JP2012173280A - Iron loss distribution measuring apparatus - Google Patents

Iron loss distribution measuring apparatus Download PDF

Info

Publication number
JP2012173280A
JP2012173280A JP2011039080A JP2011039080A JP2012173280A JP 2012173280 A JP2012173280 A JP 2012173280A JP 2011039080 A JP2011039080 A JP 2011039080A JP 2011039080 A JP2011039080 A JP 2011039080A JP 2012173280 A JP2012173280 A JP 2012173280A
Authority
JP
Japan
Prior art keywords
distribution
iron loss
temperature
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011039080A
Other languages
Japanese (ja)
Other versions
JP5048139B2 (en
Inventor
Hiroyasu Shimoji
広泰 下地
Masato Ezono
正人 榎園
Takashi Todaka
孝 戸高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITA KEN SANGYOSOZOKIKO
OITA-KEN SANGYOSOZOKIKO
Original Assignee
OITA KEN SANGYOSOZOKIKO
OITA-KEN SANGYOSOZOKIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITA KEN SANGYOSOZOKIKO, OITA-KEN SANGYOSOZOKIKO filed Critical OITA KEN SANGYOSOZOKIKO
Priority to JP2011039080A priority Critical patent/JP5048139B2/en
Priority to PCT/JP2012/053267 priority patent/WO2012114919A1/en
Publication of JP2012173280A publication Critical patent/JP2012173280A/en
Application granted granted Critical
Publication of JP5048139B2 publication Critical patent/JP5048139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/022Measuring gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron loss distribution measuring apparatus capable of simply and accurately measuring iron loss both locally and overall.SOLUTION: An iron loss distribution measuring apparatus 1 measures distribution indicating respective positions and sizes of iron loss portions generated in an object 3 to be measured. The object 3 to be measured is placed in a vacuum state by a vacuum chamber 5. The iron loss distribution measuring apparatus 1 includes: an excitation section 6 for exciting the object 3 to be measured; a control section 17 for controlling excitation operation; a thermographic camera 9 for measuring temperature distribution data indicating the temperature distribution of the object 3 to be measured when the object 3 to be measured is excited; a temperature gradient average processing section 19 for finding out the distribution of temperature gradients in excitation based on a plurality of temperature distribution data measured a plurality of times in accordance with the lapse of time and performing average processing by using the plurality of temperature gradient distribution data; and a conversion section 21 for converting the temperature gradient distribution data whose temperature resolution is improved by the average processing into iron loss distribution data to measure iron loss distribution.

Description

本発明は、鉄損分布測定装置に関し、特に測定対象物に生じた鉄損の各位置及び各大きさを示す分布を測定する鉄損分布測定装置に関する。   The present invention relates to an iron loss distribution measuring apparatus, and more particularly to an iron loss distribution measuring apparatus that measures a distribution indicating each position and each magnitude of an iron loss generated in a measurement object.

まず、電気機器は電磁鋼板が用いられることが多く、その損失は大きく分けて銅損、機械損、鉄損に分けられる。鉄損による損失は熱に変換されるため、電気機器における発熱源となり、小型化の阻害要因と言われており、鉄損の測定は難しいとも言われている。そのため、鉄損測定は磁化特性の測定と並んで基本的な測定の一つとなっている。電気機器の鉄損は、損失分離により評価されることが多く、全体の損失から各種損失を引いた残りを鉄損とすることが多い。このような測定では、全体の平均損失が電力計などで測定されることで得られるが、精度の点で疑問が残っていることに加えて、局所的な鉄損分布を把握することは困難である。これは、鉄損が主に電磁鋼板中で発生するが、磁束密度に起因して発生するため、均一ではなく、局所的に損失を把握することが難しいためである。これに対して、鉄損を直接測定するためには小さな探針センサーとHコイルにより測定が可能である。   First, electrical steel sheets are often used for electrical equipment, and the loss is roughly divided into copper loss, mechanical loss, and iron loss. Since the loss due to iron loss is converted into heat, it becomes a heat source in electrical equipment, and is said to be an obstacle to downsizing, and it is also said that measurement of iron loss is difficult. Therefore, the iron loss measurement is one of the basic measurements along with the measurement of the magnetization characteristics. The iron loss of electrical equipment is often evaluated by loss separation, and the remainder obtained by subtracting various losses from the overall loss is often the iron loss. In such a measurement, the overall average loss can be obtained by measuring with a power meter, etc. In addition to the question of accuracy, it is difficult to grasp the local iron loss distribution. It is. This is because the iron loss mainly occurs in the electromagnetic steel sheet, but is caused by the magnetic flux density, so it is not uniform and it is difficult to grasp the loss locally. On the other hand, in order to directly measure the iron loss, it is possible to measure with a small probe sensor and an H coil.

一方、鉄損は熱に変換されるため、温度上昇による損失の特定は本質的であり、損失の同定には有効である。そのため、電磁鋼板の鉄損の直接測定においては、局所的に温度を測定することによる、熱電対やサーミスターによる方法が提案されている(例えば、非特許文献1及び非特許文献2参照)。   On the other hand, since iron loss is converted into heat, the identification of the loss due to temperature rise is essential and is effective in identifying the loss. Therefore, in the direct measurement of the iron loss of an electromagnetic steel sheet, a method using a thermocouple or a thermistor by measuring the temperature locally has been proposed (for example, see Non-Patent Document 1 and Non-Patent Document 2).

それらの報告によると1.2T程度で約0.0035K/s程度の温度上昇率が有り、熱電対出力に対して0.14μVの変化率を与える。そのため、微小な熱起電力を応答よく増幅し、記録することが必要とされる。また、サーミスターと熱電対は、センサーの応答性が鉄損測定の精度に影響する。また、温度変化が微小であるため、外界との熱伝達の影響についても詳細に検討されており、5〜10秒以内であれば、精度良く測定が可能であることが示されている。   According to those reports, there is a temperature rise rate of about 0.0035 K / s at about 1.2 T, and a change rate of 0.14 μV is given to the thermocouple output. Therefore, it is necessary to amplify and record a minute thermoelectromotive force with good response. In thermistors and thermocouples, the responsiveness of the sensor affects the accuracy of iron loss measurement. Further, since the temperature change is minute, the influence of heat transfer with the outside world has been studied in detail, and it is shown that accurate measurement is possible within 5 to 10 seconds.

なお、鉄損ではないが、特許文献1に記載されているように、電界/磁界分布可視化装置が提案されており、例えば赤外線カメラによって可視化して磁界の空間分布状態を把握することも提案されている。また、非特許文献3に記載のように、ビッター法による磁区画像の鉄損分布の可視化についての研究も報告されている。   Although not iron loss, an electric field / magnetic field distribution visualization device has been proposed as described in Patent Document 1, and it is also proposed to grasp the spatial distribution state of a magnetic field by visualizing with an infrared camera, for example. ing. In addition, as described in Non-Patent Document 3, research on visualization of iron loss distribution of magnetic domain images by the bitter method has also been reported.

