JP2012172002A - Polyamideimide resin insulating paint and insulated electric wire using the same - Google Patents
Polyamideimide resin insulating paint and insulated electric wire using the same Download PDFInfo
- Publication number
- JP2012172002A JP2012172002A JP2011033125A JP2011033125A JP2012172002A JP 2012172002 A JP2012172002 A JP 2012172002A JP 2011033125 A JP2011033125 A JP 2011033125A JP 2011033125 A JP2011033125 A JP 2011033125A JP 2012172002 A JP2012172002 A JP 2012172002A
- Authority
- JP
- Japan
- Prior art keywords
- aromatic
- resin insulating
- tetracarboxylic dianhydride
- insulating paint
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Paints Or Removers (AREA)
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
Abstract
Description
本発明は、ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線に係り、特に、モータや変圧器等の電気機器のコイル用として好適なポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線に関する。 The present invention relates to a polyamide-imide resin insulating paint and an insulated wire using the same, and more particularly to a polyamide-imide resin insulating paint suitable for a coil of an electric device such as a motor or a transformer and an insulated wire using the same.
一般に、回転電機や変圧器などの電気機器のコイルには、コイルの用途・形状に合致した断面形状(例えば、丸形状や矩形状)を有する金属導体(導体)の周囲に、ポリイミド、ポリアミドイミド、ポリエステルイミド等の樹脂を有機溶剤に溶解させた絶縁塗料を塗布・焼付けして得られる絶縁皮膜を1層又は2層以上形成してなる絶縁被覆層を備えた絶縁電線(エナメル線)が、広く用いられている。 In general, coils of electrical equipment such as rotating electrical machines and transformers have polyimide or polyamideimide around a metal conductor (conductor) having a cross-sectional shape (for example, round shape or rectangular shape) that matches the purpose and shape of the coil. An insulated wire (enameled wire) provided with an insulating coating layer formed by forming one or more insulating films obtained by applying and baking an insulating paint in which a resin such as polyesterimide is dissolved in an organic solvent, Widely used.
回転電機や変圧器などの電気機器は、インバータ制御にて駆動されるようになってきており、このようなインバータ制御を用いた電気機器では、インバータ制御により高いインバータサージ電圧(サージ電圧)が発生してしまう虞がある。このようにインバータサージ電圧が電気機器に発生した場合、電気機器のコイルを構成する絶縁電線に、このインバータサージ電圧に起因して部分放電が発生し、絶縁皮膜が劣化・損傷することがある。 Electrical equipment such as rotating electrical machines and transformers are driven by inverter control, and in electrical equipment using such inverter control, high inverter surge voltage (surge voltage) is generated by inverter control. There is a risk of it. Thus, when an inverter surge voltage is generated in an electric device, a partial discharge may occur in the insulated wire constituting the coil of the electric device due to the inverter surge voltage, and the insulating film may be deteriorated or damaged.
部分放電の発生に起因する絶縁皮膜の劣化は、絶縁皮膜内に存在する微小な空隙に起因するものである。部分放電による絶縁皮膜の劣化を受けにくくする手段として、例えばシリカ、アルミナ、酸化チタン等の無機微粒子、もしくはこれらの無機微粒子を分散溶媒に分散させたオルガノゾルを、樹脂塗料中に分散させた絶縁塗料を導体上に塗布し、焼付けして絶縁皮膜を形成した絶縁電線が知られている(例えば、特許文献1,2参照)。 The deterioration of the insulating film due to the occurrence of partial discharge is attributed to minute voids existing in the insulating film. Insulating paint in which inorganic fine particles such as silica, alumina, titanium oxide or the like, or an organosol in which these inorganic fine particles are dispersed in a dispersion solvent, are dispersed in a resin paint as means for making the insulating film less susceptible to partial discharge. Insulated electric wires are known in which an insulating film is formed by coating and baking on a conductor (see, for example, Patent Documents 1 and 2).
また、インバータサージ電圧による絶縁皮膜の劣化を防ぐための別の方法として、例えば、3つ以上の芳香環を有する芳香族ジアミン成分と、酸成分とを含有する芳香族イミドプレポリマーに、2つ以下の芳香環を有する芳香族ジイソシアネート成分を混合してなるポリアミドイミド樹脂絶縁塗料を導体上に塗布し、焼付けして絶縁皮膜を形成した絶縁電線が知られている(例えば、特許文献3参照)。特許文献3では、このようなポリアミドイミド樹脂絶縁塗料を用いることで、比誘電率の低い絶縁皮膜が得られ、部分放電開始電圧(PDIV:Partial Discharge Inception Voltage)の高い絶縁電線が得られるとされている。 As another method for preventing the deterioration of the insulating film due to the inverter surge voltage, for example, two aromatic imide prepolymers containing an aromatic diamine component having three or more aromatic rings and an acid component are used. An insulated wire is known in which an insulating coating is formed by applying a polyamideimide resin insulating paint obtained by mixing an aromatic diisocyanate component having the following aromatic ring onto a conductor and baking it (see, for example, Patent Document 3). . In Patent Document 3, by using such a polyamide-imide resin insulating paint, an insulating film having a low relative dielectric constant can be obtained, and an insulated electric wire having a high partial discharge initiation voltage (PDIV) can be obtained. ing.
