JP2012173060A - Determination method of anticorrosion property in anticorrosive coating steel material and manufacturing method for anticorrosive coating steel material - Google Patents

Determination method of anticorrosion property in anticorrosive coating steel material and manufacturing method for anticorrosive coating steel material Download PDF

Info

Publication number
JP2012173060A
JP2012173060A JP2011033745A JP2011033745A JP2012173060A JP 2012173060 A JP2012173060 A JP 2012173060A JP 2011033745 A JP2011033745 A JP 2011033745A JP 2011033745 A JP2011033745 A JP 2011033745A JP 2012173060 A JP2012173060 A JP 2012173060A
Authority
JP
Japan
Prior art keywords
anticorrosion
steel material
coating layer
environment
anticorrosion coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033745A
Other languages
Japanese (ja)
Other versions
JP5510358B2 (en
Inventor
Masaji Murase
正次 村瀬
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011033745A priority Critical patent/JP5510358B2/en
Publication of JP2012173060A publication Critical patent/JP2012173060A/en
Application granted granted Critical
Publication of JP5510358B2 publication Critical patent/JP5510358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a determination method of anticorrosion property in an anticorrosive coating steel material and a manufacturing method for an anticorrosive coating steel material.SOLUTION: The anticorrosiveness of an anticorrosive coating steel material is determined by using a Y value (Y=|E|CDC/L) defined as a relational expression of anticorrosive potential E or electric anticorrosive potential E of a steel material as a base, concentration C of monatomic positive ions included in an environment in which the steel material is used, relative gas-dissolved oxygen concentration DC, and thickness L of an organic coating layer. It is determined that the anticorrosiveness is more superior as the Y value is smaller. An anticorrosive coating steel material which has desired anticorrosiveness can be manufactured by forming the anticorrosive coating layer by adjusting the thickness L of the anticorrosive coating layer so that the Y value is equal to or less than 1.0.

Description

本発明は、汽水域、海水域、淡水域などの腐食環境、あるいは土壌中などの埋設環境下での使用に好適な、有機樹脂塗装あるいはライニングを施されてなる防食被覆鋼材に係り、とくに防食被覆鋼材の防食性を、使用環境を考慮して、簡便に判定する判定方法およびその判定方法を利用した、防食性に優れた防食被覆鋼材の製造方法に関する。   The present invention relates to an anticorrosion coated steel material coated with an organic resin or lined, which is suitable for use in corrosive environments such as brackish water, seawater, and freshwater bodies, or in buried environments such as soil. The present invention relates to a determination method for easily judging the corrosion resistance of a coated steel material in consideration of the use environment and a method for producing an anticorrosion coated steel material having excellent corrosion resistance using the determination method.

汽水域、海水域、淡水域、あるいは土壌中で使用される代表的な鋼材としては、鋼矢板、鋼管杭、鋼管矢板などが挙げられる。これらの鋼材は、構造物等を支える基礎として使用され、橋梁、建築物、港湾、空港、道路などのインフラストラクチャーとして広く普及している。これら構造物等は、その性格上、50〜100年の使用を考慮した、設計、施工を行う。しかも、大部分の鋼構造物では、防食措置が必要であるとされ、防食措置として、表面に、電気防食、あるいは有機樹脂塗装、ライニングなどの防食被覆が施されている。   Typical steel materials used in brackish water, seawater, freshwater, or soil include steel sheet piles, steel pipe piles, and steel pipe sheet piles. These steel materials are used as foundations for supporting structures and the like, and are widely spread as infrastructures for bridges, buildings, harbors, airports, roads, and the like. These structures are designed and constructed in consideration of their use for 50 to 100 years. Moreover, most steel structures are considered to require anticorrosion measures. As anticorrosion measures, the surface is provided with anticorrosion coating such as cathodic protection, organic resin coating, or lining.

最近は、優れた防食性を示す塗装が開発されており、それらの塗装により形成された防食被覆層(有機被覆層)を備える、防食被覆鋼材も実際に鋼構造物に適用されている。しかし、これら防食被覆層の寿命は、簡単には判定できないのが現状である。現在では、JIS Z 2381の規定に準拠した大気暴露試験や、あるいはJIS Z 2371やJIS Z 0103 5007に準拠した促進試験等により、防食被覆層(有機被覆層)の寿命を判定している。しかし、これらの方法では、長期の試験期間を必要とし、簡便に防食被覆層の寿命を判定することは難しい。このため、簡便な寿命判定方法が要望されていた。   Recently, coatings exhibiting excellent anticorrosion properties have been developed, and anticorrosion-coated steel materials including an anticorrosion coating layer (organic coating layer) formed by these coatings are actually applied to steel structures. However, at present, the lifetime of these anticorrosion coating layers cannot be easily determined. At present, the life of the anticorrosion coating layer (organic coating layer) is determined by an atmospheric exposure test based on the provisions of JIS Z 2381 or an accelerated test based on JIS Z 2371 and JIS Z 0103 5007. However, these methods require a long test period, and it is difficult to easily determine the life of the anticorrosion coating layer. For this reason, a simple lifetime determination method has been desired.

さらに、寿命を迎えた有機被覆層などの防食被覆層の補修には、膨大な費用を必要とする。このため、防食被覆層の寿命を予測することは、鋼構造物の維持・管理費の把握という観点からも重要となる。
このような要望に対して、例えば非特許文献1には、ポリエチレン被覆鋼材の被覆端面剥離寿命予測法が提案されている。非特許文献1に記載された技術では、同一の下地処理では、同一の剥離の活性化エネルギーΔHを有し、剥離面積Aは、次式
A={(寿命予測期間)/(T2での試験期間)}×(T2での剥離面積)×exp{(−ΔH/R)×(T2−T1)/(T2×T1)}
で表せるとしている。予め試験温度:T2で試験を行い、剥離面積を求めておけば、上記式を用いて、環境温度T1での寿命予測期間経過後の剥離面積Aが算出できるとしている。しかし、非特許文献1に記載された技術においても、予め長期間の試験を実施して、上記した式における係数を確定しておくことが必要となるという問題がある。
Furthermore, enormous costs are required to repair anticorrosion coating layers such as organic coating layers that have reached the end of their lives. For this reason, it is important to predict the life of the anticorrosion coating layer from the viewpoint of grasping the maintenance and management costs of the steel structure.
In response to such a demand, for example, Non-Patent Document 1 proposes a method for predicting a coating end surface peeling life of a polyethylene-coated steel material. In the technique described in Non-Patent Document 1, in the same base treatment, the same peeling activation energy ΔH is obtained, and the peeling area A is expressed by the following formula A = {(life prediction period) / (test at T2 Period)} × (Peeling area at T2) × exp {(− ΔH / R) × (T2−T1) / (T2 × T1)}
It can be expressed as If the test is performed in advance at the test temperature T2 and the peel area is obtained, the peel area A after the lifetime prediction period at the environmental temperature T1 can be calculated using the above formula. However, the technique described in Non-Patent Document 1 also has a problem that it is necessary to carry out a long-term test in advance and determine the coefficient in the above-described equation.

