、容器が断熱材と一体になっていることを要しない。
According to the present invention, since the heating means is interposed between the adjacent unit cells, the unit cells can be heated from the inside of the assembled cell. For this reason, it is easier to keep the temperature inside each unit cell uniform than in the conventional method of heating from the outside of the assembled cell, and each unit cell can be raised to the operating temperature faster. Moreover, since a heat insulation container can be made thin, the magnitude | size of the whole assembled battery accommodated in the heat insulation container can be made small.
In addition, the heat insulation container here should just be a container which equips an inside with a heat insulating material, and does not require that a container is united with a heat insulating material.

特に、前記素電池は、室温より高い温度で溶融する溶融塩を電解質として用いた溶融塩電池であると、本発明の効果が著しく、好ましい(請求項2)。   In particular, the effect of the present invention is remarkably preferable when the unit cell is a molten salt cell using a molten salt that melts at a temperature higher than room temperature as an electrolyte (claim 2).

隣接する素電池間に加熱手段が介在されていることにより、素電池の電解質である溶融塩の温度を均一に保つことができるため、電池寿命の低下や電池特性の低下を防止することができる。   Since the heating means is interposed between the adjacent unit cells, the temperature of the molten salt, which is the electrolyte of the unit cell, can be kept uniform, so that the battery life and battery characteristics can be prevented from being lowered. .

また、前記組電池は、前記加熱手段の前記幅広面と前記素電池の前記幅広面とが密着する方向に、前記素電池を加圧する加圧手段を前記断熱容器内に備えることが好ましい(請求項3)。   Moreover, it is preferable that the said assembled battery is equipped with the pressurization means which pressurizes the said unit cell in the said heat insulation container in the direction which the said wide surface of the said heating means and the said wide surface of the said unit cell contact | adhere (invention). Item 3).

加熱手段と素電池との密着性が高まり、加熱手段から素電池への熱伝導性が良くなるため、素電池内部の温度を均一に保ち易い。また、素電池を動作温度まで早く昇温させることができる。   Since the adhesiveness between the heating means and the unit cell is increased and the thermal conductivity from the heating unit to the unit cell is improved, the temperature inside the unit cell can be easily kept uniform. In addition, the temperature of the unit cell can be raised quickly to the operating temperature.

また、前記加熱手段は、前記素電池が複数積層される毎に前記素電池間に介在されていることが好ましい(請求項4)。   The heating means is preferably interposed between the unit cells every time a plurality of the unit cells are stacked.

素電池が積層される毎に、隣接する素電池間に加熱手段が介在されていると、各素電池内部の温度を均一に保ち易く、また、各素電池を早く昇温させることはできるが、加熱手段の数が増えることから、組電池全体のコスト増と容積増を招く。そこで、複数の素電池が積層される毎に、隣接する素電池間に加熱手段が介在されるようにすることで、各素電池の内部温度の均一性・昇温の速度と、組電池全体のコスト・容積とのバランスを良好にすることができる。   If a heating means is interposed between adjacent unit cells each time the unit cells are stacked, the temperature inside each unit cell can be easily maintained, and each unit cell can be heated quickly. Since the number of heating means increases, the cost and volume of the entire assembled battery increase. Therefore, each time a plurality of unit cells are stacked, a heating means is interposed between adjacent unit cells, so that the uniformity of the internal temperature of each unit cell, the rate of temperature rise, and the entire assembled battery The balance between cost and volume can be improved.

また、前記加熱手段は、さらに、前記断熱容器の内壁面に対向する幅広面を備える前記素電池に対し、当該加熱手段の幅広面が当該素電池の前記幅広面と対向するように設置されていることが好ましい(請求項5)。   Further, the heating means is further installed with respect to the unit cell having a wide surface facing the inner wall surface of the heat insulating container so that the wide surface of the heating unit faces the wide surface of the unit cell. (Claim 5).

組電池の内側から素電池を加熱するだけでなく、組電池の外側からも素電池を加熱することで、各素電池内部の温度をより均一に保ち易く、また、各素電池を動作温度までより早く昇温させることができる。   By heating the unit cell not only from the inside of the assembled battery but also from the outside of the assembled cell, it is easy to keep the temperature inside each unit cell more uniform, and each unit cell can be operated up to the operating temperature. The temperature can be raised more quickly.

また、前記素電池が直方体形状であると(請求項6)、素電池と加熱手段とを互いに密着させやすいため、各素電池内部の温度を均一に保ち易く、また、各素電池を動作温度まで早く昇温させることができる。なお、直方体形状には略直方体形状も含まれるものとする。   Further, when the unit cell has a rectangular parallelepiped shape (Claim 6), the unit cell and the heating means are easily brought into close contact with each other, so that the temperature inside each unit cell can be easily maintained, and each unit cell is operated at an operating temperature. The temperature can be raised quickly. The rectangular parallelepiped shape includes a substantially rectangular parallelepiped shape.

本発明によれば、各素電池内部の温度を均一に保つことができるとともに、各素電池を動作温度まで早く昇温させることができ、かつ、断熱容器に収容した全体の大きさを小型化することができる。   According to the present invention, the temperature inside each unit cell can be kept uniform, each unit cell can be quickly raised to the operating temperature, and the overall size accommodated in the heat insulating container can be reduced. can do.

実施の形態1に係る組電池の全体構造を説明する斜視図である。It is a perspective view explaining the whole assembled battery structure concerning Embodiment 1. FIG. 図1のA−A’部で切った断面を模式的に示した図である。It is the figure which showed typically the cross section cut in the A-A 'part of FIG. 実施の形態1に係る組電池の一例として、図1に用いる単位組電池の構成を説明する図である。It is a figure explaining the structure of the unit assembled battery used for FIG. 1 as an example of the assembled battery which concerns on Embodiment 1. FIG. 実施の形態1に係る組電池に用いる素電池の一例としての溶融塩電池の構成を示す図であり、Aは溶融塩電池の内部構成を模式的に示す上面図、Bは同縦断面図である。It is a figure which shows the structure of the molten salt battery as an example of the unit cell used for the assembled battery which concerns on Embodiment 1, A is a top view which shows typically the internal structure of a molten salt battery, B is the longitudinal cross-sectional view. is there. 加熱シミュレーション対象とした組電池の1/2モデルを説明するための図である。It is a figure for demonstrating the 1/2 model of the assembled battery made into heating simulation object. 1/2モデルの組電池を用いて加熱シミュレーションを実施したときの各素電池の温度変化を示すグラフである。It is a graph which shows the temperature change of each unit cell when a heating simulation is implemented using the assembled battery of 1/2 model.

