JP2012174298A - Super resolution reproduction optical recording medium and super resolution reproduction method thereof - Google Patents

Super resolution reproduction optical recording medium and super resolution reproduction method thereof Download PDF

Info

Publication number
JP2012174298A
JP2012174298A JP2011033013A JP2011033013A JP2012174298A JP 2012174298 A JP2012174298 A JP 2012174298A JP 2011033013 A JP2011033013 A JP 2011033013A JP 2011033013 A JP2011033013 A JP 2011033013A JP 2012174298 A JP2012174298 A JP 2012174298A
Authority
JP
Japan
Prior art keywords
recording
super
layer
resolution reproduction
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033013A
Other languages
Japanese (ja)
Other versions
JP5700533B2 (en
Inventor
Takayuki Shima
隆之 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011033013A priority Critical patent/JP5700533B2/en
Publication of JP2012174298A publication Critical patent/JP2012174298A/en
Application granted granted Critical
Publication of JP5700533B2 publication Critical patent/JP5700533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a super resolution reproduction optical recording medium which can expect the improvement of manufacturing efficiency due to low cost involved in a reduction in the number of use materials and a reduction in the number of manufacturing processes and is excellent in recording capacity by making a layer for performing recording and a layer for performing reproduction one layer while achieving super resolution reproduction, and the super resolution reproduction method thereof.SOLUTION: In the super resolution reproduction optical recording medium of the present invention, recording laser is irradiated to form a recording mark, reproduction laser is irradiated to be able to read the recording mark, and a recording mark of mark length shorter than the resolution limit of an optical system composed of the reproduction lasers represented by λ/4NA is included when the wavelength of the reproduction laser is regarded as λ, and the numerical aperture of an objective lens is regarded as NA. The super resolution reproduction optical recording medium has at least a substrate, and a recording and reproduction layer for forming the recording mark and reading the recording mark with one layer. The recording and reproduction layer has light transmissivity and a plurality of recording and reproduction layers are arranged on the substrate.

Description

本発明は、光透過性を有し、記録と超解像再生とを同一層で行うことが可能な超解像再生光記録媒体及びその超解像再生方法に関する。   The present invention relates to a super-resolution reproduction optical recording medium having optical transparency and capable of performing recording and super-resolution reproduction in the same layer and a super-resolution reproduction method thereof.

デジタルビデオディスクやブルーレイディスクなどの光記録媒体では基本的に、レーザ光波長λと対物レンズの開口数NAからなる再生光学系において、記録マークとそれに隣接する未記録スペースの長さが同じである記録マーク列に関し、再生可能な記録マークの長さは、解像限界(λ/4NA)以上である。   In an optical recording medium such as a digital video disc or a Blu-ray disc, the length of a recording mark and an unrecorded space adjacent to the recording mark are basically the same in a reproducing optical system having a laser light wavelength λ and a numerical aperture NA of an objective lens. Regarding the recording mark row, the length of the reproducible recording mark is not less than the resolution limit (λ / 4NA).

このような光記録媒体において、解像限界以下の長さの記録マークを再生する方法として、光記録媒体にレーザ光スポットを小さくする機能を有する機能層を付加し、媒体内で実質的にNAを高める技術が検討されている。例えば、前記機能層として、GeSbTeを用い、同材料の液相化に伴う屈折率変化を利用することで、再生性能の指標である搬送波対雑音比(Carrier to Noise Ratio;CNR)の高い超解像再生が実現可能とされている(例えば、特許文献1参照)。また、Sb又はTeを含む別組成の機能層材料を用いても、同様にCNRの高い超解像再生を行うことができる。 In such an optical recording medium, as a method of reproducing a recording mark having a length less than or equal to the resolution limit, a functional layer having a function of reducing a laser beam spot is added to the optical recording medium, and the NA in the medium is substantially reduced. Technology to improve the quality is being studied. For example, Ge 2 Sb 2 Te 5 is used as the functional layer, and the change in refractive index accompanying the liquid phase of the same material is used, so that the carrier-to-noise ratio (CNR), which is an index of reproduction performance, is used. ) Can be realized (see, for example, Patent Document 1). Further, even when a functional layer material having a different composition containing Sb or Te is used, super-resolution reproduction with a high CNR can be similarly performed.

記録可能な超解像再生を行うための光記録媒体を構成するためには、通常、前記機能層とは別に、記録層(例えば、追記型記録層)と前記2層を分離するための保護層(誘電体層と称されることもある)の計3層が必要とされる。このことは、超解像再生を行わない光記録媒体が記録層1層のみであることに比べ、より多くの層を積層する必要があることを意味する。一方、記録容量を増やす観点からは、記録層及び保護層等の積層構造を同一記録媒体内に複数設けることが検討されている。しかしながら、Sb又はTeを含む機能層材料は、波長λを405nmや650nmとするレーザ光の消衰係数kが3〜4程度と比較的高く、入射側の層からより奥の層に対してレーザ光を導くことが困難であるため、前記機能層を含む積層構造数をあまり増やすことができない問題がある。   In order to construct an optical recording medium for recordable super-resolution reproduction, usually, a protection for separating the recording layer (for example, write-once recording layer) and the two layers separately from the functional layer A total of three layers (sometimes referred to as dielectric layers) are required. This means that more layers need to be stacked compared to the case where the optical recording medium that does not perform super-resolution reproduction is only one recording layer. On the other hand, from the viewpoint of increasing the recording capacity, it has been studied to provide a plurality of laminated structures such as a recording layer and a protective layer in the same recording medium. However, the functional layer material containing Sb or Te has a relatively high extinction coefficient k of about 3 to 4 for a laser beam having a wavelength λ of 405 nm or 650 nm, and the laser is applied from the incident side layer to the deeper layer. Since it is difficult to guide light, there is a problem that the number of stacked structures including the functional layer cannot be increased so much.

Sb、Te、Ge、Si等の酸化物及び窒化物は、それらの単体に比べ、光透過性が高いことが知られている。また、安定に存在する化学当量の酸化物あるいは窒化物よりも、その酸素あるいは窒素の組成xが低い場合(例えば、Geの酸化物であるGeOにおいて、xが2未満の場合)は、加熱によって、Sb、Te、Ge、Si等が生成、粒子化、結晶化することで、光透過性が下がった状態を生成することができることが知られている(非特許文献1〜5参照)。ここでいう酸化物及び窒化物とは、例えば、SbO(x<1.5)、TeO(x<2)、GeO(x<2)、SiO(x<2)、SbN(x<1)、TeN(x<1.33)、GeN(x<1.33)、SiN(x<1.33)である。 It is known that oxides and nitrides such as Sb, Te, Ge, and Si have higher light transmittance than those simple substances. Further, when the composition x of oxygen or nitrogen is lower than that of oxide or nitride having a chemical equivalent that exists stably (for example, in the case of GeO x being Ge oxide, x is less than 2), heating is performed. It is known that a state in which light transmittance is lowered can be generated by generating, granulating, and crystallizing Sb, Te, Ge, Si, and the like (see Non-Patent Documents 1 to 5). Examples of the oxide and nitride herein include SbO x (x <1.5), TeO x (x <2), GeO x (x <2), SiO x (x <2), and SbN x ( x <1), TeN x (x <1.33), GeN x (x <1.33), and SiN x (x <1.33).

ところで、貴金属酸化物を使うことにより、記録と超解像再生を同じ層で行う光記録媒体が提案されている(特許文献2参照)。しかしながら、この光記録媒体を用いて実際に超解像再生を行うためには、別途Sb又はTeを含む光吸収層を設ける必要があり、結果として積層数を減らすことができないという問題がある。   By the way, an optical recording medium in which recording and super-resolution reproduction are performed in the same layer by using a noble metal oxide has been proposed (see Patent Document 2). However, in order to actually perform super-resolution reproduction using this optical recording medium, it is necessary to separately provide a light absorption layer containing Sb or Te, resulting in a problem that the number of stacked layers cannot be reduced.