特開2001−66337号公報JP 2001-663337 A

社団法人電気学会発行 電気学会論文誌 VOL.94−A,NO.4,Apr.,1974(昭和49年4月) 電気鉄板の熱電的部分鉄損測定法 成田賢仁 今村正明 p167(39)〜p174(46)The Institute of Electrical Engineers of Japan The Journal of the Institute of Electrical Engineers of Japan VOL. 94-A, NO. 4, Apr. , 1974 (April 1974) Thermoelectric partial iron loss measurement method of electric iron plate Kenji Narita Masaaki Imamura p167 (39) -p174 (46) 社団法人電気学会発行 電気学会論文誌 昭和53年6月98巻A分冊6号 サーミスタブリッジによる電気鉄板の局所鉄損測定装置 山本孝明 大宅良宏 野沢忠生 p331(41)〜p338(46)Journal of the Institute of Electrical Engineers of Japan The Journal of the Institute of Electrical Engineers June 98, 1978 Volume A, Volume 6 Takashi Yamamoto, Yoshihiro Oya, Tadao Nozawa, p331 (41) to p338 (46) 法政大学情報メディア教育研究センター研究報告Vol.21 2008年ビッター法による磁区画像の鉄損分布の可視化 須永高志 齋藤兆古 p91〜95Hosei University Information Media Center Research Report Vol. 21 Visualization of iron loss distribution in magnetic domain image by 2008 Bitter method Takashi Sunaga Chiko Saito p91-95

しかしながら、鉄損は電磁鋼板中の磁束密度に起因した損失であるため、鉄損を直接測定するためには小さな探針センサーとHコイルにより測定が可能であるものの局所的な領域の損失であり、一部の測定で全体の損失とするには精度や簡便性に問題がある。すなわち、簡便で精度良く、鉄損を局所的にも把握して全体も把握することが困難であった。   However, since iron loss is a loss due to the magnetic flux density in the electrical steel sheet, it can be measured with a small probe sensor and H coil in order to directly measure the iron loss, but it is a local loss. However, there is a problem in accuracy and simplicity to make the total loss in some measurements. That is, it is difficult to grasp the iron loss locally by grasping the iron loss locally, simply and accurately.

また、非特許文献1及び非特許文献2に記載の測定法のいずれも、多くの制約条件があり、測定が難しい。また、全体の損失を把握しようとすれば、局所的に温度センサーを設置して複数の測定ポイントを測定する必要があり、その労力は大きすぎて多数のサンプル点の測定には不向きという問題がある。しかも、電磁鋼板を使用した電気機器では、一般的に材料は一様に磁化されているとは限らず、部分的に、磁束密度の大きさ、方向、磁束波形などの磁束条件によって異なることも問題になってくる。また、電磁鋼板は多結晶であるため、材料自身でも局所的には磁気特性が異なるということも問題になってくる。さらに、電磁鋼板では、圧延により、磁化容易方向と困難方向が存在し、それぞれ磁気特性が異なることも報告され、この点も問題になってくる。さらに、鉄損が発生する熱量は大変小さく、例えば0.003度/Hzの高感度の測定が必要とされるという問題もある。さらに、電磁鋼板は熱伝達があることから、損失の発生源を特定するためには短い時間で測定することが望ましいが、短い時間とすればするほど温度上昇が小さく測定が難しいという問題もある。   In addition, both of the measurement methods described in Non-Patent Document 1 and Non-Patent Document 2 have many constraints and are difficult to measure. In addition, in order to grasp the total loss, it is necessary to measure a plurality of measurement points by installing a temperature sensor locally, and the labor is too large to be suitable for measuring a large number of sample points. is there. In addition, in electrical equipment using electromagnetic steel sheets, the material is generally not uniformly magnetized, and may vary partially depending on magnetic flux conditions such as the magnitude, direction, and magnetic flux waveform of the magnetic flux density. It becomes a problem. In addition, since the magnetic steel sheet is polycrystalline, there is also a problem that the magnetic properties of the material itself are locally different. Furthermore, it has been reported that the magnetic steel sheet has an easy magnetization direction and a difficult direction due to rolling, and the magnetic characteristics are different from each other, which also causes a problem. Furthermore, the amount of heat that causes iron loss is very small, and there is a problem that a highly sensitive measurement of, for example, 0.003 degrees / Hz is required. Furthermore, since electrical steel sheets have heat transfer, it is desirable to measure in a short time in order to identify the source of loss, but there is a problem that the shorter the time, the smaller the temperature rise and the more difficult the measurement. .

なお、特許文献1に記載のように、赤外線カメラ(サーモグラフィカメラ)も用いれば、簡便な方法で温度を広範囲に一度に測定でき、多サンプルの要求にも応えることができるが、温度分解能が低く、測定されたデータをそのまま用いるのでは、精度が問題となる。また、非特許文献3に記載の手法では、磁区像を用いた鉄損推定には磁区の大きさ等から鉄損を推定しているため、精度に問題がある。さらに、磁区を観察するためには、カー効果又はX線を用いた装置を用いる必要が有り、電磁鋼板の皮膜を除去しなくてはいけない複雑さがあるという問題がある。そして、通常電磁鋼板は積層して渦電流を抑制することで損失を下げており、そのため、鋼板間の絶縁を保つため数ミクロンの絶縁皮膜が有る結果、非特許文献3の技術は材料開発には使用できる得る面があるとも思われるが、実機のように複雑形状には対応が難しいという問題がある。   As described in Patent Document 1, if an infrared camera (thermographic camera) is also used, the temperature can be measured in a wide range at once by a simple method, and the demand for a large number of samples can be met, but the temperature resolution is low. If the measured data is used as it is, accuracy becomes a problem. In the method described in Non-Patent Document 3, the iron loss estimation using the magnetic domain image has a problem in accuracy because the iron loss is estimated from the size of the magnetic domain. Furthermore, in order to observe a magnetic domain, it is necessary to use an apparatus using the Kerr effect or X-rays, and there is a problem that there is a complexity in which the film of the electromagnetic steel sheet must be removed. In general, electromagnetic steel sheets are laminated to reduce loss by suppressing eddy currents. Therefore, in order to maintain insulation between the steel sheets, there is an insulating film of several microns. Seems to be usable, but there is a problem that it is difficult to deal with complex shapes like the actual machine.

すなわち、従来のいずれの技術を用いても、測定対象物の形状の自由度を大きくしながら、簡便に精度良く、鉄損を局所的にも測定して全体も測定することが十分ではなかった。   In other words, using any of the conventional techniques, it was not sufficient to measure the iron loss locally and simply by measuring the iron loss locally with high accuracy while increasing the degree of freedom of the shape of the measurement object. .

ゆえに、本発明は、測定対象物の形状の自由度を大きくしながら、簡便に精度良く、鉄損の測定を局所的にも全体としても測定できる鉄損測定装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an iron loss measuring apparatus that can easily and accurately measure the iron loss locally and as a whole while increasing the degree of freedom of the shape of the measurement object. .