実施の形態1:
以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図1は、実施の形態1に係る組電池の全体構造を説明する斜視図である。内部を説明するために一部を開口して表現している。図1は、素電池が4個直列に接続されてなる単位組電池を9個並列に接続されてなる組電池の構成例である。
図1において、組電池10を構成する断熱容器としての筐体2内には、9個の扁平形状の単位組電池1がその厚み方向に積層されて収容されている。単位組電池1は直方体形状であり、両端部側面に充放電のための端子が形成されている。本例において筐体2の大きさは295×720×450mmである。9個の各単位組電池1は、並列に並べられ、接続端子板4aおよび4bにボルト5によりそれぞれ固定されて電気的に並列に接続されている。接続端子板はその端部を筐体2の外部に引き出す構造になっており、接続端子板4aがプラス極、接続端子板4bがマイナス極として利用される。また各単位組電池1は複数の加熱手段としてのヒーター3により加熱される。ヒーターは扁平形状であり、外部からの配線(図示せず)により通電され、その発熱により組電池10を室温よりも高温状態に維持できるように加熱する。温度調節は温度センサと制御回路による既知の制御手段により行うことができる。
Embodiment 1:
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view illustrating the overall structure of the assembled battery according to Embodiment 1. FIG. In order to explain the inside, a part is opened. FIG. 1 is a configuration example of an assembled battery in which nine unit assembled batteries each having four unit cells connected in series are connected in parallel.
In FIG. 1, nine flat unit assembled batteries 1 are stacked and accommodated in a thickness direction in a housing 2 as a heat insulating container constituting the assembled battery 10. The unit assembled battery 1 has a rectangular parallelepiped shape, and terminals for charging and discharging are formed on the side surfaces of both ends. In this example, the size of the housing 2 is 295 × 720 × 450 mm. The nine unit assembled batteries 1 are arranged in parallel, fixed to the connection terminal plates 4a and 4b by bolts 5 and electrically connected in parallel. The connection terminal plate has a structure in which an end thereof is drawn out of the housing 2, and the connection terminal plate 4a is used as a positive electrode and the connection terminal plate 4b is used as a negative electrode. Each unit assembled battery 1 is heated by a plurality of heaters 3 as heating means. The heater has a flat shape, is energized by an external wiring (not shown), and heats the assembled battery 10 so that the assembled battery 10 can be maintained at a temperature higher than room temperature. The temperature adjustment can be performed by a known control means including a temperature sensor and a control circuit.

図2を用いて内部構成をさらに説明する。図2は図1のA−A’部で切った断面を模式的に示した図である。
筐体2の内面は断熱材7に覆われ、筐体内全体を保温するように構成されている。筐体2および断熱材7の材質は特に限定されず、組電池全体の機械的保護、保温等の観点で選択される材料を用いることができる。たとえば筺体2をアルミニウム合金で構成すると軽量化および強度の両立の点で好ましい。
The internal configuration will be further described with reference to FIG. FIG. 2 is a view schematically showing a cross section taken along the line AA ′ of FIG.
The inner surface of the housing 2 is covered with a heat insulating material 7 so as to keep the entire inside of the housing warm. The material of the housing | casing 2 and the heat insulating material 7 is not specifically limited, The material selected from viewpoints, such as mechanical protection of the whole assembled battery, heat insulation, can be used. For example, it is preferable that the casing 2 is made of an aluminum alloy in terms of both weight reduction and strength.

内部には9個の単位組電池1が並べられ、その3個毎の単位組電池間に、ヒーター3としての板状ヒーターが、その幅広面と単位組電池の幅広面とが接するように配置されている。
このように、隣接する単位組電池間(隣接する素電池間)にヒーターが介在されていることから、組電池の内側から素電池を昇温することができ、組電池の外側のみから加熱するよりも、各素電池内部の温度を均一に保ち易く、また、各素電池を動作温度まで早く昇温させることができる。また、筐体2の断熱材7の厚みを薄くすることができるため、筐体2に収容した組電池10全体の大きさを小さくすることができる。
Nine unit assembled batteries 1 are arranged inside, and a plate heater as a heater 3 is arranged between every three unit assembled batteries so that the wide surface and the wide surface of the unit assembled battery are in contact with each other. Has been.
Thus, since the heater is interposed between adjacent unit assembled batteries (between adjacent unit cells), the temperature of the unit cells can be increased from the inside of the assembled battery, and is heated only from the outside of the assembled battery. As a result, the temperature inside each unit cell can be easily maintained, and each unit cell can be raised to the operating temperature quickly. Moreover, since the thickness of the heat insulating material 7 of the housing | casing 2 can be made thin, the magnitude | size of the assembled battery 10 accommodated in the housing | casing 2 can be made small.

また、ヒーター3は、両端側の単位組電池1、すなわち、断熱材7の内壁面に対向する幅広面を備える単位組電池に対し、ヒーター3の幅広面が当該単位組電池の幅広面と対向するように設置されている。
このように、組電池の外側からも素電池を加熱することにより、各素電池内部の温度をより均一に保ち易く、また、各素電池を動作温度までより早く昇温させることができる。
Further, the heater 3 has the wide surface of the heater 3 facing the wide surface of the unit assembled battery 1 with respect to the unit assembled battery 1 on both ends, that is, the unit assembled battery having a wide surface facing the inner wall surface of the heat insulating material 7. It is installed to do.
Thus, by heating the unit cell from the outside of the assembled battery, the temperature inside each unit cell can be maintained more uniformly, and each unit cell can be raised to the operating temperature more quickly.

