JP5610529B2 - Specific heat measurement method and thermal conductivity measurement method - Google Patents

Specific heat measurement method and thermal conductivity measurement method Download PDF

Info

Publication number
JP5610529B2
JP5610529B2 JP2010274047A JP2010274047A JP5610529B2 JP 5610529 B2 JP5610529 B2 JP 5610529B2 JP 2010274047 A JP2010274047 A JP 2010274047A JP 2010274047 A JP2010274047 A JP 2010274047A JP 5610529 B2 JP5610529 B2 JP 5610529B2
Authority
JP
Japan
Prior art keywords
temperature
sample
heat
thermal conductivity
specific heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010274047A
Other languages
Japanese (ja)
Other versions
JP2012122857A (en
Inventor
英樹 矢山
英樹 矢山
Original Assignee
英樹 矢山
英樹 矢山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英樹 矢山, 英樹 矢山 filed Critical 英樹 矢山
Priority to JP2010274047A priority Critical patent/JP5610529B2/en
Publication of JP2012122857A publication Critical patent/JP2012122857A/en
Application granted granted Critical
Publication of JP5610529B2 publication Critical patent/JP5610529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、比熱の測定方法及び熱伝導率の測定方法に関するものである。   The present invention relates to a specific heat measurement method and a thermal conductivity measurement method.

物性物理学の分野では、固体の電気的、磁気的、熱的、その他の特性を測定し、これらの特性の相互関係を明らかにし、物質の性質を理解することが行われている。相転移現象もその一つで、超伝導転移や、磁気相転移、構造相転移などを観測するために比熱の測定実験が行われるのが一般的である。比熱の温度依存性を測定すると、相転移が1次であれば転移点で比熱が発散し、2次であれば転移点で比熱に不連続な跳びが生じる。このように、比熱の測定は相転移の証拠を確認すると共に転移温度の確定や転移の次数を判断する最も有力な手段である。しかし、基本的に比熱が熱量の温度微分であるため、比熱測定の実験は誤差が大きくなるという難しさがある。また、一般に熱測定は電気や磁気測定と比べて時間がかかるという特徴がある。   In the field of physical physics, the electrical, magnetic, thermal, and other properties of solids are measured, the interrelation between these properties is clarified, and the properties of materials are understood. A phase transition phenomenon is one of them, and a specific heat measurement experiment is generally performed to observe a superconducting transition, a magnetic phase transition, a structural phase transition, and the like. When the temperature dependence of the specific heat is measured, the specific heat radiates at the transition point if the phase transition is the first order, and a discontinuous jump occurs in the specific heat at the transition point if the phase transition is the second order. Thus, measurement of specific heat is the most effective means for confirming the evidence of phase transition and determining the transition temperature and determining the order of the transition. However, since the specific heat is basically a temperature differential of the amount of heat, the specific heat measurement experiment has a difficulty that an error becomes large. Further, in general, heat measurement is characterized in that it takes longer time than electricity or magnetic measurement.

比熱の測定法は、大きく断熱法と熱緩和法の2つに分類することができるが、本発明は熱緩和法の一種であるため、以下、熱緩和法について説明する。熱緩和法を用いた比熱の測定技術については、非特許文献1の92〜94頁および非特許文献2に解説がある。熱緩和法では、大きな熱容量を有する熱浴に、熱結合体を介して試料を緩く熱結合させた上で、試料に熱を加えて熱浴よりも温度を高くし、加熱を断った後の冷却速度と熱結合体の熱伝導率から比熱が測定できる。  Specific heat measurement methods can be broadly classified into two methods, adiabatic methods and thermal relaxation methods. Since the present invention is a kind of thermal relaxation method, the thermal relaxation method will be described below. Non-patent document 1, pages 92 to 94 and non-patent document 2 describe the specific heat measurement technique using the thermal relaxation method. In the thermal relaxation method, after the sample is loosely thermally bonded to a heat bath having a large heat capacity via a thermal bond, the sample is heated to raise the temperature to be higher than that of the heat bath, and after heating is turned off. Specific heat can be measured from the cooling rate and the thermal conductivity of the thermal combination.

従来、熱緩和法の中で最も一般的に利用されている構成は図1に示すようなものである。この測定系では、試料(質量m、体積V)に温度計を設置し、熱伝導度K(定数)の熱結合体を介して試料を熱浴に緩く熱結合している。雰囲気は真空にして熱結合体以外の部分を通して熱の逃げがないようにしておく。熱浴の温度は、熱浴ヒータから熱浴に加える熱量をコントロールすることにより、低温熱源に逃げる熱量とバランスさせることによって温度Tに制御されている。そして図2に示すように、加熱ヒータによって試料に少量の熱を与えて、試料の温度を僅かにΔTだけ上げたのち加熱を断ち、温度上昇ΔTがTに向かって次の式によって緩和する間の緩和時間τを測定し、c=τK/mまたはc=τK/Vの関係式から温度Tにおける比熱cを求める。なおΔTの幅は、その温度範囲内で熱伝達度Kの温度依存性が無視できて一定とみなせるくらい狭い幅にとる。

Figure 0005610529
Conventionally, the most commonly used configuration in the thermal relaxation method is as shown in FIG. In this measurement system, a thermometer is installed in a sample (mass m, volume V), and the sample is loosely thermally coupled to a heat bath via a thermal coupling body having a thermal conductivity K (constant). The atmosphere is evacuated so that no heat escapes through the part other than the thermal coupling body. The temperature of the heat bath is controlled to the temperature T 0 by balancing the amount of heat that escapes to the low temperature heat source by controlling the amount of heat applied to the heat bath from the heat bath heater. Then, as shown in FIG. 2, a small amount of heat is given to the sample by the heater, the temperature of the sample is slightly increased by ΔT 0 , and then the heating is stopped, and the temperature increase ΔT is relaxed by the following equation toward T 0. Then, the relaxation time τ is measured, and the specific heat c at the temperature T 0 is obtained from the relational expression of c = τK / m or c = τK / V. It should be noted that the width of ΔT 0 is so narrow that the temperature dependence of the heat transfer degree K can be ignored within the temperature range and can be regarded as constant.
Figure 0005610529

次に熱浴ヒータによって熱浴の温度Tを少し上昇させ、同じ測定を行う。このようにして各温度で比熱を1点測定しては温度Tを少し上げ、同じ測定を繰り返して行き、所定の温度範囲に亘って測定を行う。 Then slightly raise the temperature T 0 of the thermal bath by heat bath heater, perform the same measurements. Thus in to each temperature was measured 1 point specific heat slightly raising the temperature T 0, go repeat the same measurement, measurement is carried out over a predetermined temperature range.

この測定法における重要な問題は、従来の熱緩和法が上記式に基づいて比熱を求めるため、熱緩和中の熱結合体の熱伝導度を定数Kとして計算する必要がある点である。熱伝導度は一般に強い温度依存性があるため、Tからの温度上昇ΔTを僅か(例えば0.1K)に抑え、熱結合体全体の温度をほぼ一様と見なして測定が行われる。そのため、例えば4K〜40Kの比熱を測定するには、この測定を360回繰り返す必要がある。その結果測定のために、2〜3日もの長い時間がかかり、しかもデータは離散的となる。 An important problem in this measurement method is that, since the conventional thermal relaxation method obtains the specific heat based on the above equation, it is necessary to calculate the thermal conductivity of the thermal coupling body during thermal relaxation as a constant K. Since thermal conductivity that is generally a strong temperature dependence, reduced to the temperature rise [Delta] T 0 from T 0 only (e.g. 0.1 K), measured by regarding the temperature of the entire thermal coupling body and substantially uniform is performed. Therefore, for example, in order to measure the specific heat of 4K to 40K, it is necessary to repeat this measurement 360 times. As a result, the measurement takes a long time of 2 to 3 days, and the data becomes discrete.

従来の定常法による熱伝導率の測定は、図3の構成で行われる。試料の一端を温度計と加熱ヒータを備えた高温熱浴に熱接触させ、他端を熱浴ヒータによって温度がT0に制御された低温熱浴に熱接触させる。もし、試料の両端と高温熱浴及び低温浴熱との熱接触部分に大きな熱抵抗がある場合には、二つの温度計を試料上の両端に近いところに設置することもある。次に、雰囲気を真空にして試料以外の部分を通して高温熱浴から熱が流出しないようにする。そして高温熱浴の温度を低温熱浴よりわずかにΔTだけ高くし、試料内に一定の熱流速度dQ/dtの熱流を生じさせる。このとき、その温度での熱伝導率κは次の式で計算できる。

Figure 0005610529
The measurement of the thermal conductivity by the conventional steady method is performed with the configuration of FIG. One end of the sample is brought into thermal contact with a high temperature hot bath equipped with a thermometer and a heater, and the other end is brought into thermal contact with a low temperature hot bath whose temperature is controlled to T 0 by the hot bath heater. If there is a large thermal resistance at the thermal contact portion between the both ends of the sample and the high temperature heat bath and low temperature bath heat, two thermometers may be installed near the both ends on the sample. Next, the atmosphere is evacuated so that heat does not flow out of the high temperature heat bath through parts other than the sample. Then, the temperature of the high temperature heat bath is slightly higher than that of the low temperature heat bath by ΔT 0 , and a heat flow with a constant heat flow rate dQ / dt is generated in the sample. At this time, the thermal conductivity κ at that temperature can be calculated by the following equation.
Figure 0005610529

ここで、Sは試料の熱流に垂直な断面の断面積、Lは試料の長さである。この式は非特許文献1の第55頁に記載されている。  Here, S is the cross-sectional area of the cross section perpendicular to the heat flow of the sample, and L is the length of the sample. This equation is described on page 55 of Non-Patent Document 1.

次に、熱浴ヒータにより低温熱浴の温度Tを少し高くし、次の測定温度に移り、上記と同じ測定を行う。これを繰り返して所定の温度範囲の熱伝導率κを測定する。 Then, the temperature T 0 of the low-temperature heat bath slightly higher by the heat bath heater, moves to the next measurement temperature, the same measurement as above. This is repeated to measure the thermal conductivity κ in a predetermined temperature range.