請求項1に係る発明は、測定対象物に生じた鉄損の各位置及び各大きさを示す分布を測定する鉄損分布測定装置であって、前記測定対象物は真空状態におかれ、前記真空状態におかれた測定対象物に対する励磁を行う励磁手段と、前記励磁手段の動作を制御する制御手段と、前記真空状態におかれた測定対象物が励磁されている際にその温度分布を示す温度分布データを1回の一括した非接触の測定により測定する温度分布測定手段と、前記温度分布測定手段が時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて平均化処理を行う温度勾配平均化処理手段と、前記平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換して鉄損の分布を測定する変換手段とを備えたものである。   The invention according to claim 1 is an iron loss distribution measuring apparatus for measuring a distribution indicating each position and each size of the iron loss generated in the measurement object, wherein the measurement object is placed in a vacuum state, Excitation means for exciting the measurement object in a vacuum state, control means for controlling the operation of the excitation means, and the temperature distribution when the measurement object in the vacuum state is excited Temperature distribution measuring means for measuring the temperature distribution data shown by a single non-contact measurement, and a temperature during excitation based on a plurality of temperature distribution data measured by the temperature distribution measuring means a plurality of times over time A temperature gradient averaging processing means for obtaining a gradient distribution and performing an averaging process using the obtained distribution data of a plurality of temperature gradients, and a temperature gradient distribution obtained by improving the temperature resolution by the averaging process data It is converted into distribution data of iron loss is obtained and a conversion means for measuring the distribution of iron loss.

請求項2に係る発明では、請求項1において、前記温度分布測定手段が、温度分布を測定するサーモグラフィカメラである。   According to a second aspect of the present invention, in the first aspect, the temperature distribution measuring means is a thermographic camera that measures a temperature distribution.

請求項3に係る発明では、請求項1又は2において、前記複数の温度分布データが、前記励磁手段の動作が停止して初期状態が一定とみなせる時間間隔により得られたデータである。   According to a third aspect of the present invention, in the first or second aspect, the plurality of temperature distribution data is data obtained at a time interval at which the operation of the excitation means stops and the initial state can be regarded as constant.

請求項1の発明によれば、まず、測定対象物を真空中におくことによって大気による熱伝達の影響を排除することにより、大気中で測定する場合よりも長い時間での測定を可能にする環境が整う。その上で、1回の一括した非接触で測定対象物の温度分布のデータが得られ、鉄損の分布を測定するための基礎となるデータとして温度分布のデータが広範囲で非接触で直接得られる。このように非接触での測定とすることにより測定対象物の形状の自由度は高いものであってもよいという利点が得られる。そして、時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて温度勾配の平均化処理を行い、この平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換することで、簡便で精度良く鉄損の分布を広範囲で非接触で直接的に得ることができる。特に請求項2の発明によれば、一般的にサーモグラフィカメラの温度感度が最小で0.02度程度と言われているが、このままの感度で短時間測定による鉄損測定ではなく、時間経過に応じた複数回の繰り返し測定を行うことにより、温度勾配の平均化処理を施して温度分解能を向上させることにより、従来では克服できなかった簡便さと高精度というという鉄損では相反する課題を克服できる。さらに、請求項3の発明によれば、時間経過に応じた複数回の測定にあたり励磁停止後の適切な時間間隔とすることにより、初期状態を一定(同一)にみなして損失による熱量以外の影響を排除することができ、鉄損の発熱量は小さいものの、高精度の測定を実現できる。   According to the first aspect of the present invention, first, the measurement object is placed in a vacuum to eliminate the influence of heat transfer by the atmosphere, thereby enabling measurement in a longer time than in the case of measurement in the atmosphere. The environment is ready. In addition, the temperature distribution data of the object to be measured can be obtained in a single non-contact process, and the temperature distribution data can be obtained directly and in a wide range as a basis for measuring the iron loss distribution. It is done. In this way, the non-contact measurement can provide an advantage that the degree of freedom of the shape of the measurement object may be high. Then, a temperature gradient distribution during excitation is obtained based on a plurality of temperature distribution data measured a plurality of times as time passes, and a temperature gradient averaging process is performed using the obtained temperature gradient distribution data. By converting the temperature gradient distribution data obtained by improving the temperature resolution by this averaging process into the iron loss distribution data, the iron loss distribution can be obtained directly in a wide range in a non-contact manner with high accuracy. be able to. In particular, according to the invention of claim 2, it is generally said that the thermographic camera has a minimum temperature sensitivity of about 0.02 degrees, but with this sensitivity, the iron loss is not measured by short-time measurement, but over time. By performing multiple measurements in response, the temperature gradient is averaged and the temperature resolution is improved, so that it is possible to overcome the conflicting problems of iron loss, which is simple and high precision that could not be overcome in the past. . Furthermore, according to the invention of claim 3, by setting an appropriate time interval after the excitation stop for a plurality of measurements according to the passage of time, the initial state is regarded as being constant (identical), and the influence other than the heat quantity due to loss. However, the heat loss of iron loss is small, but highly accurate measurement can be realized.

本発明の実施の形態にかかる鉄損分布測定装置の概略を示すブロック図である。It is a block diagram which shows the outline of the iron loss distribution measuring apparatus concerning embodiment of this invention. 温度勾配測定方法を説明するための図である。It is a figure for demonstrating the temperature gradient measuring method. 温度分布の時間に対する標準偏差を示す図である。It is a figure which shows the standard deviation with respect to time of temperature distribution. 解析モデルとしてのベクトル磁気特性装置を示す図である。It is a figure which shows the vector magnetic property apparatus as an analysis model. 鉄損分布の解析結果を示す図である。It is a figure which shows the analysis result of an iron loss distribution. 1秒後と10秒後の温度勾配から求めた推定される鉄損分布結果を示す図である。It is a figure which shows the estimated iron loss distribution result calculated | required from the temperature gradient after 1 second and 10 seconds. 測定モデルを示した図である。It is the figure which showed the measurement model. 図7の測定エリアAと測定エリアBのサーモグラフィカメラによる測定結果を示す図である。It is a figure which shows the measurement result by the thermography camera of the measurement area A and the measurement area B of FIG. 図7の測定エリアAと測定エリアBの探針センサーでの最大磁束密度分布を示す図である。It is a figure which shows the maximum magnetic flux density distribution in the probe sensor of the measurement area A and the measurement area B of FIG. 図7の測定エリアAと測定エリアBの探針センサーでの最大磁界強度分布を示す図である。It is a figure which shows the maximum magnetic field strength distribution in the probe sensor of the measurement area A and the measurement area B of FIG.

図1は、本発明の実施の形態にかかる鉄損分布測定装置の概略を示すブロック図である。   FIG. 1 is a block diagram showing an outline of an iron loss distribution measuring apparatus according to an embodiment of the present invention.

鉄損分布測定装置1は、測定対象物3を内部に収容する真空チャンバー5と、真空チャンバー5の上部に設けられた観察窓7に対抗する位置に配置されるサーモグラフィカメラ9と、サーモグラフィカメラ9にとっての焦点距離を合わせるために測定対象物3を移動させる移動機構10と、サーモグラフィカメラ9及び真空チャンバー5内の後述する励磁部6に接続するコンピュータ15とを備える。   The iron loss distribution measuring apparatus 1 includes a vacuum chamber 5 that accommodates the measurement object 3 therein, a thermography camera 9 that is disposed at a position that opposes an observation window 7 provided in the upper portion of the vacuum chamber 5, and a thermography camera 9. A moving mechanism 10 for moving the measuring object 3 to adjust the focal length for the camera, and a computer 15 connected to a thermographic camera 9 and an excitation unit 6 (described later) in the vacuum chamber 5 are provided.