単位組電池1とヒーター3とは、より密着して接するように板バネ6によって単位組電池1の積層方向に加圧付勢されている。ここで、密着とは、通常の意味において顕著な隙間無く、面と面が互いに接している状態をいうものであり、言い換えれば面と面の間を流体が容易に流動しない程度に接している状態である。
これにより、単位組電池(素電池)とヒーターとの密着性が高まり、ヒーターから単位組電池(素電池)への熱伝導性が良くなるため、素電池内部の温度を均一に保ち易い。また、各素電池を動作温度まで早く昇温させることができる。さらに、組電池全体の振動や断熱材等の長期的な変形などがあっても密着が崩れない効果がある。
なお、密着するように並べられた単位組電池1とヒーター3のそれぞれの間に隙間が生じないように付勢する加圧手段であれば、板バネに限定されるものではない。
The unit assembled battery 1 and the heater 3 are pressed and urged in the stacking direction of the unit assembled battery 1 by the leaf spring 6 so as to come into close contact with each other. Here, the close contact means a state in which the surfaces are in contact with each other without a noticeable gap in a normal sense. In other words, the surfaces are in contact with each other so that the fluid does not easily flow between the surfaces. State.
Thereby, the adhesiveness between the unit assembled battery (unit cell) and the heater is increased, and the thermal conductivity from the heater to the unit assembled battery (unit cell) is improved, so that the temperature inside the unit cell can be easily kept uniform. In addition, each unit cell can be quickly heated to the operating temperature. Furthermore, there is an effect that the adhesion does not collapse even if there is vibration of the entire assembled battery or long-term deformation of the heat insulating material or the like.
In addition, if it is a pressurization means to urge | bias so that a clearance gap may not arise between each of the unit assembled battery 1 and the heater 3 which were arranged so that it might contact | adhere, it will not be limited to a leaf | plate spring.

ヒーター3は本例のように単位組電池(素電池)が複数積層される毎に単位組電池間(素電池間)に配置されるものに限定されず、またその数も本例に限定されるものではない。
単位組電池が1つ積層される毎に単位組電池間にヒーターを配置すると、温度の均一性及び昇温の速度の点から好ましいが、ヒーターの数が増えることから、組電池全体のコスト増と容積増を招く。そこで、本例では各素電池の内部温度の均一性・昇温速度と、組電池全体のコスト・容積とのバランスを考慮して、単位組電池が複数(例えば、3個)積層される毎に単位組電池間にヒーターを配置している。
The heater 3 is not limited to the one that is arranged between unit assembled cells (between unit cells) every time a plurality of unit assembled cells (unit cells) are stacked as in this example, and the number is also limited to this example. It is not something.
It is preferable to place a heater between the unit assembled batteries every time one unit assembled battery is stacked, from the viewpoint of uniformity of temperature and speed of temperature increase. However, since the number of heaters increases, the cost of the entire assembled battery increases. And incurs a volume increase. Therefore, in this example, each time a plurality of (for example, three) unit assembled batteries are stacked in consideration of the balance between the uniformity and temperature rise rate of the internal temperature of each unit cell and the cost and volume of the entire assembled battery. A heater is arranged between unit batteries.

ヒーター3は板状ヒーターを例示しており、これに限定されるものではないが、ヒーター3が扁平形状であれば、単位組電池(素電池)と密着させやすく、特にヒーター3が板状ヒーターであれば、直方体形状の単位組電池(素電池)とより密着させやすい。また、個々の単位組電池、あるいはその構成要素となる個々の素電池を効率よく、また出来るだけ均一に加熱するために、ヒーター3は単位組電池の側面と同程度に面積の大きな板状ヒーターが好ましい。   The heater 3 exemplifies a plate heater, and is not limited to this. However, if the heater 3 is flat, it is easy to be in close contact with a unit assembled battery (unit cell). In particular, the heater 3 is a plate heater. If it is, it will be easy to make it adhere more closely to a rectangular parallelepiped unit assembled battery (unit cell). Further, in order to efficiently and uniformly heat individual unit assembled batteries or individual unit cells constituting the unit batteries, the heater 3 is a plate heater having an area as large as the side surface of the unit assembled battery. Is preferred.

単位組電池1、あるいはその構成要素となる個々の素電池の形状は直方体形状に限られないが、直方体形状とすることで、単位組電池(素電池)と板状ヒーターとを互いに密着させやすくなるため、各素電池内部の温度を均一に保ち易く、また、各素電池を動作温度まで早く昇温させることができる。なお、ここでの直方体形状には略直方体形状も含まれるものとする。   The shape of the unit assembled battery 1 or the individual unit cells constituting the unit battery 1 is not limited to a rectangular parallelepiped shape, but the unit assembled battery (unit cell) and the plate heater can be easily adhered to each other by adopting a rectangular parallelepiped shape. Therefore, it is easy to keep the temperature inside each unit cell uniform, and each unit cell can be raised to the operating temperature quickly. Note that the rectangular parallelepiped shape here includes a substantially rectangular parallelepiped shape.

単位組電池1の隣り合う面同士(例えば図2の最も右に図示される単位組電池1の面11aとその左となりの単位組電池1の面11b)は電極等の突起を有さない平面で構成されており、互いに密着しやすいようになっている。   Adjacent surfaces of the unit assembled battery 1 (for example, the surface 11a of the unit assembled battery 1 shown on the right in FIG. 2 and the surface 11b of the unit assembled battery 1 on the left side of the unit assembled battery 1) have no projections such as electrodes. It is easy to adhere to each other.

単位組電池1の表面は金属が好ましい。単位組電池の表面は後述の例のように単位組電池を構成する素電池の表面そのものであっても良いし、素電池の組を収納する別なケースの表面であってもよい。金属は熱伝導が良好であることから好ましく用いられる。電池全体の軽量化も考慮すると、ケースにはアルミニウムまたはその合金が好ましく用いられる。さらに軽量化を目的としてマグネシウム合金を用いることも好ましい。   The surface of the unit assembled battery 1 is preferably a metal. The surface of the unit assembled battery may be the surface of the unit cell constituting the unit assembled battery as in the example described later, or may be the surface of another case that houses the unit cell set. A metal is preferably used because of its good heat conduction. Considering weight reduction of the entire battery, aluminum or an alloy thereof is preferably used for the case. It is also preferable to use a magnesium alloy for the purpose of weight reduction.