また、GeSbTeを用いて記録と超解像再生を同じ層で行う光記録媒体が報告されている(非特許文献6参照)。GeSbTeは、アモルファス相形成による記録とその結晶化による消去が行える、書き換え型の記録材料としても知られている。しかしながら、結晶化に要する温度は約200度、超解像再生を行うための液相化に要する温度は約600度であるため、超解像再生時には記録を到底保持することができない問題がある。また、同材料では、高い光透過性を確保することは難しいという問題がある。 In addition, an optical recording medium in which recording and super-resolution reproduction are performed in the same layer using Ge 2 Sb 2 Te 5 has been reported (see Non-Patent Document 6). Ge 2 Sb 2 Te 5 is also known as a rewritable recording material that can be recorded by forming an amorphous phase and erasing by crystallization thereof. However, since the temperature required for crystallization is about 200 ° C. and the temperature required for liquid phase for super-resolution reproduction is about 600 ° C., there is a problem that recording cannot be maintained at the time of super-resolution reproduction. . In addition, this material has a problem that it is difficult to ensure high light transmittance.

更に、Ge−Sb−Te(組成比不明)を用いて記録と超解像再生を同じ層で行う光記録媒体が報告されている(非特許文献7参照)。この報告では、Ge−Sb−Teにアモルファス相形成による記録を行った後、未記録部分の結晶相をエッチングで取り除き、その部分を透明誘電体材料で充填することとしている。しかしながら、エッチング及び充填等を光ディスクプレーヤ内で行うことはできないという問題がある。即ち、この報告に係る光記録媒体は、記録型というよりは、むしろ再生専用の光記録媒体であると考えられる。   Furthermore, an optical recording medium in which recording and super-resolution reproduction are performed in the same layer using Ge—Sb—Te (composition ratio unknown) has been reported (see Non-Patent Document 7). In this report, after recording by forming an amorphous phase on Ge—Sb—Te, the crystal phase of an unrecorded portion is removed by etching, and the portion is filled with a transparent dielectric material. However, there is a problem that etching and filling cannot be performed in the optical disc player. That is, the optical recording medium according to this report is considered to be a read-only optical recording medium rather than a recording type.

また、これらの従来技術に記載の方法により超解像再生を可能とすることで、光記録媒体の記録容量を一定程度増やすことが可能となるものの、これらの方法のみでは、市場で要求される充分な記録容量を確保することができないという問題がある。   Further, by enabling super-resolution reproduction by the methods described in these conventional techniques, the recording capacity of the optical recording medium can be increased to a certain extent, but these methods alone are required in the market. There is a problem that a sufficient recording capacity cannot be secured.

特開平 5−258345号公報JP-A-5-258345 特許第4582755号公報Japanese Patent No. 4582755

Applied Physics Letters,89(2006),p.011902.Applied Physics Letters, 89 (2006), p. 011902. Chinese Physics Letters,24(2007),p.1287.Chinese Physics Letters, 24 (2007), p. 1287. Journal of Applied Physics,54(1983)p.5376−5380.Journal of Applied Physics, 54 (1983) p. 5376-5380. Applied Physics Letters 96(2010),p.263514.Applied Physics Letters 96 (2010), p. 263514. Japanese Journal of Applied Physics 46 (2007),p.612−620.Japan Journal of Applied Physics 46 (2007), p. 612-620. Technical Digest of International Symposium on Optical Memory 2000,p.224−225.Technical Digest of International Symposium on Optical Memory 2000, p. 224-225. Japanese Journal of Applied Physics,45(2006),p.2593−2597.Japan Journal of Applied Physics, 45 (2006), p. 2593-2597.

本発明は、従来技術における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、超解像再生を実現しつつ、記録を行う層と再生を行う層とを1つの層とすることで、使用材料数の減少に伴う低コスト化と、製造プロセス数の削減による製造効率の向上を期待することができ、更に記録容量に優れた超解像再生光記録媒体及びその超解像再生方法を提供することを目的とする。   An object of the present invention is to solve the above problems in the prior art and achieve the following objects. In other words, while realizing super-resolution reproduction, the recording layer and the reproduction layer are combined into one layer, thereby reducing the cost associated with a decrease in the number of materials used and manufacturing efficiency by reducing the number of manufacturing processes. It is an object of the present invention to provide a super-resolution reproduction optical recording medium and a super-resolution reproduction method that can be expected to improve the recording capacity.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 記録レーザを照射して記録マークが形成されるとともに、再生レーザを照射して前記記録マークが読み出し可能とされ、前記再生レーザの波長をλとし、対物レンズの開口数をNAとしたとき、λ/4NAで表される前記再生レーザからなる光学系の解像限界よりも短いマーク長の記録マークを含む超解像再生光記録媒体であって、少なくとも、基板と、前記記録マークの形成及び前記記録マークの読み出しを1つの層で行う記録兼再生層とを有し、前記記録兼再生層が光透過性を有し、前記基板上に複数配されることを特徴とする超解像再生光記録媒体。
<2> 記録マークが、未記録状態の記録兼再生層の層形成材料に対して記録レーザを照射して生ずる熱反応生成物により形成される前記<1>に記載の超解像再生光記録媒体。
<3> 層形成材料が、Ge、Si、Sb及びTeのいずれかの元素と、O及びNのいずれかの元素とを含む熱反応性化合物である前記<2>に記載の超解像再生光記録媒体。
<4> 熱反応性化合物が、GeO、GeN、SiO、SiN、SbO、SbN、TeO、TeN及びこれらの2元素化合物を含む多元素化合物の少なくともいずれかを含有する前記<3>に記載の超解像再生光記録媒体。ただし、前記xは、前記2元素化合物が安定して存在する場合の化学当量よりも小さい値を示す。
<5> 記録兼再生層の消衰係数が、使用する記録レーザ及び再生レーザのいずれかの光の波長において、0.01〜2.0である前記<1>から<4>のいずれかに記載の超解像再生光記録媒体。
<6> 記録兼再生層が2つの保護層で挟持されてなる積層構造を有し、前記積層構造がスペーサ層を介して複数配される前記<1>から<5>のいずれかに記載の超解像再生光記録媒体。
<7> 積層構造が、少なくとも3つ配される前記<6>に記載の超解像再生光記録媒体。
<8> 前記<1>から<5>のいずれかに記載の超解像再生光記録媒体に対する超解像再生方法であって、記録兼再生層に記録レーザを照射して生成する生成物によって超解像再生を行うことを特徴とする超解像再生方法。
Means for solving the problems are as follows. That is,
<1> A recording mark is formed by irradiating a recording laser, and the recording mark can be read by irradiating a reproducing laser, the wavelength of the reproducing laser is λ, and the numerical aperture of the objective lens is NA A super-resolution reproducing optical recording medium including a recording mark having a mark length shorter than the resolution limit of the optical system composed of the reproducing laser represented by λ / 4NA, and comprising at least a substrate and the recording mark A recording / reproducing layer for forming and reading out the recording mark in one layer, wherein the recording / reproducing layer is light-transmitting, and a plurality of layers are arranged on the substrate. Image reproducing optical recording medium.
<2> The super-resolution reproduction optical recording according to <1>, wherein the recording mark is formed by a thermal reaction product generated by irradiating a recording laser to a layer forming material of an unrecorded recording / reproducing layer Medium.
<3> The super-resolution reproduction according to <2>, wherein the layer forming material is a heat-reactive compound including any element of Ge, Si, Sb, and Te and any element of O and N Optical recording medium.
<4> The thermally reactive compound contains at least one of GeO x , GeN x , SiO x , SiN x , SbO x , SbN x , TeO x , TeN x and these two element compounds. The super-resolution reproduction optical recording medium according to <3>. However, said x shows a value smaller than the chemical equivalent when the said 2 element compound exists stably.
<5> Any one of <1> to <4>, wherein an extinction coefficient of the recording / reproducing layer is 0.01 to 2.0 at a wavelength of any one of a recording laser and a reproducing laser to be used. The super-resolution reproduction optical recording medium described.
<6> The structure according to any one of <1> to <5>, wherein the recording / reproducing layer has a stacked structure in which the protective layer is sandwiched between two protective layers, and a plurality of the stacked structures are arranged via a spacer layer. Super-resolution playback optical recording medium.
<7> The super-resolution reproduction optical recording medium according to <6>, wherein at least three laminated structures are arranged.
<8> The super-resolution reproduction method for the super-resolution reproduction optical recording medium according to any one of <1> to <5>, wherein the recording / reproduction layer is irradiated with a recording laser to generate a product. A super-resolution reproduction method characterized by performing super-resolution reproduction.