真空チャンバー5は、最大真空度0.001Pa程度、最大直径800mmまでの測定装置が設置可能なものを使用している。ここで、一般的なサーモグラフィカメラの温度分解能は熱電対測定に比べ、10倍〜100倍感度が劣ると言われる。そのため、ここでの測定では、長時間の温度測定が必要とされる。その一方で、測定対象物が真空中にあるとすれば、大気による熱伝達の影響を排除することにより、大気中で測定する場合よりも長い時間での測定を可能にする環境が整う。すなわち、熱伝達は無視でき、測定対象物(例えば電磁鋼板)内部の熱伝導の影響と輻射熱の影響を考慮すれば足りることになる。したがって、図1に示すように、測定対象物3は、真空チャンバー5の中に収容されている。また、真空チャンバー5内には、測定対象物3に対して励磁を行う励磁部6が設けられている。なお、測定対象物のみが真空中におかれるようにしておけば測定機器などの通常使用が可能になる。   The vacuum chamber 5 uses a chamber in which a measuring device with a maximum degree of vacuum of about 0.001 Pa and a maximum diameter of 800 mm can be installed. Here, it is said that the temperature resolution of a general thermographic camera is inferior in sensitivity by 10 to 100 times compared to thermocouple measurement. Therefore, the measurement here requires long-time temperature measurement. On the other hand, if the object to be measured is in a vacuum, by eliminating the influence of heat transfer by the atmosphere, an environment that enables measurement in a longer time than in the case of measurement in the atmosphere is prepared. That is, heat transfer is negligible, and it is sufficient to consider the effects of heat conduction and radiant heat inside the measurement object (for example, a magnetic steel sheet). Therefore, as shown in FIG. 1, the measurement object 3 is accommodated in the vacuum chamber 5. An excitation unit 6 that excites the measurement object 3 is provided in the vacuum chamber 5. If only the measurement object is placed in a vacuum, normal use of a measuring device or the like becomes possible.

サーモグラフィカメラ9は、上部の観察窓7を介して赤外線によって測定対象物3の温度分布の測定を行うものである。そのため、観察窓7は、赤外線を透過させるサファイアガラス(厚さ10mm)が使用されている。そして、鉄損は後述するように温度勾配に比例するため、測定された温度結果から温度勾配を得ることは重要であり、温度分布の測定が複数回行われることにより励磁中の温度勾配を得ることができるようにしている。ここで、サーモグラフィカメラ9の仕様を説明する。検出器として量子型センサInSb FPAが用いられている。検出器素子数は256(H)×256(V)、検出器冷却方式はスターリングクーラ冷却方式、検知波長は3.5〜4.1μm,4.5〜5.1μm、最小温度分解能は0.025℃以下、取得フレーム数は30fpsとしている。なお、サーモグラフィカメラ9の測定値は赤外線のカウント値で得られる。その赤外線カウント値が補正されることで通常は温度が求められるが、本測定で求めるものは極小の温度変化であり、赤外線量の勾配と温度勾配は線形関係であると言え、発熱量は赤外線カウント値の勾配により求めることができる。   The thermography camera 9 measures the temperature distribution of the measuring object 3 by infrared rays through the upper observation window 7. Therefore, the observation window 7 is made of sapphire glass (thickness 10 mm) that transmits infrared rays. Since the iron loss is proportional to the temperature gradient as will be described later, it is important to obtain the temperature gradient from the measured temperature result. The temperature gradient during excitation is obtained by measuring the temperature distribution a plurality of times. To be able to. Here, the specifications of the thermographic camera 9 will be described. A quantum sensor InSb FPA is used as a detector. The number of detector elements is 256 (H) × 256 (V), the detector cooling method is the Stirling cooler cooling method, the detection wavelengths are 3.5 to 4.1 μm, 4.5 to 5.1 μm, and the minimum temperature resolution is 0.8. The temperature is 025 ° C. or lower, and the number of acquired frames is 30 fps. The measured value of the thermographic camera 9 is obtained as an infrared count value. The temperature is usually obtained by correcting the infrared count value, but what is obtained in this measurement is a minimum temperature change, and it can be said that the gradient of the infrared amount and the temperature gradient have a linear relationship, and the calorific value is the infrared ray. It can be obtained from the slope of the count value.

次に、移動機構10は、測定対象物3をその上部側で支持するシリンダー11と、シリンダー11の下部側に接続して測定対象物3の上下動を可能にするリフト13とを備える。この移動機構10によって、目視で焦点距離を調整してもよく、焦点距離を図る図示していないセンサとその検出出力とリフト13とを連動させて設定された距離に自動調整できるようにしてもよい。   Next, the moving mechanism 10 includes a cylinder 11 that supports the measurement object 3 on its upper side, and a lift 13 that is connected to the lower side of the cylinder 11 and allows the measurement object 3 to move up and down. The moving mechanism 10 may be used to adjust the focal length visually, or to automatically adjust the focal length to a set distance by linking a sensor (not shown) for detecting the focal length, its detection output, and the lift 13. Good.