図3は、上記の単位組電池1の内部構造を説明する縦断面図である。単位組電池1は、複数の素電池を電気的に直列接続して電池電圧を高くした組電池である。本例では図3のように4つの素電池20を連結した例を示すが、連結数は4つに限定されるものではない。例えば素電池が電圧3Vの溶融塩電池であれば連結数を4つとすることで、単位組電池としての公称電圧が12Vとなり、既存の自動車用鉛蓄電池等に相当する電池として使用でき、また既存の電池に用いられる機器(例えば充電器)の流用が容易にできる点で好ましく用いられる。   FIG. 3 is a longitudinal sectional view for explaining the internal structure of the unit assembled battery 1. The unit assembled battery 1 is an assembled battery in which a plurality of unit cells are electrically connected in series to increase the battery voltage. In this example, an example in which four unit cells 20 are connected as shown in FIG. 3 is shown, but the number of connections is not limited to four. For example, if the unit cell is a molten salt battery with a voltage of 3 V, the number of connections is set to four, so that the nominal voltage as a unit assembled battery is 12 V, and it can be used as a battery corresponding to an existing lead acid battery for automobiles, etc. It is preferably used because it can be easily used for a device (for example, a charger) used for the battery.

図4は、図3を構成する素電池20としての溶融塩電池の構造を説明する図であり、図4のAは溶融塩電池の内部構成を模式的に示す上面図、Bは同溶融塩電池の構成を模式的に示す縦断面図である。   FIG. 4 is a diagram for explaining the structure of a molten salt battery as the unit cell 20 constituting FIG. 3. FIG. 4A is a top view schematically showing the internal structure of the molten salt battery, and B is the molten salt battery. It is a longitudinal cross-sectional view which shows the structure of a battery typically.

まず図4および図3を参照して素電池20から説明する。本例の溶融塩電池では、複数(図では6つ)の矩形平板状の負極21と、袋状のセパレータに各別に収容された複数(図では5つ)の矩形平板状の正極41とが、上下方向に沿う状態で交互に対向して横方向(図では前後方向)に並設されている。1組の負極21、セパレータ31及び正極41が1つの発電要素を構成し、本実施の形態では5つの発電要素及び1つの他の負極21が積層されて、直方体状のアルミニウム合金からなる電池容器内に収容されている。電池容器は、上面に開口部を有する容器本体25と、容器本体25の開口部の内周に形成された段部に内嵌されて開口部を塞ぐ矩形平板状の蓋体26とを有している。電池容器の内側は、フッ素樹脂コーティングによって絶縁処理が施されている。   First, the unit cell 20 will be described with reference to FIGS. In the molten salt battery of this example, a plurality (six in the figure) of negative electrodes 21 of a rectangular flat plate and a plurality (five in the figure) of positive electrodes 41 of a rectangular flat plate respectively accommodated in a bag-like separator. They are arranged in parallel in the horizontal direction (front-rear direction in the figure) so as to alternately face each other along the vertical direction. One set of negative electrode 21, separator 31 and positive electrode 41 constitute one power generation element, and in this embodiment, five power generation elements and one other negative electrode 21 are laminated to form a battery container made of a rectangular parallelepiped aluminum alloy. Is housed inside. The battery container includes a container body 25 having an opening on the upper surface, and a rectangular flat plate-like cover body 26 that is fitted in a step formed on the inner periphery of the opening of the container body 25 to close the opening. ing. The inside of the battery container is insulated by a fluororesin coating.

負極21のそれぞれの上端部には、容器本体25の短辺側に位置する一方の側壁25Aに近い側に、電流を取り出すための矩形のアルミニウム合金からなる接続タブ22の下端部がそれぞれ接合されている。接続タブ22及びその上部は、平面視が側壁25B側に開いたコの字状をなす接続部材23が有する2つの腕部231及び231の相対向する2面に夫々溶接されている。接続部材23は、面方向が腕部231と平行な矩形の接続板部232を有し、該接続板部232の上部中央には、側壁25Aに開設された貫通孔25Hと対向する取付孔233が設けられている。   The lower end portions of the connection tabs 22 made of a rectangular aluminum alloy for taking out current are joined to the upper end portions of the negative electrodes 21 on the side close to the one side wall 25A located on the short side of the container body 25, respectively. ing. The connection tab 22 and the upper part thereof are welded to two opposing surfaces of the two arm portions 231 and 231 included in the connection member 23 having a U-shape that is open to the side wall 25B in plan view. The connection member 23 has a rectangular connection plate portion 232 whose surface direction is parallel to the arm portion 231, and an attachment hole 233 that faces the through hole 25 </ b> H formed in the side wall 25 </ b> A at the upper center of the connection plate portion 232. Is provided.

正極41のそれぞれの上端部には、容器本体25の短辺側に位置する他方の側壁25Bに近い側に、電流を取り出すための矩形のアルミニウム合金からなる接続タブ42の下端部がそれぞれ接合されている。接続タブ42及びその上部は、平面視が側壁25A側に開いたコの字状をなす接続部材43が有する2つの腕部431及び431の相対向する2面に夫々溶接されている。接続部材43は、面方向が腕部431と平行な矩形の接続板部432を有し、該接続板部432の上部中央には、側壁25Bに開設された貫通孔25Hと対向する取付孔433が設けられている。このように、上述した5つの発電要素及び1つの負極21が電気的に並列接続されて、電池容量が大きい溶融塩電池を構成する。   The lower end portions of the connection tabs 42 made of a rectangular aluminum alloy for taking out current are joined to the upper end portions of the positive electrodes 41 on the side close to the other side wall 25B located on the short side of the container body 25, respectively. ing. The connection tab 42 and the upper part thereof are welded to two opposing surfaces of the two arm portions 431 and 431 included in the connection member 43 having a U-shape that is open to the side wall 25A in plan view. The connection member 43 has a rectangular connection plate portion 432 whose surface direction is parallel to the arm portion 431, and an attachment hole 433 facing the through hole 25 </ b> H provided in the side wall 25 </ b> B at the upper center of the connection plate portion 432. Is provided. In this way, the above-described five power generation elements and one negative electrode 21 are electrically connected in parallel to constitute a molten salt battery having a large battery capacity.