近年では、省エネ等を背景にハイブリッド自動車等が普及し始めており、このような用途に使用される電気機器は、ハイブリッド自動車等の燃費改善や動力性能向上のために小型、高電圧駆動が望まれているため、従来よりも高電圧でインバータ制御される。このため、最近の絶縁電線には、部分放電を発生させないようにするために従来よりも高い部分放電開始電圧を有することが求められている。 In recent years, hybrid vehicles and the like have begun to spread against the background of energy savings, etc., and electrical devices used for such applications are desired to be small and high-voltage driven in order to improve fuel efficiency and power performance of hybrid vehicles and the like. Therefore, inverter control is performed at a higher voltage than before. For this reason, recent insulated wires are required to have a higher partial discharge starting voltage than before in order to prevent partial discharge from occurring.
また、最近では、湿度の変化によらず部分放電開始電圧がほぼ安定な絶縁皮膜を有する絶縁電線が求められている。 Recently, there has been a demand for an insulated wire having an insulating film in which the partial discharge start voltage is almost stable regardless of changes in humidity.
そこで本発明の目的は、常温で従来と同等以上の部分放電開始電圧を有すると共に高湿度環境下でも部分放電開始電圧が低下しにくい絶縁皮膜が得られるポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線を提供することにある。 Accordingly, an object of the present invention is to provide a polyamide-imide resin insulating paint that has a partial discharge start voltage equal to or higher than that of the conventional one at room temperature, and can obtain an insulating film in which the partial discharge start voltage is less likely to decrease even in a high humidity environment, and insulation using the same. It is to provide electric wires.
上記課題を解決するために創案された本発明は、芳香族トリカルボン酸無水物(A)及び芳香族テトラカルボン酸二無水物(B)からなる酸成分と、ジアミン成分(C)と、を反応させて得られるプレポリマーに、イソシアネート成分(D)を混合してなり、前記芳香族トリカルボン酸無水物(A)と前記芳香族テトラカルボン酸二無水物(B)との配合比率がモル比率で(A)/(B)=50/50〜10/90であるポリアミドイミド樹脂絶縁塗料である。 The present invention, which was created to solve the above problems, reacts an acid component comprising an aromatic tricarboxylic acid anhydride (A) and an aromatic tetracarboxylic dianhydride (B) with a diamine component (C). The prepolymer obtained by mixing the isocyanate component (D) with a molar ratio of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B). (A) / (B) = polyamideimide resin insulating paint with 50/50 to 10/90.
前記ジアミン成分(C)と、前記芳香族トリカルボン酸無水物(A)及び前記芳香族テトラカルボン酸二無水物(B)からなる酸成分との配合比率が、モル比率で(C)/((A)+(B))=75/100〜95/100であるとよい。 The mixing ratio of the diamine component (C) and the acid component comprising the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B) is (C) / (( A) + (B)) = 75/100 to 95/100.
前記芳香族テトラカルボン酸二無水物(B)は、重量平均分子量が350以下であるとよい。 The aromatic tetracarboxylic dianhydride (B) may have a weight average molecular weight of 350 or less.
前記ジアミン成分(C)は、重量平均分子量が350以上であるとよい。 The diamine component (C) may have a weight average molecular weight of 350 or more.
前記芳香族トリカルボン酸無水物(A)及び前記芳香族テトラカルボン酸二無水物(B)からなる酸成分と前記ジアミン成分(C)を反応させて得られるプレポリマーが共沸溶剤の存在下で、合成されるとよい。 In the presence of an azeotropic solvent, a prepolymer obtained by reacting the acid component composed of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B) with the diamine component (C). Synthesize.
また、本発明は、前記ポリアミドイミド樹脂絶縁塗料を導体上あるいは他の皮膜上に塗布、焼付けして形成された絶縁皮膜を有する絶縁電線である。 Moreover, this invention is an insulated wire which has the insulating film formed by apply | coating and baking the said polyamidoimide resin insulating coating material on a conductor or another film | membrane.
本発明によれば、従来と同等以上の部分放電開始電圧を有すると共に高湿度環境下でも部分放電開始電圧が低下しにくい絶縁皮膜が得られるポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線を提供することができる。 According to the present invention, there is provided a polyamide-imide resin insulating paint that has a partial discharge start voltage equal to or higher than that of a conventional one and is capable of obtaining an insulating film in which the partial discharge start voltage is hardly lowered even in a high humidity environment, and an insulated wire using the same. can do.