本発明によれば、従来技術における前記諸問題を解決することができ、超解像再生を実現しつつ、記録を行う層と再生を行う層とを1つの層とすることで、使用材料数の減少に伴う低コスト化と、製造プロセス数の削減による製造効率の向上を期待することができ、更に記録容量に優れた超解像再生光記録媒体及びその超解像再生方法を提供することができる。   According to the present invention, the above-mentioned problems in the prior art can be solved, and the number of materials used can be reduced by making the recording layer and the reproducing layer into one layer while realizing super-resolution reproduction. To provide a super-resolution reproduction optical recording medium and a super-resolution reproduction method that can be expected to improve the production efficiency by reducing the cost associated with the decrease in the number of production processes and the number of production processes. Can do.

図1は、試験例に係る超解像再生光記録媒体10の構造を説明する断面図である。FIG. 1 is a cross-sectional view illustrating the structure of a super-resolution reproduction optical recording medium 10 according to a test example. 図2は、前記超解像再生光記録媒体10における記録マークのマーク長とCNRとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the mark length of the recording mark and the CNR in the super-resolution reproduction optical recording medium 10. 図3は、前記超解像再生光記録媒体10のマーク長が150nmである記録マークに対する再生レーザ光パワーとCNRとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the reproduction laser beam power and the CNR for a recording mark having a mark length of 150 nm in the super-resolution reproduction optical recording medium 10. 図4は、本発明の一実施例に係る超解像再生光記録媒体110の構造を説明する断面図である。FIG. 4 is a cross-sectional view illustrating the structure of a super-resolution reproduction optical recording medium 110 according to an embodiment of the present invention. 図5は、本発明の他の実施例に係る超解像再生光記録媒体210の構造を説明する断面図である。FIG. 5 is a cross-sectional view illustrating the structure of a super-resolution reproduction optical recording medium 210 according to another embodiment of the present invention. 図6は、前記超解像再生光記録媒体210に対する再生レーザ光パワーとCNRとの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the reproduction laser beam power and the CNR for the super-resolution reproduction optical recording medium 210.

(超解像再生光記録媒体及びその超解像再生方法)
本発明の超解像再生光記録媒体は、記録レーザを照射して記録マークが形成されるとともに、再生レーザを照射して前記記録マークが読み出し可能とされ、前記再生レーザの波長をλとし、対物レンズの開口数をNAとしたとき、λ/4NAで表される前記再生レーザからなる光学系の解像限界よりも短いマーク長の記録マークを含み、その構造としては、少なくとも、基板と記録兼再生層とを有し、必要に応じて、その他の部材が配される。
(Super-resolution reproduction optical recording medium and its super-resolution reproduction method)
In the super-resolution reproduction optical recording medium of the present invention, a recording mark is formed by irradiating a recording laser, the recording mark can be read by irradiating the reproducing laser, and the wavelength of the reproducing laser is λ, When the numerical aperture of the objective lens is NA, it includes a recording mark with a mark length shorter than the resolution limit of the optical system composed of the reproduction laser represented by λ / 4NA, and the structure is at least the substrate and the recording And a reproducing layer, and other members are arranged as necessary.

<記録兼再生層>
前記記録兼再生層は、前記記録マークの形成及び前記記録マークの読み出しを1つの層で行うこととしてなる。また、該記録兼再生層は、光透過性を有し、前記基板上に複数配される。
<Recording and playback layer>
The recording / reproducing layer performs the formation of the recording mark and the reading of the recording mark in one layer. Further, the recording / reproducing layer has optical transparency, and a plurality of recording / reproducing layers are arranged on the substrate.

前記記録兼再生層における記録マークの形成方法としては、超解像再生可能な記録マークを形成することができる限り特に制限はなく、目的に応じて適宜選択することができるが、未記録状態の記録兼再生層の層形成材料に対して記録レーザを照射して生ずる熱反応生成物により前記記録マークを形成することが好ましい。   The method for forming a recording mark in the recording / reproducing layer is not particularly limited as long as a recording mark capable of super-resolution reproduction can be formed, and can be appropriately selected according to the purpose. Preferably, the recording mark is formed by a thermal reaction product generated by irradiating a recording laser on the layer forming material of the recording / reproducing layer.

前記層形成材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Ge、Si、Sb、Te、Bi、Sn、Zn、Co、Mo、Wのいずれかの元素と、O及びNのいずれかの元素とを含む化合物が挙げられるが、中でも、Ge、Si、Sb及びTeのいずれかの元素と、O及びNのいずれかの元素とを含む熱反応性化合物が好ましい。このような層形成材料により層形成すると、光透過性に優れた記録兼再生層が得られやすい。
なお、前記熱反応性化合物とは、熱が加わると、その構成の一部が、分離して生成、粒子化、結晶化する化合物を指す。
There is no restriction | limiting in particular as said layer formation material, According to the objective, it can select suitably, For example, any element of Ge, Si, Sb, Te, Bi, Sn, Zn, Co, Mo, W and A compound containing any one element of O, O and N is mentioned, and among them, a thermally reactive compound containing any element of Ge, Si, Sb and Te and any element of O and N is mentioned. preferable. When a layer is formed of such a layer forming material, a recording / reproducing layer having excellent light transmittance is easily obtained.
The heat-reactive compound refers to a compound in which a part of the structure is separated, generated, granulated, and crystallized when heat is applied.

前記熱反応性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、GeO、GeN、SiO、SiN、SbO、SbN、TeO、TeN及びこれらの2元素化合物を含む多元素化合物の少なくともいずれかを含有する化合物であることが好ましい。なお、前記多元素化合物とは、前記2元素以外の元素を含む化合物一般を指す。
これらの熱反応性化合物は、光透過性が高く、組成比xを変更することで記録に必要な光吸収とのバランスをとることもできる。前記超解像再生光記録媒体においては、記録層を多層化する観点から、前記記録兼再生層が光透過性を有する必要があるが、再生特性に優れた記録マークを形成するためには、前記記録レーザからの光吸収を受けて効率よく熱反応生成物が生成されることが好ましく、前記光透過性と光吸収のバランスが求められる。
The heat-reactive compound is not particularly limited and may be appropriately selected depending on the intended purpose. GeO x , GeN x , SiO x , SiN x , SbO x , SbN x , TeO x , TeN x and these It is preferable that it is a compound containing at least any one of the multielement compound containing these 2 element compounds. In addition, the said multi-element compound refers to the compound in general containing elements other than the said 2 element.
These heat-reactive compounds have high light transmittance and can be balanced with light absorption necessary for recording by changing the composition ratio x. In the super-resolution reproduction optical recording medium, from the viewpoint of multilayering the recording layer, the recording / reproduction layer needs to have light transmittance, but in order to form a recording mark having excellent reproduction characteristics, It is preferable that a thermal reaction product is efficiently generated by receiving light absorption from the recording laser, and a balance between the light transmittance and the light absorption is required.