負極21は、負極活物質である錫がメッキされたアルミニウム箔からなる。アルミニウムは、正/負各電極の集電体に適した材料であり、且つ溶融塩に対して耐腐食性を有する。負極21は活物質を含めた厚さが約0.14mmであり、縦方向及び横方向夫々の寸法が、100mm及び120mmである。なお容器本体の大きさは縦方向(高さ)180mm×横方向(横幅)150mm×厚さ35mmである。   The negative electrode 21 is made of an aluminum foil plated with tin, which is a negative electrode active material. Aluminum is a material suitable for the current collector of each positive / negative electrode, and has corrosion resistance against molten salt. The thickness of the negative electrode 21 including the active material is about 0.14 mm, and the dimensions in the vertical direction and the horizontal direction are 100 mm and 120 mm, respectively. The size of the container main body is vertical (height) 180 mm × horizontal (horizontal) 150 mm × thickness 35 mm.

正極41は、アルミニウム合金の多孔質体を集電体とし、該集電体にバインダと導電助剤と正極活物質であるNaCrOとを含む合剤を充填して、約1mmの板厚に形成してある。正極41の縦方向及び横方向夫々の寸法は、デンドライトの発生を防止するために、負極21の縦方向及び横方向の寸法より小さくしてあり、正極41の外縁が、セパレータ31を介して負極21の周縁部に対向するようになっている。尚、正極41の集電体は、例えば、繊維状のアルミニウムからなる不織布であってもよい。 The positive electrode 41 uses an aluminum alloy porous body as a current collector, and the current collector is filled with a mixture containing a binder, a conductive auxiliary agent, and NaCrO 2 as a positive electrode active material, and has a thickness of about 1 mm. It is formed. The vertical dimension and the horizontal dimension of the positive electrode 41 are smaller than the vertical and horizontal dimensions of the negative electrode 21 in order to prevent the generation of dendrites. The outer edge of the positive electrode 41 is connected to the negative electrode via the separator 31. It opposes the peripheral part of 21. FIG. The current collector of the positive electrode 41 may be a nonwoven fabric made of fibrous aluminum, for example.

セパレータ31は、溶融塩電池が動作する温度で溶融塩に対する耐性を有するフッ素樹脂の膜からなり、多孔質に且つ袋状をなすように形成されている。セパレータ31は、負極21及び正極41と共に、直方体状の電池容器内に満たされた溶融塩30の液面下約10mmの位置から下側に浸漬されている。これにより、多少の液面低下が許容される。   The separator 31 is made of a fluororesin film that is resistant to molten salt at a temperature at which the molten salt battery operates, and is formed so as to be porous and in a bag shape. The separator 31 is immersed together with the negative electrode 21 and the positive electrode 41 from a position of about 10 mm below the liquid level of the molten salt 30 filled in a rectangular parallelepiped battery container. Thereby, a slight drop in the liquid level is allowed.

接続部材23及び43の夫々は、負極21及び正極41と外部の電気回路とを接続するための外部電極の役割を果たすものであり、溶融塩30の液面より上側に位置するようにしてある。溶融塩30は、FSI(ビスフルオロスルフォニルイミド)又はTFSI(ビストリフルオロメチルスルフォニルイミド)系アニオンと、ナトリウム及び/又はカリウムのカチオンとからなるが、これに限定されるものではない。   Each of the connection members 23 and 43 serves as an external electrode for connecting the negative electrode 21 and the positive electrode 41 to an external electric circuit, and is located above the liquid surface of the molten salt 30. . The molten salt 30 is composed of an FSI (bisfluorosulfonylimide) or TFSI (bistrifluoromethylsulfonylimide) anion and a cation of sodium and / or potassium, but is not limited thereto.

上述した構成において、上述のヒーター3を用いて電池容器全体を85℃〜95℃に加熱することにより、溶融塩30が融解して、接続部材23,43を介しての充電及び放電が可能となる。   In the above-described configuration, by heating the entire battery container to 85 ° C. to 95 ° C. using the heater 3 described above, the molten salt 30 is melted and can be charged and discharged via the connecting members 23 and 43. Become.

以下、単位組電池1について図3および図4を参照して説明する。素電池20としての4つの溶融塩電池が、隣り合う容器本体25の短辺側の側壁同士が密着するように配置される。各容器本体25内には、接続部材23,43によって並列接続された前記5つの発電要素(負極21、セパレータ31に包まれた正極41)及び1つの負極21と溶融塩30とが組み込まれている。密着された側壁の上部中央には、横方向に貫通する貫通孔25Hが設けられており、この貫通孔25Hにテフロン(登録商標)等からなる絶縁性のブッシング(軸受筒)を解して、アルミニウム合金からなるボルト51が挿通されている。ボルト51は、同じくアルミニウム合金からなるナット52により締め付けられ、素電池20が固定されると共に電気的に直列に接続される。   Hereinafter, the unit assembled battery 1 will be described with reference to FIGS. 3 and 4. Four molten salt batteries as the unit cells 20 are arranged so that the side walls on the short side of the adjacent container bodies 25 are in close contact with each other. In each container body 25, the five power generating elements (the negative electrode 21, the positive electrode 41 wrapped in the separator 31) and one negative electrode 21 and the molten salt 30 connected in parallel by the connecting members 23 and 43 are incorporated. Yes. A through-hole 25H penetrating in the lateral direction is provided in the upper center of the adhered side wall, and an insulating bushing (bearing cylinder) made of Teflon (registered trademark) or the like is opened in the through-hole 25H. A bolt 51 made of an aluminum alloy is inserted. The bolt 51 is fastened by a nut 52 made of aluminum alloy, and the unit cell 20 is fixed and electrically connected in series.