この測定における重要な問題は、比熱測定と同じく、ΔTを小さくとり(例えば0.1K)、熱流速度dQ/dtを一定にし、熱伝導率κを一定とみなして測定されるため、4K〜40Kの温度範囲での測定に2〜3日もの長い時間がかかり、データは離散的になるという点である。 An important problem in this measurement is that, like the specific heat measurement, ΔT 0 is set to be small (for example, 0.1 K), the heat flow rate dQ / dt is made constant, and the heat conductivity κ is assumed to be constant, so that the measurement is performed from 4K to The measurement in the temperature range of 40K takes a long time of 2 to 3 days, and the data becomes discrete.

小林俊一、大塚洋一、低温技術(第2版)、東京大学出版会、1987年Shunichi Kobayashi, Yoichi Otsuka, Low Temperature Technology (2nd edition), The University of Tokyo Press, 1987 長澤光晴、微小な有機導体単結晶の中低温領域における比熱精密測定、東京電機大学総合研究所年報、第28号(2008年)Mitsuharu Nagasawa, Precise measurement of specific heat in the medium and low temperature range of small organic conductor single crystals, Tokyo Denki University Research Institute Annual Report, No. 28 (2008)

特開平6−201490号公報JP-A-6-201490 特開2006−64413号公報JP 2006-64413 A

このように従来の熱緩和法のように1回ずつ加熱ヒータで試料に熱を与えて広い温度範囲で比熱を測定すると、測定点が離散的であるため1つの測定点と次の測定点の間に相転移点が位置した場合、相転移に基づく比熱のピークや跳びを見逃す危険性があった。図4は、浜崎達一氏が2002年に九州産業大学国際文化学部紀要の第22行の153頁に発表した物理特性測定装置(PPMS)で測定した磁気比熱の測定結果の一例である。図4において、矢印のところに磁気相転移点があるように見えるが、データ密度が低いためあまり明瞭ではない。この測定結果からも、従来の緩和法を用いると時間がかかるため測定間隔が広く、データが離散的になることが判る。また従来の緩和法では、1点の比熱の測定に少なくとも20〜30分の時間がかかるため、図4に示されている2〜16Kの広い温度範囲で測定をするためには、20時間以上を要していた。   As described above, when the specific heat is measured in a wide temperature range by applying heat to the sample once with a heater as in the conventional thermal relaxation method, since the measurement points are discrete, there is no difference between one measurement point and the next measurement point. When a phase transition point is located between them, there is a risk of missing a specific heat peak or jump based on the phase transition. FIG. 4 is an example of the measurement result of the magnetic specific heat measured by Tatsukazu Hamasaki with a physical property measuring device (PPMS) published on page 153 of the 22nd line of the Kyushu Sangyo University Faculty of International Studies in 2002. In FIG. 4, it appears that there is a magnetic phase transition point at the arrow, but it is not so clear due to the low data density. Also from this measurement result, it can be seen that when the conventional relaxation method is used, it takes time, so that the measurement interval is wide and the data becomes discrete. Further, in the conventional relaxation method, it takes at least 20 to 30 minutes to measure the specific heat at one point. Therefore, in order to measure in the wide temperature range of 2 to 16 K shown in FIG. Needed.

本発明の目的は、加熱と冷却とを繰り返して1点ずつ測定するのではなく、短い時間で広い温度範囲に亘って試料の比熱を連続的に測定することができる比熱測定方法を提供することにある。   An object of the present invention is to provide a specific heat measurement method capable of continuously measuring the specific heat of a sample over a wide temperature range in a short time, instead of measuring one point at a time by repeating heating and cooling. It is in.

また、本発明のもう一つの目的は、この比熱測定法とほぼ同じ構成で、従来の定常法のように1点ずつ測定することなく、短い時間で広い温度範囲における試料の熱伝導率を連続的に測定することができる熱伝導率測定方法を提供することにある。   Another object of the present invention is to have the same configuration as this specific heat measurement method, and continuously measure the thermal conductivity of the sample in a wide temperature range in a short time without measuring one point at a time as in the conventional steady-state method. It is in providing the thermal conductivity measuring method which can be measured automatically.

本発明の比熱測定方法では、熱伝導率κが既知の熱結合体を通して試料が熱緩和するときの温度の緩和速度から比熱を測定する。まず比熱cが未知の試料を、温度Tの熱浴に、熱伝導率κの温度依存関数κ(T)が既知の熱結合体を介して熱結合する。そして所定の温度範囲の最高温度Tまで試料を加熱した後加熱を停止する。その後試料の温度が所定の温度範囲の最低温度Tになるまでの間、試料の温度Tを時間tの関数として測定する。また試料の温度T対時間tの測定結果から、温度Tの時間微分dT/dtを求める。そして最高温度Tから最低温度Tに至る過程における熱結合体を流れる熱流Qの時間微分dQ/dtを下記の式に基づいて求める。

Figure 0005610529
In the specific heat measurement method of the present invention, the specific heat is measured from the relaxation rate of the temperature when the sample is thermally relaxed through a thermal bond having a known thermal conductivity κ. First, a sample having an unknown specific heat c is thermally coupled to a heat bath having a temperature TL via a thermal coupling body having a known temperature dependence function κ (T) of thermal conductivity κ. And stopping the heating after heating the sample up to a maximum temperature T H of the predetermined temperature range. Thereafter, the temperature T of the sample is measured as a function of time t until the temperature of the sample reaches the minimum temperature TL within a predetermined temperature range. Further, the time differential dT / dt of the temperature T is obtained from the measurement result of the temperature T of the sample versus the time t. Then, the time differential dQ / dt of the heat flow Q flowing through the thermal coupling body in the process from the maximum temperature TH to the minimum temperature TL is obtained based on the following equation.
Figure 0005610529

但し、上記式においてLは熱結合体の長さであり、Sは熱結合体の熱流に垂直な方向の断面の断面積である。本発明では、試料の温度の時間微分dT/dtと熱流Qの時間微分dQ/dtの結果を用いて、試料の熱容量CをC=(dQ/dt)/(dT/dt)の式により求め、熱容量Cを試料の物質量(質量mまたは体積Vまたはモル数Mなど)で割ることによって比熱cを得る。   In the above formula, L is the length of the thermal coupling body, and S is the cross-sectional area of the cross section in the direction perpendicular to the heat flow of the thermal coupling body. In the present invention, using the results of the time derivative dT / dt of the temperature of the sample and the time derivative dQ / dt of the heat flow Q, the heat capacity C of the sample is obtained by the equation C = (dQ / dt) / (dT / dt). The specific heat c is obtained by dividing the heat capacity C by the amount of material of the sample (such as mass m or volume V or number of moles M).

本発明の比熱測定方法が従来の熱緩和法と本質的に異なるのは、従来の熱緩和法が熱結合体の熱伝導率を一定として前述の式に基づいて比熱を求めるのに対し、本発明では熱結合体の熱伝導率が温度依存するとして前述の式に基づいて熱流速度dQ/dtを求めた上で比熱を測定する点である。その結果、従来の熱緩和法に比べて格段に広い温度範囲を一度の熱緩和で測定でき、連続的なデータが得られるため比熱のピークや跳びを見逃すことがない。   The specific heat measurement method of the present invention is essentially different from the conventional thermal relaxation method in that the conventional thermal relaxation method obtains the specific heat based on the above equation while keeping the thermal conductivity of the thermal coupling constant. In the invention, the specific heat is measured after the heat flow rate dQ / dt is obtained based on the above-mentioned equation, assuming that the thermal conductivity of the thermal coupling body is temperature dependent. As a result, a much wider temperature range can be measured with a single thermal relaxation compared to the conventional thermal relaxation method, and continuous data can be obtained, so that specific heat peaks and jumps are not missed.

なお、温度Tの時間微分dT/dtに代えて温度Tの時間差分ΔT/Δtを求め、熱流Qの時間微分dQ/dtの結果を用いて、試料の熱容量CをC=(dQ/dt)/(ΔT/Δt)の式により求め、この熱容量Cを試料の物質量(質量mまたは体積Vまたはモル数Mなど)で割ることによって比熱cを得るようにしてもよい。   Note that the time difference ΔT / Δt of the temperature T is obtained instead of the time derivative dT / dt of the temperature T, and the heat capacity C of the sample is calculated as C = (dQ / dt) using the result of the time differentiation dQ / dt of the heat flow Q. It is also possible to obtain the specific heat c by obtaining it by the equation of / (ΔT / Δt) and dividing this heat capacity C by the amount of material of the sample (mass m or volume V or mole number M or the like).

なお前記式中の積分を、数値積分によって求めてもよく、解析的積分によって求めてもよい。また温度計とヒータは試料に直接設置するのが理想的であるが、試料が小さいなどの理由で直接設置するのが難しい場合は、試料を載せた試料ステージ上に設置してもよい。この場合、測定された熱容量から試料ステージ+温度計+ヒータの熱容量を差し引く必要がある。なおサーモグラフィ温度計のように間接的に試料の温度を測定するもので温度を測定するようにしてもよい。また試料の加熱は、光照射などの間接的な加熱であってもよい。更に、温度計とヒータを1つの抵抗体により構成してもよい。このようにすると、試料の熱容量に対する試料以外の部分の熱容量の割合が減少するため精度が向上する。   The integral in the above formula may be obtained by numerical integration or by analytical integration. Ideally, the thermometer and the heater are installed directly on the sample. However, if it is difficult to install the thermometer and the heater directly because the sample is small, it may be installed on the sample stage on which the sample is placed. In this case, it is necessary to subtract the heat capacity of the sample stage + thermometer + heater from the measured heat capacity. In addition, you may make it measure temperature by measuring the temperature of a sample indirectly like a thermography thermometer. The sample may be heated indirectly such as by light irradiation. Furthermore, the thermometer and the heater may be constituted by a single resistor. In this case, since the ratio of the heat capacity of the part other than the sample to the heat capacity of the sample is reduced, the accuracy is improved.