例えば、前記GeOは、前記記録レーザの照射により、GeO→Ge+GeOの熱反応を経てGe微結晶を生成させて記録マークを形成し、Geが生成された部分(記録部)と、Geが生成されていない部分との反射率の差を利用して記録を可能とし、前記記録部に生成したGeによって超解像再生を可能とする。該熱反応させる前のGeO試料のxを2(GeO)よりも小さくしていくと光吸収性が高まる傾向にあり、前記熱反応に基づくGe微結晶が得られやすい。したがって、組成比xを調整することで、光透過性と光吸収のバランスをとりながら記録と超解像再生を行うことができる。 For example, the GeO x generates a Ge microcrystal through a thermal reaction of GeO x → Ge + GeO 2 by irradiation of the recording laser to form a recording mark, and a Ge generated part (recording part); Recording is made possible by utilizing the difference in reflectance from the portion where no is generated, and super-resolution reproduction is made possible by Ge generated in the recording portion. If x of the GeO x sample before the thermal reaction is made smaller than 2 (GeO 2 ), the light absorption tends to increase, and Ge microcrystals based on the thermal reaction are easily obtained. Therefore, by adjusting the composition ratio x, recording and super-resolution reproduction can be performed while maintaining a balance between light transmittance and light absorption.

なお、前記層形成材料としては、前記酸化物材料に限定されることはなく、例えば、SbOやTeOのように、あらかじめSbとSbや、TeとTeOが混在した材料を選択することもできる。前記記録レーザの照射により、SbやTeが結晶化、粒子化して得られた記録部の光吸収率が未記録部のそれより高くなった結果、前記再生レーザの照射により、記録部の温度が上昇し、超解像再生を行うことが可能となる。 The layer forming material is not limited to the oxide material. For example, a material in which Sb and Sb 2 O 3 or Te and TeO 2 are mixed in advance, such as SbO x or TeO x , is used. You can also choose. As a result of irradiation of the recording laser, the light absorption rate of the recording part obtained by crystallization and graining of Sb and Te is higher than that of the unrecorded part. It becomes possible to perform super-resolution reproduction.

前記熱反応性化合物において、前記xとしては、前記2元素化合物が安定して存在する場合の化学当量よりも小さい値を示す材料が特に好ましい。
具体的には、GeO、SiO、TeOにおけるxの上限値としては、x<2が好ましく、SbOにおけるxの上限値としては、x<1.5が好ましく、SiN、GeN及びTeNにおけるxの上限値としては、x<1.33が好ましく、SbNにおけるxの上限値としては、x<1が好ましい。
一方で、前記xが小さすぎると、前記2元素化合物を構成するGe、Si、Te、Sbの単体と実質的に変りがなく、十分な光透過性が得られないため、前記xの下限値としては、以下の値が好ましい。
即ち、GeO、SiO、TeOにおけるxの下限値としては、x>0.2が好ましく、SbOにおけるxの下限値としては、x>0.27が好ましく、SiN、GeN及びTeNにおけるxの下限値としては、x>0.33が好ましく、SbNにおけるxの下限値としては、x>0.1が好ましい。
なお、現時点で、こうしたGe、Si、Sb、及びTeの少なくともいずれかを含む材料を用いて超解像再生できる理由は十分明らかでないが、高温化又は液相化に伴う屈折率変化に加え、サイズ縮小に伴う非線形光学効果が発現するためと推察される。
In the heat-reactive compound, the x is particularly preferably a material having a value smaller than the chemical equivalent when the two-element compound is stably present.
Specifically, as an upper limit value of x in GeO x , SiO x , and TeO x , x <2 is preferable, and as an upper limit value of x in SbO x , x <1.5 is preferable, and SiN x , GeN x As an upper limit value of x in TeN x , x <1.33 is preferable, and as an upper limit value of x in SbN x , x <1 is preferable.
On the other hand, if x is too small, Ge, Si, Te, and Sb constituting the two-element compound are not substantially different from the simple substance, and sufficient light transmittance cannot be obtained. The following values are preferable.
That is, the lower limit value of x in GeO x , SiO x , and TeO x is preferably x> 0.2, and the lower limit value of x in SbO x is preferably x> 0.27, and SiN x , GeN x and The lower limit value of x in TeN x is preferably x> 0.33, and the lower limit value of x in SbN x is preferably x> 0.1.
At this time, the reason why super-resolution reproduction can be performed using such a material containing at least one of Ge, Si, Sb, and Te is not clear enough, but in addition to the refractive index change accompanying high temperature or liquid phase, This is presumably because the nonlinear optical effect accompanying the size reduction appears.

前記記録兼再生層を用いる光記録媒体の光学設計において、レーザ光で記録するためには、光吸収率を低くし過ぎることはできず、また、前記記録兼再生層を含む積層構造を増やすことで記録容量を増やすためには、1積層あたりの光透過率を十分高くすることが求められる。反射率について、光量を有効活用し、前記積層構造数を増やすためにも、前記積層構造あたりの反射率は、光ディスク評価機にとって問題が生じない程度に低い方が好ましい。通常再生時(非超解像再生時)の反射率を低く設計しておくことは、超解像再生時にレーザ光スポット内の一部分に生成する超解像スポット部分からの反射光強度を増やすことに繋がるため好ましく、このことは、前記積層構造数を増やすときの反射率設計の指針とも合致する。そのため、例えば、前記記録兼再生層を構成する前記熱反応性化合物の組成比xと、その膜厚を制御することにより、主に光吸収率を調整し、その前後に挟持する透明な保護層の膜厚を制御することにより、反射率を調整することが好ましい。   In the optical design of an optical recording medium using the recording / reproducing layer, in order to record with laser light, the light absorptivity cannot be made too low, and the laminated structure including the recording / reproducing layer is increased. In order to increase the recording capacity, it is required to sufficiently increase the light transmittance per stack. In order to effectively utilize the amount of light and increase the number of stacked structures, the reflectivity per stacked structure is preferably low enough to cause no problem for the optical disc evaluation machine. Designing low reflectivity during normal playback (non-super-resolution playback) increases the intensity of reflected light from the super-resolution spot generated in a part of the laser beam spot during super-resolution playback. This is preferable because this leads to a reflectance design guideline for increasing the number of laminated structures. Therefore, for example, by controlling the composition ratio x of the heat-reactive compound constituting the recording / reproducing layer and its film thickness, the light absorption rate is mainly adjusted, and the transparent protective layer sandwiched before and after that It is preferable to adjust the reflectance by controlling the film thickness.

前記記録兼再生層の消衰係数としては、特に制限はなく、目的に応じて適宜選択することができるが、使用する記録レーザ及び再生レーザのいずれかの光の波長において、0.01〜2.0が好ましい。
前記消衰係数が0.01未満であると、前記記録兼再生層の光吸収率を10%程度確保するのに必要な膜厚が数100nm必要となり、前記消衰係数が2.0を超えると、前記記録兼再生層を3層以上とする光記録媒体の反射率を1%程度確保するのに必要な膜厚が10nm程度以下となる。
The extinction coefficient of the recording / reproducing layer is not particularly limited and may be appropriately selected depending on the intended purpose. It is 0.01 to 2 at the light wavelength of either the recording laser or the reproducing laser to be used. 0.0 is preferred.
When the extinction coefficient is less than 0.01, a film thickness required to secure about 10% of the light absorption rate of the recording / reproducing layer is required to be several hundred nm, and the extinction coefficient exceeds 2.0. In addition, the film thickness necessary for securing the reflectance of about 1% of the optical recording medium having three or more recording / reproducing layers is about 10 nm or less.