[実施の形態の要約]
本発明では、絶縁皮膜に水分が取り込まれることにより絶縁皮膜としての誘電率が上昇して部分放電開始電圧が低下することから、湿度によらずほぼ安定な部分放電開始電圧とするには吸湿率の少ない絶縁皮膜が必要となることに着目した。
[Summary of embodiment]
In the present invention, since moisture is taken into the insulation film, the dielectric constant as the insulation film increases and the partial discharge start voltage decreases. We paid attention to the need for an insulating film with a small amount of insulation.
そして、本発明は、このような絶縁皮膜を形成する塗料として、芳香族トリカルボン酸無水物(A)及び芳香族テトラカルボン酸二無水物(B)からなる酸成分と、ジアミン成分(C)と、を反応させて得られるプレポリマーに、イソシアネート成分(D)を混合してなり、芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)との配合比率がモル比率で(A)/(B)=50/50〜10/90であるポリアミドイミド樹脂絶縁塗料を採用したことにより、ポリアミドイミド樹脂の繰り返し単位あたりのアミド基濃度を減少させると共にイミド基濃度を増加させることができる。すなわち、アミド基に比べてイミド基の方が、極性が小さいことに鑑み、ポリアミドイミド樹脂の繰り返し単位に含まれるイミド基の数を増加させ、アミド基の数を小さくすることで吸湿率を下げ、湿度によらず部分放電の発生をより良く抑制することができる。 And this invention, as a coating material which forms such an insulating film, the acid component which consists of aromatic tricarboxylic anhydride (A) and aromatic tetracarboxylic dianhydride (B), diamine component (C), The isocyanate component (D) is mixed with the prepolymer obtained by reacting, and the mixing ratio of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B) is a molar ratio. (A) / (B) = 50/50 to 10/90, the polyamideimide resin insulation coating is employed, thereby reducing the amide group concentration per repeating unit of the polyamideimide resin and increasing the imide group concentration. be able to. In other words, in view of the fact that the imide group is less polar than the amide group, the hygroscopic rate is lowered by increasing the number of imide groups contained in the repeating unit of the polyamide-imide resin and decreasing the number of amide groups. The occurrence of partial discharge can be better suppressed regardless of humidity.
その結果、高湿雰囲気下においても部分放電開始電圧が低下しにくい絶縁電線を提供することができる。 As a result, it is possible to provide an insulated wire in which the partial discharge start voltage is unlikely to decrease even in a high humidity atmosphere.
以下、本発明におけるポリアミドイミド樹脂絶縁塗料の好適な一実施の形態を詳述する。 Hereinafter, a preferred embodiment of the polyamide-imide resin insulating paint in the present invention will be described in detail.
本発明は、芳香族トリカルボン酸無水物(A)及び芳香族テトラカルボン酸二無水物(B)からなる酸成分と、ジアミン成分(C)と、を反応させて得られるプレポリマーに、イソシアネート成分(D)を混合してなり、芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)との配合比率がモル比率で(A)/(B)=50/50〜10/90であるポリアミドイミド樹脂絶縁塗料である。 In the present invention, an isocyanate component is added to a prepolymer obtained by reacting an acid component comprising an aromatic tricarboxylic acid anhydride (A) and an aromatic tetracarboxylic dianhydride (B) with a diamine component (C). (D) is mixed, and the blending ratio of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B) is (A) / (B) = 50 / 50- It is a polyamide-imide resin insulating paint that is 10/90.
本発明の合成、塗料に用いる溶剤としては、N−メチル−2−ピロリドン(NMP)や、γ−ブチロラクトン、N,N−ジメチルアセトアミド(DMAC)、N,N−ジメチルホルムアミド(DMF)、ジメチルイミダゾリジノン(DMI)、シクロヘキサノン、メチルシクロヘキサノンなどのポリアミドイミド樹脂の合成反応を阻害しない溶剤を併用して合成しても良いし、希釈しても良い。 Examples of the solvent used for the synthesis and coating of the present invention include N-methyl-2-pyrrolidone (NMP), γ-butyrolactone, N, N-dimethylacetamide (DMAC), N, N-dimethylformamide (DMF), and dimethylimidazo. It may be synthesized in combination with a solvent that does not inhibit the synthesis reaction of polyamideimide resin such as lydinone (DMI), cyclohexanone, methylcyclohexanone, or may be diluted.
また、希釈用途として芳香族アルキルベンゼン類などを併用しても良い。但し、ポリアミドイミド樹脂の溶解性を低下させる虞がある場合は考慮する必要がある。 Moreover, you may use together aromatic alkylbenzenes etc. for a dilution use. However, it is necessary to consider when there is a possibility of lowering the solubility of the polyamideimide resin.
酸成分の芳香族トリカルボン酸無水物(A)としてトリメリット酸無水物(TMA)がある。その他ベンゾフェノントリカルボン酸無水物などの芳香族トリカルボン酸無水物類、これらの水添化合物も使用することが可能であるが、TMAが最も好適である。 There is trimellitic anhydride (TMA) as the aromatic tricarboxylic acid anhydride (A) of the acid component. In addition, aromatic tricarboxylic acid anhydrides such as benzophenone tricarboxylic acid anhydride and hydrogenated compounds thereof can be used, but TMA is most preferable.
芳香族テトラカルボン酸二無水物(B)としては、ピロメリット酸(PMDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’−オキシジフタル酸二無水物(ODPA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)などが例示され、また必要に応じ、ブタンテトラカルボン酸二無水物や5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸、或いは上記例示したテトラカルボン酸二無水物を水添した脂環式テトラカルボン酸二無水物類等を併用しても良い。なお、本発明の効果を効率よく得るために、芳香族テトラカルボン酸二無水物(B)として4,4’−オキシジフタル酸二無水物(ODPA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)などのような重量平均分子量(Mw)が350以下のものを用いるとよい。 As aromatic tetracarboxylic dianhydride (B), pyromellitic acid (PMDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4 '-Diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4'-oxydiphthalic dianhydride (ODPA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 4,4 ' -(2,2-hexafluoroisopropylidene) diphthalic dianhydride (6FDA) and the like, and butanetetracarboxylic dianhydride and 5- (2,5-dioxotetrahydro-3- Furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid, or alicyclic tetracarboxylic dianhydrides hydrogenated with the above exemplified tetracarboxylic dianhydrides, etc. It may be use. In order to efficiently obtain the effects of the present invention, 4,4′-oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone is used as the aromatic tetracarboxylic dianhydride (B). A material having a weight average molecular weight (Mw) of 350 or less such as tetracarboxylic dianhydride (BTDA) may be used.
ジアミン成分(C)としては、1,4−ジアミノベンゼン(PPD)、1,3−ジアミノベンゼン(MPD)、4,4’−ジアミノジフェニルメタン(DAM)、4,4’−ジアミノジフェニルエーテル(ODA)、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ビス(4−アミノフェニル)スルフィド、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノベンズアニリド、9,9−ビス(4−アミノフェニル)フルオレン(FDA)、1,4−ビス(4−アミノフェノキシ)ベンゼン(TPE−Q)、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)、ビス[4−(4−アミノフェノキシ)フェニル]スルホン(BAPS)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)などが例示される。また、上記例示したジアミン成分の水添化合物やハロゲン化物、異性体なども使用、併用して良い。また、ジアミン成分(C)としては、重量平均分子量(Mw)が350以上のものを用いるとよい。 As the diamine component (C), 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 4,4′-diaminodiphenylmethane (DAM), 4,4′-diaminodiphenyl ether (ODA), 3,3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), 2,2′-bis (trifluoromethyl) -4,4 '-Diaminobiphenyl, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-bis (4-aminophenyl) sulfide, 4,4'-diaminodiphenyl sulfone, 4,4'-diamino Benzanilide, 9,9-bis (4-aminophenyl) fluorene (FDA), 1,4-bis (4-aminophenoxy) benzene (T EQ), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 4,4′-bis (4-aminophenoxy) biphenyl, 2,2-bis (4-aminophenoxyphenyl) propane (BAPP), bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (HFBAPP) and the like are exemplified. In addition, hydrogenated compounds, halides, isomers, and the like of the diamine components exemplified above may be used or used in combination. Moreover, as a diamine component (C), it is good to use a thing with a weight average molecular weight (Mw) of 350 or more.
なお、誘電率を低下させる方法では、ポリアミドイミド樹脂に含まれるアミド基とイミド基の存在が最も誘電率上昇に影響を与える。これらアミド基とイミド基の樹脂中の繰り返し単位に含まれる濃度を小さくすることで低誘電率化することができ、部分放電開始電圧の向上に対して有効な手段となっている。例えば、分子量の大きなモノマーを用いることで低誘電率化の効果が得られる。 In the method of reducing the dielectric constant, the presence of amide groups and imide groups contained in the polyamide-imide resin has the greatest effect on the increase of the dielectric constant. By reducing the concentration of these amide groups and imide groups contained in the repeating unit in the resin, the dielectric constant can be reduced, which is an effective means for improving the partial discharge starting voltage. For example, the effect of lowering the dielectric constant can be obtained by using a monomer having a large molecular weight.
特に、本発明では、重量平均分子量(Mw)が350以上のジアミン成分(C)を用いることが部分放電開始電圧の向上の効果を効率良く得るのに好ましい。 In particular, in the present invention, it is preferable to use a diamine component (C) having a weight average molecular weight (Mw) of 350 or more in order to efficiently obtain the effect of improving the partial discharge starting voltage.
イソシアネート成分(D)としては、上記の4,4’−ジフェニルメタンジイソシアネート(MDI)の他、汎用的に使用されているトリレンジイソシアネート(TDI)、ナフタレンジイソシアネート、キシリレンジイソシアネート、ビフェニルジイソシアネート、ジフェニルスルホンジイソシアネート、ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネート及び異性体、多量体が例示される。また必要に応じ、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどの脂肪族ジイソシアネート類、或いは上記例示した芳香族ジイソシアネートを水添した脂環式ジイソシアネート類及び異性体も使用、併用しても良い。 As the isocyanate component (D), in addition to the above 4,4′-diphenylmethane diisocyanate (MDI), general-purpose tolylene diisocyanate (TDI), naphthalene diisocyanate, xylylene diisocyanate, biphenyl diisocyanate, diphenyl sulfone diisocyanate And aromatic diisocyanates such as diphenyl ether diisocyanate, isomers, and multimers. If necessary, aliphatic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, or alicyclic diisocyanates and isomers obtained by hydrogenating the aromatic diisocyanates exemplified above may be used or used together.
また、イソシアネート成分(D)として、2,2−ビス[4−(4−イソシアネートフェノキシ)フェニル]プロパン(BIPP)、ビス[4−(4−イソシアネートフェノキシ)フェニル]スルホン(BIPS)、ビス[4−(4−イソシアネートフェノキシ)フェニル]エーテル(BIPE)、フルオレンジイソシアネート(FDI)、4,4’−ビス(4−イソシアネートフェノキシ)ビフェニル、1,4−ビス(4−イソシアネートフェノキシ)ベンゼン等があり、これらの異性体も含まれる。これらの製造方法については特に限定されるものではないが、ホスゲンを用いた方法が工業的に最も適当であり、望ましい。 As the isocyanate component (D), 2,2-bis [4- (4-isocyanatophenoxy) phenyl] propane (BIPP), bis [4- (4-isocyanatophenoxy) phenyl] sulfone (BIPS), bis [4 -(4-isocyanatophenoxy) phenyl] ether (BIPE), full orange isocyanate (FDI), 4,4'-bis (4-isocyanatophenoxy) biphenyl, 1,4-bis (4-isocyanatophenoxy) benzene, etc. These isomers are also included. These production methods are not particularly limited, but a method using phosgene is industrially most suitable and desirable.
脂環式原料を併用すると誘電率低減や樹脂組成物の透明性向上への効果が期待されるため、必要に応じ併用しても良いが、耐熱性低下を招く虞があるため、配合量や化学構造には配慮が必要である。 When combined with an alicyclic raw material, the effect of reducing the dielectric constant and improving the transparency of the resin composition is expected, so it may be used together as necessary, but there is a possibility of causing a decrease in heat resistance. Care must be taken in the chemical structure.
芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)との配合比率はモル比率で(A)/(B)=50/50〜10/90が望ましい。なお、「(A)/(B)=50/50〜10/90」は、「50/50以下、10/90以上」を示す。 The mixing ratio of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B) is preferably (A) / (B) = 50/50 to 10/90 in terms of molar ratio. “(A) / (B) = 50/50 to 10/90” indicates “50/50 or less, 10/90 or more”.
芳香族トリカルボン酸無水物(A)の芳香族テトラカルボン酸二無水物(B)に対する配合比率がモル比率で50/50より大きいと、芳香族トリカルボン酸無水物(A)由来のカルボン酸の数がより多くなり、繰り返し単位あたりのアミド基濃度が増加し、吸湿率の増加や部分放電開始電圧の低下が起こる。また、芳香族トリカルボン酸無水物(A)の芳香族テトラカルボン酸二無水物(B)に対する配合比率がモル比率で10/90より小さいと、繰り返し単位あたりの閉環イミド基濃度がより増加し、ポリアミドイミド樹脂の溶解性が低下しゲル化を招く。すなわち、絶縁皮膜を形成するのに好適な絶縁塗料が得られない場合がある。 When the mixing ratio of the aromatic tricarboxylic acid anhydride (A) to the aromatic tetracarboxylic dianhydride (B) is larger than 50/50 in terms of molar ratio, the number of carboxylic acids derived from the aromatic tricarboxylic acid anhydride (A) Increases, the amide group concentration per repeating unit increases, and the moisture absorption rate increases and the partial discharge start voltage decreases. Moreover, when the blending ratio of the aromatic tricarboxylic acid anhydride (A) to the aromatic tetracarboxylic dianhydride (B) is less than 10/90 in terms of molar ratio, the concentration of the ring-closing imide group per repeating unit is further increased. The solubility of the polyamide-imide resin is lowered, causing gelation. That is, an insulating paint suitable for forming an insulating film may not be obtained.
芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)との配合比に関し、さらには(A)/(B)=40.0/60.0〜10/90が好ましい。なお、「(A)/(B)=40.0/60.0〜10/90」は、「40.0/60.0以下、10/90以上」を示す。 Regarding the blending ratio of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B), (A) / (B) = 40.0 / 60.0 to 10/90 is more preferable. . “(A) / (B) = 40.0 / 60.0 to 10/90” indicates “40.0 / 60.0 or less, 10/90 or more”.
ジアミン成分(C)と、芳香族トリカルボン酸無水物(A)及び芳香族テトラカルボン酸二無水物(B)からなる酸成分との配合比率が、(C)/((A)+(B))=75/100〜95/100(75/100以上、95/100以下)であることが望ましい。なお、上記配合比率の範囲において、ジアミン成分(C)の配合モル量は芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)の配合量で決定され、芳香族トリカルボン酸無水物(A)のモル量の半分量と芳香族テトラカルボン酸二無水物(B)のモル量の合計((A)/2+(B))が望ましい。この配合比率の範囲を逸脱すると、芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)の酸成分またはジアミン成分(C)がプレポリマー中に残存し、その後のイソシアネート成分(D)との反応を妨げるおそれがある。 The mixing ratio of the diamine component (C) and the acid component comprising the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B) is (C) / ((A) + (B) ) = 75/100 to 95/100 (75/100 or more, 95/100 or less). In the range of the above blending ratio, the blending molar amount of the diamine component (C) is determined by the blending amount of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B), and the aromatic tricarboxylic acid. The total amount ((A) / 2 + (B)) of half the molar amount of the acid anhydride (A) and the molar amount of the aromatic tetracarboxylic dianhydride (B) is desirable. When deviating from this blending ratio range, the acid component or diamine component (C) of the aromatic tricarboxylic acid anhydride (A) and the aromatic tetracarboxylic dianhydride (B) remains in the prepolymer, and the subsequent isocyanate There is a risk of hindering reaction with the component (D).
ポリアミドイミド樹脂は、芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)及びジアミン成分(C)を反応させて得られるプレポリマーより合成される。このプレポリマー合成時には酸無水物とアミンからのイミド化を行うため脱水が起こり、系内に水分が増加する。この水分は芳香族トリカルボン酸無水物(A)や芳香族テトラカルボン酸二無水物(B)の酸無水物と反応しカルボン酸となり、重合に大きく影響する。そのため、プレポリマーは、共沸溶剤(共沸溶媒)の存在下で合成を行うことが望ましい。 The polyamideimide resin is synthesized from a prepolymer obtained by reacting an aromatic tricarboxylic acid anhydride (A), an aromatic tetracarboxylic dianhydride (B), and a diamine component (C). During the synthesis of the prepolymer, dehydration occurs due to imidization from an acid anhydride and an amine, and moisture increases in the system. This moisture reacts with the acid anhydride of aromatic tricarboxylic acid anhydride (A) or aromatic tetracarboxylic dianhydride (B) to form carboxylic acid, which greatly affects the polymerization. Therefore, it is desirable to synthesize the prepolymer in the presence of an azeotropic solvent (azeotropic solvent).
イミド基濃度を増加させたポリアミドイミド樹脂は、合成の際にイミド化で発生する水がより多く系内に残り酸無水物と反応する。そのためポリアミドイミド樹脂の重合を著しく妨げ、イミド基濃度増加には限界があった。しかし、本発明では、プレポリマーを共沸溶剤の存在下で合成することにより、イミド化により発生する水分を系外に除去することができ、よりイミド基濃度を上げアミド基濃度を下げたポリアミドイミド樹脂を得ることができる。 The polyamide-imide resin having an increased imide group concentration has more water generated by imidization during synthesis and remains in the system and reacts with the acid anhydride. Therefore, the polymerization of the polyamide-imide resin is remarkably hindered, and there is a limit to increase the imide group concentration. However, in the present invention, by synthesizing a prepolymer in the presence of an azeotropic solvent, moisture generated by imidization can be removed out of the system, and a polyamide having a higher imide group concentration and a lower amide group concentration can be obtained. An imide resin can be obtained.
共沸溶媒としては、トルエン、キシレンなど水と共沸可能な溶剤を使用、併用することが可能である。これらを合成の主溶剤の10%程度加え、還流冷却器、水分定量受器などを取り付けた合成系にて、共沸脱水を行いながらプレポリマーの合成を行うことが望ましい。 As the azeotropic solvent, it is possible to use and use a solvent that can be azeotroped with water, such as toluene and xylene. It is desirable to synthesize a prepolymer while adding azeotropic dehydration in a synthesis system in which about 10% of the main solvent for synthesis is added and a reflux condenser, a moisture metering receiver, and the like are attached.
このプレポリマーにイソシアネート成分(D)を反応させて合成を行い、さらに溶剤を加えて撹拌し、ポリアミドイミド樹脂絶縁塗料を得る。 Synthesis is performed by reacting the isocyanate component (D) with this prepolymer, and a solvent is further added and stirred to obtain a polyamideimide resin insulating paint.
こうして得られたポリアミドイミド樹脂絶縁塗料を、銅などの導体上あるいは他の皮膜上に塗布、焼付けすることで絶縁皮膜を形成し、絶縁電線を得ることができる。導体には丸線、平角線など多様な形状を用いることができ、また、フィルム、基板上にも塗布、焼付けすることで絶縁皮膜を得ることができる。 By applying and baking the thus obtained polyamideimide resin insulating paint on a conductor such as copper or another film, an insulating film can be formed to obtain an insulated wire. Various shapes such as a round wire and a flat wire can be used for the conductor, and an insulating film can be obtained by coating and baking on a film and a substrate.
また、この絶縁皮膜の上下には密着性向上のための密着層など他の皮膜を用いても良く、また絶縁皮膜の上に自己融着層を設けても良い。 In addition, other films such as an adhesion layer for improving adhesion may be used above and below the insulating film, and a self-bonding layer may be provided on the insulating film.
以上要するに、本発明によれば、アミドイミド樹脂の繰り返し単位に含まれるイミド基の数を増加させ、アミド基の数を少なくすることで、吸湿率の少ない絶縁皮膜を形成でき、高湿雰囲気下においても部分放電開始電圧が低下しにくい絶縁電線が得られる。 In short, according to the present invention, by increasing the number of imide groups contained in the repeating unit of the amide-imide resin and reducing the number of amide groups, an insulating film with a low moisture absorption rate can be formed, and in a high-humidity atmosphere. As a result, an insulated wire in which the partial discharge start voltage is hardly lowered can be obtained.
実施例1〜6及び比較例1〜4について説明する。 Examples 1 to 6 and Comparative Examples 1 to 4 will be described.
(実施例1〜6に係るポリアミドイミド樹脂絶縁塗料の合成方法)
撹拌機、還流冷却器、窒素流入管、温度計、水分定量受器を取り付けたフラスコを用意し、第1段目の合成反応として、ジアミン成分(C)と、酸成分の芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)、及び主溶剤の50〜80%と、主溶剤の10%の共沸溶剤を投入し、窒素雰囲気中で撹拌しながら180℃まで加熱し、脱水反応により生成された水を系外に出しながら、この温度で4時間反応させた。窒素雰囲気を維持したまま60℃まで冷却した後、ジイソシアネート成分(D)を投入し、第2段目の合成反応として、窒素雰囲気で撹拌しながら140℃まで加熱し約1時間反応させた。粘度が十分上がったのを確認した後、モル比で酸成分の2%程度のベンジルアルコールと主溶剤の残りを投入し、140℃で30分撹拌することで反応を停止させた。これによりポリアミドイミド樹脂絶縁塗料が得られる。
(Synthesis method of polyamideimide resin insulating paint according to Examples 1 to 6)
Prepare a flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, moisture meter, and diamine component (C) and acid component aromatic tricarboxylic acid anhydride as the first stage synthesis reaction Product (A), aromatic tetracarboxylic dianhydride (B), 50-80% of the main solvent, and 10% of the main solvent azeotropic solvent are added up to 180 ° C. with stirring in a nitrogen atmosphere. The mixture was heated and reacted at this temperature for 4 hours while removing water produced by the dehydration reaction. After cooling to 60 ° C. while maintaining the nitrogen atmosphere, the diisocyanate component (D) was added, and as a second stage synthesis reaction, the mixture was heated to 140 ° C. with stirring in a nitrogen atmosphere and reacted for about 1 hour. After confirming that the viscosity was sufficiently increased, benzyl alcohol having a molar ratio of about 2% of the acid component and the remainder of the main solvent were added and the reaction was stopped by stirring at 140 ° C. for 30 minutes. Thereby, a polyamide-imide resin insulating paint is obtained.
(比較例1に係るポリアミドイミド樹脂絶縁塗料の合成方法)
撹拌機、還流冷却器、窒素流入管、温度計、水分定量受器を取り付けたフラスコを用意し、ジイソシアネート成分(D)、酸成分の芳香族トリカルボン酸無水物(A)、及び溶剤を投入し、窒素雰囲気中で撹拌しながら140℃まで加熱し約1時間反応させた。粘度が十分上がったのを確認した後、モル比で酸成分の2%程度のベンジルアルコールと溶剤の残りを投入し、140℃で30分撹拌することで反応を停止させた。これによりポリアミドイミド樹脂絶縁塗料が得られる。
(Synthesis Method of Polyamideimide Resin Insulating Paint According to Comparative Example 1)
Prepare a flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, moisture meter, and add diisocyanate component (D), acid component aromatic tricarboxylic acid anhydride (A), and solvent. The mixture was heated to 140 ° C. with stirring in a nitrogen atmosphere and reacted for about 1 hour. After confirming that the viscosity was sufficiently increased, benzyl alcohol having a molar ratio of about 2% of the acid component and the remainder of the solvent were added, and the reaction was stopped by stirring at 140 ° C. for 30 minutes. Thereby, a polyamide-imide resin insulating paint is obtained.