コンピュータ15は、制御部17と、平均化処理部19と、変換部21と、表示部23とを備える。制御部17はタイマー25を備える。制御部17は、タイマー25を用いて測定対象物3を励磁させる励磁部6を制御するとともにサーモグラフィカメラ9を制御する。平均化処理部19は、サーモグラフィカメラ9の撮像により得られる測定対象物3の複数の温度分布のデータをもとにして温度勾配の分布データについて平均化処理を行う。この平均化処理は、多数の温度勾配の分布データを平均化することにより温度分解能を向上させるための処理であり、これによりサーモグラフィカメラ9の本来の温度分解能と測定されるべき各位置での温度勾配(言いかえると鉄損)を測定するための精度との関係についての問題を解決して、高精度での温度勾配の測定を分布として行えている。なお、上記もしたが、平均化処理には赤外線検出器から得られたカウント値の勾配を使用することもできる。一般的に赤外線カウント値から温度を求める場合は非線形となるため、カウント値の勾配と温度勾配は異なる。しかしながら、微少な温度変化の場合は、カウント値と温度変化は線形であると言えるため、カウント値の勾配に係数をかけた値を鉄損値として用いることが可能である。複数回の温度勾配値は正規分布に従うため、平均化処理することにより真値に近づく。そのため、分布の精度が必要な場合は、短時間(例えば1秒〜5秒、温度上昇が小さい)の測定を多数回(10000回等)行うことにより熱伝導による熱の広がりを抑えた高精度な鉄損分布を得ることが可能である。また、分布の精度を要求しない場合は、5秒〜10秒(温度上昇が大きい)を1回の測定とし、100回程度の測定で鉄損分布を得ることが可能である。変換部21は、平均化処理部19が求めた平均化処理後の温度勾配の分布データを鉄損の分布データに変換する。この変換(鉄損への換算処理)については、以下の2つが具体的処理として挙げられる。第1としては、測定領域の比較的に磁束密度変化が安定している場所の鉄損を探針センサーを用いて測定しておき、その大きさと温度勾配を比較することで鉄損値と変換することが可能である。第2としては、測定対象物と同一の鋼板の電気抵抗を測定し、コントロールされた直流電流を流すことによりジュール熱を熱源とした温度勾配を事前に測定しておき、温度勾配と損失の関係から、鉄損を計算することが可能である。そして、この変換結果について、表示部23は、変換された鉄損の分布データにより測定対象物における鉄損の各位置及び各大きさを表す鉄損の分布を測定結果として表示する。   The computer 15 includes a control unit 17, an averaging processing unit 19, a conversion unit 21, and a display unit 23. The control unit 17 includes a timer 25. The control unit 17 controls the excitation unit 6 that excites the measurement object 3 using the timer 25 and controls the thermography camera 9. The averaging processor 19 performs an averaging process on temperature gradient distribution data based on a plurality of temperature distribution data of the measurement object 3 obtained by imaging by the thermographic camera 9. This averaging process is a process for improving the temperature resolution by averaging the distribution data of a large number of temperature gradients. With this, the original temperature resolution of the thermographic camera 9 and the temperature at each position to be measured are measured. By solving the problem of the relationship with the accuracy for measuring the gradient (in other words, iron loss), the temperature gradient with high accuracy can be measured as a distribution. As described above, the gradient of the count value obtained from the infrared detector can also be used for the averaging process. In general, when the temperature is obtained from the infrared count value, since it is nonlinear, the gradient of the count value and the temperature gradient are different. However, in the case of a slight temperature change, it can be said that the count value and the temperature change are linear. Therefore, a value obtained by multiplying the gradient of the count value by a coefficient can be used as the iron loss value. Since the temperature gradient values of a plurality of times follow a normal distribution, the average value approaches the true value by averaging. Therefore, when accuracy of distribution is required, high accuracy that suppresses the spread of heat due to heat conduction by performing measurement (for example, 1 to 5 seconds, temperature rise is small) many times (10,000 times, etc.). It is possible to obtain a stable iron loss distribution. When the accuracy of the distribution is not required, it is possible to obtain the iron loss distribution by measuring about 100 times for 5 to 10 seconds (large temperature rise). The conversion unit 21 converts the distribution data of the temperature gradient after the averaging processing obtained by the averaging processing unit 19 into distribution data of iron loss. About this conversion (conversion processing to iron loss), the following two are mentioned as specific processing. First, the iron loss at a location where the change in magnetic flux density is relatively stable in the measurement region is measured using a probe sensor, and the magnitude and temperature gradient are compared to convert the iron loss value. Is possible. Second, measure the electrical resistance of the same steel sheet as the object to be measured, measure the temperature gradient using Joule heat as a heat source in advance by passing a controlled direct current, and the relationship between the temperature gradient and loss From this, it is possible to calculate the iron loss. And about this conversion result, the display part 23 displays the distribution of the iron loss which represents each position and each magnitude | size of the iron loss in a measuring object by the distribution data of the converted iron loss as a measurement result.

図2は、温度勾配測定方法を説明するための図である。図2において、横軸は時間、縦軸は赤外線のカウント値を示し、図中において励磁時間10sが示されている。図2を用いて励磁方法を説明する。温度勾配を求めるため、60s/stepとし、インターバルに50s、励磁時間10sをとった。そして、温度勾配の平均化を行うために、500ステップを測定するものとする。その後、平均化処理部19がステップ毎に励磁時間中の勾配を求め、平均化を行う。平均化を行うインターバル時間は以下に説明する2次元熱伝導解析により励磁後の熱量が測定領域で十分に平均化する時間を算出して10sに決定している。   FIG. 2 is a diagram for explaining a temperature gradient measurement method. In FIG. 2, the horizontal axis represents time, the vertical axis represents the count value of infrared rays, and the excitation time 10s is shown in the figure. The excitation method will be described with reference to FIG. In order to obtain a temperature gradient, 60 s / step was set, an interval of 50 s and an excitation time of 10 s were taken. Then, 500 steps are measured in order to average the temperature gradient. Thereafter, the averaging processing unit 19 obtains a gradient during the excitation time for each step and performs averaging. The interval time for averaging is determined to be 10 s by calculating the time during which the amount of heat after excitation is sufficiently averaged in the measurement region by two-dimensional heat conduction analysis described below.

2次元熱伝動解析によるインターバル時間の同定を説明する。温度分布は、以下のxy軸の2次元熱伝導の支配方程式を用いて解析結果から計算される。パラメータについては、Tは温度(℃)、λは熱伝導率(W/(m・K))、Qは熱源(W/m)(なお、熱源のQは、別途シミュレーションから得られた鉄損分布として計算している。)、ρは密度(kg/m)、cは比熱(J/(kg・K))、tは時間(s)としている。 The identification of the interval time by the two-dimensional heat transfer analysis will be described. The temperature distribution is calculated from the analysis result using the following governing equation of two-dimensional heat conduction along the xy axes. Regarding parameters, T is temperature (° C.), λ is thermal conductivity (W / (m · K)), Q is a heat source (W / m 3 ) (Note that Q of the heat source is iron obtained from simulation separately) Loss is calculated as a loss distribution), ρ is density (kg / m 3 ), c is specific heat (J / (kg · K)), and t is time (s).

ここで、比熱と熱伝導率は温度に依存する。しかし、鉄損によって発生してしまう熱は、極小なため、温度への影響も小さいと言える。したがって、温度依存は無視できると考えることができる。また、外気温度は0℃とし、真空中としているため、完全断熱と仮定している。上記したように発熱源分布として鉄損分布を用いているが、鉄損分布はベクトル磁気特性を考慮した積分E&Sモデルと有機要素法を用いた解析結果を使用している。計算で用いたパラメータは、以下の表1の通りである。   Here, specific heat and thermal conductivity depend on temperature. However, it can be said that the heat generated by the iron loss is extremely small, and the influence on the temperature is small. Therefore, the temperature dependence can be considered negligible. Further, since the outside air temperature is 0 ° C. and is in a vacuum, it is assumed to be completely insulated. As described above, the iron loss distribution is used as the heat source distribution. The iron loss distribution uses an analysis result using an integral E & S model and an organic element method in consideration of vector magnetic characteristics. The parameters used in the calculation are as shown in Table 1 below.

温度勾配による鉄損の分布を求める場合、初期状態が同一でなければ、損失による熱量以外の影響が生じてしまう。鉄損の発熱量は小さいため、影響が完全に無くなるインターバルを設定する必要が有る。下記式で求めた温度分布の時間に対する標準偏差を図3に示す。図3において、横軸は時間、縦軸は温度分布の標準偏差を示す。図3の結果より、最初の10sを励磁し、その後熱伝導により時間と平滑化を確認できるため、インターバル時間を初期状態が十分一定であるといえる50sとしている。   When obtaining the distribution of iron loss due to temperature gradient, if the initial state is not the same, effects other than the heat quantity due to loss will occur. Since the amount of heat generated by iron loss is small, it is necessary to set an interval at which the influence is completely eliminated. The standard deviation with respect to time of the temperature distribution obtained by the following formula is shown in FIG. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the standard deviation of the temperature distribution. From the result of FIG. 3, the first 10 s is excited, and then the time and smoothing can be confirmed by heat conduction. Therefore, the interval time is set to 50 s, which can be said that the initial state is sufficiently constant.