<基板>
前記基板は、前記記録兼再生層を含む記録媒体の各構成層を支持するものとして配される。
前記基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知のガラス材料、プラスチック材料からなる基板を挙げることができる。また、レーザ光による記録及び再生を前記基板を通じて行わない光学系に用いられる場合には、前記基板は、レーザ光に対して光学的に不透明であってもよい。
<Board>
The substrate is arranged to support each constituent layer of the recording medium including the recording / reproducing layer.
There is no restriction | limiting in particular as said board | substrate, According to the objective, it can select suitably, For example, the board | substrate which consists of a well-known glass material and a plastic material can be mentioned. Further, when used in an optical system that does not perform recording and reproduction by laser light through the substrate, the substrate may be optically opaque to the laser light.

前記基板の形状としては、特に制限はなく、平板状のものや溝付きのものから目的に応じて適宜選択することができるが、レーザ光を基板上に走査させる際のガイドの役割を付与する観点から、溝付きの形状(凹凸形状)のものが好ましい。この溝は、前記基板上に配される各層においても形成させることができる。   The shape of the substrate is not particularly limited and can be appropriately selected depending on the purpose from a flat plate or a grooved one, but it gives a role of a guide when laser light is scanned on the substrate. From the viewpoint, a grooved shape (uneven shape) is preferable. This groove can also be formed in each layer disposed on the substrate.

<その他の部材>
前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、保護層、反射層、スペーサ層等が挙げられる。
<Other members>
There is no restriction | limiting in particular as said other member, According to the objective, it can select suitably, For example, a protective layer, a reflection layer, a spacer layer etc. are mentioned.

−保護層−
前記保護層は、前記記録兼再生層を保護する役割を有し、前記記録兼再生層の表面及び裏面側から該記録兼再生層を挟持するように配される。前記超解像再生光記録媒体としては、特に制限はないが、前記記録兼再生層が前記2つの保護層で挟持されてなる積層構造を複数有することが好ましい。
前記保護層の形成材料としては、前記役割を果たすものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、Si、SiO、SiC、TiO、ZnS、ZrO、Ta及びこれらのうち2種類以上から成る混合物を挙げることができるが、中でもZnS−SiOが好ましい。
前記ZnS−SiOに関し、ZnSとSiOの混合比(ZnS:SiO)としては、特に制限はないが、90mol%:10mol%〜60mol%:40mol%が好ましい。
-Protective layer-
The protective layer has a role of protecting the recording / reproducing layer, and is disposed so as to sandwich the recording / reproducing layer from the front and back sides of the recording / reproducing layer. The super-resolution reproduction optical recording medium is not particularly limited, but preferably has a plurality of laminated structures in which the recording / reproducing layer is sandwiched between the two protective layers.
The material for forming the protective layer is not particularly limited as long as it plays the above role, and can be appropriately selected according to the purpose. For example, Si 3 N 4 , SiO 2 , SiC, TiO 2 , ZnS, ZrO 2 , Ta 2 O 5 and a mixture of two or more of these may be mentioned, among which ZnS—SiO 2 is preferred.
Relates the ZnS-SiO 2, mixture ratio of ZnS and SiO 2: Examples of (ZnS SiO 2), is not particularly limited, 90mol%: 10mol% ~60mol% : 40mol% are preferred.

−スペーサ層−
前記スペーサ層は、前記超解像再生記録媒体に複数配される前記各記録兼再生層を光学的に分離する役割を有し、隣接する前記記録兼再生層の間に配される。また、前記記録兼再生層が前記2つの保護層で挟持されてなる積層構造を複数有する場合には、隣接する前記積層構造の間に配される。
前記スペーサ層の形成材料としては、前記各記録兼再生層を光学的に分離することができれば特に制限はなく、目的に応じて適宜選択することができ、例えば、透明樹脂材料、透明フィルム等が挙げられる。
-Spacer layer-
The spacer layer has a role of optically separating the plurality of recording / reproducing layers arranged on the super-resolution reproducing / recording medium, and is arranged between the adjacent recording / reproducing layers. Further, when the recording / reproducing layer has a plurality of laminated structures sandwiched between the two protective layers, the recording / reproducing layer is disposed between the adjacent laminated structures.
The material for forming the spacer layer is not particularly limited as long as each recording / reproducing layer can be optically separated, and can be appropriately selected according to the purpose. For example, a transparent resin material, a transparent film, etc. Can be mentioned.

−反射層−
前記反射層は、前記記録兼再生層を含む積層構造の反射率の調整や温度制御する役割を有し、前記保護層を設ける場合は、前記積層構造の一方の面側、前記保護層を設けない場合は、前記記録兼再生層の一方の面側で、いずれも入射光から見て遠い方の面側に配される。
また、前記反射層は、レーザ光のガイドを行う目的で、前記溝付き基板上に配されてもよい。
前記反射層の形成材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Ag、Al、Au等の金属及びこれらを含む合金などが挙げられる。
-Reflective layer-
The reflective layer has a role of adjusting the reflectance and controlling the temperature of the laminated structure including the recording / reproducing layer. When the protective layer is provided, the protective layer is provided on one surface side of the laminated structure. In the case where the recording / reproducing layer is not present, the recording / reproducing layer is disposed on one side of the recording / reproducing layer on the side farther from the incident light.
The reflective layer may be disposed on the grooved substrate for the purpose of guiding laser light.
There is no restriction | limiting in particular as a forming material of the said reflection layer, According to the objective, it can select suitably, For example, metals, such as Ag, Al, Au, and an alloy containing these are mentioned.

(実施例1)
図1に示すように、ランド幅とグルーブ幅が340nm、グルーブ溝の深さが39nmの溝付きポリカーボネート基板1上に、(ZnS)85(SiO15(ZnS−SiOのZnS:SiOが85mol%:15mol%)からなる第1の保護層2aを厚み86nmで形成し、前記第1の保護層2a上に酸化ゲルマニウム(GeO)からなる記録兼再生層3を厚み47nmで形成し、前記記録兼再生層3上に(ZnS)85(SiO15からなる第2の保護層2bを厚み40nmで形成し、試験例に係る超解像再生光記録媒体10を製造した。なお、図1中、前記第1の保護層2aと前記記録兼再生層3と前記第2の保護層2bとで構成される積層体を積層構造体5としている。
Example 1
As shown in FIG. 1, the land width and the groove width is 340 nm, the depth of the groove grooves on grooved polycarbonate substrate 1 of 39 nm, the (ZnS) 85 (SiO 2) 15 (ZnS-SiO 2 ZnS: SiO 2 Is formed with a thickness of 86 nm, and a recording / reproducing layer 3 made of germanium oxide (GeO x ) with a thickness of 47 nm is formed on the first protective layer 2a. Then, a second protective layer 2b made of (ZnS) 85 (SiO 2 ) 15 was formed with a thickness of 40 nm on the recording / reproducing layer 3 to produce a super-resolution reproducing optical recording medium 10 according to a test example. In FIG. 1, a stacked structure including the first protective layer 2 a, the recording / reproducing layer 3, and the second protective layer 2 b is referred to as a stacked structure 5.

ここで、前記第1及び第2の保護層2a、2bに係る(ZnS)85(SiO15層は、(ZnS)85(SiO15からなるターゲットをアルゴン雰囲気中でスパッタリングすることで形成した。 Here, the (ZnS) 85 (SiO 2 ) 15 layer related to the first and second protective layers 2a and 2b is obtained by sputtering a target made of (ZnS) 85 (SiO 2 ) 15 in an argon atmosphere. Formed.