次に、溶融塩電池に用いた導電材料について説明する。溶融塩30のような電解質に接する部位にイオン化傾向が異なる金属(導電材料)を置いた場合、一方の金属から他の金属に電流が流れることによって電蝕が発生する。このため、本実施の形態では、上述したように、接続タブ22,42、接続部材23,43、ボルト51及びナット52は、負極21及び正極41と同種の導電材料(本実施の形態ではアルミニウム合金)を含むようにしてあり、電蝕の発生が防止されている。上述したように、電池容器もアルミニウム合金からなる。   Next, the conductive material used for the molten salt battery will be described. When a metal (conductive material) having a different ionization tendency is placed at a site in contact with the electrolyte, such as the molten salt 30, electric corrosion occurs due to current flowing from one metal to the other. For this reason, in this embodiment, as described above, the connection tabs 22 and 42, the connection members 23 and 43, the bolt 51 and the nut 52 are made of the same conductive material as the negative electrode 21 and the positive electrode 41 (in this embodiment, aluminum). Alloy) and the occurrence of electrolytic corrosion is prevented. As described above, the battery container is also made of an aluminum alloy.

以上のように、素電池20同士はその電池容器の側面を密着させるように配置されて単位組電池1を構成し、また、単位組電池1同士はその構成要素としての素電池20の側面を密着させるように配置されて全体の組電池10を構成している。
この溶融塩電池の組電池10は、各素電池20内部の温度の均一性が要求される。電解質である溶融塩の温度にばらつきがあると、温度の高い部分では溶融塩の局所的な蓄熱により電池寿命の低下を引き起こし、また、温度の低い部分ではイオン伝導度が大きく低下して電池の内部抵抗の不均一が発生し、特定の電池のみに過大な電流が流れるなどの負荷の分布による特性の低下、電池寿命の低下を引き起こす。
また、溶融塩電池の組電池10を電気自動車やハイブリッド自動車の二次電池に用いる場合には、組電池をできる限り早く動作温度まで昇温させる必要がある。また、断熱容器に収容した組電池全体の大きさを小型化することも要求される。
そこで、実施形態1に係る溶融塩電池の組電池10においては、ヒーター3を、その幅広面が単位組電池1(素電池20)の幅広面と接するように、隣接する単位組電池1(素電池20)間に介在させている。
これにより、組電池10の内側から素電池20を昇温することができ、組電池10の外側のみから加熱するよりも、各素電池20内部の温度を均一に保ち易く、また、各素電池20を動作温度まで早く昇温させることができ、溶融塩電池の組電池10の電池寿命の低下や電池特性の低下を防止することができる。
As described above, the unit cells 20 are arranged so that the side surfaces of the battery containers are in close contact with each other to form the unit assembled battery 1, and the unit assembled cells 1 have the side surfaces of the unit cell 20 as a component. The entire battery pack 10 is arranged so as to be in close contact with each other.
The battery pack 10 of the molten salt battery is required to have a uniform temperature inside each unit cell 20. If the temperature of the molten salt, which is an electrolyte, varies, the battery life decreases due to local heat storage in the molten salt at high temperatures, and the ionic conductivity decreases significantly at low temperatures, causing the battery Unevenness of internal resistance occurs, leading to deterioration of characteristics due to load distribution such as excessive current flowing only to a specific battery, and reduction of battery life.
Moreover, when using the assembled battery 10 of a molten salt battery for a secondary battery of an electric vehicle or a hybrid vehicle, it is necessary to raise the temperature of the assembled battery to the operating temperature as soon as possible. In addition, it is required to reduce the size of the entire assembled battery housed in the heat insulating container.
Therefore, in the battery pack 10 of the molten salt battery according to the first embodiment, the adjacent unit assembled batteries 1 (elements) are arranged so that the heater 3 is in contact with the wide surface of the unit assembled battery 1 (unit cell 20). Interposed between the batteries 20).
Thereby, the temperature of the unit cell 20 can be raised from the inside of the assembled battery 10, and it is easier to keep the temperature inside each unit cell 20 uniform than when heating only from the outside of the assembled cell 10. 20 can be quickly raised to the operating temperature, and the battery life and battery characteristics of the battery pack 10 of the molten salt battery can be prevented from being lowered.

発明者らは、上記の組電池10について加熱シミュレーションを実施した。加熱シミュレーションの対象とした組電池10の詳細は以下の通りである。
まず、筐体2をアルミニウム製とし、筐体2の断熱材7は、厚みを50mmとした。
素電池20については、容器本体25をアルミニウム製とし、その大きさを縦方向(高さ)150mm×横方向(横幅)130mm×厚さ36mmとした。溶融塩30は、その液面が素電池20の容器本体25の底面から110mmの高さとなるように、当該素電池20の容器本体25内に注入する状態とした。
ヒーター3については、その大きさを縦方向(高さ)100mm×横方向(横幅)260mmとし、横幅が素電池20の容器本体25の2つ分の横幅に一致するようにした。また、ヒーター3の縦方向の中心が、素電池20の容器本体25において溶融塩30が満たされた部分の縦方向の中心に一致するように、ヒーター3の下端を素電池20の容器本体25の下から5mmの位置となるように配置した。周囲環境温度は25℃とし、ヒーター3の温度は100℃とした。
また、簡単のため、ヒーター3の厚みはないものとし、断熱材7と素電池20(組電池10)の隙間はないものとした。
The inventors conducted a heating simulation for the assembled battery 10 described above. The details of the assembled battery 10 subjected to the heating simulation are as follows.
First, the housing 2 is made of aluminum, and the heat insulating material 7 of the housing 2 has a thickness of 50 mm.
For the unit cell 20, the container body 25 is made of aluminum, and the size thereof is set in the vertical direction (height) 150 mm × the horizontal direction (horizontal width) 130 mm × thickness 36 mm. The molten salt 30 was poured into the container body 25 of the unit cell 20 so that the liquid level was 110 mm from the bottom surface of the container body 25 of the unit cell 20.
About the heater 3, the magnitude | size was made into the vertical direction (height) 100mm x horizontal direction (horizontal width) 260mm, and it was made for the horizontal width to correspond to the horizontal width of the two container main bodies 25 of the unit cell 20. FIG. Further, the lower end of the heater 3 is placed at the container body 25 of the unit cell 20 so that the center in the vertical direction of the heater 3 coincides with the center of the unit body 25 of the unit cell 20 filled with the molten salt 30. It arrange | positioned so that it might become a position of 5 mm from the bottom. The ambient environment temperature was 25 ° C., and the temperature of the heater 3 was 100 ° C.
For simplicity, it is assumed that the heater 3 is not thick and there is no gap between the heat insulating material 7 and the unit cell 20 (the assembled battery 10).