また本発明の熱伝導率測定方法では、真空雰囲気中において、所定の温度範囲(T〜T)で試料の熱伝導率を測定する。まず熱容量Cの温度依存性が既知の材料を、温度Tの熱浴に、熱伝導率κの温度依存関数κ(T)が未知の試料を介して熱結合する。そして所定の温度範囲の最高温度Tまで材料を加熱した後加熱を停止する。その後材料の温度が所定の温度範囲の最低温度Tになるまで材料の温度Tを時間tの関数として測定する。また材料の温度T対時間tの測定結果から、温度Tの時間微分dT/dtを求める。そして最高温度Tから熱浴の温度Tに至る過程で試料を流れる熱流Qの時間微分をdQ/dt=C(dT/dt)の式により求める。次に、求めた時間微分dQ/dtを下記の式に代入して試料の熱伝導率の温度依存性κ(T)を測定する。

Figure 0005610529
In the thermal conductivity measuring method of the present invention, the thermal conductivity of the sample is measured in a predetermined temperature range (T L to T H ) in a vacuum atmosphere. First, a material whose temperature dependency of the heat capacity C is known is thermally coupled to a heat bath having a temperature TL via a sample whose temperature dependence function κ (T) is unknown. And stopping the heating after heating the material to a maximum temperature T H of the predetermined temperature range. Thereafter, the temperature T of the material is measured as a function of time t until the temperature of the material reaches a minimum temperature TL within a predetermined temperature range. Further, the time differential dT / dt of the temperature T is obtained from the measurement result of the temperature T of the material versus the time t. Then obtained by equation maximum temperature T H of the hot bath temperature T L of the time derivative of the heat flow Q flowing through the sample in the process leading to the dQ / dt = C (dT / dt). Next, the obtained time derivative dQ / dt is substituted into the following equation, and the temperature dependence κ (T) of the thermal conductivity of the sample is measured.
Figure 0005610529

但し、上記式においてLは熱結合体の長さであり、Sは熱結合体の熱流に垂直な断面の断面積である。   In the above formula, L is the length of the thermal coupling body, and S is the cross-sectional area of the cross section perpendicular to the heat flow of the thermal coupling body.

なお、温度Tの時間微分dT/dtに代えて温度Tの時間差分ΔT/Δtを求め、熱流Qの時間微分dQ/dtに代えて試料を流れる熱流Qの時間差分ΔQ/Δt=C(ΔT/Δt)を求めて、この求めた時間差分ΔQ/Δtを下記式に代入して、試料の熱伝導率の温度依存性κ(T)を求めてもよい。

Figure 0005610529
Note that the time difference ΔT / Δt of the temperature T is obtained instead of the time derivative dT / dt of the temperature T, and the time difference ΔQ / Δt = C (ΔT of the heat flow Q flowing through the sample instead of the time derivative dQ / dt of the heat flow Q. / Δt) may be obtained, and the obtained time difference ΔQ / Δt may be substituted into the following equation to obtain the temperature dependence κ (T) of the thermal conductivity of the sample.
Figure 0005610529

本発明の測定法によれば、連続的なデータとして熱伝達率を測定できるため、熱伝導率のわずかな変化や急激な変化を見逃すことがない。また測定に要す得る時間は、従来の定常法では数日の長時間を要するのに対し、本測定では例えば50分程度で測定を完了することができる。   According to the measurement method of the present invention, since the heat transfer coefficient can be measured as continuous data, a slight change or a sudden change in the heat conductivity is not overlooked. The time required for the measurement can be as long as several days in the conventional stationary method, whereas the measurement can be completed in about 50 minutes, for example.

従来の熱緩和法による比熱測定系を表す模式図である。It is a schematic diagram showing the specific heat measurement system by the conventional thermal relaxation method. 従来の熱緩和法による比熱測定原理を表す模式図である。It is a schematic diagram showing the specific heat measurement principle by the conventional thermal relaxation method. 従来の定常法による熱伝導率測定法を表す模式図である。It is a schematic diagram showing the thermal conductivity measuring method by the conventional stationary method. 従来の熱緩和法を用いて測定したNi0.71Mn0.29l2・2HOの比熱の温度変化である。Conventional thermal relaxation method is the temperature change of the specific heat of the measured Ni 0.71 Mn 0.29 C l2 · 2H 2 O with. 本発明の比熱測定方法を実施するための比熱測定系を表す模式図である。It is a schematic diagram showing the specific heat measuring system for enforcing the specific heat measuring method of this invention. 本発明による比熱測定原理を表す模式図である。It is a schematic diagram showing the specific heat measurement principle by this invention. 本発明の比熱測定方法を実施するための測定系の構成の概略図である。It is the schematic of the structure of the measurement system for enforcing the specific heat measuring method of this invention. 強磁性体ErNiを40Kから3.7Kまで冷却したときの冷却曲線である。10.5Kのところに比熱の大きな変化に基づく屈曲点が見られる。It is a cooling curve when the ferromagnetic ErNi is cooled from 40K to 3.7K. A bending point based on a large change in specific heat can be seen at 10.5K. 図8から得られたErNiの比熱の温度依存性である。10.5Kのところに強磁性転移に基づく比熱のピークが見られる。It is the temperature dependence of the specific heat of ErNi obtained from FIG. A specific heat peak based on the ferromagnetic transition is observed at 10.5K. 本発明に基づいて測定した鉛の比熱の絶対温度依存性である。7.2Kのところに超伝導転移に基づく比熱の小さな跳びが見られる。It is the absolute temperature dependence of the specific heat of lead measured based on this invention. A small specific heat jump based on the superconducting transition is observed at 7.2K. 比熱の跳びを見やすくするため、図9の鉛の比熱を絶対温度の2乗で割った値を絶対温度の2乗に対してプロットした図である。FIG. 10 is a diagram in which a value obtained by dividing the specific heat of lead in FIG. 9 by the square of the absolute temperature is plotted against the square of the absolute temperature in order to make it easy to see the jump of the specific heat. 本発明の熱伝導率測定方法を実施するための測定系の構成の概略図である。It is the schematic of the structure of the measurement system for enforcing the thermal conductivity measuring method of this invention. ステンレス試料を通して材料21が冷却するときの温度変化を表す図である。It is a figure showing a temperature change when the material 21 cools through a stainless steel sample. 図13から得られたステンレス試料の熱伝導率の温度依存性である。It is the temperature dependence of the thermal conductivity of the stainless steel sample obtained from FIG.

以下図面を参照して、所定の温度範囲において比熱を測定する本発明の比熱測定方法及び熱伝導率測定方法の実施の形態を詳細に説明する。図5は、本発明の比熱測定方法を実施するための比熱測定系の構成の概略を示す図である。図5において、符号1で示した部材は、比熱cが未知の試料であり、符号2で示した部材は試料1の温度を測定する温度計である。符号3で示した部材は、熱伝導率κの温度依存関数κ(T)が既知の熱結合体である。符号4で示した部材は、熱結合体3を介して試料1に熱結合された熱浴である。符号5で示した部材は、試料1を一様に加熱することができる抵抗体からなる加熱ヒータであり、符号6で示した部材は、熱浴4を加熱する熱浴ヒータである。なお熱浴4は低温熱源7に熱的に結合されている。低温熱源7としては、ヘリウムガスの圧縮と膨張を繰り返して冷凍を発生する極低温用の小型冷凍機(GM冷凍機)を使用することができる。   Embodiments of a specific heat measurement method and a thermal conductivity measurement method of the present invention for measuring specific heat in a predetermined temperature range will be described below in detail with reference to the drawings. FIG. 5 is a diagram showing an outline of the configuration of a specific heat measurement system for carrying out the specific heat measurement method of the present invention. In FIG. 5, the member indicated by reference numeral 1 is a sample whose specific heat c is unknown, and the member indicated by reference numeral 2 is a thermometer that measures the temperature of the sample 1. The member denoted by reference numeral 3 is a thermal coupling body whose temperature dependence function κ (T) of the thermal conductivity κ is known. A member denoted by reference numeral 4 is a heat bath thermally coupled to the sample 1 through the thermal coupling body 3. The member indicated by reference numeral 5 is a heater made of a resistor that can uniformly heat the sample 1, and the member indicated by reference numeral 6 is a hot bath heater that heats the hot bath 4. The heat bath 4 is thermally coupled to a low temperature heat source 7. As the low-temperature heat source 7, a cryogenic cryocooler (GM refrigerator) that generates refrigeration by repeatedly compressing and expanding helium gas can be used.

まず温度Tの熱浴4を用意し、測定したい所定の温度範囲T〜T(ここで、T<T)を設定する。次に、図5に示すように、熱容量C(T)が未知の試料1を、熱伝導率κの温度依存関数κ(T)が既知の熱結合体3(熱流に垂直な断面の面積が熱流方向に沿って一様である)を介して熱浴4に緩く熱結合する。そして、試料1の雰囲気を真空にして断熱した上で、所定の温度範囲の最高温度Tまで試料1を加熱した後加熱を停止し、その後試料1の温度が熱浴の温度Tになるまで冷却していく間、図6のように試料1の温度Tを温度計2により時間tに対して測定し記録する。次に試料1の温度T対時刻tの測定結果から、温度Tの時間微分dT/dtを求める。ただし、図6中の時間微分dT/dtは見やすいようにdTとdtの幅を大きく表現している。 First, a heat bath 4 having a temperature T L is prepared, and a predetermined temperature range T L to T H (where T L <T H ) to be measured is set. Next, as shown in FIG. 5, a sample 1 with an unknown heat capacity C (T) is applied to a thermal coupling body 3 with a known temperature dependence function κ (T) of thermal conductivity κ (the cross-sectional area perpendicular to the heat flow is It is heat-bonded loosely to the heat bath 4 via the heat flow direction). Then, the atmosphere of the sample 1 in terms of the thermal insulation in the vacuum, heating was stopped after heating the sample 1 to a maximum temperature T H of the predetermined temperature range, then the temperature of the sample 1 is the temperature T L of the heat bath During the cooling to the temperature t, the temperature T of the sample 1 is measured and recorded with respect to the time t by the thermometer 2 as shown in FIG. Next, the time differential dT / dt of the temperature T is obtained from the measurement result of the temperature T of the sample 1 versus time t. However, the time differential dT / dt in FIG. 6 expresses the width of dT and dt large for easy viewing.