また、前記記録兼再生層3に係るGeO層は、ターゲットにゲルマニウム(Ge)を使い、アルゴンガスと酸素ガスの流量比が78:22のガス雰囲気において、反応性スパッタリング法により形成した。
得られたGeO層の光学定数は、波長405nmの光に対し、屈折率nが1.98、消衰係数kが0.07であった。
なお、前記屈折率n及び前記消衰係数kは、シリコンウェーハ上に成膜したGeOの単独膜について、分光エリプソメータ(ジェー・エー・ウーラム社製、VASE)を用いて測定したものである。
The GeO x layer related to the recording / reproducing layer 3 was formed by reactive sputtering using germanium (Ge) as a target in a gas atmosphere having a flow rate ratio of argon gas to oxygen gas of 78:22.
As for the optical constant of the obtained GeO x layer, the refractive index n was 1.98 and the extinction coefficient k was 0.07 with respect to light having a wavelength of 405 nm.
The refractive index n and the extinction coefficient k are measured using a spectroscopic ellipsometer (manufactured by JA Woollam Co., Ltd., VASE) for a single film of GeO x formed on a silicon wafer.

また、前記試験例に係る超解像再生光記録媒体10の積層構造体5における光透過率は、以下の光学計算から約84%と見積もられ、高い光透過性が得られた。
前記光学計算は、フレネルの式を用いて行った。
Further, the light transmittance in the laminated structure 5 of the super-resolution reproduction optical recording medium 10 according to the test example was estimated to be about 84% from the following optical calculation, and high light transmittance was obtained.
The optical calculation was performed using the Fresnel equation.

例えば、下記参考文献では、GeOの組成比xと複素屈折率の関係を0.27≦x≦2.0の範囲で系統的に調べた結果が報告されている。それによると、組成比xが増えるに従い、屈折率n、消衰係数kとも減少し、x=2.0では波長約400nmにおいて、屈折率n=約1.6、消衰係数k=約0.03になることが示されている。
したがって、前記測定に係るGeO層の光学定数(屈折率n、消衰係数k)から、GeOにおける組成比xは、x<2.0であると推察される。
参考文献:Applied Optics,33(1994),p.1203−1208.
For example, the following reference reports a result of systematic examination of the relationship between the composition ratio x of GeO x and the complex refractive index in the range of 0.27 ≦ x ≦ 2.0. According to this, as the composition ratio x increases, both the refractive index n and the extinction coefficient k decrease. At x = 2.0, the refractive index n = about 1.6 and the extinction coefficient k = about 0 at a wavelength of about 400 nm. 0.03 is shown.
Thus, optical constants (refractive index n, extinction coefficient k) of the GeO x layer according to the measurement from the composition ratio x in the GeO x is inferred to be the x <2.0.
Reference: Applied Optics, 33 (1994), p. 1203-1208.

前記試験例に係る超解像再生光記録媒体10の特性の測定は、レーザ光の波長(λ)が405nmであり、対物レンズの開口数(NA)が0.65である光学系からなる光ディスク評価装置(パルステック工業株式会社製、DDU−1000)を用いて行った。また、前記測定において、レーザ光は、前記溝付き基板1側から入射させた。   The measurement of the characteristics of the super-resolution reproduction optical recording medium 10 according to the test example is performed by measuring an optical disc composed of an optical system in which the wavelength (λ) of the laser beam is 405 nm and the numerical aperture (NA) of the objective lens is 0.65. The evaluation was performed using an evaluation apparatus (DDU-1000, manufactured by Pulse Tech Industrial Co., Ltd.). In the measurement, laser light was incident from the grooved substrate 1 side.

超解像再生の試験例に係る超解像再生光記録媒体10に対し、線速度2.2m/sにおいて、様々な長さのマークを、5mW〜8mWのレーザ光パワーで記録した。
記録後の前記光記録媒体10を1.0mWのレーザ光パワーで再生すると、図2に示すように、記録マーク長が200nmの記録マークに対しては約36dBのCNR特性が得られ、記録マーク長が300nm〜800nmの記録マークに対しては40dB以上のCNR特性を得られており、高いCNR特性を確認することができた。
ただし、前記光ディスク評価装置における解像限界は、約155nm(=λ/4NA)である。そのため、図2に示すように、記録マーク長が150nmの記録マークにおけるCNRは、約8dBと低い結果となった。
そこで、前記150nmの記録マークに対する再生レーザ光パワーを1.0mWから上げていくと、図3に示すように、CNR特性を向上させることができた。前記再生レーザ光パワーが3.5mWのとき、CNRが約36dBとなり、良好な超解像再生が可能であった。
On the super-resolution reproduction optical recording medium 10 according to the super-resolution reproduction test example, marks of various lengths were recorded at a linear velocity of 2.2 m / s with a laser light power of 5 mW to 8 mW.
When the recorded optical recording medium 10 is reproduced with a laser beam power of 1.0 mW, as shown in FIG. 2, a CNR characteristic of about 36 dB is obtained for a recording mark having a recording mark length of 200 nm. A CNR characteristic of 40 dB or more was obtained for a recording mark having a length of 300 nm to 800 nm, and a high CNR characteristic could be confirmed.
However, the resolution limit in the optical disk evaluation apparatus is about 155 nm (= λ / 4NA). Therefore, as shown in FIG. 2, the CNR of the recording mark having a recording mark length of 150 nm was as low as about 8 dB.
Therefore, when the reproducing laser light power for the 150 nm recording mark is increased from 1.0 mW, the CNR characteristic can be improved as shown in FIG. When the reproduction laser beam power was 3.5 mW, the CNR was about 36 dB, and good super-resolution reproduction was possible.

<計算例>
記録兼再生層を複数配した本発明の実施例に係る超解像再生光記録媒体の特性を確認するため、図4に示す超解像再生光記録媒体を想定し、反射率特性の計算を行った。
即ち、厚みが86nmの第1の保護層102a(形成材料:(ZnS)85(SiO15)と、厚みが47nmの記録兼再生層103(形成材料:GeO)と、厚みが40nmの第2の保護層102b(形成材料:(ZnS)85(SiO15)とを積層させた3層の積層構造体105a,105b,105cが、樹脂製のスペーサ層104(屈折率n=1.55)を介して形成され、3つめの積層構造体105cが溝付きポリカーボネート基板101(屈折率n=1.63)に支持される超解像再生光記録媒体110を想定し、3つの積層構造体105a,105b,105cに対する光の反射率を計算した。なお、ここでは、用いる光の波長を405nmとし、積層構造体105a側からレーザ光Lを入射させた条件とした。
ここで、反射率の計算は、以下の手順にて行った。まず各積層構造体を単位とする反射率及び光透過率をフレネルの式を使って計算した。レーザ光入射側から見て最表面にある積層構造体105aについては、計算結果をそのまま光記録媒体としての反射率とした。レーザ光入射側から見て、奥にある積層構造体105bについては、その間にある積層構造体105aの光透過率を、光が通過する回数(2回)分だけ積層構造単位の反射率に乗算することで、光記録媒体としての反射率を算出した。レーザ光入射側から見て最も奥にある積層構造体105cについては、その間にある積層構造体105aと105bの光透過率を、光が通過する回数(2回)分だけ積層構造単位の反射率に乗算することで、光記録媒体としての反射率を算出した。
レーザ光入射側に近い順、即ち積層構造体105a、積層構造体105b、積層構造体105cの反射率は、この順でそれぞれ約3.0%、約2.3%、約1.3%と十分高くなり、この超解像再生記録媒体110は、少なくとも記録兼再生層を3層とした多層化が可能であると試算された。
<Calculation example>
In order to confirm the characteristics of the super-resolution reproducing optical recording medium according to the embodiment of the present invention in which a plurality of recording / reproducing layers are arranged, the reflectance characteristics are calculated assuming the super-resolution reproducing optical recording medium shown in FIG. went.
That is, a first protective layer 102a (forming material: (ZnS) 85 (SiO 2 ) 15 ) having a thickness of 86 nm, a recording / reproducing layer 103 (forming material: GeO x ) having a thickness of 47 nm, and a thickness of 40 nm. A three-layer structure 105a, 105b, 105c in which the second protective layer 102b (forming material: (ZnS) 85 (SiO 2 ) 15 ) is laminated is a resin spacer layer 104 (refractive index n = 1). .55), and a third laminated structure 105c is supported by a grooved polycarbonate substrate 101 (refractive index n = 1.63). The light reflectance with respect to the structures 105a, 105b, and 105c was calculated. Note that here, the wavelength of light to be used was set to 405 nm, and the laser light L was incident from the laminated structure 105a side.
Here, the reflectance was calculated according to the following procedure. First, the reflectance and light transmittance in units of each laminated structure were calculated using the Fresnel equation. For the laminated structure 105a on the outermost surface when viewed from the laser light incident side, the calculation result is directly used as the reflectance as the optical recording medium. As for the laminated structure 105b in the back as viewed from the laser light incident side, the light transmittance of the laminated structure 105a in between is multiplied by the reflectance of the laminated structure unit by the number of times the light passes (twice). Thus, the reflectance as an optical recording medium was calculated. With respect to the laminated structure 105c farthest from the laser light incident side, the light transmittance of the laminated structures 105a and 105b between them is the reflectance of the laminated structure unit by the number of times the light passes (twice). Was multiplied to calculate the reflectance as an optical recording medium.
The reflectances of the layers closer to the laser beam incident side, that is, the laminated structure 105a, the laminated structure 105b, and the laminated structure 105c are about 3.0%, about 2.3%, and about 1.3%, respectively, in this order. It has been estimated that the super-resolution reproduction recording medium 110 can be multilayered with at least three recording / reproduction layers.