また、特許文献1には、被覆鋼材の板厚方向に温度勾配を形成せしめた加熱条件下で前記鋼材の加熱浸漬試験を行い、被膜の剥離強度が所定の値に到達する迄の時間を測定し、得られた測定値と予め求めた換算式とから定まる等温・加熱条件下での接着耐久寿命から実使用温度における接着耐久寿命を求める被覆鋼材の接着耐久性評価方法が記載されている。   In Patent Document 1, a heat immersion test of the steel material is performed under a heating condition in which a temperature gradient is formed in the plate thickness direction of the coated steel material, and the time until the peel strength of the coating reaches a predetermined value is measured. In addition, there is described a method for evaluating the adhesion durability of a coated steel material for obtaining an adhesion durability life at an actual use temperature from an adhesion durability life under an isothermal and heating condition determined from an obtained measured value and a conversion formula obtained in advance.

特開平09−5231号公報Japanese Patent Laid-Open No. 09-5231

村瀬ら:材料とプロセス,vol.1(1988)、693Murase et al .: Materials and Processes, vol.1 (1988), 693

しかしながら、特許文献1に記載された技術では、温度勾配をつけた加熱条件での加熱浸漬試験を、被膜剥離強度を測定しながら、数多く行う必要があり、また、加熱条件を数多く変えることも難しいため、短時間で、実使用温度における耐久性を判定することは難しいという問題がある。このため、特許文献1に記載された技術は、簡便な方法とはいい難く、試験材の構成因子や環境側因子の影響を約30日ほどかけた試験を行って調査する必要があり、判断に長期間を要するという問題がある。また、防食被覆層で全面覆われている部分よりも、防食被覆層端部や欠陥部の方が防食被覆層の劣化(剥離)がはやいため、防食被覆鋼材の耐久性は、防食被覆層端部や欠陥部における防食被覆層の劣化(剥離)をいかに抑制することができるかで、決まる。したがって、より簡便に防食被覆鋼材の耐久性を判断するためには、防食被覆層端部や欠陥部からの防食被覆層の剥離を重視することが肝要となる。   However, in the technique described in Patent Document 1, it is necessary to perform many heating immersion tests under heating conditions with a temperature gradient while measuring the film peeling strength, and it is difficult to change many heating conditions. Therefore, there is a problem that it is difficult to determine the durability at the actual use temperature in a short time. For this reason, it is difficult to say that the technique described in Patent Document 1 is a simple method, and it is necessary to conduct a test that takes about 30 days to examine the influence of constituent factors of the test material and environmental factors. There is a problem that it takes a long time. In addition, since the corrosion protection coating layer edge and defects are faster in the corrosion protection coating layer than the part that is entirely covered with the anticorrosion coating layer, the corrosion protection coating layer is less deteriorated (peeling). It is determined by how the deterioration (peeling) of the anticorrosion coating layer at the part and the defective part can be suppressed. Therefore, in order to more easily determine the durability of the anticorrosion coated steel material, it is important to attach importance to the peeling of the anticorrosion coating layer from the end portions of the anticorrosion coating layer and the defective portions.

本発明は、かかる従来技術の問題を解決し、防食被覆鋼材で、表面に形成される有機樹脂塗装などの防食被覆層(有機被覆層)の防食性(防食寿命)を、相対的ではあるが、短時間で判定することが可能な、防食被覆鋼材における防食性の判定方法およびそれを利用して、防食仕様を決定する、防食性に優れた防食被覆鋼材の製造方法を提供することを目的とする。本発明では、汽水域、海水域、淡水域などの腐食環境、さらには土壌中などの埋没環境に晒される鋼構造物向け防食被覆鋼材の防食被覆層を対象とする。   The present invention solves such problems of the prior art, and the anticorrosion property (corrosion life) of the anticorrosion coating layer (organic coating layer) such as organic resin coating formed on the surface of the anticorrosion coating steel material is relatively. An object of the present invention is to provide a method for determining an anticorrosion property in an anticorrosion-coated steel material, which can be determined in a short time, and a method for producing an anticorrosion-coated steel material having an excellent anticorrosion property, which determines an anticorrosion specification using the method. And The present invention is directed to an anticorrosion coating layer of an anticorrosion coating steel material for steel structures that is exposed to corrosive environments such as brackish water, seawater, and freshwater bodies, and also to buried environments such as soil.

本発明者らは、上記した目的を達成するために、剥離や膨れなど、有機樹脂塗装など防食被覆層の劣化に及ぼす各種要因について、鋭意研究した。その結果、防食被覆層の劣化は、以下のような原因で生じることに思い至った。
防食被覆層の劣化は、防食被覆層の端部あるいは鋼材のエッジ部分など防食被覆層の付着が不十分な部位や、外力を受けて防食被覆層に傷がついた部分から始まる。防食被覆層の付着が不十分な部位や防食被覆層に傷がついた部分で鋼材が露出すると、露出した部位から鋼材の腐食がはじまり、その腐食反応の影響が順次、その周囲の、防食被覆層(有機被覆層)の健全な部分にまで及ぶようになる。
In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting deterioration of the anticorrosion coating layer such as organic resin coating, such as peeling and swelling. As a result, it has been thought that the deterioration of the anticorrosion coating layer occurs due to the following causes.
The deterioration of the anticorrosion coating layer starts from a portion where the anticorrosion coating layer is insufficiently adhered, such as an end portion of the anticorrosion coating layer or an edge portion of a steel material, or a portion where the anticorrosion coating layer is damaged due to external force. If the steel material is exposed at a part where the anticorrosion coating layer is insufficiently adhered or the part where the anticorrosion coating layer is scratched, the corrosion of the steel material starts from the exposed part, and the influence of the corrosion reaction is sequentially applied to the surrounding anticorrosion coating. It extends to the healthy part of the layer (organic coating layer).

鋼材が露出した部位では、鉄が溶解するアノード反応および水素イオン、酸素が還元されるカソード反応が生じて、腐食が進行する。このうち、カソード反応の一部が、周囲の健全な防食被覆層との界面である鋼材表面で起きると、このカソード反応による生成物(カソード生成物)が鋼材表面に形成されるため、鋼材と防食被覆層との接着強度の低下をもたらし、剥離、膨れ等の防食被覆層の劣化を引き起こすことになる。なお、防食被覆層下でのカソード反応は、鋼材が露出した部位の周囲以外の、防食被覆層下でも起きるが、その反応速度は、極めて緩慢である。この防食被覆層下でのカソード反応は、防食被覆層下の鋼材の電位が、鋼材が露出した部位に比較して、相対的に貴な電位を示すことから起きる現象である。   At the site where the steel material is exposed, an anode reaction in which iron dissolves and a cathode reaction in which hydrogen ions and oxygen are reduced occur, and corrosion proceeds. Among these, when a part of the cathode reaction occurs on the steel surface, which is the interface with the surrounding healthy anti-corrosion coating layer, a product (cathode product) due to this cathode reaction is formed on the steel material surface. This results in a decrease in adhesive strength with the anticorrosion coating layer, and causes deterioration of the anticorrosion coating layer such as peeling and swelling. The cathodic reaction under the anticorrosion coating layer also occurs under the anticorrosion coating layer other than around the portion where the steel material is exposed, but the reaction rate is extremely slow. This cathodic reaction under the anticorrosion coating layer is a phenomenon that occurs because the potential of the steel material under the anticorrosion coating layer exhibits a relatively noble potential as compared to the portion where the steel material is exposed.