また熱結合体3の長さをL、熱結合体3の熱流に垂直な方向の断面の断面積をS、熱結合体の熱伝導率の温度依存関数をκ(T)とし、温度Tから温度Tに至る冷却過程で熱結合体3を流れる熱流Qの時間微分dQ/dtを下記の式(3)に基づいて求める。下記の式(3)は非特許文献1の第57頁に記載されている。この際、熱結合体の熱伝導率κ(T)の温度積分は、予め実験によって各温度で測定したκ(T)の値を用いて数値積分してもよい。あるいは、銅などの純金属の場合には低温での熱伝導率がAを定数としてκ(T)=ATで表されることが理論的に知られているので、予備実験によって定数Aを求めておき解析的に積分してもよい。 Further, the length of the thermal coupling body 3 is L, the cross-sectional area of the cross section perpendicular to the heat flow of the thermal coupling body 3 is S, the temperature dependence function of the thermal conductivity of the thermal coupling body is κ (T), and the temperature T H The time derivative dQ / dt of the heat flow Q flowing through the thermal coupling body 3 in the cooling process from the temperature TL to the temperature TL is obtained based on the following equation (3). The following formula (3) is described on page 57 of Non-Patent Document 1. At this time, the temperature integration of the thermal conductivity κ (T) of the thermal coupling body may be numerically integrated using the value of κ (T) measured at each temperature in advance by experiments. Alternatively, in the case of a pure metal such as copper, it is theoretically known that the thermal conductivity at a low temperature is expressed by κ (T) = AT, where A is a constant. It may be integrated analytically.

下記式(3)は、本来、定常状態のときに成り立つものであって、試料が温度変化しているときは誤差が生じるが、試料の温度変化が緩やであれば定常状態としても誤差が無視できるほど小さいことが判っている。この演算は、比熱の計算よりも前に行っておくのは勿論である。

Figure 0005610529
The following equation (3) is inherently established in a steady state, and an error occurs when the temperature of the sample is changing. However, if the temperature change of the sample is slow, an error is caused even in the steady state. It turns out to be small enough to be ignored. Of course, this calculation is performed before the calculation of specific heat.
Figure 0005610529

そして、測定した温度Tの時間微分dT/dtと、上記式(3)で計算したdQ/dtを、下記式(4)に代入し比熱c(T)を求める。

Figure 0005610529
Then, the time differential dT / dt of the measured temperature T and dQ / dt calculated by the above equation (3) are substituted into the following equation (4) to obtain the specific heat c (T).
Figure 0005610529

ここで、mは試料の質量である。上記式(4)中の質量mの代わりに体積Vまたはモル数Mなどが用いられることもある。   Here, m is the mass of the sample. The volume V or the number of moles M may be used instead of the mass m in the above formula (4).

本実施の形態の比熱測定方法が従来の熱緩和法と本質的に異なるのは、従来の熱緩和法が熱結合体の熱伝導率を一定として上記(1)式に基づいて比熱を求めるのに対し、本実施の形態では熱結合体の熱伝導率が温度依存することを前提として上記(3)式に基づいて熱流速度dQ/dtを求めた上で比熱を測定する点である。その結果、従来の熱緩和法に比べて格段に広い温度範囲を一度の熱緩和で測定できる。例えば、4K〜40Kの温度範囲を測定するのに要す得る時間は、従来の緩和法では2〜3日程度かかるのに対して、本発明によれば、30分程度で完了することができる。また、本実施の形態によれば、得られる比熱のデータは、離散的なデータではなく連続的なデータとなるため、相転移現象に伴う極めて小さな比熱のピークでも見逃すことなく極めて高い精度で検出ことが可能になる。   The specific heat measurement method of the present embodiment is essentially different from the conventional thermal relaxation method in that the conventional thermal relaxation method obtains the specific heat based on the above equation (1) while keeping the thermal conductivity of the thermal conjugate constant. On the other hand, in this embodiment, the specific heat is measured after obtaining the heat flow rate dQ / dt based on the above equation (3) on the premise that the thermal conductivity of the thermal coupling body is temperature dependent. As a result, a much wider temperature range can be measured with a single thermal relaxation as compared with the conventional thermal relaxation method. For example, the time required to measure the temperature range of 4K to 40K takes about 2 to 3 days in the conventional relaxation method, but according to the present invention, it can be completed in about 30 minutes. . In addition, according to the present embodiment, the specific heat data obtained is not discrete data but continuous data, so even a very small specific heat peak associated with the phase transition phenomenon can be detected with extremely high accuracy. It becomes possible.

測定データから比熱を計算する過程は、測定中にリアルタイムに行ってもよいし、全てのデータを採り終えた後でまとめて行ってもよい。所定の温度範囲は任意であるが、その温度範囲内で熱結合体の熱伝導率が温度依存性を持っていて一定とみなすことができないくらい広い範囲を温度範囲とすることができるのが本実施の形態の方法の特徴であり、従来の熱緩和法と本質的に異なる点である。例えば典型的な例として、熱浴4の温度Tが4Kで、最高温度Tが40K程度になるように温度範囲を定め、ステンレスの熱結合体3を用いたとすると、熱伝導率は温度4Kでの0.25W/m・Kから温度40Kでの4.5W/m・Kまで15倍変化するため、熱伝導率は一定とみなすことはできない。この温度範囲は、従来の熱緩和法の熱緩和範囲約0.1Kと比べてはるかに大きく設定されている。 The process of calculating the specific heat from the measurement data may be performed in real time during the measurement, or may be performed collectively after all the data has been collected. Although the predetermined temperature range is arbitrary, the temperature range can be a wide range within which the thermal conductivity of the thermal coupling body has temperature dependence and cannot be regarded as constant. This is a feature of the method of the embodiment and is essentially different from the conventional thermal relaxation method. For example, as a typical example, at a temperature T L of the heat bath 4 is 4K, the maximum temperature T H is determined temperature range so that the order of 40K, when to using thermal coupling body 3 of stainless steel, the thermal conductivity is temperature Since it changes 15 times from 0.25 W / m · K at 4 K to 4.5 W / m · K at a temperature of 40 K, the thermal conductivity cannot be considered constant. This temperature range is set much larger than the thermal relaxation range of about 0.1 K in the conventional thermal relaxation method.

なお、温度Tの時間微分dT/dtに代えて温度Tの時間差分ΔT/Δtを求め、熱流Qの時間微分dQ/dtの結果を用いて、試料の熱容量CをC=(dQ/dt)/(ΔT/Δt)の式により求め、この熱容量Cを試料の物質量(質量mまたは体積Vまたはモル数Mなど)で割ることによって比熱cを得るようにしてもよい。   Note that the time difference ΔT / Δt of the temperature T is obtained instead of the time derivative dT / dt of the temperature T, and the heat capacity C of the sample is calculated as C = (dQ / dt) using the result of the time differentiation dQ / dt of the heat flow Q. It is also possible to obtain the specific heat c by obtaining it by the equation of / (ΔT / Δt) and dividing this heat capacity C by the amount of material of the sample (mass m or volume V or mole number M or the like).

図7は、本発明の比熱測定方法を実施するための比熱測定系の実際の構成の一例の概略を示す図である。図7において、図5に示した構成部材と同様の部材には、図5に示した構造部材に付した符号に10の数を加えた数の符号を付してある。符号11で示した部材は、比熱c(T)が未知の試料であり、試料11は、熱伝導率の高い銅製の試料ステージ18の上面上に少量のグリースにより熱接触させて載置されている。この例の試料ステージ18は、6×6×0.1mmの大きさを有している。試料ステージ18の下面上には、試料11の温度を試料ステージ18を介して間接的に測定する酸化ルテニウム抵抗温度計12と酸化ルテニウム抵抗からなる加熱ヒータ15とが固定されている。試料ステージ18は、熱伝導率の温度依存関数κ(T)が既知のステンレス製の熱結合体13によって、大きな銅製の熱浴14に結合されている。熱結合体13は、直径0.1mm及び長さ6mmの4本のステンレスロッドによって構成されている。熱浴14は、円筒状を有しており、試料ステージ18は熱浴14の開口部上に熱結合体13により架設された状態になっている。熱浴14の周囲には、マンガニン製の抵抗体からなる熱浴ヒータ16が巻装されている。熱浴14は、ヘリウムガスの圧縮と膨張を繰り返して冷凍を発生する極低温用の機械式小型冷凍機(GM冷凍機)のセカンドステージ17に接続されている。冷凍機のセカンドステージ17は、図5の低温熱源7を構成するものである。熱浴14の上には、周りからの熱輻射によって試料11の温度が上がるのを防止する銅製の輻射シールド19が試料を取り囲むように配置されている。なお図7においては、理解を容易にするために、輻射シールド19を透明なものとして描いてある。 FIG. 7 is a diagram showing an outline of an example of an actual configuration of a specific heat measurement system for carrying out the specific heat measurement method of the present invention. In FIG. 7, the same members as those shown in FIG. 5 are given the same reference numerals as the constituent members shown in FIG. 5 plus the number of ten. The member denoted by reference numeral 11 is a sample whose specific heat c (T) is unknown, and the sample 11 is placed on the upper surface of a copper sample stage 18 having high thermal conductivity in thermal contact with a small amount of grease. Yes. The sample stage 18 in this example has a size of 6 × 6 × 0.1 mm 3 . On the lower surface of the sample stage 18, a ruthenium oxide resistance thermometer 12 that indirectly measures the temperature of the sample 11 via the sample stage 18 and a heater 15 made of a ruthenium oxide resistor are fixed. The sample stage 18 is coupled to a large copper heat bath 14 by a stainless steel thermal coupling body 13 having a known temperature dependence function κ (T) of thermal conductivity. The thermal coupling body 13 is composed of four stainless rods having a diameter of 0.1 mm and a length of 6 mm. The heat bath 14 has a cylindrical shape, and the sample stage 18 is installed on the opening of the heat bath 14 by the thermal coupling body 13. A hot bath heater 16 made of a manganin resistor is wound around the hot bath 14. The heat bath 14 is connected to a second stage 17 of a cryogenic mechanical small refrigerator (GM refrigerator) that generates refrigeration by repeatedly compressing and expanding helium gas. The second stage 17 of the refrigerator constitutes the low-temperature heat source 7 of FIG. A copper radiation shield 19 that prevents the temperature of the sample 11 from rising due to thermal radiation from the surroundings is disposed on the heat bath 14 so as to surround the sample. In FIG. 7, the radiation shield 19 is depicted as being transparent for easy understanding.

なお本実施の形態では、抵抗温度計12と加熱ヒータ15はどちらも酸化ルテニウム製の抵抗体である。抵抗温度計12は、温度の変化により抵抗値が変わる抵抗体を温度センサとして使用するものである。これらは同時に使う必要はないので、1個で温度計と加熱ヒータの用途を兼ねる1つの抵抗体だけを試料ステージ18の下面に配置するようにしてもよいのは勿論である。  In the present embodiment, both the resistance thermometer 12 and the heater 15 are ruthenium oxide resistors. The resistance thermometer 12 uses a resistor whose resistance value changes with temperature as a temperature sensor. Since these need not be used at the same time, it is a matter of course that only one resistor that serves both as a thermometer and a heater may be disposed on the lower surface of the sample stage 18.

本実施の形態では、まず熱伝導率κの温度依存関数κ(T)が既知の熱結合体13を介して比熱c(T)が未知の試料11を熱浴14に接続する。そして加熱ヒータ15を用いて所定の温度範囲の最高温度Tまで試料1を加熱した後加熱を停止する。その後試料11の温度が、熱浴14の温度Tまで冷却していく間、試料の温度Tを所定の時間間隔で温度計12を用いて測定する。また熱結合体13の長さをL、断面積をS、熱伝導率の温度依存関数をκ(T)とし、温度Tから温度Tに至る過程で熱結合体4を流れる熱流Qの時間微分dQ/dtを前記の(3)式に基づいて求める。熱結合体13については、すでに熱伝導率κの温度依存関数κ(T)が既知であるため、熱流Qの時間微分dQ/dtの演算は、温度の測定よりも前に行うことができる。 In the present embodiment, first, the sample 11 whose specific heat c (T) is unknown is connected to the heat bath 14 via the thermal coupling body 13 whose temperature dependence function κ (T) is known. And stopping the heating after heating the sample 1 to a maximum temperature T H of the predetermined temperature range by using a heater 15. Thereafter, while the temperature of the sample 11 is cooled to the temperature TL of the heat bath 14, the temperature T of the sample is measured using the thermometer 12 at predetermined time intervals. Further, the length of the thermal coupling body 13 is L, the cross-sectional area is S, the temperature dependence function of thermal conductivity is κ (T), and the heat flow Q flowing through the thermal coupling body 4 in the process from the temperature TH to the temperature TL is shown. The time derivative dQ / dt is obtained based on the above equation (3). Since the temperature dependence function κ (T) of the thermal conductivity κ is already known for the thermal coupling body 13, the calculation of the time derivative dQ / dt of the heat flow Q can be performed before the temperature measurement.

なお、各物質の熱伝導率の温度依存性κ(T)については、例えば非特許文献1の第56頁に掲載されている。   The temperature dependence κ (T) of the thermal conductivity of each substance is described, for example, on page 56 of Non-Patent Document 1.

そして本実施の形態では、所定の温度範囲に亘って、前記(4)式に基づいて、試料の比熱を連続的に測定する。その結果、転移現象に伴う極めて小さな比熱のピークでも極めて高い精度で検出ことが可能になる。また測定に要す得る時間は、従来の緩和法では1日程度かかるのに対して、本発明によれば、例えば30分程度で所定の温度範囲における比熱の測定を完了することができる。   In this embodiment, the specific heat of the sample is continuously measured over the predetermined temperature range based on the equation (4). As a result, even a very small specific heat peak associated with the transition phenomenon can be detected with extremely high accuracy. The time required for the measurement takes about one day in the conventional relaxation method, whereas according to the present invention, the measurement of the specific heat in a predetermined temperature range can be completed in about 30 minutes, for example.

実際には、測定された熱容量の中には試料を載せる試料ステージやヒータや温度計など(アデンダと呼ぶ)の熱容量も含まれているので、試料を載せないアデンダだけの熱容量をあらかじめ別の実験から求めておき測定値から差し引く。   Actually, the measured heat capacity includes the heat capacity of the sample stage, heater, thermometer, etc. (referred to as an adder) on which the sample is placed. Subtract from the measured value.

なお本発明の測定で、温度T対時間tの記録をペンレコーダ等アナログ的に行う場合には連続測定となるが、デジタル的に記録する場合には、所定のサンプリング時間間隔で記録していくため前記微分dT/dtは温度変化ΔTを有限のサンプリング時間間隔Δtで割った差分ΔT/Δtで置き換えられる。   In the measurement of the present invention, when recording temperature T vs. time t in an analog manner such as a pen recorder, continuous measurement is performed. However, in the case of digital recording, recording is performed at predetermined sampling time intervals. Therefore, the differential dT / dt is replaced with a difference ΔT / Δt obtained by dividing the temperature change ΔT by a finite sampling time interval Δt.

所定の温度範囲は任意であるが、その温度範囲内で熱結合体の熱伝導率が温度依存性を持っていて一定と見なされないくらい広い範囲を採るのが本発明の特徴であり、従来の熱緩和法と本質的に異なる点である。例えば典型的な例として、熱浴の温度Tが4Kで、Tが40K程度になるように温度範囲を定め、ステンレスの熱結合体を用いたとすると、熱伝導率は温度4Kでの0.25W/m・Kから温度40Kでの4.5W/m・Kまで15倍変化し、一定と見なすことはできない。この温度範囲は、熱緩和法の典型的な熱緩和範囲約0.1Kと比べてはるかに大きく設定されている。 The predetermined temperature range is arbitrary, but it is a feature of the present invention that the thermal conductivity of the thermal coupling body is temperature-dependent within that temperature range and is not regarded as constant. This is essentially different from the thermal relaxation method. For example, as a typical example, at a temperature T L of the thermal bath is 4K, T H is determined temperature range so that the order of 40K, when to using thermal coupling of stainless, 0 thermal conductivity at a temperature 4K It changes 15 times from 25 W / m · K to 4.5 W / m · K at a temperature of 40 K and cannot be regarded as constant. This temperature range is set much larger than the typical thermal relaxation range of about 0.1 K in the thermal relaxation method.

次に本実施の形態の比熱測定方法を用いて実際に比熱の測定を行った結果について説明する。図8は、試料11として極低温用の磁性蓄冷材であるErNi合金37.2mgを用い、熱結合体13としてステンレス線を用い、熱浴の温度T=3.7Kとし、最高温度T=40Kまで試料11を加熱して熱緩和を行ったときの、温度Tの変化と時間tとの関係をデジタル的に時間間隔2秒で記録したものである。そして図9は、図8を基に式(3)と式(4)を用いて求めた比熱c(T)と温度Tとの関係を示している。ただし、温度の記録はデジタル的に行っているため、式(4)中の微分dT/dtの代わりに差分ΔT/Δtを用いた。図9から明らかなように、測定した比熱には、10.5Kに大きなピークとして強磁性の磁気相転移が明確に表れている。なお図9の測定結果を得るのにかかった時間は約30分である。このグラフの曲線は実際には点の集合であるが、測定点の間隔が密であるためほぼ連続曲線とみなせる。このようにグラフがほぼ連続的な曲線で表されるため、小さな比熱のピークや跳びを見逃すことがない。 Next, the results of actual measurement of specific heat using the specific heat measurement method of the present embodiment will be described. In FIG. 8, 37.2 mg of ErNi alloy, which is a magnetic regenerator material for cryogenic temperature, is used as the sample 11, a stainless steel wire is used as the thermal coupling body 13, the temperature of the heat bath T L = 3.7 K, and the maximum temperature T H. = The relationship between the change in temperature T and time t when the sample 11 is heated and relaxed to 40K is digitally recorded at a time interval of 2 seconds. FIG. 9 shows the relationship between the specific heat c (T) and the temperature T obtained using the equations (3) and (4) based on FIG. However, since the temperature is recorded digitally, the difference ΔT / Δt is used instead of the differential dT / dt in the equation (4). As is clear from FIG. 9, the measured specific heat clearly shows a ferromagnetic magnetic phase transition as a large peak at 10.5K. The time taken to obtain the measurement result of FIG. 9 is about 30 minutes. The curve in this graph is actually a set of points, but it can be regarded as a continuous curve because the measurement points are closely spaced. Since the graph is represented by a substantially continuous curve in this way, a small specific heat peak or jump is not overlooked.

また図10は、試料11として鉛(Pb)73.0mgを用い、T=12KとT=3.7Kの間で、ErNiの場合と同じ方法で比熱を測定した結果(比熱cと絶対温度Tとの関係)を示している。図10中の矢印の位置に超伝導転移点がある。図10のデータを局部的に拡大し見やすくするために、比熱cを絶対温度Tの二乗で割ったもの(c/T)を絶対温度Tの二乗(T)に対してプロットし直したものを図11に表示する。図11からは、超伝導転移に基づく比熱の跳びが明確に判る。なお図10の測定結果を得るのに要した時間はわずか6分程度であった。 Further, FIG. 10 shows the result of measuring specific heat by using the same method as ErNi between T H = 12K and T L = 3.7K using 73.0 mg of lead (Pb) as the sample 11 (the absolute value of specific heat c and absolute value). (Relationship with temperature T). There is a superconducting transition point at the position of the arrow in FIG. In order to make the data in FIG. 10 locally enlarged and easy to see, the specific heat c divided by the square of the absolute temperature T (c / T 2 ) was re-plotted against the square of the absolute temperature T (T 2 ). Things are displayed in FIG. From FIG. 11, the jump of specific heat based on the superconducting transition can be clearly seen. The time required to obtain the measurement result of FIG. 10 was only about 6 minutes.

以上の試験結果から、本発明の実施の形態によれば、短い時間で比熱を測定することができて、しかも従来の緩和法ではデータ点の間に埋もれて見えない極めて小さな比熱の跳びの存在を確認できるほど高い精度かつ緻密なデータ密度で比熱を測定することができることが判る。また、試料の量も数十mgという微量で測定できる。   From the above test results, according to the embodiment of the present invention, the specific heat can be measured in a short time, and the existence of a very small specific heat jump that cannot be seen between the data points by the conventional relaxation method. It can be seen that the specific heat can be measured with high accuracy and precise data density so that the above can be confirmed. The amount of the sample can also be measured with a minute amount of several tens mg.

次に図12を用いて、本発明の熱伝導率測定方法の実施の形態について説明する。図12は、本発明の熱伝導率測定方法を実施するための熱伝導率測定系の構成の概略を示す図である。図12において、符号21で示した部材は熱容量の温度依存関数C(T)が既知の材料であり、本実施の形態では材料21として銅1.10gを用いた。なお材料21は任意であるが、例えば銅や銀のように所定の温度範囲内に相転移などの異常がなく、熱容量が温度に対して滑らかに変化している物質が望ましい。なぜなら、相転移があるとその転移点付近で温度の急激な変化があるため測定結果に少なからず影響を与えるためである。また、材料21全体の温度が均一になるように材料21の熱伝導率は大きいほうが望ましい。材料21の冷却速度があまり遅いと、試料23以外の部分を通って逃げる熱の割合が多くなり誤差が大きくなる。逆に材料21の冷却速度が速いと材料21内に温度勾配が生じるなど非平衡の度合いが大きくなって温度依存関数κ(T)を求める下記(5)または(6)式の誤差が大きくなる。材料21の熱容量と試料23の熱伝導率のバランスによって冷却速度が決まるため、適当な冷却速度になるように試料23の断面積Sと長さLを調整するのが好ましい。   Next, an embodiment of the thermal conductivity measuring method of the present invention will be described with reference to FIG. FIG. 12 is a diagram showing an outline of the configuration of a thermal conductivity measurement system for carrying out the thermal conductivity measurement method of the present invention. In FIG. 12, a member denoted by reference numeral 21 is a material whose temperature dependence function C (T) of heat capacity is known. In this embodiment, 1.10 g of copper is used as the material 21. The material 21 is arbitrary, but a material such as copper or silver that has no abnormalities such as phase transition within a predetermined temperature range and whose heat capacity changes smoothly with respect to temperature is desirable. This is because if there is a phase transition, there is a rapid change in temperature in the vicinity of the transition point, which has a considerable effect on the measurement result. Further, it is desirable that the thermal conductivity of the material 21 is large so that the temperature of the entire material 21 is uniform. If the cooling rate of the material 21 is too slow, the rate of heat escaping through parts other than the sample 23 increases, and the error increases. On the contrary, if the cooling rate of the material 21 is fast, the degree of non-equilibrium becomes large, such as a temperature gradient in the material 21, and the error in the following equation (5) or (6) for obtaining the temperature dependent function κ (T) increases. . Since the cooling rate is determined by the balance between the heat capacity of the material 21 and the thermal conductivity of the sample 23, it is preferable to adjust the cross-sectional area S and the length L of the sample 23 so as to obtain an appropriate cooling rate.

本実施の形態でも、材料21の温度を測定する温度計22として、酸化ルテニウムを用いた。ステージ28は、材料21を載せる銅製のステージである。このステージ28は、熱伝導率の温度依存性κ(T)が未知の試料(熱結合体)23によって、熱浴24の開口部に架設されている。試料23は、長さ6mm、断面積3.1×10-2 mm2(1本に換算時)のステンレスロッドである。熱浴24及びGM冷凍機のセカンドステージ(温度3.7K)27は、図7に示されたものと同様のものである。加熱ヒータ25は、材料21を一様に加熱することができる電気ヒータであり、酸化ルテニウム抵抗により構成されている。温度計22とヒータ26と材料21を載せるステージ28はいずれも材料11に比べて寸法が極めて小さいので熱容量は無視できる。符号26で示した部材は熱浴ヒータであり、符号29で示した部材は輻射シールドである。 Also in the present embodiment, ruthenium oxide is used as the thermometer 22 for measuring the temperature of the material 21. The stage 28 is a copper stage on which the material 21 is placed. The stage 28 is installed at the opening of the heat bath 24 by a sample (thermal coupling body) 23 whose temperature dependence κ (T) of thermal conductivity is unknown. The sample 23 is a stainless rod having a length of 6 mm and a cross-sectional area of 3.1 × 10 −2 mm 2 (when converted to one). The heat bath 24 and the second stage (temperature 3.7K) 27 of the GM refrigerator are the same as those shown in FIG. The heater 25 is an electric heater that can uniformly heat the material 21 and is composed of a ruthenium oxide resistor. Since the thermometer 22, the heater 26, and the stage 28 on which the material 21 is placed are all smaller in size than the material 11, the heat capacity can be ignored. The member denoted by reference numeral 26 is a hot bath heater, and the member denoted by reference numeral 29 is a radiation shield.

図12の構成を用いた具体的な熱伝導率測定方法では、まず熱浴24の温度を温度Tとし、測定したい所定の温度範囲T〜T(ここで、T<T)を設定する。熱伝導率を測定したい試料23は、断面積が一定の細長い形状に加工されている必要がある。この試料の一端を熱浴24に熱結合し、他端を加熱ヒータ25と温度計22が装着されたステージ28を介して熱伝導度の大きな材料21に熱結合する。この加熱ヒータ25と温度計22が装着されたステージ28上の材料21がもつ熱容量の温度依存関数C(T)を、あらかじめ別の実験から求めておく。そして試料23の雰囲気を真空として断熱した上で、材料21の温度が所定の温度範囲の最高温度Tになるまで加熱ヒータ25により加熱した後加熱を停止する。そしてその後材料21の温度が熱浴の温度Tになるまで材料21の温度Tを時間に対して測定する。そして材料21の温度T対時刻tの測定結果から、温度Tの時間微分dT/dtを求める。また最高温度Tから熱浴24の温度Tに至る過程で試料23を流れる熱流Qの時間微分dQ/dtをdQ/dt=C(T)(dT/dt)の式により求める。このdQ/dtを下記(5)式に代入することにより、試料の熱伝導率の温度依存性κ(T)を測定する。

Figure 0005610529
In a specific thermal conductivity measurement method using the configuration of FIG. 12, first, the temperature of the heat bath 24 is set to a temperature T L, and a predetermined temperature range T L to T H to be measured (T L <T H ) Set. The sample 23 whose thermal conductivity is to be measured needs to be processed into an elongated shape with a constant cross-sectional area. One end of the sample is thermally coupled to the heat bath 24, and the other end is thermally coupled to the material 21 having a high thermal conductivity through a stage 28 equipped with a heater 25 and a thermometer 22. The temperature dependence function C (T) of the heat capacity of the material 21 on the stage 28 to which the heater 25 and the thermometer 22 are attached is obtained in advance from another experiment. And the atmosphere of the sample 23 in terms of the thermal insulation as a vacuum, heating is stopped after the temperature of the material 21 is heated by the heater 25 to a maximum temperature T H of the predetermined temperature range. Then, the temperature T of the material 21 is measured with respect to time until the temperature of the material 21 reaches the temperature TL of the heat bath. Then, a time differential dT / dt of the temperature T is obtained from the measurement result of the temperature T of the material 21 versus time t. Further, the time differential dQ / dt of the heat flow Q flowing through the sample 23 in the process from the maximum temperature TH to the temperature TL of the heat bath 24 is obtained by the equation dQ / dt = C (T) (dT / dt). By substituting this dQ / dt into the following equation (5), the temperature dependence κ (T) of the thermal conductivity of the sample is measured.
Figure 0005610529

ただし、ここでLは試料の長さ表し、Sは試料の断面積を表す。上記(5)式は、前述のdQ/dtを求める(3)式の両辺を温度Tで微分することによって得られる。   Here, L represents the length of the sample, and S represents the cross-sectional area of the sample. The above equation (5) can be obtained by differentiating both sides of the above equation (3) with respect to the temperature T to obtain dQ / dt.

なお比熱測定と同様、温度T対時間tの記録をペンレコーダ等アナログ的に行った場合には連続測定となるが、デジタル的に記録する場合には、所定のサンプリング時間間隔で記録していくため(5)式中の微分d(dQ/dt)/dTは差分Δ(ΔQ/Δt)/ΔTで置き換えられる。この場合には、温度Tの時間微分dT/dtに代えて温度Tの時間差分ΔT/Δtを求め、熱流Qの時間微分dQ/dtに代えて試料を流れる熱流Qの時間差分ΔQ/Δt=C(ΔT/Δt)を求めて、この求めた時間差分ΔQ/Δtを下記(6)式に代入して、試料の熱伝導率の温度依存性κ(T)を測定してもよい。

Figure 0005610529
As with the specific heat measurement, the recording of temperature T vs. time t is continuous when analog recording such as a pen recorder is performed, but when digital recording is performed, recording is performed at predetermined sampling time intervals. Therefore, the differential d (dQ / dt) / dT in the equation (5) is replaced with the difference Δ (ΔQ / Δt) / ΔT. In this case, the time difference ΔT / Δt of the temperature T is obtained instead of the time derivative dT / dt of the temperature T, and the time difference ΔQ / Δt of the heat flow Q flowing through the sample instead of the time derivative dQ / dt of the heat flow Q = C (ΔT / Δt) may be obtained, and the obtained time difference ΔQ / Δt may be substituted into the following equation (6) to measure the temperature dependence κ (T) of the thermal conductivity of the sample.
Figure 0005610529

本実施の形態の熱伝導率測定方法は、試料(熱結合体)23を介して熱浴24に接続される材料21の熱容量が既知であるとの前提で熱伝導率を測定する。  In the thermal conductivity measurement method of the present embodiment, the thermal conductivity is measured on the assumption that the heat capacity of the material 21 connected to the heat bath 24 via the sample (thermal coupling body) 23 is known.

本実施の形態の熱伝導率測定方法が従来の定常法と本質的に異なるのは、従来の定常法では試料両端の温度差を小さく設定することで試料全体の熱伝導率を一定とみなして演算を行って測定するのに対し、本測定法では試料両端の温度差を大きく設定し試料の熱伝導率が温度依存性を有するものとして上記(5)または(6)式に基づいて熱伝導率を測定する点である。その結果、例えば4K〜40Kの温度範囲での測定では、従来の測定では0.1K刻みで測定したとして360点の離散的データとなるのに対し、本実施の形態の測定法では連続的なデータとして測定できる。また測定に要する時間は、従来の定常法では数日の長時間を要するのに対し、本測定では50分程度で完了することができる。  The thermal conductivity measurement method of the present embodiment is essentially different from the conventional steady-state method in that the conventional steady-state method assumes that the thermal conductivity of the entire sample is constant by setting the temperature difference across the sample small. Whereas the measurement is performed by calculation, in this measurement method, it is assumed that the temperature difference between both ends of the sample is set large and the thermal conductivity of the sample is temperature-dependent, based on the above formula (5) or (6). This is the point at which the rate is measured. As a result, in the measurement in the temperature range of 4K to 40K, for example, the conventional measurement results in 360-point discrete data as measured at 0.1K increments, whereas the measurement method of the present embodiment provides continuous data. It can be measured as data. Further, the time required for the measurement can be completed in about 50 minutes, while the conventional steady-state method takes a long time of several days.

なおこの場合においても、所定の温度範囲は任意であるが、試料の熱伝導率が一定とみなせないくらい広い温度範囲にとることができる。例えば試料23としてステンレスを用い、熱浴24の温度Tが4K、最高温度Tが40K程度になるように温度範囲を定めると、熱伝導率は温度4Kでの0.25W/m・Kから温度40Kでの4.5W/m・Kまで15倍変化する。しかしながら、上記(5)式または(6)式を用いた本実施の形態の測定方法では、このように熱伝導率が大幅に変化する場合であっても、熱伝導率の温度依存性を測定することができる。 In this case as well, the predetermined temperature range is arbitrary, but the temperature range can be set so wide that the thermal conductivity of the sample cannot be considered constant. For example stainless steel used as a sample 23, the temperature T L of the heat bath 24 is 4K, the maximum temperature T H defines the temperature range to be approximately 40K, the thermal conductivity of 0.25 W / m · K at a temperature 4K 15 times from 4.5 W / m · K at a temperature of 40K. However, in the measurement method of the present embodiment using the above formula (5) or (6), the temperature dependence of the thermal conductivity is measured even when the thermal conductivity changes significantly as described above. can do.

本実施の形態において、試料23としてステンレスを用い、それを通して材料21がT=36KからT=4Kまで冷却するときの温度の時間変化を2秒間隔で測定記録したものを図13に示す。図13から、dQ/dt=C(T)(dT/dt)の式によりΔQ/Δtを求め前記(6)式に代入して熱伝導率を求めた結果が図14であり、文献値と良い一致を示す。 In this embodiment, stainless steel is used as the sample 23, and the time change of the temperature when the material 21 is cooled from T H = 36K to T L = 4K is measured and recorded at intervals of 2 seconds as shown in FIG. . From FIG. 13, ΔQ / Δt was calculated from the equation dQ / dt = C (T) (dT / dt), and the result of calculating the thermal conductivity by substituting it into the equation (6) is shown in FIG. Show good agreement.

この測定結果から、本実施の形態によれば、ほぼ連続データとして測定結果を示すことできる。それに対し、従来の定常法を用いた測定では、離散的な測定データとなる。したがって本実施の形態によれば、熱伝導率の温度依存性グラフに小さな不連続点や屈曲点がある場合でも見逃すことがなく、従来の方法よりも高い精度で試料23の熱伝導率の温度依存性κ(T)を連続的に測定することができる。  From this measurement result, according to this Embodiment, a measurement result can be shown as substantially continuous data. On the other hand, in the measurement using the conventional steady method, discrete measurement data is obtained. Therefore, according to the present embodiment, even when there are small discontinuities and inflection points in the temperature dependence graph of thermal conductivity, the temperature of the thermal conductivity of the sample 23 can be detected with higher accuracy than the conventional method. The dependence κ (T) can be measured continuously.

本発明によれば、比熱と熱伝導率を離散的なデータではなく連続的なデータとして測定することができる。そのため転移現象に伴う極めて小さな比熱のピークでも見逃すことなく極めて高い精度で検出ことが可能になる。また測定に要す得る時間は、従来の熱緩和法による比熱測定や定常法による熱伝導率測定では1日〜数日程度かかるのに対して、本発明によれば、数十分以内で所定の温度範囲における比熱と熱伝導率の測定を完了することができる。   According to the present invention, specific heat and thermal conductivity can be measured as continuous data rather than discrete data. Therefore, even a very small specific heat peak associated with the transition phenomenon can be detected with very high accuracy without overlooking it. Further, the time required for the measurement takes about 1 day to several days in the specific heat measurement by the conventional thermal relaxation method and the thermal conductivity measurement by the steady method, but according to the present invention, the predetermined time is within a few tens of minutes. Measurement of specific heat and thermal conductivity in the temperature range can be completed.

11 試料
12,22 温度計
13 熱結合体
14,24 熱浴
15,25 加熱ヒータ
16,26 熱浴ヒータ
17,27 GM冷凍機のセカンドステージ
18 試料ステージ
19,29 輻射シールド
21 材料
23 試料(熱結合体)
28 ステージ
DESCRIPTION OF SYMBOLS 11 Sample 12,22 Thermometer 13 Thermal coupling body 14,24 Heat bath 15,25 Heater heater 16,26 Heat bath heater 17,27 Second stage of GM refrigerator 18 Sample stage 19,29 Radiation shield 21 Material 23 Sample (heat Combined)
28 stages

Claims (12)