(実施例2)
図5に示すように、市販DVDと同一規格の溝付きポリカーボネート基板201上に、Ag98PdCuからなる反射膜206を10nm形成し、樹脂材料からなるスペーサ層204aを約260μm形成した。スペーサ層204a上に、(ZnS)85(SiO15からなる第1の保護層202bを40nmの厚みで、GeOからなる記録兼再生層203を47nmの厚みで、(ZnS)85(SiO15からなる第2の保護層202aを86nmの厚みで、この順に積層し、積層構造205cを作製した。
積層構造205c上に、厚み約14μmのスペーサ層204bと、積層構造205cと同様の構造を有する積層構造205bと、厚み約14μmのスペーサ層204cと、積層構造205cと同様の構造を有する積層構造205aと、厚み約41μmのスペーサ層204dとを、この順に形成し、記録兼再生層203を3層有する実施例2における超解像再生光記録媒体210を作製した。
(Example 2)
As shown in FIG. 5, a reflective film 206 made of Ag 98 Pd 1 Cu 1 was formed to 10 nm on a grooved polycarbonate substrate 201 having the same standard as that of a commercially available DVD, and a spacer layer 204a made of a resin material was formed to about 260 μm. On the spacer layer 204a, the first protective layer 202b made of (ZnS) 85 (SiO 2 ) 15 has a thickness of 40 nm, the recording / reproducing layer 203 made of GeO x has a thickness of 47 nm, and (ZnS) 85 (SiO 2 ) A second protective layer 202a made of 15 was laminated in this order with a thickness of 86 nm to produce a laminated structure 205c.
On the stacked structure 205c, a spacer layer 204b having a thickness of approximately 14 μm, a stacked structure 205b having a structure similar to the stacked structure 205c, a spacer layer 204c having a thickness of approximately 14 μm, and a stacked structure 205a having a structure similar to the stacked structure 205c. Then, a spacer layer 204d having a thickness of about 41 μm was formed in this order, and the super-resolution reproduction optical recording medium 210 in Example 2 having three recording / reproduction layers 203 was produced.

ここで前記各スペーサ層は、紫外線硬化樹脂を塗布してスピンコートし、紫外線ランプにて樹脂を硬化する方法で形成した。
また、反射膜206は、Ag98PdCuからなるターゲットをアルゴン雰囲気中でスパッタリングすることで形成した。
また、前記各記録兼再生層及び前記各保護層は、実施例1と同様の方法により形成した。
Each spacer layer was formed by applying an ultraviolet curable resin, spin-coating, and curing the resin with an ultraviolet lamp.
The reflective film 206 was formed by sputtering a target made of Ag 98 Pd 1 Cu 1 in an argon atmosphere.
The recording / reproducing layers and the protective layers were formed by the same method as in Example 1.

実施例2における超解像再生光記録媒体210の特性の測定は、レーザ光の波長が405nmであり、対物レンズの開口数(NA)が0.85である光学系からなる光ディスク評価装置(パルステック工業株式会社製、ODU−1000)を用いて行った。本装置における基板溝の走査は、405nmのレーザ光と同軸上に設けた波長650nmの別のレーザ光を用いた。また前記測定において、両レーザ光は、基板とは反対側から入射させた。   The measurement of the characteristics of the super-resolution reproduction optical recording medium 210 in Example 2 is performed by measuring an optical disc evaluation device (pulse) having an optical system in which the wavelength of the laser beam is 405 nm and the numerical aperture (NA) of the objective lens is 0.85. This was carried out using ODU-1000) manufactured by Tech Kogyo Co., Ltd. For scanning the substrate groove in this apparatus, another laser beam having a wavelength of 650 nm provided coaxially with the 405 nm laser beam was used. In the measurement, both laser beams were incident from the opposite side of the substrate.

実施例2における超解像再生光記録媒体210に対し、最も基板側に近い積層構造205cに、線速度2.46m/sにおいて、115nmの長さのマークを22mWのレーザ光パワーで記録した。前記光ディスク評価装置における解像限界は、約119nmである。そのため、1.0mWのレーザ光パワーで再生すると、図6に示すように、CNRは約6dBと低い結果となった。
そこで、前記115nmの記録マークに対する再生レーザ光パワーを1.0mWから挙げていくと、図6に示すように、CNR特性を向上させることができた。前記再生レーザ光パワーが3.0mWのとき、CNRが約28dBとなり、良好な超解像再生が可能であった。
On the super-resolution reproduction optical recording medium 210 in Example 2, a mark having a length of 115 nm was recorded with a laser light power of 22 mW at a linear velocity of 2.46 m / s on the laminated structure 205c closest to the substrate side. The resolution limit in the optical disk evaluation apparatus is about 119 nm. Therefore, when reproduction was performed with a laser light power of 1.0 mW, the CNR was as low as about 6 dB as shown in FIG.
Therefore, when the reproduction laser beam power for the 115 nm recording mark is increased from 1.0 mW, the CNR characteristic can be improved as shown in FIG. When the reproduction laser beam power was 3.0 mW, the CNR was about 28 dB, and good super-resolution reproduction was possible.