図5は、加熱シミュレーション対象とした組電池の1/2モデルを説明するための図である。図5は、上記の組電池10の縦方向(高さ方向)の中心における断面を上から見た図であり、組電池10の太線で囲った右半分を加熱シミュレーションの対象とした。
組電池10の1/2モデルには素電池20が18個含まれており、図5に示すようにそれぞれに20−1〜20−18の番号を付した。
ヒーター3は、素電池20−1と断熱材7の間、素電池20−10と断熱材7の間、素電池20−3と素電池20−4の間、素電池20−12と素電池20−13の間、素電池20−6と素電池20−7の間、素電池20−15と素電池20−16の間、素電池20−9と断熱材7の間、素電池20−18と断熱材7の間に配置されている。
FIG. 5 is a diagram for explaining a half model of the assembled battery as a heating simulation target. FIG. 5 is a view of the cross section at the center in the longitudinal direction (height direction) of the assembled battery 10 as viewed from above, and the right half surrounded by the thick line of the assembled battery 10 is the subject of the heating simulation.
The half model of the assembled battery 10 includes 18 unit cells 20, and numbers 20-1 to 20-18 are assigned to the unit cells 20 as shown in FIG. 5.
The heater 3 is provided between the unit cell 20-1 and the heat insulating material 7, between the unit cell 20-10 and the heat insulating material 7, between the unit cell 20-3 and the unit cell 20-4, and between the unit cell 20-12 and the unit cell. 20-13, between unit cell 20-6 and unit cell 20-7, between unit cell 20-15 and unit cell 20-16, between unit cell 20-9 and heat insulating material 7, between unit cell 20- 18 and the heat insulating material 7.

図6は、1/2モデルの組電池を用いて加熱シミュレーションを実施したときの各素電池の温度変化を示すグラフである。図6において、曲線Aは18個の素電池のうちヒーター3に隣接している素電池20(素電池20−1、20−3、20−4、20−6、20−7、20−9、20−10、20−12、20−13、20−15、20−16、20−18)の温度変化を示すものであり、曲線Bはヒーター3に隣接していない素電池20(素電池20−2、20−5、20−8、20−11、20−14、20−17)の温度変化を示すものである。
図6から、ヒーター3に隣接している素電池20は溶融塩電池の動作温度である85℃に約10分で到達しており、ヒーター3に隣接していない素電池20は90℃に約13分で到達しており、いずれの素電池も溶融塩電池の動作温度に早く達していることがわかる。
このように、ヒーター3を、素電池20が3つ積層される毎に素電池20間に配置する構成とすることにより、組電池全体のコストと容積が大きくなることを抑制しつつ、各素電池20を組電池10の動作温度まで早く昇温させることができる。
FIG. 6 is a graph showing a temperature change of each unit cell when a heating simulation is performed using a battery model of 1/2 model. In FIG. 6, a curve A indicates a unit cell 20 (unit cell 20-1, 20-3, 20-4, 20-6, 20-7, 20-9) adjacent to the heater 3 among 18 unit cells. , 20-10, 20-12, 20-13, 20-15, 20-16, 20-18), and curve B indicates a unit cell 20 (unit cell not adjacent to the heater 3). 20-2, 20-5, 20-8, 20-11, 20-14, 20-17).
From FIG. 6, the unit cell 20 adjacent to the heater 3 has reached 85 ° C., which is the operating temperature of the molten salt battery, in about 10 minutes, and the unit cell 20 not adjacent to the heater 3 is about 90 ° C. It has been reached in 13 minutes, and it can be seen that all the unit cells reached the operating temperature of the molten salt battery early.
As described above, by arranging the heater 3 between the unit cells 20 every time three unit cells 20 are stacked, each unit cell is suppressed from increasing in cost and volume. The battery 20 can be quickly heated up to the operating temperature of the assembled battery 10.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
例えば、上述の実施の形態においては、素電池は直方体形状のアルミニウム合金からなる容器で形成される構成であったが、これに限定されるわけではなく、扁平の袋状のラミネートフィルムからなる容器で形成される構成であっても良い。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
For example, in the above-described embodiment, the unit cell is configured with a container made of a rectangular parallelepiped aluminum alloy, but is not limited thereto, and is a container made of a flat bag-like laminate film. The structure formed by may be sufficient.

1 単位組電池
2 筐体
3 ヒーター
4a,4b 接続端子板
5 ボルト
6 板バネ
7 断熱材
10 組電池
11a,11b 面
20 素電池
21 負極
22,42 接続タブ
23,43 接続部材
231,431 腕部
232,432 接続板部
233,433 取付孔
25 容器本体
25A,25B 側壁
25H 貫通孔
26 蓋体
30 溶融塩
31 セパレータ
41 正極
51 ボルト
52 ナット
DESCRIPTION OF SYMBOLS 1 Unit assembled battery 2 Housing | casing 3 Heater 4a, 4b Connection terminal board 5 Bolt 6 Leaf spring 7 Heat insulating material 10 Assembly battery 11a, 11b Surface 20 Unit cell 21 Negative electrode 22, 42 Connection tab 23, 43 Connection member 231, 431 Arm 232, 432 Connecting plate portion 233, 433 Mounting hole 25 Container body 25A, 25B Side wall 25H Through hole 26 Cover body 30 Molten salt 31 Separator 41 Positive electrode 51 Bolt 52 Nut

Claims (6)