図4は解析モデルとしてのベクトル磁気特性装置を示す図である。図5は鉄損分布の解析結果を示す図である。図6は1秒後と10秒後の温度勾配から求めた推定される鉄損分布結果を示す図である。以下、測定時間と鉄損分布の関係について説明する。   FIG. 4 is a diagram showing a vector magnetic characteristic device as an analysis model. FIG. 5 is a diagram showing the analysis result of the iron loss distribution. FIG. 6 is a diagram showing the estimated iron loss distribution result obtained from the temperature gradient after 1 second and after 10 seconds. Hereinafter, the relationship between the measurement time and the iron loss distribution will be described.

長時間励磁をすると温度が上昇し、測定が容易になるが、熱伝導により、鉄損分布と、温度勾配分布に差ができる。そのため、分布の精度を向上させるためには短時間での測定が必要不可欠である。本報告では、励磁時間を10秒としている。そこで、励磁時間と分布の精度について検討する。解析条件は上記と同じとし、解析モデルを図4に示すベクトル磁気特性装置とした。評価領域は80mm×80mmの試料とした。その結果は、図5に示される鉄損分布の解析結果として得られた。励磁条件は交番磁束、中心部最大磁束密度1T、磁化容易方向に励磁した。この分布を熱源に数1の式を用いて熱伝導解析を行うと、図6に示すように、1秒後(図6(A))と10秒後(図6(B))の温度勾配から求めた鉄損分布結果が得られた。1秒後と10秒後では、熱伝導により分布が広がっていることがわかる。1秒後の方が鉄損分布に近いが、発熱量が大きいところで0.0025K程度であり、測定が困難で有ることがわかる。10秒後では1秒後の10倍の温度が得られるため、測定が可能である。また、鉄損の分布傾向は十分得られることがわかる。   When excitation is performed for a long time, the temperature rises and measurement becomes easy, but due to heat conduction, there is a difference between the iron loss distribution and the temperature gradient distribution. Therefore, measurement in a short time is indispensable to improve the distribution accuracy. In this report, the excitation time is 10 seconds. Therefore, the accuracy of excitation time and distribution is examined. The analysis conditions were the same as described above, and the analysis model was the vector magnetic characteristic device shown in FIG. The evaluation area was a sample of 80 mm × 80 mm. The result was obtained as an analysis result of the iron loss distribution shown in FIG. Excitation conditions were alternating magnetic flux, central maximum magnetic flux density 1T, and easy magnetization. When this distribution is subjected to heat conduction analysis using Equation 1 as a heat source, as shown in FIG. 6, the temperature gradient after 1 second (FIG. 6 (A)) and after 10 seconds (FIG. 6 (B)). The iron loss distribution results obtained from the above were obtained. It can be seen that the distribution is widened by heat conduction after 1 second and after 10 seconds. One second later is closer to the iron loss distribution, but when the calorific value is large, it is about 0.0025K, which indicates that measurement is difficult. After 10 seconds, 10 times the temperature after 1 second is obtained, so measurement is possible. Moreover, it turns out that the distribution tendency of an iron loss is fully obtained.

図7は、測定モデルを示した図である。このモデルコアは3相変圧器形状を模擬しているが、1枚の方向性電磁鋼板に窓穴を開けた形状となっている。そのため、通常の3相変圧器と異なり、磁路中に圧延直角方向を有するモデルである。積層枚数は27枚、Bコイルを施し、最大磁束密度が目標値になるように制御している。励磁波形は正弦波とし、波形形状の制御は行っていない。一般的に金属の赤外線放射率は0.6程度であり、表面がなめらかな場合さらに悪くなる。そのため、赤外線放射率を上げるため測定領域には黒色に塗装している。測定条件は、以下の表2の測定パラメータに示す通りである。励磁コイルを中心に施し、励磁周波数を50Hz、探りコイルの最大磁束密度を0.5T、画像取得スピード30fps、平均化回数1000回とし、画像フィルタとして、Median filterを使用した。   FIG. 7 is a diagram showing a measurement model. This model core simulates the shape of a three-phase transformer, but has a shape in which a window hole is formed in one directional electromagnetic steel sheet. Therefore, unlike a normal three-phase transformer, it is a model having a rolling perpendicular direction in the magnetic path. The number of laminated layers is 27, B coils are applied, and the maximum magnetic flux density is controlled to a target value. The excitation waveform is a sine wave, and the waveform shape is not controlled. In general, the infrared emissivity of metal is about 0.6, which is worse when the surface is smooth. Therefore, the measurement area is painted black to increase the infrared emissivity. The measurement conditions are as shown in the measurement parameters in Table 2 below. The excitation coil was applied to the center, the excitation frequency was 50 Hz, the maximum magnetic flux density of the search coil was 0.5 T, the image acquisition speed was 30 fps, the averaging count was 1000 times, and a Median filter was used as an image filter.

図8〜図10は、図7の測定エリアAと測定エリアBの各種測定結果を示す図である。図8(A)は測定エリアAのサーモグラフィカメラによる測定結果を示し、図8(B)は測定エリアBのサーモグラフィカメラによる測定結果を示す。図9及び図10は、サーモグラフィカメラでの測定では磁気特性については測定ができないため、探針センサーでの磁気特性測定も行い、その結果を示す。図9(A)は測定エリアAの最大磁束密度分布(T)を示し、図9(B)は測定エリアBの最大磁束密度分布(T)を示す。図10(A)は測定エリアAの最大磁界強度分布(A/m)を示し、図10(B)は測定エリアBの最大磁界強度分布(A/m)を示す。下記表3に探針センサーの仕様を示す。測定ピッチは2mmとしている。   8-10 is a figure which shows the various measurement results of the measurement area A and the measurement area B of FIG. 8A shows a measurement result by the thermography camera in the measurement area A, and FIG. 8B shows a measurement result by the thermography camera in the measurement area B. FIG. 9 and FIG. 10 show the results of measuring the magnetic characteristics with the probe sensor because the magnetic characteristics cannot be measured with the thermography camera. 9A shows the maximum magnetic flux density distribution (T) in the measurement area A, and FIG. 9B shows the maximum magnetic flux density distribution (T) in the measurement area B. 10A shows the maximum magnetic field strength distribution (A / m) in the measurement area A, and FIG. 10B shows the maximum magnetic field strength distribution (A / m) in the measurement area B. Table 3 below shows the specifications of the probe sensor. The measurement pitch is 2 mm.

エリアAにおいて、圧延直角方向では大きな鉄損値が観測できる。また、圧延方向では鉄損値が圧延直角方向に比べて小さくなっていることがわかる。一方、図9(A)の磁束密度分布においては、圧延方向で値が大きいことがわかる。図10(A)に示す、磁界強度分布より、圧延直角方向で磁界強度が大きくなっていることがわかる。このモデルの材料である方向性電磁鋼板は、磁気異方性が大きく、圧延方向の磁気特性が優れ、損失が小さい特徴を有する。そのため、磁束密度は大きいが、鉄損が小さい傾向であることは、妥当であることがわかる。   In area A, a large iron loss value can be observed in the direction perpendicular to the rolling. It can also be seen that the iron loss value is smaller in the rolling direction than in the direction perpendicular to the rolling direction. On the other hand, in the magnetic flux density distribution of FIG. 9A, it can be seen that the value is large in the rolling direction. From the magnetic field strength distribution shown in FIG. 10 (A), it can be seen that the magnetic field strength is increased in the direction perpendicular to the rolling. The grain-oriented electrical steel sheet, which is a material of this model, has the characteristics that the magnetic anisotropy is large, the magnetic properties in the rolling direction are excellent, and the loss is small. Therefore, it is clear that the magnetic flux density is large but the iron loss tends to be small.