そこで、本発明者らは、防食被覆層の劣化は、防食被覆層下でのカソード反応が促進されたためであり、上記したような電位差が、基本的に防食被覆層の劣化を起こす原因であると考え、上記したような電位差が大きなほど劣化が早いことに思い至った。
すなわち、防食被覆層の劣化には、上記したカソード反応が主体で起きるため、防食被覆層を形成する基材である鋼材の腐食電位や電気防食電位が影響することになり、更に、環境中の、溶存酸素量や、1価の陽イオン濃度の影響を受ける。
Therefore, the inventors of the present invention are that the deterioration of the anticorrosion coating layer is because the cathode reaction under the anticorrosion coating layer was promoted, and the potential difference as described above is basically the cause of the deterioration of the anticorrosion coating layer. I thought that the larger the potential difference as described above, the faster the deterioration.
That is, the deterioration of the anticorrosion coating layer is mainly caused by the cathode reaction described above, and therefore the corrosion potential and the anticorrosion potential of the steel material that forms the anticorrosion coating layer are affected. It is affected by the amount of dissolved oxygen and the concentration of monovalent cations.

本発明者らは、かかる知見に基づきさらに、検討を加えた結果、使用環境下で所定期間使用後の、被覆層の剥離距離は、基材である鋼材の腐食電位E(V)(SCE(飽和甘こう電極)基準で)、使用環境中の1価の陽イオンの濃度C(mol/l)、溶存酸素量DC(飽和溶存酸素濃度に対する割合)と、防食被覆層の厚さL(mm)の関数である、次式
Y=|E|C0.15DC/L
で定義されるY値と、相関関係があることを見出した。このY値が、大きくなるとともに、使用環境下で使用後の被覆層の剥離距離が大きくなる。すなわち、このY値の大小により、防食被覆層の耐久性を短時間で、相対的に、判定できる。このY値が所定値以下であれば、使用環境下で所定の長期間の耐久性を有することになる。
As a result of further investigation based on such knowledge, the present inventors have determined that the peeling distance of the coating layer after use for a predetermined period in the use environment is the corrosion potential E (V) (SCE ( Saturated gypsum electrode) standard), C concentration of monovalent cation in use environment (mol / l), dissolved oxygen amount DC (ratio to saturated dissolved oxygen concentration), and thickness L (mm of anticorrosion coating layer) ), The following formula Y = | E | C 0.15 DC / L
It was found that there is a correlation with the Y value defined in. As the Y value increases, the peel distance of the coating layer after use in the use environment increases. That is, the durability of the anticorrosion coating layer can be relatively determined in a short time based on the magnitude of the Y value. If this Y value is less than or equal to a predetermined value, it has a predetermined long-term durability in the use environment.

つぎに、本発明の基礎となった実験結果について説明する。
炭素鋼材(SS400鋼板)から試験材を採取し、該試験材の表面に、スチールボールを投射し、表面の酸化層、汚染層を除去し、さらに研磨を施す表面清浄化処理を行った。ついで、さらに試験材の一面に、ポリエチレン樹脂ライニング、ポリウレタン樹脂塗装等の各種防食被覆を施し、膜厚Lを種々変化させた防食被覆層を形成して、腐食試験片とした。なお、防食被覆層が形成された面以外の、腐食試験片面は、エポキシ系塗料を塗布し、その上からシリコン系シール材で被覆した。
Next, the experimental results on which the present invention is based will be described.
A test material was sampled from a carbon steel material (SS400 steel plate), and a steel ball was projected onto the surface of the test material to remove the oxidized layer and contaminated layer on the surface, and a surface cleaning treatment was performed for further polishing. Next, various anticorrosion coatings such as polyethylene resin lining and polyurethane resin coating were further applied to one surface of the test material, and anticorrosion coating layers having various thicknesses L were varied to form corrosion test pieces. In addition, the corrosion test piece surface other than the surface on which the anticorrosion coating layer was formed was coated with an epoxy-based paint and covered with a silicon-based sealing material.

そして、得られた腐食試験片について、試験片の中央部に直径5mmφの円形の人工傷をボール盤で、防食被覆層を貫通し鋼材面に到達するように、導入した。
これら腐食試験片を、Naイオン(1価の陽イオン)濃度C、相対的溶存酸素濃度DC、炭素鋼材の防食電位Eを種々変化させた水溶液中で30日間保持する試験を実施した。試験後、人工欠陥部(端部)からの被覆層の膜剥離距離を測定した。得られた結果を図1に示す。
And about the obtained corrosion test piece, the circular artificial wound of diameter 5mmphi was introduced into the center part of the test piece with the drilling machine so that it might penetrate the anticorrosion coating layer and may reach the steel surface.
These corrosion test pieces were subjected to a test for 30 days in an aqueous solution in which the Na ion (monovalent cation) concentration C, the relative dissolved oxygen concentration DC, and the anticorrosion potential E of the carbon steel were variously changed. After the test, the film peeling distance of the coating layer from the artificial defect portion (end portion) was measured. The obtained results are shown in FIG.

図1では、横軸にY値(=|E|C0.15DC/L)を、縦軸に人工欠陥部(端部)からの被覆層の剥離距離(mm)をとっている。図1から、被覆層の剥離距離とY値とはよい相関関係を示していることがわかる。このY値を利用すれば、防食被覆層の劣化特性(被覆層の耐久性)を、相対的に、判定することが可能であることになる。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)基材である鋼材表面に有機被覆を施して防食被覆層を形成してなる防食被覆鋼材の電気防食下および非電気防食下における防食性の判定方法であって、基材である鋼材の腐食電位Eまたは電気防食電位Eと、鋼材が使用される環境中に含まれる、1価の陽イオンの濃度C、相対的溶存酸素濃度DCおよび有機被覆層の厚さLの関係式として、次(1)式
Y=|E|C0.15DC/L ‥‥(1)
(ここで、E:基材である鋼材の腐食電位(V vs SCE)、なお、電気防食を施す場合には、電気防食電位(V vs SCE)、C:鋼材が使用される環境中の1価の陽イオン濃度(mol/l)、DC:飽和溶存酸素濃度に対する、鋼材が使用される環境中の相対的溶存酸素濃度の割合、L:防食被覆層の厚さ(mm))
で定義されるY値を用いて、防食被覆鋼材の防食性を判定することを特徴とする防食被覆鋼材における防食性の判定方法。
(2)電気防食下および非電気防食下で使用される防食被覆鋼材の製造方法であって、基材である鋼材表面に有機被覆を施して防食被覆層を形成してなる防食被覆鋼材を製造するにあたり、(1)に記載の防食性の判定方法を用いて、前記防食被覆鋼材が使用される環境に応じて、次(1)式
Y=|E|C0.15DC/L ‥‥(1)
(ここで、E:基材である鋼材の腐食電位(V vs SCE)、なお、電気防食を施す場合には、電気防食電位(V vs SCE)、C:鋼材が使用される環境中の1価の陽イオン濃度(mol/l)、DC:相対溶存酸素濃度(飽和溶存酸素濃度に対する、鋼材が使用される環境中の溶存酸素濃度の割合)、L:防食被覆層の厚さ(mm))
で定義されるY値が1.0以下となるように、鋼材の腐食電位Eまたは電気防食電位E、防食被覆層の厚さLを調整して、防食被覆層を形成することを特徴とする防食被覆鋼材の製造方法。
In FIG. 1, the horizontal axis represents the Y value (= | E | C 0.15 DC / L), and the vertical axis represents the peeling distance (mm) of the coating layer from the artificial defect portion (end portion). As can be seen from FIG. 1, the peel distance of the coating layer and the Y value show a good correlation. If this Y value is used, it is possible to relatively determine the deterioration characteristics of the anticorrosion coating layer (the durability of the coating layer).
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) A method for determining the anticorrosion property of an anticorrosion-coated steel material obtained by applying an organic coating to the surface of a steel material as a base material to form an anticorrosion coating layer, under the anticorrosion and non-electrical anticorrosion methods, and the steel material as a base material As a relational expression of the corrosion potential E or the anti-corrosion potential E, and the concentration C of monovalent cations, the relative dissolved oxygen concentration DC, and the thickness L of the organic coating layer contained in the environment in which the steel material is used, Next formula (1)
Y = | E | C 0.15 DC / L (1)
(Here, E: Corrosion potential (V vs SCE) of the steel material as the base material, and in the case of applying anticorrosion, the anticorrosion potential (V vs SCE), C: 1 in the environment where the steel material is used) Cation concentration (mol / l), DC: ratio of relative dissolved oxygen concentration in the environment where steel is used to saturated dissolved oxygen concentration, L: thickness of anticorrosion coating layer (mm))
A method for determining anticorrosion in an anticorrosion-coated steel material, wherein the anticorrosion property of the anticorrosion-coated steel material is determined using a Y value defined by the above.
(2) A method for producing an anticorrosion-coated steel material used under cathodic protection and non-electrocorrosion protection, in which an anticorrosion coating layer is formed by applying an organic coating to the surface of a steel material as a base material. In doing so, the following formula (1) is used according to the environment in which the anticorrosion-coated steel material is used, using the anticorrosion judging method described in (1).
Y = | E | C 0.15 DC / L (1)
(Here, E: Corrosion potential (V vs SCE) of the steel material as the base material, and in the case of applying anticorrosion, the anticorrosion potential (V vs SCE), C: 1 in the environment where the steel material is used) Cation concentration (mol / l), DC: relative dissolved oxygen concentration (ratio of dissolved oxygen concentration in the environment where steel is used to saturated dissolved oxygen concentration), L: thickness of anticorrosion coating layer (mm) )
The anticorrosion coating is characterized in that the anticorrosion coating layer is formed by adjusting the corrosion potential E or the anticorrosion potential E of the steel material and the thickness L of the anticorrosion coating layer so that the Y value defined by the above is 1.0 or less. Steel manufacturing method.

本発明によれば、防食被覆鋼材における防食被覆層の耐久性を、長期間の暴露試験や促進試験を行うことなく、簡便にしかも短期間で、相対的に判定することができ、産業上格段の効果を奏する。また、本発明によれば、最適な防食方法を採用して、所望の耐久性に優れた防食被覆層を形成することができ、鋼構造物の耐用年数を延長することができ、社会的に負担される維持管理費の低減に繋がるという効果もある。   According to the present invention, the durability of the anticorrosion coating layer in the anticorrosion coating steel material can be determined relatively easily and in a short period of time without performing a long-term exposure test or an acceleration test. The effect of. In addition, according to the present invention, it is possible to form an anticorrosion coating layer excellent in desired durability by adopting an optimal anticorrosion method, to extend the service life of the steel structure, and to socially There is also an effect of reducing the maintenance cost to be borne.

ポリエチレン樹脂被覆層の剥離距離とY値との関係を示すグラフである。It is a graph which shows the relationship between the peeling distance of a polyethylene resin coating layer, and Y value.

本発明は、基材である鋼材表面に有機被覆を施して防食被覆層を形成してなる防食被覆鋼材の電気防食下および非電気防食下での防食性を、相対的に判定する方法である。本発明では、次(1)式
Y=|E|C0.15DC/L ‥‥(1)
で定義されるY値を利用する。
The present invention is a method for relatively determining the anticorrosion property of an anticorrosion coated steel material obtained by applying an organic coating to the surface of a steel material as a base material to form an anticorrosion coating layer under the anticorrosion and non-electrocorrosion protection. . In the present invention, the following equation (1) Y = | E | C 0.15 DC / L (1)
The Y value defined in is used.

ここで、Eは、基材である鋼材の腐食電位(V)である。鋼材の腐食電位は、飽和甘こう電極を照合電極として、当該鋼材の腐食電位を測定して得られた値(電位)(V)を用いる。なお、電気防食を施す場合には、電気防食電位を用いるものとする。
また、Cは、鋼材の使用環境中に含まれる1価の陽イオン濃度(mol/l)である。防食被覆層の劣化を考える場合には、Naイオン、Kイオン等の一価の陽イオン濃度のみを考えればよく、Caイオン等の2価イオンを考慮する必要はない。というのは、防食被覆鋼材の防食被覆層の劣化の原因となる、カソード反応は、防食被覆層下で生じる反応であり、その反応場所へのイオンの侵入は、イオン水和半径に依存し、2価以上のイオンではほとんど侵入できない。このため、防食被覆層の劣化への2価イオンの影響は小さいと考えた。なお、1価のイオン濃度は、環境、すなわち、汽水域、海水域、淡水域などの腐食環境から採取した溶液、あるいは環境が土壌中であれば採取した土壌を、分析することにより測定できる。分析方法としては、イオンクロマトグラフィー、湿式の溶液分析、原子吸光分析等が例示できる。
Here, E is the corrosion potential (V) of the steel material that is the base material. As the corrosion potential of the steel material, a value (potential) (V) obtained by measuring the corrosion potential of the steel material using the saturated gypsum electrode as a reference electrode is used. In addition, when performing anticorrosion, an anticorrosion potential shall be used.
C is a monovalent cation concentration (mol / l) contained in the environment in which the steel material is used. When considering the deterioration of the anticorrosion coating layer, only the monovalent cation concentration such as Na ions and K ions needs to be considered, and there is no need to consider divalent ions such as Ca ions. This is because the cathodic reaction that causes deterioration of the anticorrosion coating layer of the anticorrosion coating steel material is a reaction that occurs under the anticorrosion coating layer, and the penetration of ions into the reaction site depends on the ion hydration radius, Almost no divalent ions can penetrate. For this reason, it was considered that the influence of divalent ions on the deterioration of the anticorrosion coating layer was small. The monovalent ion concentration can be measured by analyzing the environment, that is, a solution collected from a corrosive environment such as a brackish water area, a seawater area, and a fresh water area, or the collected soil if the environment is in the soil. Examples of the analysis method include ion chromatography, wet solution analysis, and atomic absorption analysis.

また、DCは、相対的溶存酸素濃度であり、飽和溶存酸素濃度に対する、鋼材が使用される環境中の溶存酸素濃度の割合である。環境中の溶存酸素濃度は、市販の溶存酸素計で測定した値を用いるものとする。なお、飽和溶存酸素濃度は、温度にも依存するので、一般に純水中に空気を24時間吹き込み、更に24時間静置した後で、実際に防食被覆鋼材が使用される温度で測定した値を用いるものとする。   DC is a relative dissolved oxygen concentration, and is a ratio of the dissolved oxygen concentration in the environment where the steel is used to the saturated dissolved oxygen concentration. As the dissolved oxygen concentration in the environment, a value measured with a commercially available dissolved oxygen meter is used. Since the saturated dissolved oxygen concentration depends on the temperature, air is generally blown into pure water for 24 hours, and after standing for another 24 hours, the value measured at the temperature at which the anticorrosion-coated steel material is actually used. Shall be used.

また、Lは、防食被覆層の厚さ(mm)である。
本発明では、対象とする防食被覆鋼材について、基材である鋼材の腐食電位Eあるいは電気防食電位E、および防食被覆層の厚さL、さらに、当該鋼材が使用を予定している環境中の、1価の陽イオン濃度Cを測定し、さらに溶存酸素濃度を測定し、相対的溶存酸素濃度DCを求める。そして、それらの値を利用して、上記した(1)式で定義されるY値を算出する。算出された、当該防食被覆鋼材についてのY値が、例えば使用実績のある防食被覆鋼材について使用環境を含めて算出したY値と比較し、大きければ、使用実績のある防食被覆鋼材より耐久性が優れることになる。
L is the thickness (mm) of the anticorrosion coating layer.
In the present invention, with respect to the target anticorrosion-coated steel material, the corrosion potential E or the anticorrosion potential E of the steel material as the base material, the thickness L of the anticorrosion coating layer, and the environment in which the steel material is scheduled to be used The monovalent cation concentration C is measured, the dissolved oxygen concentration is further measured, and the relative dissolved oxygen concentration DC is obtained. Then, using these values, the Y value defined by the above equation (1) is calculated. The calculated Y value of the anticorrosion-coated steel material is, for example, compared with the Y value calculated including the use environment for the anticorrosion-coated steel material with a track record of use. It will be excellent.

例えば、環境中に1価の陽イオンが多い、あるいは相対的溶存酸素量が多い場合には、Y値は大きくなり、この環境では相対的に同じ防食仕様でも耐久性に劣ることが判定できる。また、より優れた耐久性を得ようと判断する場合には、防食被覆層の膜厚の増加や電気防食電位を低く抑えることで優れた耐久性を得ることができる指針とすることができる。   For example, when the environment has a large amount of monovalent cations or a relatively large amount of dissolved oxygen, the Y value increases, and it can be determined that even in this environment, the durability is relatively poor even with the same anticorrosion specification. Further, when it is determined to obtain better durability, it can be used as a guideline for obtaining excellent durability by suppressing the increase in the film thickness of the anticorrosion coating layer or the anticorrosion potential.

すなわち、本発明の判定方法では、基準となる防食被覆鋼材を設定し、(1)式で定義されるY値を用いて、その基準防食被覆鋼材あるいはその防食被覆鋼材の使用環境との比較で、対象とする防食被覆鋼材の防食性を、相対的に判定する。
また、本発明の防食性の判定方法を利用して、使用環境下で、(1)式で定義されるY値が所定値以下となるように、基材である鋼材、電気防食の使用の有無を含めて防食被覆層の構成、防食被覆層厚さ等、防食被覆方法を選択、設計することにより、所望の長期間の耐久性を有する防食被覆鋼材を製造することが可能となる。
That is, in the determination method of the present invention, a reference anticorrosion-coated steel material is set, and the Y value defined by the equation (1) is used to compare with the reference anticorrosion-coated steel material or the use environment of the anticorrosion-coated steel material. The anticorrosion property of the target anticorrosion-coated steel material is relatively determined.
In addition, by using the method for determining anticorrosion of the present invention, under the usage environment, the steel material that is the base material and the use of anticorrosion are used so that the Y value defined by the formula (1) is not more than a predetermined value. By selecting and designing an anticorrosion coating method such as the configuration of the anticorrosion coating layer, including the presence or absence, and the thickness of the anticorrosion coating layer, it is possible to produce an anticorrosion coated steel material having a desired long-term durability.

ただし、電気防食を施す場合には、鋼材の電気防食電位は、-0.85V vs SCEより卑な値とすることが好ましい。これは、鋼の実際上推奨されている電気防食電位が-0.85V vs SCEであるためである。鋼材の腐食を許容し、電気防食を施さない場合には、この限りではない。また、防食被覆層の厚さは、厚いほど耐久性を向上させるが、通常は0.05mm〜10mm程度とすることが好ましい。厚さが0.05mm以下では、防食被覆層に傷がつきやすく、傷により耐久性が低下する。一方、10mmを超える厚さでは、防食被覆層形成のためのコスト増を招く。なお、厚さ10mmを超える防食被覆層を形成することは現在の技術では、塗り重ねが必要なため、手間がかかるという問題もある。   However, when applying anticorrosion, it is preferable that the anticorrosion potential of the steel material is lower than −0.85 V vs. SCE. This is because the recommended corrosion protection potential of steel is -0.85V vs SCE. This is not the case when steel material is allowed to corrode and is not subjected to cathodic protection. In addition, the thicker the anticorrosion coating layer, the higher the durability, but usually it is preferably about 0.05 mm to 10 mm. When the thickness is 0.05 mm or less, the anticorrosion coating layer is easily scratched, and the durability decreases due to the scratch. On the other hand, when the thickness exceeds 10 mm, the cost for forming the anticorrosion coating layer is increased. In addition, forming the anticorrosion coating layer having a thickness of more than 10 mm has a problem that it takes time and effort because the current technology requires repeated coating.

つぎに、本発明の防食性の判定方法を利用した、防食被覆鋼材の好ましい製造方法について説明する。
上記した防食性の判定方法を利用して、防食被覆鋼材が使用される環境に応じて、鋼材を選定し該鋼材表面に防食被覆層を形成する。具体的には、使用環境を考慮して(1)式で定義されるY値を算出し、該算出されたY値が、予め定めた所定値(1.0)以下となるように、基材となる鋼材の腐食電位を電気防食処理を含めて選定し、さらに該鋼材表面に、所望の厚さLの防食被覆層を形成する。なお、図1に示すように、設計指針となるY値が概ね1.0では、防食被覆層の剥離距離は5.0mm前後の値となる。なお、この試験は、温度を上げた促進試験であり、実環境に対する促進倍率は、概ね10〜12倍程度であることがわかっている。そのため、図1に示された剥離距離は実環境では、年間(300〜360日)の剥離距離に概ね等しい値と考えられる。端部を有する防食被覆層の場合、防食被覆層の劣化を、例えば鋼矢板などではフランジ部分の半分(約50mm)で判断する場合がある。このような場合では、Y=1.0を満足する防食被覆仕様であれば、実環境では10年程度以上の寿命を有すると推測できる。この耐久年限を基準として、Y=1.0を防食設計の基準値(指標)とした。なお、所定値(1.0)は、使用実績、使用鋼材、部材、形状、促進試験の結果を参酌して、使用環境下で防食被覆層の劣化を最小限に抑制できるとして、決定した値とすることがより好ましい。また、明らかにY値が小さいほど、剥離距離が低減でき、より長期の耐久性が期待できる。このため、Y値がより小さな値となるよう防食設計することが好ましい。
Below, the preferable manufacturing method of the anticorrosion coating steel material using the anticorrosion determination method of this invention is demonstrated.
Using the above-described anticorrosion determination method, a steel material is selected according to the environment in which the anticorrosion-coated steel material is used, and an anticorrosion coating layer is formed on the surface of the steel material. Specifically, the Y value defined by the equation (1) is calculated in consideration of the use environment, and the base material and the base material are set so that the calculated Y value is equal to or less than a predetermined value (1.0) set in advance. The corrosion potential of the steel material to be obtained is selected including the anticorrosion treatment, and a corrosion protection coating layer having a desired thickness L is further formed on the surface of the steel material. As shown in FIG. 1, when the Y value as a design guideline is approximately 1.0, the peeling distance of the anticorrosion coating layer is a value around 5.0 mm. This test is an accelerated test in which the temperature is increased, and it is known that the accelerated magnification with respect to the actual environment is approximately 10 to 12 times. Therefore, in the actual environment, the peel distance shown in FIG. 1 is considered to be approximately equal to the annual peel distance (300 to 360 days). In the case of an anticorrosion coating layer having an end, deterioration of the anticorrosion coating layer may be judged by, for example, a steel sheet pile half of the flange portion (about 50 mm). In such a case, if the anti-corrosion coating specification satisfies Y = 1.0, it can be estimated that the actual environment has a life of about 10 years or more. Based on this durability period, Y = 1.0 was used as a reference value (index) for anticorrosion design. The predetermined value (1.0) is determined based on the results of use, steel materials, members, shapes, and accelerated tests, and the deterioration of the anticorrosion coating layer can be minimized under the usage environment. It is more preferable. In addition, as the Y value is obviously smaller, the peeling distance can be reduced, and longer durability can be expected. For this reason, it is preferable to carry out anticorrosion design so that Y value may become a smaller value.

炭素鋼材(SS400鋼板)に、まず、清浄化処理を施した。そののち、防食被覆処理を施し、防食被覆鋼材とした。
清浄化処理は、鋼材表面に0.5mmφのスチールボールを投射し、表面の酸化層、汚染層を除去し、さらにエメリー研磨紙(#500、#800、#1200)により、表面を研磨する処理とした。
Carbon steel (SS400 steel plate) was first subjected to a cleaning treatment. After that, an anticorrosion coating treatment was applied to obtain an anticorrosion coated steel material.
The cleaning process involves projecting a 0.5mmφ steel ball onto the steel surface, removing the oxidized and contaminated layers on the surface, and polishing the surface with emery abrasive paper (# 500, # 800, # 1200). did.

ついで、鋼材から、試験材(大きさ:100mm×100mm)を採取し、その片面に防食被覆処理を施した。防食被覆処理は、ポリエチレン樹脂ライニング、ポリウレタン樹脂塗装、超厚膜形エポキシ樹脂塗装とし、表1に示すように膜厚を種々変化した。なお、防食被覆層が形成された面以外の、試験片面および端面は、腐食防止のため、エポキシ系塗料を塗布(厚さ:1mm)し、その上からシリコン系シール材でさらに5〜7mmほど塗り重ね被覆した。   Next, a test material (size: 100 mm × 100 mm) was sampled from the steel material, and one surface thereof was subjected to anticorrosion coating treatment. The anticorrosion coating treatment was polyethylene resin lining, polyurethane resin coating, and ultra-thick film type epoxy resin coating, and the film thickness was variously changed as shown in Table 1. In addition, the test piece surface and the end surface other than the surface on which the anticorrosion coating layer is formed are coated with an epoxy-based paint (thickness: 1 mm) to prevent corrosion, and further about 5 to 7 mm with a silicon-based sealing material. Overcoated.

ポリエチレン樹脂ライニングは、つぎのように行った。
まず、試験材(鋼材)表面に、下地層として、エポキシ樹脂をバーコーターで塗布したのち、焼付け(140℃×8.5 min)して、厚さ:50μmのエポキシ樹脂層を形成した。ついで、エポキシ樹脂層の上層として、接着性ポリエチレン(0.5mm厚)と低密度ポリエチレンシートをホットプレス(圧力:0.1MPa)で、180℃にて10分間圧着し、ポリエチレン樹脂層(膜厚:1.0〜3.0mm)を形成した。
The polyethylene resin lining was performed as follows.
First, an epoxy resin was applied as a base layer on the surface of the test material (steel material) with a bar coater and then baked (140 ° C. × 8.5 min) to form an epoxy resin layer having a thickness of 50 μm. Next, as an upper layer of the epoxy resin layer, adhesive polyethylene (0.5 mm thick) and a low density polyethylene sheet were pressure-bonded at 180 ° C. for 10 minutes with a hot press (pressure: 0.1 MPa) to obtain a polyethylene resin layer (film thickness: 1.0 ~ 3.0 mm).

また、ポリウレタン樹脂塗装は、つぎのように行った。
試験材(鋼材)表面に、スプレーで、ポリウレタンプライマー(第一工業製薬製パーマガードプライマー331)を塗布し、24時間乾燥させて、プライマー層(厚さ:40μm)を形成した。その上層として、ポリウレタン樹脂塗料(第一工業製薬製パーマガード137)を塗装し、7日間養生し、ポリウレタン樹脂層(厚さ:1〜4mm)を形成した。
The polyurethane resin coating was performed as follows.
A polyurethane primer (Perm Guard Primer 331 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was applied to the surface of the test material (steel material) by spraying and dried for 24 hours to form a primer layer (thickness: 40 μm). As the upper layer, a polyurethane resin coating (Permguard 137 manufactured by Daiichi Kogyo Seiyaku) was applied and cured for 7 days to form a polyurethane resin layer (thickness: 1 to 4 mm).

また、超厚膜形エポキシ樹脂塗装は、つぎのように行った。
試験材(鋼材)表面に、ガラス棒を利用して、超厚膜形塗料(関西ペイント製ナプコバリア)を塗布し、7日間養生し、超厚膜形エポキシ樹脂層(厚さ:1〜4mm)を形成した。
得られた試験材を腐食試験片として、該腐食試験片の中央部に直径5mmφの円形の人工傷をボール盤で、防食被覆層を貫通し鋼材面に到達するように、導入した。
Moreover, the super-thick film type epoxy resin coating was performed as follows.
Apply an ultra-thick film paint (Napco Barrier made by Kansai Paint) to the surface of the test material (steel material) using a glass rod, and cure for 7 days. Ultra-thick film epoxy resin layer (thickness: 1 to 4 mm) Formed.
Using the obtained test material as a corrosion test piece, a circular artificial scratch having a diameter of 5 mmφ was introduced into the central portion of the corrosion test piece so as to penetrate the anticorrosion coating layer and reach the steel surface.

また、試験材の端面には、電位を保持するために、防水タイプの電線をリベットでとめ、鋼と接触させた後に、その部分から水が入らないように、シリコン樹脂で2mm以上の厚みに封止した。
これら腐食試験片を用いて、所定のNaCl濃度および溶存酸素濃度になるように調整した水溶液中で、決められた電位にポテンシオスタットにより電位を付加し、30日間保持する試験を実施した。使用した水溶液は濃度:0.005〜0.5 mol/lの NaCl溶液(液温:60℃)とした。なお、試験片と白金電極(対極)の間にポテンシオスタットにより、照合(参照)電極として飽和甘こう電極(SCE)を用いて、表1に示すような−0.6〜−1.5Vの電位を付与し、基材となる鋼材の電位とした。
In addition, in order to maintain the potential on the end surface of the test material, a waterproof type electric wire is secured with a rivet and brought into contact with the steel. Sealed.
Using these corrosion test pieces, a test was performed in which an electric potential was added to a predetermined electric potential with a potentiostat in an aqueous solution adjusted to a predetermined NaCl concentration and dissolved oxygen concentration, and held for 30 days. The aqueous solution used was a NaCl solution having a concentration of 0.005 to 0.5 mol / l (liquid temperature: 60 ° C.). In addition, using a potentiostat between the test piece and the platinum electrode (counter electrode), using a saturated gypsum electrode (SCE) as a reference (reference) electrode, a potential of −0.6 to −1.5 V as shown in Table 1 was applied. It was set as the electric potential of the steel material used as a base material.

また、腐食環境である塩水噴霧試験機中の1価の陽イオン濃度は、水溶液中のNaイオン濃度とした。なお、Naイオン濃度は、使用する水溶液をイオンクロマトグラフィーで分析して得た。さらに、腐食環境である水溶液中の溶存酸素濃度は、ベックマン社製溶存酸素計で測定し、飽和溶存酸素濃度に対する、割合を算出し、相対溶存酸素濃度DCとした。
所定の試験期間(30日間)後、試験片を回収し、人工欠陥部まわりの防食被覆層を強制的に剥離し、人工欠陥部(端部)からの防食被覆層の剥離距離を測定した。
The monovalent cation concentration in the salt spray tester, which is a corrosive environment, was set to the Na ion concentration in the aqueous solution. The Na ion concentration was obtained by analyzing the aqueous solution to be used by ion chromatography. Furthermore, the dissolved oxygen concentration in the aqueous solution which is a corrosive environment was measured with a dissolved oxygen meter manufactured by Beckman, and the ratio with respect to the saturated dissolved oxygen concentration was calculated as the relative dissolved oxygen concentration DC.
After a predetermined test period (30 days), the test piece was collected, the anticorrosion coating layer around the artificial defect portion was forcibly separated, and the separation distance of the anticorrosion coating layer from the artificial defect portion (edge portion) was measured.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2012173060
Figure 2012173060

防食被覆層の種類が異なっても、Y値が小さくなるとともに、防食被覆層の剥離距離が小さくなっている。すなわち、Y値は防食被覆層の劣化傾向を表わしており、防食被覆層の防食性を示す、指標として使用できることがわかる。
また例えば、Y値が1.0未満となる腐食試験片(試験片No.2〜9、No.12〜19、No.21〜26)であれば、上記したような環境下(塩水噴霧条件下)での被覆層の剥離距離は6mm以下となり、Y値=1.0以上の腐食試験片(試験片No.1、No.10〜11、No.20)の剥離距離が8.0〜10.6mmであるのに比べて、剥離距離が低減している。すなわち、Y値が所定値(ここでは1.0)より低くなるような防食処理を施すことにより、防食被覆層の劣化リスクが低減した防食被覆鋼材となる。
Even if the type of the anticorrosion coating layer is different, the Y value decreases and the peel distance of the anticorrosion coating layer decreases. That is, it can be seen that the Y value represents the deterioration tendency of the anticorrosion coating layer and can be used as an index indicating the anticorrosion property of the anticorrosion coating layer.
For example, if it is a corrosion test piece (test piece No.2-9, No.12-19, No.21-26) whose Y value will be less than 1.0, it will be in the above environment (salt water spray condition). The peeling distance of the coating layer at 6 mm is 6 mm or less, and the peeling distance of the corrosion test pieces (test pieces No. 1, No. 10 to 11, No. 20) with Y value = 1.0 or more is 8.0 to 10.6 mm. In comparison, the peel distance is reduced. That is, the anticorrosion-coated steel material in which the risk of deterioration of the anticorrosion coating layer is reduced by performing the anticorrosion treatment so that the Y value is lower than a predetermined value (here, 1.0).

したがって、実環境下で、防食被覆層の耐久性(耐用寿命)およびY値が判明している防食被覆層を基準とすれば、そのY値より小さくなるように、防食被覆層の厚さや、鋼材の腐食電位を調整して、鋼材の防食処理を行えば、基準とする防食被覆層よりは劣化リスクが低減した防食被覆鋼材を製造できることになる。   Therefore, in an actual environment, if the anticorrosion coating layer whose durability (durable life) and Y value are known is used as a reference, the thickness of the anticorrosion coating layer is reduced to be smaller than the Y value, If the corrosion potential of the steel material is adjusted by adjusting the corrosion potential of the steel material, an anticorrosion coated steel material having a lower risk of deterioration than the standard anticorrosion coating layer can be produced.

Claims (2)

基材である鋼材表面に有機被覆を施し防食被覆層を形成してなる防食被覆鋼材の電気防食下および非電気防食下における防食性の判定方法であって、基材である鋼材の腐食電位Eあるいは電気防食電位Eと、鋼材が使用される環境中に含まれる、1価の陽イオンの濃度C、相対的溶存酸素濃度DCおよび防食被覆層の厚さLの関係式として、下記(1)式で定義されるY値を用いて、防食被覆鋼材の防食性を判定することを特徴とする防食被覆鋼材における防食性の判定方法。

Y=|E|C0.15DC/L ‥‥(1)
ここで、E:基材である鋼材の腐食電位(V vs SCE)、なお、電気防食を施す 場合には、電気防食電位(V vs SCE)
C:鋼材が使用される環境中の1価の陽イオン濃度(mol/l)、
DC:飽和溶存酸素濃度に対する、鋼材が使用される環境中の相対的溶存酸素 濃度の割合、
L:防食被覆層の厚さ(mm)
A method for determining the corrosion resistance of an anticorrosion coated steel material obtained by applying an organic coating on the surface of a steel material as a base material to form an anticorrosion coating layer, under the anticorrosion and non-electrocorrosion protection method, wherein the corrosion potential E Alternatively, as a relational expression of the anticorrosion potential E and the monovalent cation concentration C, the relative dissolved oxygen concentration DC, and the thickness L of the anticorrosion coating layer contained in the environment where the steel material is used, the following (1) A method for determining anticorrosion in an anticorrosion-coated steel material, wherein the anticorrosion property of the anticorrosion-coated steel material is determined using a Y value defined by an equation.
Record
Y = | E | C 0.15 DC / L (1)
Here, E: Corrosion potential (V vs SCE) of the steel material that is the base material.
C: monovalent cation concentration (mol / l) in the environment where steel is used,
DC: Ratio of relative dissolved oxygen concentration in the environment where steel is used to saturated dissolved oxygen concentration,
L: Thickness of anticorrosion coating layer (mm)
電気防食下および非電気防食下で使用される防食被覆鋼材の製造方法であって、 基材である鋼材表面に有機被覆を施して防食被覆層を形成してなる防食被覆鋼材を製造するにあたり、請求項1に記載の防食性の判定方法を用いて、
前記防食被覆鋼材が使用される環境に応じて、下記(1)式で定義されるY値が1.0以下となるように、鋼材の腐食電位Eまたは電気防食電位E、防食被覆層の厚さLを調整して、防食被覆層を形成することを特徴とする防食被覆鋼材の製造方法。

Y=|E|C0.15DC/L ‥‥(1)
ここで、E:基材である鋼材の腐食電位(V vs SCE)、なお、電気防食を施す場合 には、電気防食電位(V vs SCE)
C:鋼材が使用される環境中の1価の陽イオン濃度(mol/l)、
DC:飽和溶存酸素濃度に対する、鋼材が使用される環境中の相対的溶存酸素 濃度の割合、
L:防食被覆層の厚さ(mm)
A method for producing an anticorrosion-coated steel material used under cathodic protection and non-electrocorrosion protection, in producing an anticorrosion-coated steel material obtained by forming an anticorrosion coating layer by applying an organic coating on the surface of a steel material as a base material. Using the anticorrosion determination method according to claim 1,
Depending on the environment in which the anticorrosion-coated steel material is used, the corrosion potential E or the anticorrosion potential E of the steel material, the thickness of the anticorrosion coating layer, so that the Y value defined by the following formula (1) is 1.0 or less. A method for producing an anticorrosion-coated steel material, wherein the thickness L is adjusted to form an anticorrosion coating layer.
Record
Y = | E | C 0.15 DC / L (1)
Here, E: Corrosion potential (V vs SCE) of the steel material as a base material.
C: monovalent cation concentration (mol / l) in the environment where steel is used,
DC: Ratio of relative dissolved oxygen concentration in the environment where steel is used to saturated dissolved oxygen concentration,
L: Thickness of anticorrosion coating layer (mm)
JP2011033745A 2011-02-18 2011-02-18 Method for determining anticorrosion property of anticorrosion coated steel material and method for producing anticorrosion coated steel material Active JP5510358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033745A JP5510358B2 (en) 2011-02-18 2011-02-18 Method for determining anticorrosion property of anticorrosion coated steel material and method for producing anticorrosion coated steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033745A JP5510358B2 (en) 2011-02-18 2011-02-18 Method for determining anticorrosion property of anticorrosion coated steel material and method for producing anticorrosion coated steel material

Publications (2)

Publication Number Publication Date
JP2012173060A true JP2012173060A (en) 2012-09-10
JP5510358B2 JP5510358B2 (en) 2014-06-04

Family

ID=46976108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033745A Active JP5510358B2 (en) 2011-02-18 2011-02-18 Method for determining anticorrosion property of anticorrosion coated steel material and method for producing anticorrosion coated steel material

Country Status (1)

Country Link
JP (1) JP5510358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088396B1 (en) 2021-10-01 2022-06-21 マツダ株式会社 Corrosion resistance test method, corrosion resistance test equipment, corrosion resistance test program and recording medium for coated metal materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548229B (en) * 2015-12-08 2018-05-01 国网山东省电力公司电力科学研究院 A kind of detection method for being used to assess shaft tower Several Thiourea Derivatives on Zinc Plate Surface etch state

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197447A (en) * 1981-05-29 1982-12-03 Nisshin Steel Co Ltd Forecasting method of durability of painted metallic material
JPS58139049A (en) * 1982-02-15 1983-08-18 Nippon Paint Co Ltd Immersion testing method and device thereof
JPS5948649A (en) * 1982-09-13 1984-03-19 Nippon Paint Co Ltd Method and apparatus for corrosion resistance evaluation of painted metal
JPH06331531A (en) * 1993-05-20 1994-12-02 Nippon Steel Corp Method of evaluating and testing rapidly durability of polyolefin-coated steel material
JPH095231A (en) * 1995-06-15 1997-01-10 Kawasaki Steel Corp Method for evaluating bond durability of coated steel material
JPH10307118A (en) * 1997-05-06 1998-11-17 Honda Motor Co Ltd Method for testing corrosion-resistance for test body comprising metal material and coat
JPH11337473A (en) * 1998-05-22 1999-12-10 Mitsubishi Electric Corp Test method for corrosion resistance of inner pan for rice cooker
JP2009216652A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Coated film corrosion resistance evaluating device and coated film corrosion resistance evaluating method
JP2010139449A (en) * 2008-12-15 2010-06-24 Jfe Steel Corp Corrosion acceleration test method and corrosion amount prediction method of organic coating steel material for civil engineering
WO2010078548A1 (en) * 2009-01-02 2010-07-08 E. I. Du Pont De Nemours And Company Corrosion resistance evaluator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197447A (en) * 1981-05-29 1982-12-03 Nisshin Steel Co Ltd Forecasting method of durability of painted metallic material
JPS58139049A (en) * 1982-02-15 1983-08-18 Nippon Paint Co Ltd Immersion testing method and device thereof
JPS5948649A (en) * 1982-09-13 1984-03-19 Nippon Paint Co Ltd Method and apparatus for corrosion resistance evaluation of painted metal
JPH06331531A (en) * 1993-05-20 1994-12-02 Nippon Steel Corp Method of evaluating and testing rapidly durability of polyolefin-coated steel material
JPH095231A (en) * 1995-06-15 1997-01-10 Kawasaki Steel Corp Method for evaluating bond durability of coated steel material
JPH10307118A (en) * 1997-05-06 1998-11-17 Honda Motor Co Ltd Method for testing corrosion-resistance for test body comprising metal material and coat
JPH11337473A (en) * 1998-05-22 1999-12-10 Mitsubishi Electric Corp Test method for corrosion resistance of inner pan for rice cooker
JP2009216652A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Coated film corrosion resistance evaluating device and coated film corrosion resistance evaluating method
JP2010139449A (en) * 2008-12-15 2010-06-24 Jfe Steel Corp Corrosion acceleration test method and corrosion amount prediction method of organic coating steel material for civil engineering
WO2010078548A1 (en) * 2009-01-02 2010-07-08 E. I. Du Pont De Nemours And Company Corrosion resistance evaluator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岡田 信宏 他: ""イオン移動と反応を考慮したガルバニック腐食の数値解析モデル"", 鉄と鋼 VOL.95,NO.2, JPN6014007253, 2009, pages 144 - 153, ISSN: 0002751462 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088396B1 (en) 2021-10-01 2022-06-21 マツダ株式会社 Corrosion resistance test method, corrosion resistance test equipment, corrosion resistance test program and recording medium for coated metal materials
JP2023053787A (en) * 2021-10-01 2023-04-13 マツダ株式会社 Corrosion resistance testing method for coated metal material, corrosion resistance testing device, corrosion resistance testing program and recording medium

Also Published As

Publication number Publication date
JP5510358B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
Liu et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution
Park et al. Monitoring of water uptake in organic coatings under cyclic wet–dry condition
JP6565980B2 (en) Corrosion resistance test apparatus for coated metal material and corrosion resistance test method for coated metal material
JP6213426B2 (en) Corrosion resistance evaluation method and corrosion resistance evaluation apparatus for painted metal
Shubina et al. Biomolecules as a sustainable protection against corrosion of reinforced carbon steel in concrete
Vedalakshmi et al. Analysis of the electrochemical phenomenon at the rebar–concrete interface using the electrochemical impedance spectroscopic technique
JP6565979B2 (en) Corrosion resistance test apparatus and corrosion resistance test method for coated metal material
JP2020094881A (en) Corrosion resistance test method for coated metal material
Cai et al. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part I: Corrosion resistance and morphology
Yue et al. Corrosion prevention by applied coatings on aluminum alloys in corrosive environments
JP6061393B2 (en) Degradation state evaluation apparatus, deterioration state evaluation method, and deterioration state evaluation program
JP5510358B2 (en) Method for determining anticorrosion property of anticorrosion coated steel material and method for producing anticorrosion coated steel material
Tang et al. Influence of calcium nitrite on the passive films of rebar in simulated concrete pore solution
JP2010025560A (en) Corrosion resistance evaluating method of metal material
KR101119671B1 (en) Quantitative determination method of coating degradation of buried pipeline by accelerated electrochemical technique
Posner et al. Corrosive delamination and ion transport along stretch-formed thin conversion films on galvanized steel
JP5459035B2 (en) Durability judgment method for coated steel
Echeverría et al. Assessing pretreatment effect on the protective properties of different coating systems against marine corrosion
Mirzaee et al. Corrosion and UV resistant coatings using fluoroethylene vinyl ether polymer
Zhao et al. A Comparative Study of Neat Epoxy Coating and NanoZrO2/Epoxy Coating for Corrosion Protection on Carbon Steel
Ainakulova et al. Analytical Review of Conductive Coatings, Cathodic Protection, and Concrete
Arya et al. Service life of reinforced concrete (RC) systems with cement-polymer-composite (CPC) coated steel rebars
Kannan et al. Performance of a magnesium-rich primer on pretreated AA2024-T351 in selected laboratory and field environments: anodization pretreatment
Gamboa et al. Hydrothermal ageing of X65 steel specimens coated with 100% solids epoxy
Shi et al. Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5510358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150