複数の扁平形状の素電池がその厚み方向に積層されて断熱容器に収容され、室温より高い温度にて動作させられる組電池であって、
前記素電池を加熱する扁平形状の加熱手段を備え、
前記加熱手段は、その幅広面が前記素電池の幅広面と接するように、隣接する前記素電池間に介在されている、
組電池。
A plurality of flat-shaped unit cells are stacked in the thickness direction and accommodated in a heat insulating container, and are operated at a temperature higher than room temperature,
A flat heating means for heating the unit cell;
The heating means is interposed between the adjacent unit cells so that the wide surface is in contact with the wide surface of the unit cell,
Assembled battery.
前記素電池は、室温より高い温度で溶融する溶融塩を電解質として用いた溶融塩電池である、
請求項1に記載の組電池。
The unit cell is a molten salt battery using, as an electrolyte, a molten salt that melts at a temperature higher than room temperature.
The assembled battery according to claim 1.
前記加熱手段の前記幅広面と前記素電池の前記幅広面とが密着する方向に、前記素電池を加圧する加圧手段を前記断熱容器内に備える、
請求項1又は2に記載の組電池。
A pressure means for pressurizing the unit cell in a direction in which the wide surface of the heating unit and the wide surface of the unit cell are in close contact with each other;
The assembled battery according to claim 1 or 2.
前記加熱手段は、前記素電池が複数積層される毎に前記素電池間に介在されている、
請求項1乃至3のいずれか1項に記載の組電池。
The heating means is interposed between the unit cells every time a plurality of the unit cells are stacked.
The assembled battery according to any one of claims 1 to 3.
前記加熱手段は、さらに、前記断熱容器の内壁面に対向する幅広面を備える前記素電池に対し、当該加熱手段の幅広面が当該素電池の前記幅広面と対向するように設置されている、
請求項1乃至4のいずれか1項に記載の組電池。
The heating means is further installed with respect to the unit cell having a wide surface facing the inner wall surface of the heat insulating container so that the wide surface of the heating unit faces the wide surface of the unit cell.
The assembled battery according to any one of claims 1 to 4.
前記素電池は、直方体形状である、
請求項1乃至5のいずれか1項に記載の組電池。
The unit cell has a rectangular parallelepiped shape.
The assembled battery according to any one of claims 1 to 5.
JP2011036596A 2011-02-23 2011-02-23 Battery pack Pending JP2012174570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036596A JP2012174570A (en) 2011-02-23 2011-02-23 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036596A JP2012174570A (en) 2011-02-23 2011-02-23 Battery pack

Publications (1)

Publication Number Publication Date
JP2012174570A true JP2012174570A (en) 2012-09-10

Family

ID=46977297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036596A Pending JP2012174570A (en) 2011-02-23 2011-02-23 Battery pack

Country Status (1)

Country Link
JP (1) JP2012174570A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968242A (en) * 2021-02-02 2021-06-15 江苏海思联新能源科技有限公司 Solid-state lithium battery with wide-temperature charging and discharging structure and manufacturing method thereof
CN113161648A (en) * 2021-03-24 2021-07-23 浙江零跑科技有限公司 Uniform heating device for batteries of electric vehicle and using method of uniform heating device
CN113851776A (en) * 2021-09-29 2021-12-28 东莞新能安科技有限公司 Battery module, battery package and consumer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306552A (en) * 1996-05-20 1997-11-28 Mitsubishi Heavy Ind Ltd High temperature operation battery apparatus
JPH11214048A (en) * 1998-01-22 1999-08-06 Japan Storage Battery Co Ltd Liquid type semiconductor battery
JP2001243993A (en) * 2000-03-01 2001-09-07 Hitachi Ltd Secondary battery and its manufacturing method
JP2002509342A (en) * 1997-12-12 2002-03-26 イドロ−ケベック Lithium-polymer type battery and control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306552A (en) * 1996-05-20 1997-11-28 Mitsubishi Heavy Ind Ltd High temperature operation battery apparatus
JP2002509342A (en) * 1997-12-12 2002-03-26 イドロ−ケベック Lithium-polymer type battery and control system
JPH11214048A (en) * 1998-01-22 1999-08-06 Japan Storage Battery Co Ltd Liquid type semiconductor battery
JP2001243993A (en) * 2000-03-01 2001-09-07 Hitachi Ltd Secondary battery and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968242A (en) * 2021-02-02 2021-06-15 江苏海思联新能源科技有限公司 Solid-state lithium battery with wide-temperature charging and discharging structure and manufacturing method thereof
CN112968242B (en) * 2021-02-02 2022-11-01 江苏海思联新能源科技有限公司 Solid-state lithium battery with wide-temperature charging and discharging structure and manufacturing method thereof
CN113161648A (en) * 2021-03-24 2021-07-23 浙江零跑科技有限公司 Uniform heating device for batteries of electric vehicle and using method of uniform heating device
CN113161648B (en) * 2021-03-24 2023-06-16 浙江零跑科技股份有限公司 Electric automobile battery uniform heating device and application method thereof
CN113851776A (en) * 2021-09-29 2021-12-28 东莞新能安科技有限公司 Battery module, battery package and consumer

Similar Documents

Publication Publication Date Title
JP5465125B2 (en) Power storage module
JP5203647B2 (en) Battery cell having fine grooves on outer surface and battery pack including the same
JP4586824B2 (en) Power storage device and vehicle
JP6194572B2 (en) Storage element and power supply module
KR102072765B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP2012174572A (en) Battery pack
WO2019107560A1 (en) Partition member and battery pack
KR102072764B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
KR102210218B1 (en) Battery system, base plate for a battery system and electric vehicle
KR20140039451A (en) Battery pack employed automatic electrical switch
JP5821652B2 (en) Storage element module
JP2010061988A (en) Storage battery device
JP6954213B2 (en) Control method of filling member, assembled battery and heat transfer
JP2012174570A (en) Battery pack
JP3970684B2 (en) Secondary battery module
JP6153798B2 (en) Plate-like assembled battery and a plate-like assembled battery group composed of a combination of these
JP7343419B2 (en) Solid state battery cells and solid state battery modules
JP7136708B2 (en) All-solid battery cell
KR20220100450A (en) Battery pack and vehicle including the same
JP2018170070A (en) Battery pack
JP2012174571A (en) Battery pack
JP2013069558A (en) Battery module
JP2014165134A (en) Molten salt battery with temperature sensor, battery pack with temperature sensor and mobile
JPWO2020070773A1 (en) Battery module and battery pack
JP2014137953A (en) Molten salt battery system, and operation method of molten salt battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202