エリアBでは、エリアAと同様に圧延直角方向で損失が大きく、圧延方向で損失が少ないことがわかる。また、コーナー部に鉄損が集中していることがわかる。図9(B)に示す磁束密度分布、図10(B)に示す磁界強度分布においても、エリアAと同様の傾向を示す。   In the area B, as in the area A, it can be seen that the loss is large in the direction perpendicular to the rolling and the loss is small in the rolling direction. It can also be seen that iron loss is concentrated in the corner. The magnetic flux density distribution shown in FIG. 9B and the magnetic field strength distribution shown in FIG.

以上をまとめると、ポイントは以下のようになる。   In summary, the points are as follows.

第1に、サーモグラフィカメラを用いた電気機器(電磁鋼板)の鉄損分布の直接測定が可能になった。これにより、1回の一括した非接触で測定対象物の温度分布のデータが得られ、鉄損の分布を測定するための基礎となるデータとして温度分布のデータが広範囲で非接触で直接得られる。このように非接触での測定とすることにより測定対象物の形状の自由度は高いものであってもよいという利点が得られる。   First, it has become possible to directly measure the iron loss distribution of electrical equipment (magnetic steel sheets) using a thermographic camera. As a result, the temperature distribution data of the measurement object can be obtained in a single non-contact manner, and the temperature distribution data can be directly obtained in a wide range and non-contact as the basic data for measuring the iron loss distribution. . In this way, the non-contact measurement can provide an advantage that the degree of freedom of the shape of the measurement object may be high.

第2に、従来の測定法であるサーミスタや熱電対に比べ温度感度が劣る点を、繰り返し測定による平均化処理を行うことにより極小の熱量の変化を分布でとらえることに成功した。すなわち、時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて温度勾配の平均化処理を行い、この平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換することで、簡便で精度良く鉄損の分布を広範囲で非接触で直接的に得ることができた。一般的にサーモグラフィカメラの温度感度が最小で0.02度程度と言われているが、このままの感度で短時間測定による鉄損測定ではなく、時間経過に応じた複数回の繰り返し測定を行うことにより、温度勾配の平均化処理を施して温度分解能を向上させることにより、従来では克服できなかった簡便さと高精度という鉄損では相反する課題を克服できた。   Secondly, we succeeded in capturing the minimal change in calorie in the distribution by performing the averaging process by repeated measurement of the point that the temperature sensitivity is inferior compared to the thermistor and thermocouple which are the conventional measurement methods. That is, a temperature gradient distribution during excitation is obtained based on a plurality of temperature distribution data measured a plurality of times over time, and temperature gradient averaging processing is performed using the obtained temperature gradient distribution data. By converting the temperature gradient distribution data obtained by improving the temperature resolution by this averaging process into the iron loss distribution data, the iron loss distribution can be obtained directly in a wide range in a non-contact manner with high accuracy. I was able to. In general, it is said that the temperature sensitivity of a thermographic camera is a minimum of about 0.02 degrees, but with this sensitivity, it is not necessary to measure iron loss by short-time measurement, but to perform multiple measurements over time. Thus, by performing temperature gradient averaging processing and improving the temperature resolution, it was possible to overcome the contradictory problems of the iron loss of simplicity and high accuracy that could not be overcome in the past.

第3に、大気中の熱伝導を避けるため、真空チャンバーを用い、極小の温度測定が可能になった。すなわち、測定対象物を真空中におくことにより、大気による熱伝達の影響を排除することにより、大気中で測定する場合よりも長い時間での測定を可能にする環境を整えることができた。   Thirdly, in order to avoid heat conduction in the atmosphere, it has become possible to measure a minimum temperature using a vacuum chamber. That is, by placing the measurement object in a vacuum and eliminating the influence of heat transfer by the atmosphere, it was possible to prepare an environment that enables measurement in a longer time than in the case of measurement in the atmosphere.

第4に、ベクトル磁気特性解析により求めた鉄損分布を熱源にした熱伝導解析により10sの励磁に対し、50sのインターバルを設けることで、初期状態を同じにすることができることが明らかになった。すなわち、励磁停止後の適切な時間間隔とすることにより、初期状態を一定(同一)にみなして損失による熱量以外の影響を排除することができ、鉄損の発熱量は小さいものの、高精度の測定を実現できることを明らかにした。   Fourthly, it has been clarified that the initial state can be made the same by providing an interval of 50 s for 10 s excitation by heat conduction analysis using the iron loss distribution obtained by vector magnetic characteristic analysis as a heat source. . In other words, by setting an appropriate time interval after the excitation stop, the initial state can be regarded as constant (same), and the effects other than the heat quantity due to loss can be eliminated. It was clarified that the measurement can be realized.

第5に、モデルコアを実測し、妥当な測定結果が得られた。第6に、同モデルを探針法で測定した結果とサーモグラフィカメラで測定した鉄損分布を比較し、方向性電磁鋼板の特性を勘案すると、妥当な分布であることまで分かった。   Fifth, the model core was measured and a reasonable measurement result was obtained. Sixth, the result of measuring the model by the probe method and the iron loss distribution measured by the thermography camera were compared, and the characteristics of the grain-oriented electrical steel sheet were taken into account, and it was found that the distribution was reasonable.

なお、近年、省エネルギー化への関心から、エネルギー変換効率の良いモータを用いた、電気自動車等の関心が高まっている。電気自動車のような移動体の場合、モータ自身の重量も自動車全体の効率に寄与するため、小型・軽量なモータが望まれている。また、化石燃料に比べ電池のエネルギー積が小さいため、効率の良いモータが望まれている。内燃機関に比べ、格段に効率が良いモータではあるが、さらなる効率向上のため、様々な研究が行われている。一般的に、モータの損失は、「鉄損」「銅損」「機械損」が挙げられる。それぞれの損失は、モータの構成素材である、電磁鋼板、銅線、ベアリングなどで発生する固有の損失である。したがって、モータは鉄損測定の測定対象物として重要である。   In recent years, interest in energy saving has increased interest in electric vehicles using motors with high energy conversion efficiency. In the case of a moving body such as an electric vehicle, the weight of the motor itself also contributes to the efficiency of the entire vehicle, so a small and lightweight motor is desired. Moreover, since the energy product of a battery is small compared with a fossil fuel, an efficient motor is desired. Although it is a motor that is much more efficient than an internal combustion engine, various studies have been conducted to further improve efficiency. Generally, motor loss includes “iron loss”, “copper loss”, and “mechanical loss”. Each loss is an inherent loss that occurs in an electromagnetic steel plate, a copper wire, a bearing, or the like, which is a constituent material of the motor. Therefore, the motor is important as an object for measuring iron loss.

