JPH0850739A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH0850739A
JPH0850739A JP6208021A JP20802194A JPH0850739A JP H0850739 A JPH0850739 A JP H0850739A JP 6208021 A JP6208021 A JP 6208021A JP 20802194 A JP20802194 A JP 20802194A JP H0850739 A JPH0850739 A JP H0850739A
Authority
JP
Japan
Prior art keywords
layer
recording medium
optical information
information recording
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6208021A
Other languages
Japanese (ja)
Other versions
JP3313246B2 (en
Inventor
Noboru Yamada
昇 山田
Katsumi Kawahara
克巳 河原
Shigeaki Furukawa
惠昭 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20802194A priority Critical patent/JP3313246B2/en
Publication of JPH0850739A publication Critical patent/JPH0850739A/en
Application granted granted Critical
Publication of JP3313246B2 publication Critical patent/JP3313246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To realize an optical information recording medium in which repeating times of recording and reproducing are improved while maintaining optical properties despite a scanning speed. CONSTITUTION:A first dielectric layer 2, a recording thin film layer 3 a second dielectric layer 4 and a reflecting laser 5 are sequentially laminated on a board 1. Further, a thermal diffusion auxiliary layer 8 for diffusing the heat of the layer 5 to the optically substantially transparent for laser light rays for recording and reproducing is formed on the upper layer of the layer 5. Thus, equivalent effect to the increase of the thermal capacity of the layer 5 is obtained as seen from the incident side of the light. Even if the linear speed at the time of recording and reproducing is low, the repeating times of recording and reproducing can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に形成した記録
薄膜層に高エネルギービームを照射し、記録薄膜層に相
変化を生じさせることにより、信号を記録及び再生する
光学的情報記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium for recording and reproducing signals by irradiating a recording thin film layer formed on a substrate with a high energy beam to cause a phase change in the recording thin film layer. It is about.

【0002】[0002]

【従来の技術】光学的情報記録媒体(以下、単に記録媒
体という)として、ディスク状、カード状、円筒状等を
した基板上に金属薄膜や有機物薄膜で構成される記録材
料薄膜層(以下、記録薄膜層という)を形成したものが
ある。この記録薄膜層にサブミクロンオーダー径の微小
光スポットに絞り込んだ高エネルギービームを照射する
と、記録薄膜層に局部的な状態変化が生じる。このよう
な状態変化を利用して信号の蓄積を行なう技術は既に広
く知られている。とりわけ光磁気材料薄膜や相変化材料
薄膜を記録薄膜層に用いた記録媒体では、信号の書き換
えが容易に行えることから、盛んに研究開発がなされて
きている。
2. Description of the Related Art As an optical information recording medium (hereinafter, simply referred to as a recording medium), a recording material thin film layer (hereinafter, referred to as a recording material thin film layer composed of a metal thin film or an organic thin film on a disk-shaped, card-shaped, cylindrical, etc. substrate. Recording thin film layer) is formed. When this recording thin film layer is irradiated with a high-energy beam focused on a minute light spot of a submicron order diameter, a local state change occurs in the recording thin film layer. A technique for accumulating a signal by utilizing such a state change is already widely known. In particular, a recording medium using a magneto-optical material thin film or a phase-change material thin film as a recording thin film layer has been actively researched and developed because signals can be easily rewritten.

【0003】記録媒体の構成は、図7に示すような多層
膜構成をとるものが通常である。すなわち図7に示す記
録媒体Aでは、樹脂板やガラス板等で構成される基板1
の上に、光干渉層の働きを兼ねた第1の誘電体層(下引
き層ともいう)2を設ける。そして第1の誘電体層2の
上面に光吸収性の記録薄膜層3を設け、その上に光干渉
層である第2の誘電体層(上引き層ともいう)4を設け
る。次に、記録薄膜層3での光吸収効率を向上させた
り、熱拡散層としての働きをする反射層5を設ける。こ
れらの各層は順次スパッタリングや真空蒸着等の方法で
形成され、最後に接着層6を介して保護板7を設け、記
録媒体Aが完成する。
The recording medium usually has a multilayer film structure as shown in FIG. That is, in the recording medium A shown in FIG. 7, the substrate 1 composed of a resin plate, a glass plate or the like
A first dielectric layer (also referred to as an undercoat layer) 2 which also functions as an optical interference layer is provided on the above. Then, a light absorbing recording thin film layer 3 is provided on the upper surface of the first dielectric layer 2, and a second dielectric layer (also referred to as an overcoat layer) 4 which is a light interference layer is provided thereon. Next, the reflection layer 5 that improves the light absorption efficiency of the recording thin film layer 3 and functions as a heat diffusion layer is provided. Each of these layers is sequentially formed by a method such as sputtering or vacuum deposition, and finally a protective plate 7 is provided via the adhesive layer 6 to complete the recording medium A.

【0004】次に信号を記録するには、所定のスポット
径に収束されたレーザ光線を基板1の下側から照射す
る。そうすればレーザ光線は透明な材質で構成される基
板1を通過し、第1の誘電体層2、記録薄膜層3、第2
の誘電体層4を経て反射層5に達する。レーザ光線の一
部は反射層5から接着層6側に透過するが、残りは反射
層5で反射され、記録薄膜層3を照射する。このときレ
ーザ光線のスポットが記録薄膜層3の一部を加熱し、そ
の部分の状態を変化させる。この状態変化が相変化型で
あれば、加熱温度によって異なるが、例えば急速加熱及
び急冷で非晶質となり、徐冷で結晶化する。このとき、
記録薄膜層3の一部は加熱蒸発しようとするが、第1の
誘電体層2、第2の誘電体層4の存在のため蒸散が阻止
される。特に第1の誘電体層2は、記録薄膜層3の熱が
基板1に伝わり、基板1が軟化するのを防止する保護層
の働きをする。
Next, in order to record a signal, a laser beam focused to a predetermined spot diameter is irradiated from the lower side of the substrate 1. Then, the laser beam passes through the substrate 1 made of a transparent material, and the first dielectric layer 2, the recording thin film layer 3, and the second
Through the dielectric layer 4 to reach the reflective layer 5. A part of the laser beam is transmitted from the reflective layer 5 to the adhesive layer 6 side, but the rest is reflected by the reflective layer 5 and irradiates the recording thin film layer 3. At this time, the spot of the laser beam heats a part of the recording thin film layer 3 and changes the state of the part. If this state change is a phase change type, it changes depending on the heating temperature, for example, it becomes amorphous by rapid heating and rapid cooling, and crystallizes by slow cooling. At this time,
A part of the recording thin film layer 3 tries to be heated and evaporated, but the evaporation is prevented due to the existence of the first dielectric layer 2 and the second dielectric layer 4. In particular, the first dielectric layer 2 functions as a protective layer that prevents the heat of the recording thin film layer 3 from being transferred to the substrate 1 and softening the substrate 1.

【0005】このように記録された信号を再生するに
は、記録媒体Aに収束したレーザ光線を照射する。この
とき記録薄膜層3の相状態(結晶又は非晶状態)により
反射率が異なり、第1の誘電体層2との屈折率又は誘電
率との関係によっても、基板1から外部に向かって出力
される反射光線の量が変化する。このように反射光線の
強度を検出することにより、信号を再生する。
To reproduce the signal thus recorded, the recording medium A is irradiated with a converged laser beam. At this time, the reflectivity varies depending on the phase state (crystalline or amorphous state) of the recording thin film layer 3, and the output from the substrate 1 toward the outside also depends on the relationship with the refractive index or the permittivity with the first dielectric layer 2. The amount of reflected light that is reflected changes. Thus, the signal is reproduced by detecting the intensity of the reflected light beam.