1、101、201 溝付き基板(基板)
2a、102a、202b 第1の保護層
2b、102b、202a 第2の保護層
3、103、203 記録兼再生層
5、105a、105b、105c、205a、205b、205c 積層構造体
206 反射膜
10、110、210 超解像再生光記録媒体
104、204a、204b、204c、204d スペーサ層
L レーザ光
1, 101, 201 substrate with groove (substrate)
2a, 102a, 202b 1st protective layer 2b, 102b, 202a 2nd protective layer 3, 103, 203 Recording / reproducing layer 5, 105a, 105b, 105c, 205a, 205b, 205c Laminated structure 206 Reflective film 10, 110, 210 Super-resolution reproduction optical recording medium 104, 204a, 204b, 204c, 204d Spacer layer L Laser light

Claims (8)

記録レーザを照射して記録マークが形成されるとともに、再生レーザを照射して前記記録マークが読み出し可能とされ、前記再生レーザの波長をλとし、対物レンズの開口数をNAとしたとき、λ/4NAで表される前記再生レーザからなる光学系の解像限界よりも短いマーク長の記録マークを含む超解像再生光記録媒体であって、
少なくとも、基板と、前記記録マークの形成及び前記記録マークの読み出しを1つの層で行う記録兼再生層とを有し、
前記記録兼再生層が光透過性を有し、前記基板上に複数配されることを特徴とする超解像再生光記録媒体。
When the recording mark is formed by irradiating the recording laser, the recording mark can be read by irradiating the reproducing laser, the wavelength of the reproducing laser is λ, and the numerical aperture of the objective lens is NA. A super-resolution reproduction optical recording medium including a recording mark having a mark length shorter than the resolution limit of the optical system composed of the reproduction laser represented by / 4NA,
At least a substrate, and a recording and reproducing layer that performs formation of the recording mark and reading of the recording mark in one layer,
A super-resolution reproducing optical recording medium, wherein the recording / reproducing layer has optical transparency and a plurality of recording / reproducing layers are arranged on the substrate.
記録マークが、未記録状態の記録兼再生層の層形成材料に対して記録レーザを照射して生ずる熱反応生成物により形成される請求項1に記載の超解像再生光記録媒体。   The super-resolution reproduction optical recording medium according to claim 1, wherein the recording mark is formed by a thermal reaction product generated by irradiating a recording laser to a layer forming material of an unrecorded recording / reproducing layer. 層形成材料が、Ge、Si、Sb及びTeのいずれかの元素と、O及びNのいずれかの元素とを含む熱反応性化合物である請求項2に記載の超解像再生光記録媒体。   3. The super-resolution reproduction optical recording medium according to claim 2, wherein the layer forming material is a thermally reactive compound containing any one element of Ge, Si, Sb, and Te and any one element of O and N. 熱反応性化合物が、GeO、GeN、SiO、SiN、SbO、SbN、TeO、TeN及びこれらの2元素化合物を含む多元素化合物の少なくともいずれかを含有する請求項3に記載の超解像再生光記録媒体。
ただし、前記xは、前記2元素化合物が安定して存在する場合の化学当量よりも小さい値を示す。
The heat-reactive compound contains at least one of GeO x , GeN x , SiO x , SiN x , SbO x , SbN x , TeO x , TeN x and a multi-element compound including these two element compounds. The super-resolution reproduction optical recording medium described in 1.
However, said x shows a value smaller than the chemical equivalent when the said 2 element compound exists stably.
記録兼再生層の消衰係数が、使用する記録レーザ及び再生レーザのいずれかの光の波長において、0.01〜2.0である請求項1から4のいずれかに記載の超解像再生光記録媒体。   The super-resolution reproduction according to any one of claims 1 to 4, wherein the extinction coefficient of the recording / reproducing layer is 0.01 to 2.0 at a wavelength of any one of a recording laser and a reproducing laser to be used. Optical recording medium. 記録兼再生層が2つの保護層で挟持されてなる積層構造を有し、前記積層構造がスペーサ層を介して複数配される請求項1から5のいずれかに記載の超解像再生光記録媒体。   6. The super-resolution reproduction optical recording according to claim 1, wherein the recording / reproducing layer has a laminated structure in which two protective layers are sandwiched, and a plurality of the laminated structures are arranged via a spacer layer. Medium. 積層構造が、少なくとも3つ配される請求項6に記載の超解像再生光記録媒体。   The super-resolution reproduction optical recording medium according to claim 6, wherein at least three laminated structures are arranged. 請求項1から5のいずれかに記載の超解像再生光記録媒体に対する超解像再生方法であって、記録兼再生層に記録レーザを照射して生成する生成物によって超解像再生を行うことを特徴とする超解像再生方法。   6. A super-resolution reproduction method for a super-resolution reproduction optical recording medium according to claim 1, wherein super-resolution reproduction is performed by a product generated by irradiating a recording / reproducing layer with a recording laser. And a super-resolution reproduction method.
JP2011033013A 2011-02-18 2011-02-18 Super-resolution reproduction optical recording medium and super-resolution reproduction method thereof Expired - Fee Related JP5700533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033013A JP5700533B2 (en) 2011-02-18 2011-02-18 Super-resolution reproduction optical recording medium and super-resolution reproduction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033013A JP5700533B2 (en) 2011-02-18 2011-02-18 Super-resolution reproduction optical recording medium and super-resolution reproduction method thereof

Publications (2)

Publication Number Publication Date
JP2012174298A true JP2012174298A (en) 2012-09-10
JP5700533B2 JP5700533B2 (en) 2015-04-15

Family

ID=46977074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033013A Expired - Fee Related JP5700533B2 (en) 2011-02-18 2011-02-18 Super-resolution reproduction optical recording medium and super-resolution reproduction method thereof

Country Status (1)

Country Link
JP (1) JP5700533B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329316A (en) * 2001-03-02 2002-11-15 Matsushita Electric Ind Co Ltd Optical recording medium, optical information processor and optical recording and reproducing device
JP2004030891A (en) * 2002-06-06 2004-01-29 ▲らい▼徳科技股▲ふん▼有限公司 Super-resolution optical medium without needing initialization
JP2009083152A (en) * 2007-09-27 2009-04-23 Spinet Inc Optical recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329316A (en) * 2001-03-02 2002-11-15 Matsushita Electric Ind Co Ltd Optical recording medium, optical information processor and optical recording and reproducing device
JP2004030891A (en) * 2002-06-06 2004-01-29 ▲らい▼徳科技股▲ふん▼有限公司 Super-resolution optical medium without needing initialization
JP2009083152A (en) * 2007-09-27 2009-04-23 Spinet Inc Optical recording medium

Also Published As

Publication number Publication date
JP5700533B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
US7967956B2 (en) Information recording medium and method for producing the same
WO2005024799A1 (en) Optical recording medium, manufacturing method thereof, method for recording data on optical recording medium, and data reproduction method
WO2005004133A1 (en) Optical recording medium and process for producing the same, method for recording data on optical recording medium and method for reproducing data from optical recording medium
JPH09198709A (en) Multilayered optical disk and recording and reproducing device
JP2002211137A (en) Laser beam optical recording medium of such type as having plurality of reading/writing access levels
US20060018241A1 (en) Optical recording medium
JP5700533B2 (en) Super-resolution reproduction optical recording medium and super-resolution reproduction method thereof
JP4199731B2 (en) Optical recording medium, optical information processing apparatus, and optical recording / reproducing method
JP4798447B2 (en) Optical recording medium
JP4214115B2 (en) Optical information recording medium and manufacturing method thereof
JP5437793B2 (en) Information recording medium and manufacturing method thereof
JP4525647B2 (en) Multilayer optical recording medium
JP4462431B2 (en) Optical information recording medium and optical information recording / reproducing apparatus
JPH0850739A (en) Optical information recording medium
JP4053715B2 (en) Optical information recording medium
KR20110086668A (en) Information recording medium, recording device, reproduction device, and reproduction method
JP4086689B2 (en) Optical information recording medium and manufacturing method thereof
JP2007323743A (en) Phase transition type optical recording medium
JP2008018607A (en) Write-once type optical recording medium
JP4533276B2 (en) Two-layer phase change information recording medium
JP4080515B2 (en) Optical recording method for two-layer phase change information recording medium
KR20090129331A (en) Optical information recording medium
KR20050026477A (en) Multi-stack optical data storage medium and use of such medium
JP4171438B2 (en) Optical recording medium
JP2000339748A (en) Optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5700533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees