JP3416685B2 - Magnetic field calibration method for thermometer with magnetic field dependence - Google Patents

Magnetic field calibration method for thermometer with magnetic field dependence

Info

Publication number
JP3416685B2
JP3416685B2 JP2000386049A JP2000386049A JP3416685B2 JP 3416685 B2 JP3416685 B2 JP 3416685B2 JP 2000386049 A JP2000386049 A JP 2000386049A JP 2000386049 A JP2000386049 A JP 2000386049A JP 3416685 B2 JP3416685 B2 JP 3416685B2
Authority
JP
Japan
Prior art keywords
magnetic field
temperature
thermometer
specific heat
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000386049A
Other languages
Japanese (ja)
Other versions
JP2002188967A (en
Inventor
康資 田中
彰 伊豫
直樹 白川
伸一 池田
英雄 伊原
和靖 常盤
恒夫 渡辺
彰 上村
エリス マッカーサー ザ サード ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Quantum Design Japan Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Quantum Design Japan Inc
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Quantum Design Japan Inc, Japan Science and Technology Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000386049A priority Critical patent/JP3416685B2/en
Priority to PCT/JP2001/011100 priority patent/WO2002050502A1/en
Publication of JP2002188967A publication Critical patent/JP2002188967A/en
Application granted granted Critical
Publication of JP3416685B2 publication Critical patent/JP3416685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、磁場依存性を有
する温度計の磁場校正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field calibration method for a thermometer having magnetic field dependence.

【0002】[0002]

【従来の技術】極低温、強磁場中での精密な温度測定を
必要とする技術分野、例えば、超伝導体の研究開発分
野、又はその製造分野においては、抵抗温度計が一般に
使用されている。抵抗温度計は、薄膜抵抗値の温度依存
性を利用して、温度を測定するものであるが、形状が小
さいため、複雑な装置の局所及び狭所に取り付けること
ができ、また、温度変化に対する応答が早いため、上記
技術分野においては、必要不可欠な温度計である。この
抵抗温度計では、例えば、薄膜材料として窒化ジルコニ
ウム・オキサイドを使用し、大きさが0.75×1.0
×0.25mmと言った小型のものも市販されている。
2. Description of the Related Art A resistance thermometer is generally used in a technical field that requires precise temperature measurement in an extremely low temperature and a strong magnetic field, for example, a research and development field of a superconductor or a manufacturing field thereof. . The resistance thermometer measures the temperature by utilizing the temperature dependence of the thin-film resistance value, but its small shape allows it to be installed locally or in a narrow space of a complicated device, and it can also be used for temperature changes. It is an essential thermometer in the above technical field because of its quick response. In this resistance thermometer, for example, zirconium nitride oxide is used as the thin film material, and the size is 0.75 × 1.0.
A small one of × 0.25 mm is also commercially available.

【0003】ところで、抵抗温度計の抵抗値は、温度に
よって変化するのみならず、印加する磁場によっても磁
気抵抗効果により変化するので、真の温度を求めるに
は、抵抗温度計の磁場校正値を必要とする。しかしなが
ら、市販の抵抗温度計に添付されている磁場校正値は限
られた温度、限られた磁場強度における校正値でしかな
く、使用目的によっては使用できない。また、使用する
磁場強度が著しく大きい場合には、その様な強磁場での
校正値が知られていない。このような場合、必要とする
強磁場中において、磁場依存性を有しない温度計と抵抗
温度計を同一の温度に保ち、磁場依存性を有しない温度
計の指示温度と抵抗温度計の指示温度との差を磁場校正
値として得ればよいのであるが、極低温から室温まで広
い範囲をカバーできるもので、磁場依存性をもたず、か
つ、十分な精度を有する温度計は存在しない。例えば、
磁場依存性を有しない温度計として、静電容量の温度依
存性を利用するキャパシタンス温度計があるが、この温
度計は、熱ストレスに弱く、室温から極低温の広い範囲
をカバーしつつ精度の高い測定をすることができない。
By the way, the resistance value of the resistance thermometer changes not only with temperature but also with the applied magnetic field due to the magnetoresistance effect. Therefore, in order to obtain the true temperature, the magnetic field calibration value of the resistance thermometer is used. I need. However, the magnetic field calibration value attached to the commercially available resistance thermometer is only a calibration value at a limited temperature and a limited magnetic field strength, and cannot be used depending on the purpose of use. Further, when the strength of the magnetic field used is extremely high, the calibration value in such a strong magnetic field is not known. In such a case, in the required strong magnetic field, the thermometer having no magnetic field dependency and the resistance thermometer are kept at the same temperature, and the temperature indicated by the thermometer and the resistance temperature indicated by the resistance thermometer do not have magnetic field dependency. It suffices to obtain the difference as a magnetic field calibration value, but it can cover a wide range from extremely low temperature to room temperature, and there is no thermometer that has no magnetic field dependence and sufficient accuracy. For example,
As a thermometer that does not have magnetic field dependence, there is a capacitance thermometer that utilizes the temperature dependence of capacitance, but this thermometer is vulnerable to heat stress and covers a wide range from room temperature to cryogenic temperature I can't make high measurements.

【0004】このため、超伝導体の研究開発,製造等の
技術分野におけるように、極低温強磁場中において、精
密な温度測定、及び、高速かつ微小な温度変化の検知を
必要とする技術分野において、重大な支障を来してい
る。
Therefore, as in the technical fields of research and development and manufacturing of superconductors, technical fields that require precise temperature measurement and high-speed and minute temperature change detection in an extremely low temperature strong magnetic field. Has a serious problem.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記課題に
鑑み、磁場依存性を有する温度計を容易にかつ高精度に
磁場校正することができる方法を提供することを目的と
する。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a method capable of easily and highly accurately calibrating a magnetic field of a thermometer having magnetic field dependence.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の磁場依存性を有する温度計の磁場校正方法
は、磁場依存性を有しない物性値を有する物質の、この
物性値の温度依存特性を測定し、磁場中の各温度におい
て、上記物性値を有する物質と磁場校正しようとする磁
場依存性を有する温度計とを同一の温度に保ち、磁場依
存性を有する温度計の指示温度を求めると共に磁場依存
性のない測定方法によって上記物性値を測定し、この物
性値と上記物性値の温度依存特性とから温度を求め、こ
の温度と磁場依存性を有する温度計の指示温度とから、
磁場中の各温度における磁場依存性を有する温度計の磁
場校正値を得ることを特徴とする。本発明において、磁
場依存性を有しない物性値を有する物質が、非磁性体か
つ非超伝導体物質から成る固体物質であり、磁場依存性
を有しない物性値が、この物質の比熱であることを特徴
とする。また、磁場依存性を有する温度計が、抵抗温度
計であることを特徴とする。さらに、磁場依存性のない
測定方法は、熱緩和時間法による比熱測定法であること
を特徴とする。
In order to achieve the above object, the magnetic field calibration method for a thermometer having a magnetic field dependence of the present invention provides a temperature of a physical property value of a substance having no magnetic field dependence. Measure the dependency characteristics, and keep the temperature of the substance having the above-mentioned physical properties and the thermometer having the magnetic field dependence to be calibrated at the same temperature at each temperature in the magnetic field, and the temperature indicated by the thermometer having the magnetic field dependence. The physical property value is measured by a measurement method having no magnetic field dependency and the temperature is determined from the physical property value and the temperature dependent characteristic of the physical property value, and from this temperature and the indicated temperature of the thermometer having magnetic field dependency. ,
It is characterized in that a magnetic field calibration value of a thermometer having a magnetic field dependency at each temperature in a magnetic field is obtained. In the present invention, the substance having a physical property value having no magnetic field dependency is a solid substance composed of a non-magnetic substance and a non-superconductor substance, and the physical property value having no magnetic field dependency is the specific heat of this substance. Is characterized by. Further, the thermometer having magnetic field dependence is a resistance thermometer. Further, the measuring method having no magnetic field dependency is characterized by a specific heat measuring method by a thermal relaxation time method.

【0007】上記構成によれば、固体の比熱が室温以下
の温度において著しい温度依存性を有しているから、比
熱の温度特性を得ることにより、比熱から温度がわか
る。また、非磁性体かつ非超伝導物質から成る固体の比
熱は磁場によって変化しないから、磁場中であっても比
熱が測定できれば温度がわかる。印加する磁場中の各温
度において、磁場依存性を有する抵抗温度計と固体とを
同一の温度に保ち、抵抗温度計の指示温度を求めると共
に、磁場の影響を受けずに比熱が測定できる熱緩和時間
法によって比熱を測定するから、この比熱から温度がわ
かり、この温度とこの温度に対応する抵抗温度計の指示
温度とから、印加磁場中の各温度における磁場校正値を
得ることができる。すなわち、本発明によれば、磁場依
存性を有する抵抗温度計の磁場校正が容易にかつ高精度
にでき、極低温強磁場中での温度測定が可能になる。
According to the above structure, since the specific heat of the solid has a remarkable temperature dependency at a temperature of room temperature or lower, the temperature can be known from the specific heat by obtaining the temperature characteristic of the specific heat. Further, since the specific heat of a solid made of a non-magnetic substance and a non-superconducting substance does not change with a magnetic field, the temperature can be known if the specific heat can be measured even in a magnetic field. At each temperature in the applied magnetic field, the resistance thermometer, which has magnetic field dependence, and the solid are kept at the same temperature, the temperature indicated by the resistance thermometer is determined, and the specific heat can be measured without being affected by the magnetic field. Since the specific heat is measured by the time method, the temperature can be known from this specific heat, and the magnetic field calibration value at each temperature in the applied magnetic field can be obtained from this temperature and the temperature indicated by the resistance thermometer corresponding to this temperature. That is, according to the present invention, the magnetic field calibration of the resistance thermometer having the magnetic field dependence can be easily and highly accurately performed, and the temperature can be measured in the extremely low temperature strong magnetic field.

【0008】[0008]

【発明の実施の形態】以下、本発明を好適な実施の形態
に基づいて詳細に説明する。初めに、本実施の形態で使
用する比熱測定用の物質について説明する。図1は、固
体の比熱の温度依存性を示したものである。固体の比熱
Cvは、格子比熱と電子比熱との和から成るが、格子比
熱が支配的である。格子比熱は、量子化された格子振
動、すなわち、フォノンがBose−Einstein
統計に従うことから、図1に示すように室温以下の温度
において、著しい温度依存特性を有している。さらに、
固体を構成する物質が磁性体でなければ、格子比熱の温
度依存特性は磁場に依存せず一定である。また、電子比
熱の温度依存特性は、固体を構成する物質が磁性体、及
び超伝導体でなければ磁場に依存せずに一定である。す
なわち、本実施の形態で使用する比熱測定用の物質は、
非磁性体、かつ、非超伝導物質からなる固体である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on preferred embodiments. First, the substance for measuring specific heat used in the present embodiment will be described. FIG. 1 shows the temperature dependence of the specific heat of a solid. The specific heat Cv of the solid is composed of the sum of the specific heat of the lattice and the specific heat of the electron, and the specific heat of the lattice is dominant. Lattice specific heat is quantized lattice vibration, that is, phonons are Bose-Einstein.
Since it follows the statistics, as shown in FIG. 1, it has a remarkable temperature-dependent characteristic at temperatures below room temperature. further,
If the substance forming the solid is not a magnetic substance, the temperature-dependent characteristic of the lattice specific heat does not depend on the magnetic field and is constant. Further, the temperature dependence characteristic of the electron specific heat is constant without depending on the magnetic field unless the substance constituting the solid is a magnetic substance or a superconductor. That is, the substance for measuring the specific heat used in the present embodiment is
It is a solid made of non-magnetic material and non-superconducting material.

【0009】次に、比熱測定の例として熱緩和時間法に
よる測定法について説明する。図2は、熱緩和時間法に
よる比熱測定装置の概念図である。図2において、非磁
性体、かつ非超伝導物質からなる比熱測定用の固体1
は、、固体1と熱的接触を良好に保ちつつ既値の熱容量
Cs(ジュール/g・K)を有する試料台2に搭載され
る。この試料台2は、温度計4とヒーター5を有し、既
値の熱コンダクタンス(ジュール/sec・K)を有す
る複数の線材3を介して両側に配置した熱浴6に吊され
ている。各熱浴6は、温度計7を有し、熱源8と熱的に
接触している。これらの比熱測定用構成部材は真空容器
9に内包されている。この真空容器9は、試料台2、線
材3、熱浴6とともに非磁性材料で形成されている。な
お、ヒーター5への電力の供給、及び温度計4の信号の
出力は、線材3を介しておこなわれるようになってい
る。また、図示しないが、ヒーター5及び温度計4,7
は、外部に設置する電源及び計測器にそれぞれ接続され
ている。
Next, as an example of specific heat measurement, a measurement method by the thermal relaxation time method will be described. FIG. 2 is a conceptual diagram of a specific heat measuring device by the thermal relaxation time method. In FIG. 2, a solid 1 for measuring specific heat, which is made of a non-magnetic substance and a non-superconducting substance
Is mounted on the sample table 2 having the existing heat capacity Cs (joule / gK) while keeping good thermal contact with the solid 1. The sample table 2 has a thermometer 4 and a heater 5, and is suspended in a heat bath 6 arranged on both sides via a plurality of wire rods 3 having a preset thermal conductance (joule / sec · K). Each heat bath 6 has a thermometer 7 and is in thermal contact with a heat source 8. These specific heat measuring components are contained in the vacuum container 9. The vacuum container 9 is formed of a non-magnetic material together with the sample table 2, the wire 3 and the heat bath 6. The supply of electric power to the heater 5 and the output of the signal from the thermometer 4 are performed via the wire 3. Although not shown, the heater 5 and the thermometers 4, 7
Are connected to a power supply and a measuring instrument installed outside.

【0010】この比熱測定装置を用いて熱緩和時間法に
よる比熱測定を行う場合、熱源8を所定の温度に冷却し
た後、試料台2のヒーター5に所定の電力で所定の時
間、通電し、固体1及び試料台2の温度を上昇させる。
熱浴6の温度をTb、試料台2の温度をTとすると、単
位時間当たりの、比熱測定用の固体1及び試料台2から
熱浴6に線材3を介して移動する熱エネルギーは、複数
の線材3の全熱コンダクタンスをKw(ジュール/K・
sec)とすると、 Kw・(T−Tb) (1)式 である。
When measuring the specific heat by the thermal relaxation time method using this specific heat measuring device, after cooling the heat source 8 to a predetermined temperature, the heater 5 of the sample stage 2 is energized with a predetermined power for a predetermined time, The temperatures of the solid 1 and the sample stage 2 are raised.
Assuming that the temperature of the heat bath 6 is Tb and the temperature of the sample stage 2 is T, the thermal energy transferred from the solid 1 for measuring specific heat and the sample stage 2 to the heat bath 6 via the wire 3 per unit time is plural. The total thermal conductance of the wire 3 is Kw (joule / K.
sec), Kw · (T−Tb) is given by equation (1).

【0011】一方、固体1及び試料台2の比熱をCv及
びCsとし、また、固体1及び試料台2が、それぞれ単
位質量、すなわち、1g(グラム)であるとし、Δt時
間にΔTの温度降下があったとすれば、単位時間に固体
1及び試料台2が線材3に放出した熱エネルギーの量
は、 (Cv+Cs)・ΔT/Δt (2)式 であり、この量は、(1)式の量と等しいから、任意の
時間、温度において、 (Cv+Cs)・dT/dt=−Kw・(T−Tb) (3)式 の関係が成り立つ。
On the other hand, assuming that the specific heats of the solid 1 and the sample stage 2 are Cv and Cs, and the solid 1 and the sample stage 2 each have a unit mass, that is, 1 g (gram), a temperature drop of ΔT in Δt time. If there is, the amount of thermal energy released to the wire 3 by the solid 1 and the sample table 2 per unit time is (Cv + Cs) .ΔT / Δt (2) Equation (2) Since it is equal to the quantity, the relationship of (Cv + Cs) · dT / dt = −Kw · (T−Tb) (3) is established at any time and temperature.

【0012】(3)式から、試料台2の温度Tは、 T=A・exp(−t/τ)+Tb (4)式 但し:τ=(Cv+Cs)/Kw (5)式 :Aは定数、 に従って緩和することがわかる。従って、温度Tの時間
に対する熱緩和曲線の勾配から時定数を求め、(5)式
と比較することによって、また、Cs及びKwが既知で
あることから、固体1の比熱Cvを求めることができ
る。
From the equation (3), the temperature T of the sample table 2 is T = A · exp (-t / τ) + Tb (4) Equation: τ = (Cv + Cs) / Kw (5) Equation: A is a constant It can be seen that it is alleviated according to. Therefore, the specific heat Cv of the solid 1 can be obtained by obtaining the time constant from the slope of the thermal relaxation curve with respect to the temperature T and comparing it with the equation (5), and since Cs and Kw are known. .

【0013】次に、温度計が磁場依存性を有していても
時定数から求める比熱は精度が高いことを説明する。図
3は、時定数から求める比熱の精度を説明する図であ
る。図3において、曲線A,Bは、試料台2のヒーター
5に所定の電力で所定の時間、通電し、固体1及び試料
台2の温度を上昇させた後の熱緩和曲線を示し、Aは真
の熱緩和曲線、Bは磁場依存性を有する温度計4で測定
した熱緩和曲線を示す。なお、縦軸は温度、横軸は時間
を示している。
Next, it will be explained that the specific heat obtained from the time constant is highly accurate even if the thermometer has magnetic field dependence. FIG. 3 is a diagram for explaining the accuracy of specific heat obtained from the time constant. In FIG. 3, curves A and B show thermal relaxation curves after the heater 5 of the sample table 2 is energized with a predetermined power for a predetermined time to raise the temperatures of the solid 1 and the sample table 2, where A is The true thermal relaxation curve, B shows the thermal relaxation curve measured by the thermometer 4 having magnetic field dependence. The vertical axis represents temperature and the horizontal axis represents time.

【0014】試料台2の温度Tを測定する温度計4は、
磁場依存性を有しており、磁場中では真の温度を示さな
い。温度計4が、例えば磁場Hにおいて真の温度T1
2に対し、T1 +δT1 、T2 +δT2 を指示すると
すれば、図3のBの熱緩和曲線が得られる。熱緩和曲線
Bの勾配Kは、図3の時刻t1 、t2 において、 K={(T2 +δT2 )−(T1 +δT1 )}/(t2 −t1 ) ={T2 −T1 +δT2 −δT1 }/(t2 −t1 ) (6)式 となり、温度計4の指示温度の磁場による誤差、δ
1 、δT2 は、δT2 −δT1 として勾配Kに寄与す
る。温度T1 、T2 が十分近接していれば、δT1 、δ
2 は十分近接した値となり、δT2 −δT1 は小さく
できる。すなわち、温度変化に対して十分高感度な温度
計を使用し、十分近接した温度範囲における勾配から時
定数を求め、この時定数から比熱を求めるので、十分な
精度で比熱を求めることができ、この比熱から十分な精
度で温度を求めることができる。
The thermometer 4 for measuring the temperature T of the sample table 2 is
It has a magnetic field dependence and does not show a true temperature in a magnetic field. The thermometer 4 measures the true temperature T 1 , for example in a magnetic field H,
To T 2, if an instruction to T 1 + δT 1, T 2 + δT 2, thermal relaxation curve B in FIG. 3 is obtained. The gradient K of the thermal relaxation curve B is K = {(T 2 + δT 2 ) − (T 1 + δT 1 )} / (t 2 −t 1 ) = {T 2 − at times t 1 and t 2 in FIG. T 1 + δT 2 −δT 1 } / (t 2 −t 1 ) Equation (6) becomes, and the error due to the magnetic field of the temperature indicated by the thermometer 4 is expressed as δ
T 1 and δT 2 contribute to the gradient K as δT 2 −δT 1 . If the temperatures T 1 and T 2 are close enough, δT 1 and δ
T 2 has a sufficiently close value, and δT 2 −δT 1 can be made small. That is, using a thermometer sufficiently sensitive to temperature changes, the time constant is obtained from the gradient in a sufficiently close temperature range, and the specific heat is obtained from this time constant, so the specific heat can be obtained with sufficient accuracy. The temperature can be obtained from this specific heat with sufficient accuracy.

【0015】本実施の形態においては、上記に説明した
ように、磁場に影響されないで比熱を求めることができ
る熱緩和時間法によって比熱を測定し、この比熱から温
度を求め、この温度を用いて、磁場依存性を有する温度
計の磁場校正を行うことを特徴とする。
In the present embodiment, as described above, the specific heat is measured by the thermal relaxation time method which can determine the specific heat without being affected by the magnetic field, the temperature is calculated from this specific heat, and this temperature is used. The magnetic field calibration of the thermometer having the magnetic field dependency is performed.

【0016】次に、本実施の形態における、磁場依存性
を有する抵抗温度計の磁場校正方法の手順を説明する。
図4は、本実施の形態の磁場依存性を有する抵抗温度計
の磁場校正方法の手順を説明する図である。手順1にお
いて、無磁場中において、磁場依存性のない比熱を有す
る物質の比熱を、絶対温度0K〜室温付近までの各温度
において測定し、この物質の比熱の温度依存特性曲線を
求める。
Next, the procedure of the magnetic field calibration method for the resistance thermometer having magnetic field dependence in the present embodiment will be described.
FIG. 4 is a diagram for explaining the procedure of the magnetic field calibration method of the resistance thermometer having the magnetic field dependence of the present embodiment. In Procedure 1, the specific heat of a substance having a specific heat having no magnetic field dependency is measured at each temperature from an absolute temperature of 0 K to around room temperature in a non-magnetic field, and a temperature-dependent characteristic curve of the specific heat of this substance is obtained.

【0017】手順2において、上記磁場依存性のない比
熱を有する物質を熱緩和時間法による比熱測定器の試料
台に取り付けると共に、この比熱計の熱浴に、磁場校正
しようとする抵抗温度計を熱接触良く取り付ける。
In step 2, the substance having a specific heat which does not depend on the magnetic field is attached to the sample stand of the specific heat measuring instrument by the thermal relaxation time method, and the resistance thermometer to be calibrated in the magnetic field is attached to the heat bath of the specific heat meter. Install with good thermal contact.

【0018】手順3において、上記熱緩和時間法による
比熱測定器の熱源を、絶対温度0K〜室温付近までの各
温度に設定し、各温度において、磁場Hを上記比熱測定
器に印加した状態で、熱緩和時間法により比熱を求め、
同時に、磁場校正しようとする抵抗温度計の指示温度を
求める。
In step 3, the heat source of the specific heat measuring device by the thermal relaxation time method is set to each temperature from the absolute temperature of 0 K to around room temperature, and the magnetic field H is applied to the specific heat measuring device at each temperature. , Calculate the specific heat by the thermal relaxation time method,
At the same time, the temperature indicated by the resistance thermometer to be subjected to magnetic field calibration is determined.

【0019】手順4において、手順3で求めた熱緩和時
間法による比熱と手順1で求めた比熱の温度依存特性曲
線とを対比して、比熱に対応する真の温度を特定し、こ
の真の温度と手順3で同時に求めた抵抗温度計の指示温
度との差から、磁場強度H中における抵抗温度計の磁場
校正値を求める。
In step 4, the specific heat by the thermal relaxation time method found in step 3 and the temperature-dependent characteristic curve of the specific heat found in step 1 are compared to identify the true temperature corresponding to the specific heat, and the true temperature is identified. The magnetic field calibration value of the resistance thermometer in the magnetic field strength H is obtained from the difference between the temperature and the indicated temperature of the resistance thermometer which is obtained at the same time in step 3.

【0020】上記手順によれば、無磁場中で、磁場依存
性のない比熱の温度依存特性を測定するから、容易に、
比熱の温度依存特性曲線を得ることができ、この温度依
存特性曲線を利用すれば、比熱から正確な温度がわか
る。熱緩和時間法によって比熱を測定するから磁場中に
おいても正確な比熱がわかる。そして、正確な比熱がわ
かるから、正確な温度がわかり、抵抗温度計の磁場中に
おける指示温度の磁場校正値を得ることができる。この
磁場校正値を用いれば、磁場中においても抵抗温度計で
正確な温度を測定することができる。
According to the above procedure, the temperature-dependent characteristic of the specific heat having no magnetic field dependence is measured in the absence of a magnetic field.
It is possible to obtain a temperature-dependent characteristic curve of the specific heat, and if this temperature-dependent characteristic curve is used, an accurate temperature can be known from the specific heat. Since the specific heat is measured by the thermal relaxation time method, an accurate specific heat can be known even in a magnetic field. Then, since the accurate specific heat is known, the accurate temperature can be known, and the magnetic field calibration value of the indicated temperature in the magnetic field of the resistance thermometer can be obtained. If this magnetic field calibration value is used, an accurate temperature can be measured with a resistance thermometer even in a magnetic field.

【0021】次に、本実施の形態の一実施例を説明す
る。図5は、本発明の磁場依存性を有する温度計の磁場
校正方法により求めた抵抗温度計の磁場校正結果を示す
図である。窒化ジルコニウウム・オキサイド薄膜抵抗で
構成される市販の抵抗温度計を磁場校正した。磁場依存
性を有しない比熱を有する固体として、非磁性体かつ非
超伝導体物質であるアルミナを使用した。印加磁場は1
4T(テスラ)である。図5において、横軸は、この抵
抗温度計の指示温度である。縦軸は、本発明の磁場依存
性を有する温度計の磁場校正方法により求めた、磁場強
度14T(テスラ)中における校正値である。すなわ
ち、この温度計の指示温度(横軸)に、縦軸で示される
校正値を加えることにより、真の温度を求めることがで
きる
Next, an example of the present embodiment will be described. FIG. 5 is a diagram showing a magnetic field calibration result of the resistance thermometer obtained by the magnetic field calibration method of the thermometer having the magnetic field dependency of the present invention. A commercially available resistance thermometer composed of zirconium nitride oxide thin film resistors was magnetic field calibrated. Alumina, which is a non-magnetic substance and a non-superconductor substance, was used as a solid having a specific heat without magnetic field dependence. Applied magnetic field is 1
It is 4T (Tesla). In FIG. 5, the horizontal axis is the temperature indicated by this resistance thermometer. The vertical axis represents a calibration value in a magnetic field strength of 14 T (tesla), which is obtained by the magnetic field calibration method of the thermometer having the magnetic field dependency of the present invention. That is, the true temperature can be obtained by adding the calibration value shown on the vertical axis to the indicated temperature (horizontal axis) of this thermometer.

【0022】図5において、○は、本発明の方法によっ
て求めた校正値である。●は、同等の窒化ジルコニウウ
ム・オキサイド薄膜抵抗で形成された抵抗温度計を他の
方法(磁場依存性のない温度計としてキャパシタンス温
度計を使用して磁場校正している。Rev.Sci.I
nst.70(1999)104)で求めた校正値であ
り、比較のために掲載している。図中の文献値の縦バー
はばらつきの程度を示している。
In FIG. 5, ◯ is a calibration value obtained by the method of the present invention. ● indicates that the resistance thermometer formed of an equivalent zirconium nitride oxide thin film resistor is magnetic field calibrated by another method (using a capacitance thermometer as a thermometer having no magnetic field dependence. Rev. Sci.
nst. 70 (1999) 104), which is a calibration value and is shown for comparison. The vertical bar of literature values in the figure indicates the degree of variation.

【0023】図5から明らかなように、本発明の方法に
よって求めた校正値と文献の比較値は傾向が良く一致し
ており、また、本発明の方法によって求めた校正値は文
献値より細かな温度刻みで構成されている。これは前述
したように、キャパシタンス温度計は熱ストレスに弱い
ため、広範囲に温度を振れないためである。また、キャ
パシタンス温度計を使用する従来の校正法は、熱ストレ
スを避けるため、一定温度のもとで磁場を変化させ、一
定磁場のもとで温度を変化させる必要があり、稠密な温
度間隔で磁場校正を行う場合には、本発明の方法に較べ
遙かに長時間を要する。
As is apparent from FIG. 5, the calibration values obtained by the method of the present invention and the comparison values of the literature have a good tendency, and the calibration values obtained by the method of the present invention are smaller than the literature values. It is composed of various temperature steps. This is because, as described above, the capacitance thermometer is vulnerable to thermal stress, so that the temperature cannot be varied over a wide range. In addition, the conventional calibration method using a capacitance thermometer requires changing the magnetic field under a constant temperature and changing the temperature under a constant magnetic field in order to avoid thermal stress. When performing the magnetic field calibration, a much longer time is required as compared with the method of the present invention.

【0024】上記説明では、磁場依存性を有しない物性
値の温度依存性として、比熱の温度依存性を利用した
が、比熱に限らず、磁場依存性を有しない物性値であ
り、かつ、温度依存性を有する物性値であれば、同様な
方法で、磁場依存性を有する温度計の磁場校正が可能な
ことは明らかである。また、磁場依存性を有する温度計
として抵抗温度計を例に説明したが、本発明によれば、
抵抗温度計に限らず、各種の温度計の磁場校正が同様に
可能であることは明らかである。
In the above description, the temperature dependence of the specific heat is used as the temperature dependence of the physical property value having no magnetic field dependency, but the physical property value is not limited to the specific heat and has no magnetic field dependency, and the temperature It is clear that the magnetic field calibration of the thermometer having the magnetic field dependency can be performed by the same method as long as the physical property value has the dependency. Although the resistance thermometer has been described as an example of the thermometer having the magnetic field dependency, according to the present invention,
It is obvious that the magnetic field calibration of various thermometers as well as the resistance thermometer is possible as well.

【0025】[0025]

【発明の効果】上記説明から理解されるように、本発明
の磁場依存性を有する温度計の校正方法によれば、磁場
依存性を有する温度計を高精度かつ容易に磁場校正する
ことができる。このようにして抵抗温度計の磁場校正値
が得られれば、磁場中でも、抵抗温度計を、局所かつ狭
所の温度測定が可能で、かつ、急激な温度変化が測定で
きる温度計として使用できるようになる。かくして、本
発明法を極低温、かつ、強磁場中の温度測定を必要とす
る技術分野に使用すれば、極めて有用である。
As can be understood from the above description, according to the method for calibrating a thermometer having magnetic field dependence of the present invention, the thermometer having magnetic field dependence can be calibrated with high accuracy and easily. . If the magnetic field calibration value of the resistance thermometer is obtained in this way, the resistance thermometer can be used as a thermometer capable of measuring local and narrow temperature even in a magnetic field and capable of measuring rapid temperature changes. become. Thus, it is extremely useful if the method of the present invention is used in a technical field requiring temperature measurement in a very strong magnetic field at a very low temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体の比熱の温度依存性を示したグラフであ
る。
FIG. 1 is a graph showing the temperature dependence of the specific heat of a solid.

【図2】熱緩和時間法による比熱測定装置の概念図であ
る。
FIG. 2 is a conceptual diagram of a specific heat measuring device by a thermal relaxation time method.

【図3】時定数から求める比熱の精度を説明するグラフ
である。
FIG. 3 is a graph illustrating accuracy of specific heat obtained from a time constant.

【図4】本実施の形態の磁場依存性を有する抵抗温度計
の磁場校正方法の手順を説明する図である。
FIG. 4 is a diagram illustrating a procedure of a magnetic field calibration method for a resistance thermometer having a magnetic field dependency according to the present embodiment.

【図5】本発明の磁場依存性を有する温度計の磁場校正
方法により求めた抵抗温度計の磁場校正結果を示すグラ
フである。
FIG. 5 is a graph showing a magnetic field calibration result of a resistance thermometer obtained by a magnetic field calibration method of a thermometer having a magnetic field dependency of the present invention.

【符号の説明】[Explanation of symbols]

1 磁場依存性を有しない比熱を有する物質 2 試料台 3 線材 4 温度計 5 ヒーター 6 熱浴 7 温度計 8 熱源 9 真空容器 N 単位体積当たり原子数 kB ボルツマン定数 K 勾配1 substance having specific heat without magnetic field dependence 2 sample stage 3 wire rod 4 thermometer 5 heater 6 heat bath 7 thermometer 8 heat source 9 vacuum container N number of atoms per unit volume k B Boltzmann constant K gradient

フロントページの続き (72)発明者 田中 康資 茨城県つくば市梅園1丁目1番4 工業 技術院電子技術総合研究所内 (72)発明者 伊豫 彰 茨城県つくば市梅園1丁目1番4 工業 技術院電子技術総合研究所内 (72)発明者 白川 直樹 茨城県つくば市梅園1丁目1番4 工業 技術院電子技術総合研究所内 (72)発明者 池田 伸一 茨城県つくば市梅園1丁目1番4 工業 技術院電子技術総合研究所内 (72)発明者 伊原 英雄 茨城県つくば市梅園1丁目1番4 工業 技術院電子技術総合研究所内 (72)発明者 常盤 和靖 千葉県松戸市大金平1−15 ライフピア 北小金305号室 (72)発明者 渡辺 恒夫 東京都小金井市貫井北町2−8−12 (72)発明者 上村 彰 東京都板橋区南常盤台2−21−14 メゾ ン・ド・マドーヌ401号 (72)発明者 ジョン エリス マッカーサー ザ サ ード 埼玉県所沢市大字上新井890−14 (56)参考文献 特開 平2−275330(JP,A) 特開 平4−77640(JP,A) 特開 平7−260594(JP,A) 特開 平8−136361(JP,A) 特開 平8−152365(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01K 15/00 - 19/00 G01K 7/16 - 7/24 G01N 25/20 Front page continuation (72) Inventor Kosuke Tanaka 1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute, Industrial Technology Institute (72) Akira Iyu 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Industrial Technology In-house Electronics Research Laboratory (72) Inventor Naoki Shirakawa 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Industrial Technology Institute Electronic Technology Research Institute (72) Shinichi Ikeda 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Industrial Technology In-house Electronics Research Laboratory (72) Inventor Hideo Ihara 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Institute of Electronic Technology Research Institute of Industry and Technology (72) Inventor Tomowa Kazumasa 1-15 Daikindaira, Matsudo-shi, Chiba Lifepia Kitakogane Room 305 (72) Inventor Tsuneo Watanabe 2-8-12 Nakaikitamachi, Koganei-shi, Tokyo (72) Inventor Akira Uemura 2-21-14 Minami Tokiwadai, Itabashi-ku, Tokyo Maison de Madone 401 (72) Invention John Ellis MacArthur The Sword Tokorozawa, Saitama Prefecture Kamiarai 890-14 (56) Reference JP-A-2-275330 (JP, A) JP-A-4-77640 (JP, A) JP-A-7-260594 (JP, A) JP-A-8-136361 ( JP, A) JP-A-8-152365 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01K 15/00-19/00 G01K 7/16-7/24 G01N 25 / 20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁場依存性を有しない物性値を有する物
質の該物性値の温度依存特性を測定し、 磁場中の各温度において、上記物質と磁場校正しようと
する磁場依存性を有する温度計とを同一の温度に保ち、
上記温度計の指示温度を求めると共に磁場依存性のない
測定方法によって上記物性値を測定し、この物性値と上
記物性値の温度依存特性とを対比して温度を求め、 この温度と上記指示温度とから、上記磁場中の各温度に
おける上記磁場依存性を有する温度計の磁場校正値を得
ることを特徴とする、磁場依存性を有する温度計の磁場
校正方法。
1. A thermometer which measures the temperature-dependent characteristics of a substance having a physical property value having no magnetic field dependency and which has a magnetic field dependency to be calibrated with the substance at each temperature in a magnetic field. Keep the same temperature and
The physical properties are measured by a measurement method that does not depend on the magnetic field while determining the indicated temperature of the thermometer, and the temperature is determined by comparing the physical properties with the temperature-dependent characteristics of the physical properties. From the above, a magnetic field calibration method for a thermometer having a magnetic field dependency is obtained, wherein a magnetic field calibration value of the thermometer having the magnetic field dependency at each temperature in the magnetic field is obtained.
【請求項2】 前記磁場依存性を有しない物性値を有す
る物質が、非磁性体かつ非超伝導体物質から成る固体物
質であり、前記磁場依存性を有しない物性値が、上記物
質の比熱であることを特徴とする、請求項1に記載の磁
場依存性を有する温度計の磁場校正方法。
2. The substance having a physical property value having no magnetic field dependency is a solid substance composed of a non-magnetic substance and a non-superconductor substance, and the physical property value having no magnetic field dependency has a specific heat of the substance. The method of calibrating a magnetic field of a thermometer having magnetic field dependency according to claim 1, wherein
【請求項3】 前記磁場依存性を有する温度計が、抵抗
温度計であることを特徴とする、請求項1に記載の磁場
依存性を有する温度計の磁場校正方法。
3. The magnetic field calibration method for a thermometer having magnetic field dependence according to claim 1, wherein the thermometer having magnetic field dependence is a resistance thermometer.
【請求項4】 前記磁場依存性のない測定方法は、熱緩
和時間法による比熱測定法であることを特徴とする、請
求項1に記載の磁場依存性を有する温度計の磁場校正方
法。
4. The method for calibrating a magnetic field of a thermometer having a magnetic field dependency according to claim 1, wherein the measuring method having no magnetic field dependency is a specific heat measurement method based on a thermal relaxation time method.
JP2000386049A 2000-12-19 2000-12-19 Magnetic field calibration method for thermometer with magnetic field dependence Expired - Lifetime JP3416685B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000386049A JP3416685B2 (en) 2000-12-19 2000-12-19 Magnetic field calibration method for thermometer with magnetic field dependence
PCT/JP2001/011100 WO2002050502A1 (en) 2000-12-19 2001-12-18 Method for calibrating magnetic field of thermometer having magnetic field dependence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386049A JP3416685B2 (en) 2000-12-19 2000-12-19 Magnetic field calibration method for thermometer with magnetic field dependence

Publications (2)

Publication Number Publication Date
JP2002188967A JP2002188967A (en) 2002-07-05
JP3416685B2 true JP3416685B2 (en) 2003-06-16

Family

ID=18853214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386049A Expired - Lifetime JP3416685B2 (en) 2000-12-19 2000-12-19 Magnetic field calibration method for thermometer with magnetic field dependence

Country Status (2)

Country Link
JP (1) JP3416685B2 (en)
WO (1) WO2002050502A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234574A (en) * 2005-02-24 2006-09-07 National Institute Of Advanced Industrial & Technology Capacitance thermometer
JP4686759B2 (en) * 2005-10-25 2011-05-25 独立行政法人産業技術総合研究所 Capacitance thermometer
CN102564637B (en) * 2010-12-15 2015-09-09 新科实业有限公司 The measuring method of the intensification that bias current/bias voltage causes in magnetic tunnel-junction
CN104568209B (en) * 2015-01-07 2017-02-22 大连理工大学 Magnetic material curie temperature measuring method based on thermogravimetry changes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545740B2 (en) * 1994-03-18 1996-10-23 工業技術院長 Temperature sensor
JPH08136361A (en) * 1994-11-11 1996-05-31 Tanaka Kikinzoku Kogyo Kk Soaking block of apparatus for comparing/calibrating temperature-measuring resistance body and method for comparing/calibrating temperature-measuring resistance body
JPH08152365A (en) * 1994-11-29 1996-06-11 Tanaka Kikinzoku Kogyo Kk Method for calibrating resistance temperature sensor

Also Published As

Publication number Publication date
JP2002188967A (en) 2002-07-05
WO2002050502A1 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
Lashley et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system
Yeager et al. A review of cryogenic thermometry and common temperature sensors
Pecharsky et al. A 3–350 K fast automatic small sample calorimeter
Marcos et al. A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
Schilling et al. High-accuracy differential thermal analysis: A tool for calorimetric investigations on small high-temperature-superconductor specimens
Fukuyama et al. He 3 melting curve below 15 mK
Nishida Measurements of electrical properties
Lebioda et al. Dynamic properties of cryogenic temperature sensors
JP3416685B2 (en) Magnetic field calibration method for thermometer with magnetic field dependence
Goodrich et al. Magnetoresistance below 1 K and temperature cycling of ruthenium oxide–bismuth ruthenate cryogenic thermometers
Zink et al. Thin film microcalorimeter for heat capacity measurements in high magnetic fields
Pekola et al. Coulomb blockade thermometry in the milli-kelvin temperature range in high magnetic fields
Stadler Noise properties of thick-film resistors in extended temperature range
Jutzler et al. Palladium-iron: A giant-moment magnetic thermometer for the millikelvin temperature range
Hudson Measurement of temperature
Ihas et al. Low temperature thermometry in high magnetic fields
Katzmann et al. Thin-film AC-DC converter with thermoresistive sensing
Brodie et al. Bismuth magnetoresistive thermometry for transient temperature measurements in liquid helium
Andraka et al. Simultaneous measurements of heat capacity and spin‐lattice relaxation time in high magnetic field at low temperature
JP2780876B2 (en) Temperature sensor system using microcrystalline semiconductor thin film
RU2819824C1 (en) Self-calibrating temperature sensor on ferrite elements
Klaasse et al. Improved sample-holder design for specific-heat measurements in magnetic fields up to 17.5 T
RU2256160C1 (en) Resistance thermometer sensing element
Buckingham et al. The nature of the X-transition in liquid helium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3416685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term