【0006】さて各層を構成する材料及び膜厚は、記録
媒体Aを利用する目的及びその使用条件によって異なっ
ている。例えば、記録薄膜層3で生じた熱を反射層5へ
急速に拡散させたい場合には、記録薄膜層3と第2の誘
電体層4の膜厚を数10nm以下に薄く選ぶ。あるいは
反射層5として熱伝導率の大きなAuやAl合金を用
い、光をほとんど透過させない程度に十分厚い膜厚に選
ぶということが行なわれている。上記の構成は通常、急
冷構成と称されている。
The material and the film thickness of each layer differ depending on the purpose of using the recording medium A and its use conditions. For example, in order to rapidly diffuse the heat generated in the recording thin film layer 3 to the reflective layer 5, the film thicknesses of the recording thin film layer 3 and the second dielectric layer 4 are selected to be several tens of nm or less. Alternatively, Au or Al alloy having a large thermal conductivity is used as the reflective layer 5, and a sufficiently thick film thickness is selected so that almost no light is transmitted. The above configuration is commonly referred to as a quench configuration.

【0007】また、最近では結晶領域とアモルファス
(非晶質)領域との間での光吸収量の相対的大きさを最
適化することが、歪を低減する上で重要であることが明
らかになっている。これを実現するためには、例えばA
u反射層の膜厚を高々20nm程度以下の薄いものとす
ることが1つの解決方法であることが開示されている。
このことは例えば、特開平1−149238号公報、山
田他:「高速オーバライト光ディスク」電子情報通信学
会技報Vol.92,No.377,P92、又は特開
平5−298747号公報に述べられている。また、特
開平4−102243号公報には、同様の目的を達成す
る手段として、金属の反射層5の代わりにSi反射層を
用いることが開示されている。
Recently, it has been revealed that it is important to optimize the relative magnitude of the amount of light absorption between the crystalline region and the amorphous region in order to reduce the strain. Has become. To achieve this, for example, A
It is disclosed that one solution is to make the thickness of the u reflective layer as thin as about 20 nm or less.
This is described, for example, in Japanese Patent Laid-Open No. 1-149238, Yamada et al .: "High Speed Overwrite Optical Disc", IEICE Technical Report Vol. 92, No. 377, P92, or JP-A-5-298747. Further, Japanese Patent Laid-Open No. 4-102243 discloses the use of a Si reflective layer instead of the metallic reflective layer 5 as a means for achieving the same object.

【0008】[0008]

【発明が解決しようとする課題】さて高速オーバライト
に使用する等の目的で反射層を薄くした場合、反射層が
担っていた熱拡散層としての働きは必然的に低下し、レ
ーザ光線の照射終了後の加熱部の冷却速度が低下する。
また反射層として、熱伝導率の低い物質を用いた場合も
同様に冷却速度が下がる。例えば結晶化シリコンの熱伝
導率は、室温近傍ではアルミニウムの1/3程度といわ
れている。シリコン自身は温度上昇に従って熱伝導率が
低下するため、特に記録媒体としてディスクを回転させ
て記録再生動作を行うとき、低い線速度条件下では熱拡
散層として不利になる。
When the reflective layer is thinned for the purpose of using it for high-speed overwriting, the function of the reflective layer as a heat diffusion layer is inevitably lowered, and the irradiation of laser beam is carried out. The cooling rate of the heating unit after completion is reduced.
Also, when a material having a low thermal conductivity is used for the reflective layer, the cooling rate is similarly reduced. For example, the thermal conductivity of crystallized silicon is said to be about 1/3 that of aluminum at around room temperature. Since the thermal conductivity of silicon itself decreases as the temperature rises, it becomes disadvantageous as a thermal diffusion layer under low linear velocity conditions, especially when a disk is rotated as a recording medium to perform a recording / reproducing operation.

【0009】ヒートモード記録の場合、冷却速度の低下
は直ちに記録感度、消去感度等に影響するが、記録媒体
を繰返して記録、再生、書き換えを行なうことを考える
ならば、その繰返しサイクル回数の限度にも影響する。
より具体的に説明すると、冷却速度が低下すると、記録
部(記録薄膜層)が高温状態に保持される時間がそれだ
け長くなり、より大きな熱的なダメージを生じ易くな
る。従って、高速記録再生用に設計された記録媒体を、
低速条件すなわち記録媒体と記録ビームとの間の相対的
な速度が小さい条件で用いようとすると、記録再生の許
容サイクル回数が小さくなるという欠点があった。
In the case of heat mode recording, a decrease in cooling rate immediately affects recording sensitivity, erasing sensitivity, etc., but if recording, reproduction and rewriting are repeatedly performed on the recording medium, the number of repetition cycles is limited. Also affects.
More specifically, when the cooling rate is lowered, the time period during which the recording portion (recording thin film layer) is kept in a high temperature state becomes longer, and more thermal damage is likely to occur. Therefore, a recording medium designed for high-speed recording and reproduction is
If it is used under a low speed condition, that is, a condition in which the relative speed between the recording medium and the recording beam is small, there is a drawback that the allowable number of recording / reproducing cycles becomes small.

【0010】本発明はこのような従来の問題点に鑑みて
なされたものであって、反射層を薄くしても反射層の放
熱状態を最適にすると共に、記録薄膜層の記録再生の許
容サイクル回数を、記録媒体の走査速度に係わらず向上
させることのできる光学的情報記録媒体を実現すること
を目的とする。
The present invention has been made in view of the above conventional problems, and optimizes the heat dissipation state of the reflective layer even when the reflective layer is thin, and allows the recording / reproducing allowable cycle of the recording thin film layer. An object of the present invention is to realize an optical information recording medium capable of improving the number of times regardless of the scanning speed of the recording medium.

【0011】[0011]

【課題を解決するための手段】本願の請求項1の発明
は、情報記録媒体のベースとなる基板と、基板の上面に
設けられた第1の誘電体層と、第1の誘電体層の上面に
設けられ、レーザ光線の照射によって結晶相とアモルフ
ァス相との間で可逆的状態変化を生じる記録層と、記録
層の上面に設けられた第2の誘電体層と、第2の誘電体
層の上面に設けられ、レーザ光線の一部を記録層側に反
射する反射層と、を具備する光学的情報記録媒体であっ
て、反射層の上面に、レーザ光線に対して略透明であ
り、反射層の熱を拡散する熱拡散補助層を設けたことを
特徴とするものである。
According to a first aspect of the present invention, there is provided a substrate which is a base of an information recording medium, a first dielectric layer provided on an upper surface of the substrate, and a first dielectric layer. A recording layer which is provided on the upper surface and causes a reversible state change between a crystalline phase and an amorphous phase by irradiation with a laser beam, a second dielectric layer provided on the upper surface of the recording layer, and a second dielectric An optical information recording medium provided on the upper surface of a layer, the reflective layer reflecting a part of a laser beam to the recording layer side, the upper surface of the reflective layer being substantially transparent to the laser beam. A heat diffusion auxiliary layer for diffusing the heat of the reflective layer is provided.

【0012】本願の請求項2の発明は、レーザ光線の入
射面となり、内部に積層される薄膜を保護する保護層
と、保護層の上面に設けられた第1の誘電体層と、第1
の誘電体層の上面に設けられ、レーザ光線の照射によっ
て結晶相とアモルファス相との間で可逆的状態変化を生
じる記録層と、記録層の上面に設けられた第2の誘電体
層と、第2の誘電体層の上面に設けられ、レーザ光線の
一部を記録層側に反射する反射層と、反射層の上面に設
けられ、レーザ光線に対して略透明であり、反射層の熱
を拡散する熱拡散補助層と、熱拡散補助層の上面に設け
られ、光の干渉を発生しない膜厚を有する隔離層と、隔
離層の上面に設けられ、情報記録媒体のベースとなる基
板と、を設けたことを特徴とするものである。
According to a second aspect of the invention of the present application, a protective layer which becomes an incident surface of a laser beam and protects a thin film laminated inside, a first dielectric layer provided on an upper surface of the protective layer, and a first dielectric layer are provided.
A recording layer that is provided on the upper surface of the dielectric layer and that causes a reversible state change between a crystalline phase and an amorphous phase by irradiation with a laser beam; and a second dielectric layer that is provided on the upper surface of the recording layer. A reflective layer that is provided on the upper surface of the second dielectric layer and reflects a part of the laser beam to the recording layer side; and a reflective layer that is provided on the upper surface of the reflective layer and is substantially transparent to the laser beam, A heat diffusion auxiliary layer for diffusing light, an isolation layer having a film thickness that does not cause light interference and provided on the upper surface of the heat diffusion auxiliary layer, and a substrate provided on the upper surface of the isolation layer and serving as a base of the information recording medium. , Are provided.

【0013】[0013]

【作用】このような特徴を有する本願の発明によれば、
レーザ光線の入射側から見て、反射層の後方に光学的に
透明で、且つ反射層の熱を拡散する熱拡散補助層を設け
たことにより、あたかも反射層の熱容量が増大したのと
等価の層構造となる。このため反射層が薄い構成でも、
熱の拡散効率を確保することができる。こうすると記録
媒体の走査速度が低下しても、反射層で蓄積されるスポ
ット熱も適度に拡散され、記録層の相変化に与える影響
も少なくなる。また記録媒体としての光学的設計上の自
由度が高まる。
According to the invention of the present application having such characteristics,
As seen from the laser beam incident side, the provision of a heat diffusion auxiliary layer that is optically transparent behind the reflection layer and diffuses the heat of the reflection layer is equivalent to increasing the heat capacity of the reflection layer. It has a layered structure. Therefore, even if the reflective layer is thin,
The heat diffusion efficiency can be secured. By doing so, even if the scanning speed of the recording medium is reduced, the spot heat accumulated in the reflective layer is also diffused appropriately, and the influence on the phase change of the recording layer is reduced. Further, the degree of freedom in optical design as a recording medium is increased.

【0014】[0014]

【実施例】本発明の1実施例における光学的情報記録媒
体について図面を参照しつつ説明する。図1は本実施例
における光学的情報記録媒体(記録媒体B)の構成を示
す断面図である。本実施例では照射用のレーザ光線の波
長(λ)を780nmとして設計を行なうものとする。
厚さ1.2mm、直径120mmのポリカーボネイト製
ディスク状の基板1の上に、第1の誘電体層2として厚
さ92.9nmのZnS−SiO2 混合膜(下引き層)
を設ける。そして第1の誘電体層2の上面に、厚さ22
nmのGe2 Sb2 Te5 合金薄膜で構成される記録薄
膜層3を設ける。そしてこの膜の上に第2の誘電体層4
として、厚さ157nmのZnS−SiO2 混合膜(上
引き層)を設ける。この層の上に反射層5として、厚さ
10nmのAu薄膜層を設け、そしてこの層の上に熱拡
散補助層8として厚さ156nmのSiC層を設け、各
層を積層状態にする。熱拡散補助層8の光学定数(複素
屈折率)の実測値は2.5であり、膜厚156nmはお
よそレーザ光線のλ/(2n)に相当する。但しnは光
学定数の実数部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical information recording medium in one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing the arrangement of an optical information recording medium (recording medium B) in this example. In this embodiment, the wavelength (λ) of the laser beam for irradiation is designed to be 780 nm.
A ZnS—SiO 2 mixed film (undercoat layer) having a thickness of 92.9 nm was formed as the first dielectric layer 2 on a substrate 1 made of polycarbonate and having a thickness of 1.2 mm and a diameter of 120 mm.
To provide. Then, on the upper surface of the first dielectric layer 2, the thickness 22
A recording thin film layer 3 composed of a Ge 2 Sb 2 Te 5 alloy thin film of nm is provided. Then, the second dielectric layer 4 is formed on this film.
As a result, a ZnS—SiO 2 mixed film (upper layer) having a thickness of 157 nm is provided. An Au thin film layer having a thickness of 10 nm is provided as a reflective layer 5 on this layer, and a SiC layer having a thickness of 156 nm is provided as a heat diffusion assisting layer 8 on this layer, and each layer is laminated. The actually measured value of the optical constant (complex refractive index) of the heat diffusion auxiliary layer 8 is 2.5, and the film thickness of 156 nm corresponds to approximately λ / (2n) of the laser beam. However, n is the real part of the optical constant.

【0015】以上の各層はArガスを用いたスパッタリ
ング法により順次形成される。次に熱拡散補助層8の上
部にスピンコート法により約10μm厚の紫外線硬化樹
脂層を塗布し、紫外線を照射して硬化させ、保護層9を
形成する。こうして構成された記録媒体Bは信号の記録
時に、基板1側からレーザ光線を記録薄膜層3に入射さ
せる。なお基板1の下側表面には、記録再生に用いるレ
ーザ光線をトラックに沿って案内するために、深さ60
nm、幅0.6μmのスパイラル状の連続溝(グルー
ブ)が1.2μmピッチで刻まれている。
The above layers are sequentially formed by a sputtering method using Ar gas. Next, an ultraviolet curable resin layer having a thickness of about 10 μm is applied on the heat diffusion auxiliary layer 8 by a spin coating method and irradiated with ultraviolet rays to be cured to form a protective layer 9. In the recording medium B thus configured, a laser beam is made incident on the recording thin film layer 3 from the substrate 1 side at the time of recording a signal. The lower surface of the substrate 1 has a depth of 60 in order to guide a laser beam used for recording and reproduction along a track.
Spiral continuous grooves (grooves) having a width of nm and a width of 0.6 μm are engraved at a pitch of 1.2 μm.

【0016】図2は、熱拡散層補助層8を有する記録媒
体Bと、比較のため別に用意した熱拡散補助層8を設け
ない従来の記録媒体Aとの間のサイクル特性である。2
つの記録媒体A,Bの光学的特性(図示せず)はほぼ同
等である。実測で求めた各層の光学定数については、記
録薄膜層3がアモルファス状態では4.55+i1.3
5,結晶状態では5.57+i3.38となっている。
第1の誘電体層2、第2の誘電体層4において、光学定
数は2.1であり、反射層において0.18+i4.6
4である。これらの光学定数の値から行なった計算で
は、入射光を100%とした場合の、記録薄膜層3にお
ける吸収率は結晶部で約53%(Ac)、アモルファス
部で約39%(Aa)である。そして、記録媒体として
の反射率は結晶部で約23%、アモルファス部で約7%
であり、結晶部とアモルファス部の間の吸収比Ac/A
aはおよそ1.35であった。
FIG. 2 shows the cycle characteristics between the recording medium B having the thermal diffusion auxiliary layer 8 and the conventional recording medium A prepared separately for comparison and having no thermal diffusion auxiliary layer 8. Two
The optical characteristics (not shown) of the two recording media A and B are almost the same. The optical constants of the respective layers obtained by actual measurement are 4.55 + i1.3 when the recording thin film layer 3 is in an amorphous state.
5, it is 5.57 + i3.38 in the crystalline state.
In the first dielectric layer 2 and the second dielectric layer 4, the optical constant is 2.1, and in the reflective layer, 0.18 + i4.6.
It is 4. The calculation performed from the values of these optical constants shows that when the incident light is 100%, the absorptance of the recording thin film layer 3 is about 53% (Ac) in the crystal part and about 39% (Aa) in the amorphous part. is there. The reflectance of the recording medium is about 23% in the crystal part and about 7% in the amorphous part.
And the absorption ratio Ac / A between the crystal part and the amorphous part.
a was approximately 1.35.

【0017】記録特性の評価には、レーザ光線を記録信
号に応じて、ピークレベル(アモルファス化レベル)と
バイアスレベル(結晶化レベル)間で2値変調し、古い
信号を消しながら、新しい信号を記録する方法(所謂1
ビームオーバライト法)を用いた。記録媒体であるディ
スクを1800rpmで回転させ、直径φ106(線速
度10m/s)の位置で、オーバライトを繰返した。信
号はデューティ50%の単一周波数モードとし、f1
(6.58MHz)とf2(1.88MHz)の2つの
信号を交互に記録した。レーザ波長は780nm、対物
レンズのN.Aは0.55とした。また記録パワーにつ
いては、ピークパワー14mW、バイアスパワー7mW
(図2の14/7で示す)と、ピークパワー11mW、
バイアスパワー5.5mW(図2の11/5で示す)の
2条件で行なった。図2の縦軸はキャリア信号に対する
ノイズの比(CNR)を表し、横軸は記録動作の繰り返
し回数(サイクル回数)を表す。
To evaluate the recording characteristics, a laser beam is binary-modulated between a peak level (amorphization level) and a bias level (crystallization level) according to a recording signal, and a new signal is erased while erasing an old signal. Method of recording (so-called 1
Beam overwrite method) was used. A disc, which is a recording medium, was rotated at 1800 rpm, and overwriting was repeated at a position of diameter φ106 (linear velocity 10 m / s). The signal is in single frequency mode with 50% duty, and f1
Two signals (6.58 MHz) and f2 (1.88 MHz) were recorded alternately. The laser wavelength is 780 nm, and the N.V. A was 0.55. Regarding the recording power, the peak power is 14 mW and the bias power is 7 mW.
(Shown as 14/7 in FIG. 2) and a peak power of 11 mW,
The bias power was 5.5 mW (indicated by 11/5 in FIG. 2) under two conditions. The vertical axis of FIG. 2 represents the ratio of noise to the carrier signal (CNR), and the horizontal axis represents the number of repetitions of the recording operation (cycle number).

【0018】図2から明らかなように、熱拡散補助層を
設けない記録媒体Aではサイクル回数がパワー条件に依
存し、低いパワー条件(11/5)では1万回の繰返し
の間にほとんど変化を生じなかったのに対して、高いパ
ワー条件(14/7)ではサイクル回数C/Nの低下が
認められた。これに対して、熱拡散補助層8を設けた記
録媒体Bでは、何れのパワー条件でも1万サイクル間で
C/Nの変動が生じていないことが判る。
As is apparent from FIG. 2, the number of cycles depends on the power condition in the recording medium A having no heat diffusion auxiliary layer, and under the low power condition (11/5), the number of cycles almost changes during 10,000 cycles. However, in the high power condition (14/7), the cycle number C / N was decreased. On the other hand, in the recording medium B provided with the thermal diffusion auxiliary layer 8, it is found that the C / N does not change for 10,000 cycles under any power condition.

【0019】基板1に用いる材料としては通常光ディス
ク等に用いられているPMMA、ポリカーボネイト(P
C)、アモルファスポリオレフィン等の透明樹脂板、ガ
ラス板、Al,Cu等の金属板、又はこれらをベースに
した合金板を用いる。金属板のように不透明な基板1を
用いる場合には、図1における各層の積層順序を逆に
し、保護層側からレーザ光線を入射させる必要がある。
この際、基板面からの光反射の影響を避ける必要のある
場合には、図3に示す記録媒体Cのように、基板1の上
面に光学的隔離層(以下、単に隔離層という)10を設
ける。この隔離層10は樹脂層であってもよいし、誘電
体層であってもよいが、光のコヒーレンシーが無視でき
る程度に厚くする必要がある。
Materials used for the substrate 1 include PMMA and polycarbonate (P
C), a transparent resin plate such as amorphous polyolefin, a glass plate, a metal plate such as Al or Cu, or an alloy plate based on these is used. When an opaque substrate 1 such as a metal plate is used, it is necessary to reverse the stacking order of the layers in FIG. 1 and make the laser beam incident from the protective layer side.
At this time, if it is necessary to avoid the influence of light reflection from the substrate surface, an optical isolation layer (hereinafter, simply referred to as an isolation layer) 10 is provided on the upper surface of the substrate 1 as in the recording medium C shown in FIG. Set up. The isolation layer 10 may be a resin layer or a dielectric layer, but needs to be thick enough to neglect the light coherency.

【0020】一方、記録再生に用いるレーザ光線を導く
手段としては、スパイラル溝のかわりに同芯円溝でもよ
いし、あるいはピット列を凹凸で刻むこともできる。第
1の誘電体層2及び第2の誘電体層4は、保護層として
前述したように基板1の表面の熱ダメージを抑える働き
をすると共に、記録薄膜層3を挟み込むことで、記録薄
膜層3の変形、蒸発を抑えることができる。又第1の誘
電体層2及び第2の誘電体層4は、基板1及び記録薄膜
層3と比較して融点が高いこと、記録再生に用いるレー
ザ光線に対して透明であること、硬度が大きくて傷がつ
きにくいこと等の性質を有することが必要である。これ
も通常の相変化型の光ディスクにおいて用いられている
保護層材料がそのまま適用可能である。
On the other hand, as a means for guiding the laser beam used for recording / reproducing, concentric circular grooves may be used instead of the spiral grooves, or pit rows may be engraved with irregularities. The first dielectric layer 2 and the second dielectric layer 4 serve as a protective layer to suppress the thermal damage on the surface of the substrate 1 as described above, and the recording thin film layer 3 is sandwiched between the first dielectric layer 2 and the second dielectric layer 4. The deformation and evaporation of No. 3 can be suppressed. The first dielectric layer 2 and the second dielectric layer 4 have a higher melting point than the substrate 1 and the recording thin film layer 3, are transparent to a laser beam used for recording and reproduction, and have a hardness. It is necessary to have properties such as being large and not easily scratched. Also for this, the protective layer material used in a normal phase change type optical disk can be applied as it is.

【0021】すなわち第1の誘電体層2及び第2の誘電
体層4は、第1実施例のZnS−SiO2 に代わって、
例えばSiO2 ,ZrO2 ,TiO2 ,Ta2 5 等の
酸化物、BN,Si3 4 ,AlN,TiN等の窒化
物、ZnS,PbS等の硫化物、SiC等の炭化物、C
aF2 等のフッ化物、ZnSe等のセレン化物、及びこ
れらの混合物としてZnSe−SiO2 ,SiNO等、
又はダイヤモンド薄膜、ダイヤモンドライクカーボン等
を用いることもできる。
That is, the first dielectric layer 2 and the second dielectric layer 4 are replaced by ZnS-SiO 2 of the first embodiment,
For example, oxides such as SiO 2 , ZrO 2 , TiO 2 and Ta 2 O 5 , nitrides such as BN, Si 3 N 4 , AlN and TiN, sulfides such as ZnS and PbS, carbides such as SiC, C
fluoride such aF 2, selenides ZnSe, etc., and ZnSe-SiO 2, SiNO such as mixtures thereof,
Alternatively, a diamond thin film, diamond-like carbon or the like can be used.

【0022】次に記録薄膜層3に用いる材料は、レーザ
光線の照射を受けて可逆的な状態変化を生じる相変化材
料であって、とりわけレーザ光線の照射によるスポット
熱でアモルファス−結晶間の可逆的相変化を生じるもの
を用いる。代表的には、Ge−Sb−Te,Ge−T
e,In−Sb−Te,Sb−Te,Ge−Sb−Te
−Pd,Ag−Sb−In−Te,Ge−Bi−Sb−
Te,Ge−Bi−Te,Ge−Sn−Te,Ge−S
b−Te−Se,Ge−Bi−Te−Se、Ge−Te
−Sn−Au等の系、又はこれらの系に酸素、窒素等の
添加物を加えた系を用いることができる。
Next, the material used for the recording thin film layer 3 is a phase change material which undergoes reversible state change upon irradiation with a laser beam, and in particular, reversible between amorphous and crystal due to spot heat caused by irradiation with a laser beam. The one that causes a physical phase change is used. Typically, Ge-Sb-Te, Ge-T
e, In-Sb-Te, Sb-Te, Ge-Sb-Te
-Pd, Ag-Sb-In-Te, Ge-Bi-Sb-
Te, Ge-Bi-Te, Ge-Sn-Te, Ge-S
b-Te-Se, Ge-Bi-Te-Se, Ge-Te
A system such as —Sn—Au or a system obtained by adding an additive such as oxygen or nitrogen to these systems can be used.

【0023】これらの薄膜は通常成膜された際にアモル
ファス状態であるが、レーザ光線等のエネルギーを吸収
すると、結晶化して光学的濃度が高くなる。実際に記録
媒体として用いる場合には、信号の記録時には記録薄膜
層3の全体を予め結晶化しておき、レーザ光線を細く絞
って照射し、照射部をアモルファス化して光学定数を変
化させる。また信号の再生時には、記録薄膜層3に相変
化を与えない程度に弱くしたレーザ光線を照射し、反射
光の強度変化、透過光の強度変化を検出して信号を再生
する。
These thin films are usually in an amorphous state when they are formed, but when they absorb the energy of a laser beam or the like, they are crystallized and the optical density becomes high. When actually used as a recording medium, at the time of recording a signal, the entire recording thin film layer 3 is crystallized in advance, a laser beam is narrowed and irradiated, and the irradiated portion is made amorphous to change the optical constant. Further, at the time of reproducing the signal, the recording thin film layer 3 is irradiated with a laser beam weakened to the extent that no phase change is caused, and the change in the intensity of the reflected light and the change in the intensity of the transmitted light are detected to reproduce the signal.

【0024】結晶部とアモルファス部での光吸収量を最
適化する条件(例えばAc/Aa≧1)では記録層の厚
さ等が限定を受けることは、特開平5−298747号
に既に示されている。即ち記録薄膜層3の厚さは、その
層が記録状態にあるか、未記録状態にあるかを問わず、
レーザ光線の一部が記録薄膜層3を透過可能なように設
定される。
It has already been shown in Japanese Patent Laid-Open No. 5-298747 that the thickness of the recording layer is limited under the condition (eg Ac / Aa ≧ 1) for optimizing the light absorption amount in the crystal part and the amorphous part. ing. That is, the thickness of the recording thin-film layer 3 is irrespective of whether the layer is in the recorded state or the unrecorded state.
It is set so that a part of the laser beam can pass through the recording thin film layer 3.

【0025】例えば、記録薄膜層3を相変化材料で構成
した場合には、相変化材料膜(結晶相)を、第1の誘電
体層2と第2の誘電体層4を構成する材料と同じ材質の
材料層(厚さは無限と仮定)に挟まれた際の透過率を考
え、透過率が少なくとも1%程度以上、好ましくは2〜
3%程度以上あることが必要である。また透過率の値
は、相変化材料膜がアモルファス相である場合に比較し
て10%程度以上であることが必要であり、その条件が
満たされるように各膜厚を選ぶのが望ましい。
For example, when the recording thin film layer 3 is made of a phase change material, the phase change material film (crystal phase) is used as a material for the first dielectric layer 2 and the second dielectric layer 4. Considering the transmittance when sandwiched between material layers (assuming infinite thickness) of the same material, the transmittance is at least about 1%, preferably 2 to
It is necessary to be about 3% or more. Further, the transmittance value needs to be about 10% or more as compared with the case where the phase change material film has an amorphous phase, and it is desirable to select each film thickness so that the condition is satisfied.

【0026】反射層5で反射されて記録薄膜層3の中に
再入射する成分が無くなると、光の干渉効果が小さくな
る。この場合第2の誘電体層4及び反射層5の膜厚を多
少変化させても、記録媒体全体の反射率、記録薄膜層3
での吸収効率等を制御できなくなる。そこで本発明にお
いても、特開平5−298747号の明細書に開示され
ているような膜厚制限条件がそのまま適用される。
When the components reflected by the reflective layer 5 and re-incident in the recording thin film layer 3 are eliminated, the light interference effect is reduced. In this case, even if the film thicknesses of the second dielectric layer 4 and the reflective layer 5 are slightly changed, the reflectance of the entire recording medium and the recording thin film layer 3 are reduced.
It becomes impossible to control the absorption efficiency and so on. Therefore, also in the present invention, the film thickness limiting condition as disclosed in the specification of Japanese Patent Application Laid-Open No. 5-298747 is directly applied.

【0027】反射層5に用いる金属薄膜としては、反射
率が大きく、耐触性が高く、熱伝導率が大きいという理
由で、Auが最も適している。それ以外にもAl,C
u,Ni等の金属薄膜、又はこれらを主成分とし添加物
を加えた合金を用いることができる。添加物としてはA
l,Cr,Cu,Ge,Co,Ni,Ag,Pt,P
d,Co,Ta,Ti,Bi,Sb、Mo等の材料群か
ら選ばれる少なくとも1種類の材料を用いて、光学定数
等の特性を微調整することができる。
As the metal thin film used for the reflective layer 5, Au is most suitable because it has high reflectance, high touch resistance, and high thermal conductivity. Other than that, Al, C
It is possible to use a metal thin film of u, Ni or the like, or an alloy containing these as the main components and an additive. A as an additive
l, Cr, Cu, Ge, Co, Ni, Ag, Pt, P
The characteristics such as optical constants can be finely adjusted by using at least one material selected from the material group such as d, Co, Ta, Ti, Bi, Sb, and Mo.

【0028】熱拡散補助層8としては、樹脂材料よりも
熱伝導率の高いことが最低条件であり、その意味では、
第1、第2の誘電体層に用いられる誘電体層材料に適用
される材料は、すべて用いることが可能である。ただ
し、なるべく熱伝導率が大きく、かつ透明な材料が望ま
しい。
The minimum condition for the heat diffusion auxiliary layer 8 is that the heat conductivity is higher than that of the resin material. In that sense,
All materials applied to the dielectric layer material used for the first and second dielectric layers can be used. However, a transparent material having a high thermal conductivity is desirable.

【0029】Y.S.Touloukian等によるI
FI/PLENUM社刊行のサーモフィジカル・プロパ
ティーズ・オブ・マターのVolume1及びVolu
me2、又、丸善株式会社刊行、日本化学会編の化学便
覧基礎編第2分冊6.5章によれば、上述のSiC以外
にも各種の材料が提案されている。例えば、Si単体、
Taの酸化物、Zr,Si,Ta,Ti,B,Alのグ
ループから選ばれた少なくとも1つの元素の窒化物、又
はZr,Si,W,Ta,Ti,Bのグループから選ば
れた少なくとも1つの元素の炭化物等がある。これらの
材料は他の酸化物や窒化物に比較して、一桁程度も熱伝
導率が高く、しかも化学的に安定であることから、本発
明の用途には特に適している。
Y. S. I by Touloukian et al.
Volume 1 and Volume of Thermo Physical Properties of Matter published by FI / PLENUM
According to me2, published by Maruzen Co., Ltd., and edited by the Chemical Society of Japan, Chapter 2, Section 6.5, Chemical Handbook, various materials are proposed in addition to the above-mentioned SiC. For example, Si alone,
Oxide of Ta, nitride of at least one element selected from the group of Zr, Si, Ta, Ti, B and Al, or at least one selected from the group of Zr, Si, W, Ta, Ti and B There are two elements such as carbides. These materials are particularly suitable for use in the present invention because they have a high thermal conductivity of about one digit as compared with other oxides and nitrides and are chemically stable.

【0030】図4は、誘電体材料を主とする様々な物質
を、熱伝導率の大小で分類した図である。同じ材料名で
色々な値がある場合にはその最高値を用いた。周期律表
2b族のアルカリ土類元素Be,Mg,Ca,Sr,B
aの酸化物、又はこれらの間の複合酸化物は熱伝導率は
大きいが、安定性及び毒性の観点から適さない。
FIG. 4 is a diagram in which various substances mainly composed of a dielectric material are classified according to the magnitude of thermal conductivity. When the same material name had various values, the highest value was used. Alkaline earth elements Be, Mg, Ca, Sr, B of Group 2b of the Periodic Table
The oxide of a or the composite oxide between them has a large thermal conductivity, but is not suitable from the viewpoint of stability and toxicity.

【0031】本実施例の信号の書換え可能な光学的情報
記録媒体は、通常の光学薄膜を形成する場合と同様に、
真空蒸着、マグネトロンスパッタリング、DCスパッタ
リング、イオンビームスパッタリング、イオンプレーテ
ィング等の方法で各層を順次積み重ねて行く方法で各層
を形成することができる。記録媒体が設計通りにできて
いるかどうかは、できあがった記録媒体の反射率及び透
過率を、スペクトルメーターを用いて測定し、予め計算
した値と比較することで検証することができる。この場
合、記録薄膜層3での吸収と、反射層5での吸収を分離
して直接測定することはできないが、少なくとも2種類
の波長で同じ検証を行なうことにより、精度を高めるこ
とができる。
The signal rewritable optical information recording medium of the present embodiment is similar to the case of forming an ordinary optical thin film,
Each layer can be formed by sequentially stacking each layer by a method such as vacuum deposition, magnetron sputtering, DC sputtering, ion beam sputtering, and ion plating. Whether or not the recording medium is designed as designed can be verified by measuring the reflectance and the transmittance of the completed recording medium using a spectrum meter and comparing them with values calculated in advance. In this case, the absorption in the recording thin film layer 3 and the absorption in the reflective layer 5 cannot be separated and directly measured, but the accuracy can be improved by performing the same verification with at least two kinds of wavelengths.

【0032】記録媒体の構成は、図1の場合のように単
板構成でもいいが、それ以外にも図5のようにホットメ
ルトタイプの接着層6を介して別の保護板11を貼り合
わせてもよい。また図6のように接着層6を中心にし
て、上下対称になるように2枚の記録媒体を張り合わせ
た構成としてもよい。さらに必要に応じて、第1の誘電
体層2を省略した構成、第2の誘電体層4を省略した構
成も可能である。
The structure of the recording medium may be a single plate structure as in the case of FIG. 1, but in addition to this, another protective plate 11 is bonded via a hot melt type adhesive layer 6 as shown in FIG. May be. Further, as shown in FIG. 6, two recording media may be laminated so as to be vertically symmetrical about the adhesive layer 6. Further, if necessary, a configuration in which the first dielectric layer 2 is omitted and a configuration in which the second dielectric layer 4 is omitted are also possible.

【0033】記録媒体に対し、ある一定の光学的特性を
要求する場合に、各層の膜厚をどう選べばよいかは、既
に出願した特開平5−298747号明細書の実施例中
に詳しく説明しているので、この方法をそのまま用いる
ことができる。即ち積層構成がたとえ何層であっても、
各層を構成する物質の光学定数と、膜厚とを与えれば、
マトリクス法(例えば久保田広著「波動光学」岩波書
店、1971年、第3章を参照)によって、各層での反
射率・透過率・吸収率が一義的に決定できる。従って、
各層の膜厚を一定の刻み幅で変化させて、反射率、透過
率、吸収率を計算すれば、項目ごとにその結果をマップ
化することができる。
How to select the film thickness of each layer when the recording medium is required to have a certain optical property will be described in detail in the examples of Japanese Patent Application Laid-Open No. 5-298747. Therefore, this method can be used as it is. That is, no matter how many layers are laminated,
Given the optical constants of the substances forming each layer and the film thickness,
The reflectance, transmittance, and absorptance of each layer can be uniquely determined by the matrix method (see, for example, Hiro Kubota, "Wave Optics," Iwanami Shoten, 1971, Chapter 3). Therefore,
If the reflectance, the transmittance, and the absorptance are calculated by changing the film thickness of each layer by a constant step size, the result can be mapped for each item.

【0034】こうしたマップがあれば、それを元に望ま
しい反射率、透過率、吸収率等を実現する各層の膜厚を
逆に選び出すことができる。ただし容易に推測できるよ
うに、光学計算に取り込む層の数は、なるべく少ない方
が望ましい。即ち計算に要する手間が省けるばかりでな
く、計算精度も高くなる。そこで最後の層である熱拡散
補助層8の膜厚は、計算から除外できるように、λ/2
n(λはレーザ波長、nは熱拡散層の屈折率)の整数倍
近傍に選ぶことが好ましい。
With such a map, it is possible to reversely select the film thickness of each layer that realizes a desired reflectance, transmittance, absorptance, etc. based on the map. However, as can be easily estimated, it is desirable that the number of layers to be incorporated in the optical calculation is as small as possible. That is, not only the labor required for calculation can be saved, but also the calculation accuracy can be improved. Therefore, the film thickness of the final layer, the heat diffusion auxiliary layer 8, is λ / 2 so that it can be excluded from the calculation.
It is preferable to select it in the vicinity of an integral multiple of n (λ is the laser wavelength and n is the refractive index of the thermal diffusion layer).

【0035】この波長に対して透明な物質層がλ/2n
の整数倍の厚さに形成されても、記録面側からみた記録
媒体全体の光学的特性は変化しない。熱拡散補助層8の
厚さは、たとえλ/2nの整数倍に正確に一致していな
くとも、熱を効率よく拡散させることができる。しかし
光学的見地からは、熱拡散補助層8の膜厚の精度を±λ
/8n程度の変動に抑制することが望ましい。
A material layer transparent to this wavelength is λ / 2n
Even if it is formed with a thickness that is an integral multiple of, the optical characteristics of the entire recording medium viewed from the recording surface side do not change. Even if the thickness of the heat diffusion auxiliary layer 8 does not exactly match an integral multiple of λ / 2n, heat can be efficiently diffused. However, from an optical point of view, the accuracy of the film thickness of the heat diffusion auxiliary layer 8 is ± λ
It is desirable to suppress the fluctuation to about / 8n.

【0036】各層を構成する物質の複素屈折率(光学定
数)は、例えばガラス板上に薄膜を形成し、その膜厚と
反射率、透過率の測定値を元に計算する方法、あるいは
エリプソメーターを使う方法で求めることができる。
The complex refractive index (optical constant) of the substance forming each layer is calculated, for example, by forming a thin film on a glass plate and measuring the film thickness, reflectance and transmittance, or by an ellipsometer. Can be obtained by the method of using.

【0037】別の実施例として、熱拡散補助層8にSi
膜とTa2 5 膜を適用した媒体をそれぞれ構成した。
また、比較のために熱拡散補助層のない記録媒体も用意
した。ディスクの基板1は前述の実施例と同じ1.2m
m厚のポリカーボネイト板を用い、厚さ81nmのTa
2 5 薄膜を第1の誘電体層2とし、厚さ30nmのG
21.5Sb24.7Te53.8の合金薄膜を記録薄膜層3と
し、154nmのZnS−SiO2 薄膜(SiO2 :2
5モル%)を第2の誘電体層4とし、厚さ10nmのA
u薄膜を反射層5として、スパッタリングの方法で各層
を形成した。そして熱拡散補助層8として、Si層、T
2 5 層又はZnS−SiO2 層をスパッタリングに
より、夫々99nm、186nm、186nmの厚さに
形成した。熱拡散補助層8の膜厚は、何れもλ/(2
n)に相当する。
As another embodiment, the heat diffusion auxiliary layer 8 is made of Si.
The media to which the film and the Ta 2 O 5 film were applied were constructed respectively.
A recording medium having no heat diffusion auxiliary layer was also prepared for comparison. The substrate 1 of the disk is 1.2 m, which is the same as the above-mentioned embodiment.
81m thick Ta using m-thick polycarbonate plate
The 2 O 5 thin film is used as the first dielectric layer 2 and a G layer having a thickness of 30 nm is used.
The alloy thin film of e 21.5 Sb 24.7 Te 53.8 is used as the recording thin film layer 3, and the ZnS—SiO 2 thin film (SiO 2 : 2) of 154 nm is used.
5 mol%) as the second dielectric layer 4, and the thickness of A is 10 nm.
Each layer was formed by the sputtering method using the u thin film as the reflective layer 5. Then, as the heat diffusion auxiliary layer 8, a Si layer, T
by sputtering a 2 O 5 layer or ZnS-SiO 2 layer was formed respectively 99 nm, 186 nm, a thickness of 186 nm. The film thickness of the thermal diffusion auxiliary layer 8 is λ / (2
n).

【0038】上述した評価方法で上記2つの記録媒体を
評価したところ、何れも熱拡散補助層8のない記録媒体
に比較して、熱拡散補助層8のある記録媒体は長いサイ
クル回数を示した。また、3つの材料の比較では、最も
大きな熱伝導率を有するSi層を用いた記録媒体のサイ
クル回数が最も長いことがわかった。
When the above-mentioned two recording media were evaluated by the above-mentioned evaluation method, the recording medium with the thermal diffusion auxiliary layer 8 showed a longer cycle number than both of the recording media without the thermal diffusion auxiliary layer 8. . In addition, it was found from the comparison of the three materials that the number of cycles of the recording medium using the Si layer having the highest thermal conductivity was the longest.

【0039】[0039]

【発明の効果】以上のように本発明によれば、記録媒体
の一部を構成する反射層を薄くしても、記録層及び反射
層におけるレーザ光線の蓄熱状態を最適にでき、記録再
生時に低い線速度条件で信号を記録再生することができ
る。また記録再生の許容繰り返し回数が増加し、相変化
における信号レベルが劣化しにくくなり、優れた記録媒
体が実現できる。
As described above, according to the present invention, even if the reflective layer forming a part of the recording medium is thinned, the heat storage state of the laser beam in the recording layer and the reflective layer can be optimized, and at the time of recording / reproducing. Signals can be recorded and reproduced under low linear velocity conditions. Further, the allowable number of times of recording and reproduction is increased, the signal level due to the phase change is less likely to deteriorate, and an excellent recording medium can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における光学的情報記録媒
体の構成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of an optical information recording medium in a first embodiment of the present invention.

【図2】熱拡散補助層を有する記録媒体と、熱拡散補助
層を有しない記録媒体において、反射率変化量と光吸収
率差との関係をサイクル回数を軸にして示したグラフで
ある。
FIG. 2 is a graph showing the relationship between the reflectance change amount and the light absorptance difference between a recording medium having a thermal diffusion auxiliary layer and a recording medium having no thermal diffusion auxiliary layer, with the number of cycles as an axis.

【図3】光学的情報記録媒体の各層に用いられる各種の
材料を、熱伝動率で分類した図である。
FIG. 3 is a diagram in which various materials used for each layer of the optical information recording medium are classified by thermal conductivity.

【図4】本発明の第2実施例の光学的情報記録媒体の構
成を示す断面図である。
FIG. 4 is a sectional view showing the structure of the optical information recording medium in the second embodiment of the present invention.

【図5】本発明の第3実施例の光学的情報記録媒体の構
成を示す断面図である。
FIG. 5 is a sectional view showing the structure of the optical information recording medium in the third embodiment of the present invention.

【図6】本発明の第4実施例の光学的情報記録媒体の構
成を示す断面図である。
FIG. 6 is a sectional view showing a structure of an optical information recording medium in a fourth example of the present invention.

【図7】従来の光学的情報記録媒体の構成例を示す断面
図である。
FIG. 7 is a cross-sectional view showing a configuration example of a conventional optical information recording medium.

【符号の説明】[Explanation of symbols]

1 基板 2 第1の誘電体層 3 記録薄膜層 4 第2の誘電体層 5 反射層 6 接着層 7 保護板 8 熱拡散補助層 9 保護層 10 隔離層 11 保護板 1 Substrate 2 First Dielectric Layer 3 Recording Thin Film Layer 4 Second Dielectric Layer 5 Reflective Layer 6 Adhesive Layer 7 Protective Plate 8 Thermal Diffusion Auxiliary Layer 9 Protective Layer 10 Isolation Layer 11 Protective Plate