真空雰囲気中において、所定の温度範囲(T〜T)で試料の比熱を測定する比熱測定方法であって、
比熱cが未知の前記試料を、温度Tの熱浴に、熱伝導率κの温度依存関数κ(T)が既知の熱結合体を介して熱結合し、
前記所定の温度範囲の最高温度Tまで前記試料を加熱した後加熱を停止し、
その後前記試料の温度が前記所定の温度範囲の最低温度Tになるまでの間、前記試料の温度Tを時間tの関数として測定し、
前記試料の温度T対時間tの測定結果から、前記温度Tの時間微分dT/dtを求め、
前記最高温度Tから前記最低温度Tに至る過程における前記熱結合体を流れる熱流Qの時間微分dQ/dtを下記の式に基づいて求め、
Figure 0005610529
但し、上記式においてLは前記熱結合体の長さであり、Sは前記熱結合体の熱流に垂直な方向の断面の断面積であり、
前記試料の温度の時間微分dT/dtと前記熱流Qの時間微分dQ/dtの結果を用いて、前記試料の熱容量C(T)をC(T)=(dQ/dt)/(dT/dt)の式により求め、前記熱容量C(T)を前記試料の物質量で割ることによって前記比熱c(T)を得ることを特徴とする比熱測定方法。
A specific heat measurement method for measuring specific heat of a sample in a predetermined temperature range (T L to T H ) in a vacuum atmosphere,
The sample having an unknown specific heat c is thermally coupled to a heat bath having a temperature TL via a thermal coupling body having a known temperature-dependent function κ (T) of thermal conductivity κ.
The maximum temperature T H of the predetermined temperature range the heating was stopped after heating the sample,
Thereafter, the temperature T of the sample is measured as a function of time t until the temperature of the sample reaches the lowest temperature TL in the predetermined temperature range,
From the measurement result of the temperature T of the sample versus time t, the time derivative dT / dt of the temperature T is obtained,
A time derivative dQ / dt of the heat flow Q flowing through the thermal coupling body in the process from the highest temperature TH to the lowest temperature TL is obtained based on the following equation:
Figure 0005610529
However, in said formula, L is the length of the said heat coupling body, S is the cross-sectional area of the cross section of the direction perpendicular | vertical to the heat flow of the said heat coupling body,
Using the results of the time derivative dT / dt of the temperature of the sample and the time derivative dQ / dt of the heat flow Q, the heat capacity C (T) of the sample is expressed as C (T) = (dQ / dt) / (dT / dt ), And the specific heat c (T) is obtained by dividing the heat capacity C (T) by the substance amount of the sample.
真空雰囲気中において、所定の温度範囲(T〜T)で試料の比熱を測定する比熱測定方法であって、
比熱cが未知の前記試料を、温度Tの熱浴に、熱伝導率κの温度依存関数κ(T)が既知の熱結合体を介して熱結合し、
前記所定の温度範囲の最高温度Tまで前記試料を加熱した後加熱を停止し、
その後前記試料の温度が前記所定の温度範囲の最低温度Tになるまでの間、前記試料の温度Tを所定の時間間隔で測定し、
前記試料の温度T対時間tの測定結果から、前記温度Tの時間差分ΔT/Δtを求め、
前記試料の温度が前記最高温度Tから前記最低温度Tに至る過程における前記熱結合体を流れる熱流Qの時間微分dQ/dtを下記の式に基づいて求め、
Figure 0005610529
但し、上記式においてLは前記熱結合体の長さであり、Sは前記熱結合体の熱流に垂直な方向の断面の断面積であり、
前記試料の温度の時間差分ΔT/Δtと前記熱流Qの時間微分dQ/dtの結果を用いて、前記試料の熱容量C(T)をC(T)=(dQ/dt)/(ΔT/Δt)の式により求め、前記熱容量C(T)を前記試料の物質量で割ることによって前記比熱c(T)を得ることを特徴とする比熱測定方法。
A specific heat measurement method for measuring specific heat of a sample in a predetermined temperature range (T L to T H ) in a vacuum atmosphere,
The sample having an unknown specific heat c is thermally coupled to a heat bath having a temperature TL via a thermal coupling body having a known temperature-dependent function κ (T) of thermal conductivity κ.
The maximum temperature T H of the predetermined temperature range the heating was stopped after heating the sample,
Thereafter, the temperature T of the sample is measured at predetermined time intervals until the temperature of the sample reaches the lowest temperature TL in the predetermined temperature range.
From the measurement result of the temperature T versus time t of the sample, a time difference ΔT / Δt of the temperature T is obtained,
A time derivative dQ / dt of the heat flow Q flowing through the thermal coupling body in a process in which the temperature of the sample reaches from the maximum temperature TH to the minimum temperature TL is obtained based on the following equation:
Figure 0005610529
However, in said formula, L is the length of the said heat coupling body, S is the cross-sectional area of the cross section of the direction perpendicular | vertical to the heat flow of the said heat coupling body,
Using the result of the time difference ΔT / Δt of the temperature of the sample and the time derivative dQ / dt of the heat flow Q, the heat capacity C (T) of the sample is expressed as C (T) = (dQ / dt) / (ΔT / Δt ), And the specific heat c (T) is obtained by dividing the heat capacity C (T) by the substance amount of the sample.
前記式中の積分を、数値積分によって求める請求項1または2に記載の比熱測定方法。   The specific heat measurement method according to claim 1, wherein the integral in the equation is obtained by numerical integration. 前記式中の積分を、解析的積分によって求める請求項1または2に記載の比熱測定方法。   The specific heat measurement method according to claim 1, wherein the integral in the equation is obtained by analytical integration. 前記試料の温度測定を、試料を載せた試料ステージに設置した温度計により行い、前記試料の加熱を前記試料ステージに設置したヒータにより行う請求項1または2に記載の比熱測定方法。   The specific heat measurement method according to claim 1 or 2, wherein the temperature of the sample is measured by a thermometer installed on a sample stage on which the sample is placed, and the sample is heated by a heater installed on the sample stage. 前記温度計と前記ヒータが、1つの抵抗体により構成されている請求項5に記載の比熱測定方法。   The specific heat measurement method according to claim 5, wherein the thermometer and the heater are configured by one resistor. 真空雰囲気中において、所定の温度範囲(T〜T)で試料の熱伝導率を測定する熱伝導率測定方法であって、
熱容量Cの温度依存関数C(T)が既知の材料を、温度Tの熱浴に、熱伝導率κの温度依存性κ(T)が未知の試料を介して熱結合し、
前記所定の温度範囲の最高温度Tまで前記材料を加熱した後加熱を停止し、
その後前記材料の温度が前記所定の温度範囲の最低温度Tになるまで前記材料の温度Tを時間tの関数として測定し、
前記材料の温度T対時間tの測定結果から、前記温度Tの時間微分dT/dtを求め、
前記最高温度Tから前記熱浴の温度Tに至る過程で前記試料を流れる熱流Qの時間微分をdQ/dt=C(T)(dT/dt)の式により求め、
求めた時間微分dQ/dtを下記の式に代入して前記試料の前記熱伝導率κの温度依存性κ(T)を求め、
Figure 0005610529
但し、上記式においてLは前記熱結合体の長さであり、Sは前記熱結合体の熱流に垂直な方向の断面の断面積である熱伝導率測定法。
A thermal conductivity measurement method for measuring thermal conductivity of a sample in a predetermined temperature range (T L to T H ) in a vacuum atmosphere,
A material having a known temperature-dependent function C (T) of the heat capacity C is thermally coupled to a heat bath having a temperature TL via a sample whose temperature-dependent property κ (T) is unknown.
The maximum temperature T H of the predetermined temperature range the heating was stopped after heating the material,
And then measuring the temperature T of the material as a function of time t until the temperature of the material reaches a minimum temperature TL in the predetermined temperature range,
From the measurement result of temperature T versus time t of the material, a time differential dT / dt of the temperature T is obtained,
Determined by the equation of the maximum temperature T H of the hot bath temperature T L of the time derivative of the heat flow Q flowing through the sample in the process leading to the dQ / dt = C (T) (dT / dt),
Substituting the obtained time derivative dQ / dt into the following equation to obtain the temperature dependence κ (T) of the thermal conductivity κ of the sample,
Figure 0005610529
However, in the above formula, L is a length of the thermal coupling body, and S is a thermal conductivity measuring method which is a cross-sectional area of a cross section in a direction perpendicular to the heat flow of the thermal coupling body.
真空雰囲気中において、所定の温度範囲(T〜T)で試料の熱伝導率を測定する熱伝導率測定方法であって、
熱容量Cの温度依存関数C(T)が既知の材料を、温度Tの熱浴に、熱伝導率κの温度依存性κ(T)が未知の試料を介して熱結合し、
前記所定の温度範囲の最高温度Tまで前記材料を加熱した後加熱を停止し、
その後前記材料の温度が前記所定の温度範囲の最低温度Tになるまでの間、前記試料の温度Tを所定の時間間隔で測定し、
前記材料の温度T対時間tの測定結果から、前記温度Tの時間差分ΔT/Δtを求め、
前記最高温度Tから前記熱浴の温度Tに至る過程で前記試料を流れる熱流Qの時間差分をΔQ/Δt=C(T)(ΔT/Δt)の式により求め、
求めた時間差分ΔQ/Δtを下記式に代入して、前記試料の熱伝導率κの温度依存性κ(T)を求め、
Figure 0005610529
但し、上記式においてLは前記熱結合体の長さであり、Sは前記熱結合体の熱流に垂直な方向の断面の断面積である熱伝導率測定法。
A thermal conductivity measurement method for measuring thermal conductivity of a sample in a predetermined temperature range (T L to T H ) in a vacuum atmosphere,
A material having a known temperature-dependent function C (T) of the heat capacity C is thermally coupled to a heat bath having a temperature TL via a sample whose temperature-dependent property κ (T) is unknown.
The maximum temperature T H of the predetermined temperature range the heating was stopped after heating the material,
Thereafter, the temperature T of the sample is measured at predetermined time intervals until the temperature of the material reaches the minimum temperature TL in the predetermined temperature range,
From the measurement result of the temperature T of the material versus time t, a time difference ΔT / Δt of the temperature T is obtained,
Determined by the equation of the maximum temperature T H of the hot bath temperature T L time difference of the heat flow Q flowing through the sample in the process leading to ΔQ / Δt = C (T) (ΔT / Δt),
Substituting the obtained time difference ΔQ / Δt into the following equation to obtain the temperature dependence κ (T) of the thermal conductivity κ of the sample,
Figure 0005610529
However, in the above formula, L is a length of the thermal coupling body, and S is a thermal conductivity measuring method which is a cross-sectional area of a cross section in a direction perpendicular to the heat flow of the thermal coupling body.
前記式中の積分を、数値積分によって求める請求項7または8に記載の熱伝導率測定方法。   The thermal conductivity measurement method according to claim 7 or 8, wherein the integral in the equation is obtained by numerical integration. 前記式中の積分を、解析的積分によって求める請求項7または8に記載の熱伝導率測定方法。   The thermal conductivity measurement method according to claim 7 or 8, wherein the integral in the equation is obtained by analytical integration. 前記試料の温度測定を、試料を載せた試料ステージに設置した温度計により行い、前記試料の加熱を前記試料ステージに設置したヒータにより行う請求項7または8に記載の熱伝導率測定方法。   The thermal conductivity measurement method according to claim 7 or 8, wherein the temperature of the sample is measured by a thermometer installed on a sample stage on which the sample is placed, and the sample is heated by a heater installed on the sample stage. 前記温度計と前記ヒータが、1つの抵抗体により構成されている請求項11に記載の熱伝導率測定方法。   The thermal conductivity measuring method according to claim 11, wherein the thermometer and the heater are configured by a single resistor.
JP2010274047A 2010-12-08 2010-12-08 Specific heat measurement method and thermal conductivity measurement method Active JP5610529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274047A JP5610529B2 (en) 2010-12-08 2010-12-08 Specific heat measurement method and thermal conductivity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274047A JP5610529B2 (en) 2010-12-08 2010-12-08 Specific heat measurement method and thermal conductivity measurement method

Publications (2)

Publication Number Publication Date
JP2012122857A JP2012122857A (en) 2012-06-28
JP5610529B2 true JP5610529B2 (en) 2014-10-22

Family

ID=46504440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274047A Active JP5610529B2 (en) 2010-12-08 2010-12-08 Specific heat measurement method and thermal conductivity measurement method

Country Status (1)

Country Link
JP (1) JP5610529B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166115B2 (en) * 2013-07-17 2017-07-19 学校法人東京電機大学 Thermal coefficient measuring device and thermal coefficient measuring method
RU2625599C9 (en) * 2016-04-04 2018-04-13 Федеральное государственное бюджетное учреждение науки Институт физического материаловедения Сибирского отделения Российской академии наук (ИФМ СО РАН) Method for determining thermal conductivity of solid bodies
CN109030543B (en) * 2018-06-06 2021-04-02 中国科学院理化技术研究所 Phase change material thermophysical property measuring method
KR101992478B1 (en) * 2019-04-26 2019-06-24 서울대학교산학협력단 Probe system for low-temperature high precision heat transport measurement and apparatus including the same
RU2731840C1 (en) * 2019-12-25 2020-09-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" Method of measuring thermal conductivity coefficient of heat-insulating material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE521886T1 (en) * 2002-06-10 2011-09-15 Mettler Toledo Ag METHOD AND DEVICE FOR THE THERMAL ANALYSIS OF A MATERIAL

Also Published As

Publication number Publication date
JP2012122857A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5610529B2 (en) Specific heat measurement method and thermal conductivity measurement method
Zhang et al. A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux
US9810566B2 (en) Robust dynamical method and device for detecting the level of a liquid using resistance temperature detectors
CN115113126A (en) Device and method for testing and calibrating metal Hall probe
Hanzelka et al. Thermal conductivity of a CuCrZr alloy from 5 K to room temperatures
JP5048139B2 (en) Iron loss distribution measuring device
Zandt et al. Capabilities for dielectric-constant gas thermometry in a special large-volume liquid-bath thermostat
Dai et al. A novel calorimetric method for measurement of AC losses of HTS tapes by optical fiber Bragg grating
Baudouy Low temperature thermal conductivity of aluminum alloy 1200
Choi et al. Thermal property measurement of insulating material used in HTS power device
Shir et al. Effect of Magnetic Field Dynamics on the Copper‐Constantan Thermocouple Performance
Shimazaki et al. Characteristics of standard capsule-type PtCo resistance thermometers between 0.65 K and 25 K
Ballico et al. A Cryostat for Automated mK-Level Thermometer Calibrations from− 202° C to 250° C
Seryakov A new method for temperature measurement using thermistors
Ahmed et al. An adiabatic calorimeter for calibrating capsule type thermometers (CSPRTs) in the range 54 K to 273 K
JP3416685B2 (en) Magnetic field calibration method for thermometer with magnetic field dependence
Schwyter et al. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature
Choudhury Use of superconducting liquid helium level sensor as a temperature sensor and its applications
Engert et al. Low-temperature thermometry below 1 K at PTB
Hirota et al. Voltage drop analysis and leakage suppression design for mineral-insulated cables
Mokdad et al. A Self-Validation Method for High-Temperature Thermocouples Under Oxidizing Atmospheres
Hama et al. Film boiling on a vertical plate in subcooled helium II
Choi Development of variable temperature instrument for sensor calibration
Aştefănoaei et al. Temperature distribution in DC joule-heated amorphous magnetic materials
Failleau et al. Adiabatic Calorimetry Approach to Assess Thermal Influences on the Indium Melting Point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5610529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250