1・・・鉄損分布測定装置、3・・・測定対象物、5・・・真空チャンバー、6・・・励磁部、9・・・サーモグラフィカメラ、17・・・制御部、19・・・平均化処理部、21・・・変換部 DESCRIPTION OF SYMBOLS 1 ... Iron loss distribution measuring apparatus, 3 ... Measuring object, 5 ... Vacuum chamber, 6 ... Excitation part, 9 ... Thermography camera, 17 ... Control part, 19 ... Averaging processing unit, 21 ... conversion unit

Claims (3)

測定対象物に生じた鉄損の各位置及び各大きさを示す分布を測定する鉄損分布測定装置であって、
前記測定対象物は真空状態におかれ、
前記真空状態におかれた測定対象物に対する励磁を行う励磁手段と、
前記励磁手段の動作を制御する制御手段と、
前記真空状態におかれた測定対象物が励磁されている際にその温度分布を示す温度分布データを1回の一括した非接触の測定により測定する温度分布測定手段と、
前記温度分布測定手段が時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて平均化処理を行う温度勾配平均化処理手段と、
前記平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換して鉄損の分布を測定する変換手段とを備えた、鉄損分布測定装置。
An iron loss distribution measuring device for measuring a distribution indicating each position and each size of iron loss generated in a measurement object,
The measurement object is placed in a vacuum state,
Excitation means for exciting the measurement object in the vacuum state;
Control means for controlling the operation of the excitation means;
Temperature distribution measuring means for measuring temperature distribution data indicating the temperature distribution when the measurement object placed in the vacuum state is excited by a single non-contact measurement;
The temperature distribution measuring means obtains a temperature gradient distribution during excitation based on a plurality of temperature distribution data measured a plurality of times over time, and performs an averaging process using the obtained temperature gradient distribution data. A temperature gradient averaging means to perform;
An iron loss distribution measuring apparatus comprising: a conversion means for measuring distribution of iron loss by converting distribution data of temperature gradient obtained by improving the temperature resolution by the averaging process into distribution data of iron loss.
前記温度分布測定手段は、温度分布を測定するサーモグラフィカメラである、請求項1記載の鉄損分布測定装置。   The iron loss distribution measuring apparatus according to claim 1, wherein the temperature distribution measuring unit is a thermographic camera that measures a temperature distribution. 前記複数の温度分布データは、前記励磁手段の動作が停止して初期状態が一定とみなせる時間間隔により得られたデータである、請求項1又は2記載の鉄損分布測定装置。   The iron loss distribution measuring apparatus according to claim 1 or 2, wherein the plurality of temperature distribution data are data obtained at a time interval in which the operation of the excitation means is stopped and the initial state can be regarded as constant.
JP2011039080A 2011-02-24 2011-02-24 Iron loss distribution measuring device Active JP5048139B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011039080A JP5048139B2 (en) 2011-02-24 2011-02-24 Iron loss distribution measuring device
PCT/JP2012/053267 WO2012114919A1 (en) 2011-02-24 2012-02-13 Iron loss distribution measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039080A JP5048139B2 (en) 2011-02-24 2011-02-24 Iron loss distribution measuring device

Publications (2)

Publication Number Publication Date
JP2012173280A true JP2012173280A (en) 2012-09-10
JP5048139B2 JP5048139B2 (en) 2012-10-17

Family

ID=46720701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039080A Active JP5048139B2 (en) 2011-02-24 2011-02-24 Iron loss distribution measuring device

Country Status (2)

Country Link
JP (1) JP5048139B2 (en)
WO (1) WO2012114919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528072B1 (en) * 2013-12-24 2015-06-16 주식회사 포스코 multiwinding Epstein apparatus
CN111413548A (en) * 2020-03-16 2020-07-14 苏州大学 Method and device for estimating core loss and distribution based on optical fiber temperature measurement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067403B2 (en) * 2018-10-09 2022-05-16 株式会社Soken Iron loss measuring device and measurement control device
CN111609940B (en) * 2020-06-23 2021-04-20 中国石油大学(华东) Infrared temperature measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186748A (en) * 1989-12-18 1991-08-14 Mitsubishi Electric Corp Image pickup method for object to be measured
JPH09138205A (en) * 1995-11-15 1997-05-27 Agency Of Ind Science & Technol Detection method for flaw of material by infrared thermography
JP2006329982A (en) * 2005-05-24 2006-12-07 United Technol Corp <Utc> Inspection device and its method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186748A (en) * 1989-12-18 1991-08-14 Mitsubishi Electric Corp Image pickup method for object to be measured
JPH09138205A (en) * 1995-11-15 1997-05-27 Agency Of Ind Science & Technol Detection method for flaw of material by infrared thermography
JP2006329982A (en) * 2005-05-24 2006-12-07 United Technol Corp <Utc> Inspection device and its method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528072B1 (en) * 2013-12-24 2015-06-16 주식회사 포스코 multiwinding Epstein apparatus
CN111413548A (en) * 2020-03-16 2020-07-14 苏州大学 Method and device for estimating core loss and distribution based on optical fiber temperature measurement

Also Published As

Publication number Publication date
WO2012114919A1 (en) 2012-08-30
JP5048139B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
Mityakov et al. Gradient heat flux sensors for high temperature environments
JP5048139B2 (en) Iron loss distribution measuring device
Shimoji et al. Measurement of core-loss distribution using thermography
Nakum et al. Research on induction heating-a review
Liu et al. Differential evolution fitting-based optical step-phase thermography for micrometer thickness measurement of atmospheric corrosion layer
CN106017720B (en) Temperature measuring equipment and its temp measuring method based on the detection of ferromagnetic material magnetic conduction capacity variation
Barakat et al. A one-dimensional approach towards edge crack detection and mapping using eddy current thermography
CN108490237A (en) A kind of device and method of potable metal pipeline thermoelectric gesture nondestructive measurement
Beguš et al. Magnetic effects on thermocouples
JP5610529B2 (en) Specific heat measurement method and thermal conductivity measurement method
RU2670186C1 (en) Objects control thermographic method and device for its implementation
Velt et al. Magnetic flowmeter of molten metals
CN105974341B (en) Magnetic flux test device under extreme temperature
Gmyrek et al. A method of local magnetic loss determination in punched ferromagnetic strips
EP2386850A3 (en) Automated inspection system and method for nondestructive inspection of a workpiece using induction thermography
Shah et al. Thermographic measurement and simulation of power losses due to interlaminar contacts in electrical sheets
Genix et al. Local temperature surface measurement with intrinsic thermocouple
Kumar et al. Tone burst eddy‐current thermography (tbet)
Shimoji et al. Core loss distribution measurement of electrical steel sheets using a thermographic camera
Quercio et al. Application of active thermography for the study of losses in components produced by laser powder Bed fusion
Shimoji et al. Visualizing iron loss distribution in permanent magnet motors
Oswald-Tranta Lock-in inductive thermography for surface crack detection
Nycz et al. Comparison of characteristics for two selected inductors for levitation melting
CN205749858U (en) Magnetic flux test device under extreme temperature
Osemwinyen et al. Thermographic method for measuring iron losses and localized loss density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120622

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250