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 情報記録媒体のベースとなる基板と、 前記基板の上面に設けられた第1の誘電体層と、 前記第1の誘電体層の上面に設けられ、レーザ光線の照
射によって結晶相とアモルファス相との間で可逆的状態
変化を生じる記録層と、 前記記録層の上面に設けられた第2の誘電体層と、 前記第2の誘電体層の上面に設けられ、前記レーザ光線
の一部を前記記録層側に反射する反射層と、を具備する
光学的情報記録媒体において、 前記反射層の上面に、前記レーザ光線に対して略透明で
あり、前記反射層の熱を拡散する熱拡散補助層を設けた
ことを特徴とする光学的情報記録媒体。
1. A substrate serving as a base of an information recording medium, a first dielectric layer provided on the upper surface of the substrate, and a crystal provided by laser beam irradiation provided on the upper surface of the first dielectric layer. A recording layer that causes a reversible state change between a phase and an amorphous phase, a second dielectric layer provided on the upper surface of the recording layer, and a laser provided on the upper surface of the second dielectric layer. In an optical information recording medium comprising a reflective layer that reflects a part of a light beam to the recording layer side, on the upper surface of the reflective layer, the heat of the reflective layer is substantially transparent to the laser beam. An optical information recording medium comprising a heat diffusion auxiliary layer for diffusing.
【請求項2】 レーザ光線の入射面となり、内部に積層
される薄膜を保護する保護層と、 前記保護層の上面に設けられた第1の誘電体層と、 前記第1の誘電体層の上面に設けられ、レーザ光線の照
射によって結晶相とアモルファス相との間で可逆的状態
変化を生じる記録層と、 前記記録層の上面に設けられた第2の誘電体層と、 前記第2の誘電体層の上面に設けられ、前記レーザ光線
の一部を前記記録層側に反射する反射層と、 前記反射層の上面に設けられ、前記レーザ光線に対して
略透明であり、前記反射層の熱を拡散する熱拡散補助層
と、 前記熱拡散補助層の上面に設けられ、光の干渉を発生し
ない膜厚を有する隔離層と、 前記隔離層の上面に設けられ、情報記録媒体のベースと
なる基板と、を設けたことを特徴とする光学的情報記録
媒体。
2. A protective layer that serves as an incident surface of a laser beam and protects a thin film laminated inside, a first dielectric layer provided on an upper surface of the protective layer, and the first dielectric layer. A recording layer which is provided on the upper surface and which causes a reversible state change between a crystalline phase and an amorphous phase by irradiation with a laser beam; a second dielectric layer provided on the upper surface of the recording layer; A reflective layer provided on the upper surface of the dielectric layer and configured to reflect a part of the laser beam to the recording layer side, and provided on the upper surface of the reflective layer, and substantially transparent to the laser beam, the reflective layer A heat diffusion auxiliary layer for diffusing the heat of, an isolation layer provided on the upper surface of the heat diffusion auxiliary layer and having a film thickness that does not cause interference of light, and an isolation layer provided on the upper surface of the isolation layer, the base of the information recording medium. Optical information storage device, which is characterized in that Media.
【請求項3】 前記反射層は、 金属薄膜で構成され、膜厚が20nm以下であることを
特徴とする請求項1又は2記載の光学的情報記録媒体。
3. The optical information recording medium according to claim 1, wherein the reflective layer is made of a metal thin film and has a film thickness of 20 nm or less.
【請求項4】 レーザ光線の入射によって、前記記録層
が結晶部とアモルファス部とに相変化を受けたとき、該
結晶部での吸収率をAcとし、該アモルファス部での吸
収率をAaとすれば、前記第1の誘電体層、前記第2の
誘電体層、前記記録層、前記反射層を含む各層の膜厚
を、該レーザ光線の吸収比Ac/Aaが1以上となるよ
うに設定したことを特徴とする請求項1又は2記載の光
学的情報記録媒体。
4. When the recording layer undergoes a phase change between a crystalline portion and an amorphous portion due to the incidence of a laser beam, the absorptance of the crystalline portion is Ac and the absorptance of the amorphous portion is Aa. Then, the film thickness of each layer including the first dielectric layer, the second dielectric layer, the recording layer, and the reflective layer is adjusted so that the absorption ratio Ac / Aa of the laser beam is 1 or more. The optical information recording medium according to claim 1 or 2, wherein the optical information recording medium is set.
【請求項5】 記録再生に使用するレーザ光線の波長を
λ、前記熱拡散補助層の屈折率をn、正の整数をmとす
るとき、前記熱拡散補助層の膜厚を略(m×λ)/(2
×n)としたことを特徴とする請求項1又は2記載の光
学的情報記録媒体。
5. When the wavelength of a laser beam used for recording and reproduction is λ, the refractive index of the heat diffusion auxiliary layer is n, and a positive integer is m, the film thickness of the heat diffusion auxiliary layer is approximately (m ×). λ) / (2
Xn), The optical information recording medium according to claim 1 or 2.
【請求項6】 前記熱拡散補助層を、Siで構成したこ
とを特徴とする請求項1又は2記載の光学的情報記録媒
体。
6. The optical information recording medium according to claim 1, wherein the heat diffusion auxiliary layer is made of Si.
【請求項7】 前記熱拡散補助層を、Taの酸化物で構
成したことを特徴とする請求項1又は2記載の光学的情
報記録媒体。
7. The optical information recording medium according to claim 1, wherein the heat diffusion auxiliary layer is composed of an oxide of Ta.
【請求項8】 前記熱拡散補助層を、Zr,Si,T
a,Ti,B,Alのいずれかから選ばれた元素の窒化
物で構成したことを特徴とする請求項1又は2記載の光
学的情報記録媒体。
8. The thermal diffusion auxiliary layer is made of Zr, Si, T.
The optical information recording medium according to claim 1 or 2, wherein the optical information recording medium comprises a nitride of an element selected from a, Ti, B, and Al.
【請求項9】 前記熱拡散補助層を、Zr,Si,W,
Ta,Ti,Bのいずれかから選ばれた元素の炭化物で
構成したことを特徴とする請求項1又は2記載の光学的
情報記録媒体。
9. The thermal diffusion auxiliary layer is formed of Zr, Si, W,
The optical information recording medium according to claim 1 or 2, wherein the optical information recording medium comprises a carbide of an element selected from Ta, Ti, and B.
【請求項10】 前記熱拡散補助層を、ダイアモンド薄
膜及びダイアモンドライクカーボン膜の何れか一方で構
成したことを特徴とする請求項1又は2記載の光学的情
報記録媒体。
10. The optical information recording medium according to claim 1, wherein the thermal diffusion auxiliary layer is formed of either a diamond thin film or a diamond-like carbon film.
【請求項11】 前記反射層を、Au薄膜で構成したこ
とを特徴とする請求項1又は2記載の光学的情報記録媒
体。
11. The optical information recording medium according to claim 1, wherein the reflective layer is made of an Au thin film.
【請求項12】 前記記録層を、Ge−Sb−Te合金
を主体にして構成したことを特徴とする請求項1又は2
記載の光学的情報記録媒体。
12. The recording layer is mainly composed of a Ge—Sb—Te alloy.
The optical information recording medium described.
JP20802194A 1994-08-08 1994-08-08 Optical information recording medium Expired - Lifetime JP3313246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20802194A JP3313246B2 (en) 1994-08-08 1994-08-08 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20802194A JP3313246B2 (en) 1994-08-08 1994-08-08 Optical information recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002080262A Division JP3653254B2 (en) 2002-03-22 2002-03-22 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPH0850739A true JPH0850739A (en) 1996-02-20
JP3313246B2 JP3313246B2 (en) 2002-08-12

Family

ID=16549367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20802194A Expired - Lifetime JP3313246B2 (en) 1994-08-08 1994-08-08 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP3313246B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449239B1 (en) 1998-11-25 2002-09-10 Matsushita Electric Industrial Co., Ltd. Optical information recording medium with thermal diffusion layer
WO2005029482A1 (en) * 2003-09-22 2005-03-31 Ricoh Company, Ltd. Two-layer phase-change information recording medium and its recording/reproducing method
US7372800B2 (en) 2002-03-22 2008-05-13 Ricoh Company, Ltd. Optical recording medium and optical recording process using the same
US7439007B2 (en) 2002-12-20 2008-10-21 Ricoh Company, Ltd. Phase change information recording medium having multiple layers and recording and playback method for the medium
US7601481B2 (en) 2004-03-19 2009-10-13 Ricoh Company, Ltd. Multilayer phase-change information recording medium, and method for recording and reproducing using the same
JP2010123819A (en) * 2008-11-21 2010-06-03 Shimadzu Corp Laser medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449239B1 (en) 1998-11-25 2002-09-10 Matsushita Electric Industrial Co., Ltd. Optical information recording medium with thermal diffusion layer
US7372800B2 (en) 2002-03-22 2008-05-13 Ricoh Company, Ltd. Optical recording medium and optical recording process using the same
US7439007B2 (en) 2002-12-20 2008-10-21 Ricoh Company, Ltd. Phase change information recording medium having multiple layers and recording and playback method for the medium
WO2005029482A1 (en) * 2003-09-22 2005-03-31 Ricoh Company, Ltd. Two-layer phase-change information recording medium and its recording/reproducing method
US7601481B2 (en) 2004-03-19 2009-10-13 Ricoh Company, Ltd. Multilayer phase-change information recording medium, and method for recording and reproducing using the same
JP2010123819A (en) * 2008-11-21 2010-06-03 Shimadzu Corp Laser medium

Also Published As

Publication number Publication date
JP3313246B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JP3250989B2 (en) Optical information recording medium, recording / reproducing method thereof, manufacturing method thereof, and optical information recording / reproducing apparatus
KR100506553B1 (en) Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
US20040047281A1 (en) Information recording medium and method for producing the same, and method for recording/reproducing information thereon
JP2001250274A (en) Optical information medium and its reproducing method
JP2000322770A (en) Optical information recording medium
JP2008305541A (en) Reproducing method of optical information recording medium
JP2001243655A (en) Optical information recording medium, method for producing same, recoding and reproducing method and recording and reproducing equipment
US7345976B2 (en) Method for recording data in optical recording medium, apparatus for recording data in optical recording medium and optical recording medium
JP3853543B2 (en) Optical information recording medium, manufacturing method thereof, recording / reproducing method, and recording / reproducing apparatus
JP3313246B2 (en) Optical information recording medium
JP3012734B2 (en) Optical information recording medium and structure design method thereof
JP4209557B2 (en) Optical information recording medium and initialization method thereof
TW200305150A (en) Method for reproducing information from optical recording medium, information reproducer, and optical recording medium
JP2003016687A (en) Information recording medium and method of manufacturing the same and recording and reproducing method using the same
JP2002298433A (en) Phase change optical recording medium
KR101020906B1 (en) Optical information recording medium and process for producing the same
JP3653254B2 (en) Optical information recording medium
JP3087454B2 (en) Optical information recording medium and structure design method thereof
JP3156418B2 (en) Optical information recording medium and optical information recording / reproducing method
JP2001273674A (en) Optical information recording medium, method for recording and reproducing the same, method for manufacturing that medium, and optical information recording and reproducing device
JP4542922B2 (en) Optical information recording medium and manufacturing method thereof
JP2940176B2 (en) Optical recording medium and recording / reproducing method thereof
JPH08129777A (en) Optical information recording medium
JP2006155896A (en) Optical information recording medium, its production method, recording and reproducing method for the same, and optical recording and reproducing device
KR20050040440A (en) Optical recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

EXPY Cancellation because of completion of term