(比較例2〜4に係るポリアミドイミド樹脂絶縁塗料の合成方法)
撹拌機、還流冷却器、窒素流入管、温度計、水分定量受器を取り付けたフラスコを用意し、第1段目の合成反応として、ジアミン成分(C)と、酸成分の芳香族トリカルボン酸無水物(A)と芳香族テトラカルボン酸二無水物(B)、及び主溶剤の50〜80%を投入し、窒素雰囲気中で撹拌しながら180℃まで加熱し、脱水反応により生成された水を系外に出しながら、この温度で4時間反応させた。窒素雰囲気を維持したまま60℃まで冷却した後、ジイソシアネート成分(D)を投入し、第2段目の合成反応として、窒素雰囲気中で撹拌しながら140℃まで加熱し約1時間反応させた。粘度が十分上がったのを確認した後、モル比で酸成分の2%程度のベンジルアルコールと溶剤の残りを投入し、140℃で30分撹拌することで反応を停止させた。これによりポリアミドイミド樹脂絶縁塗料が得られる。
(Synthesis method of polyamideimide resin insulating paint according to Comparative Examples 2 to 4)
Prepare a flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, moisture meter, and diamine component (C) and acid component aromatic tricarboxylic acid anhydride as the first stage synthesis reaction The product (A), the aromatic tetracarboxylic dianhydride (B), and 50 to 80% of the main solvent are added, heated to 180 ° C. with stirring in a nitrogen atmosphere, and the water produced by the dehydration reaction is removed. The reaction was carried out at this temperature for 4 hours while leaving the system. After cooling to 60 ° C. while maintaining the nitrogen atmosphere, the diisocyanate component (D) was added, and as a second stage synthesis reaction, the mixture was heated to 140 ° C. with stirring in a nitrogen atmosphere and allowed to react for about 1 hour. After confirming that the viscosity was sufficiently increased, benzyl alcohol having a molar ratio of about 2% of the acid component and the remainder of the solvent were added, and the reaction was stopped by stirring at 140 ° C. for 30 minutes. Thereby, a polyamide-imide resin insulating paint is obtained.
また、このポリアミドイミド樹脂絶縁塗料を直径0.8mmの導体上に塗布、焼付けし、皮膜厚40μmの絶縁皮膜を有するエナメル線を得た。 Further, this polyamideimide resin insulating coating was applied onto a conductor having a diameter of 0.8 mm and baked to obtain an enameled wire having an insulating film with a film thickness of 40 μm.
実施例1〜6及び比較例1〜4で使用した各成分やその配合比、得られたエナメル線の特性等を表1,2に示す。 Tables 1 and 2 show the components used in Examples 1 to 6 and Comparative Examples 1 to 4, their blend ratios, the properties of the enamel wires obtained, and the like.
(部分放電開始電圧測定)
エナメル線を500mmに切り出し、ツイストペアのエナメル線の試料を作製し、端部から10mmの位置まで絶縁皮膜を削って端末処理部を形成した。測定は、部分放電自動試験システム(総研電気(株)社製 DAC−PD−3)を用いて、端末処理部に電極を接続し、温度25℃、湿度50%の雰囲気で、50Hzの電圧を10〜30V/sの割合で昇圧させながら、ツイストペアのエナメル線に100pCの放電が50回/秒で発生したときの電圧を測定した。これを3回繰り返してそれぞれ測定した電圧の値の平均値を部分放電開始電圧とした。
(Partial discharge start voltage measurement)
The enameled wire was cut into 500 mm, a twisted pair enameled wire sample was prepared, and the insulating film was cut to a position 10 mm from the end portion to form a terminal processing portion. Measurement is performed using a partial discharge automatic test system (DAC-PD-3, manufactured by Soken Denki Co., Ltd.) with an electrode connected to the terminal processing unit, and a voltage of 50 Hz is applied in an atmosphere at a temperature of 25 ° C. and a humidity of 50%. While increasing the voltage at a rate of 10 to 30 V / s, the voltage was measured when 100 pC discharge was generated at 50 times / second on the enameled wire of the twisted pair. This was repeated three times, and the average value of the measured voltage values was defined as the partial discharge start voltage.
(吸湿率測定)
直径が25mmの丸棒にエナメル線を30ターン巻付けコイル状のサンプルを作製し、当該サンプルを恒温槽中で100℃×15分の条件でキュアを行った。次に、恒温槽から取り出した直後のサンプルの初期重量を測定した後、40℃×95%RHの恒温恒湿槽に保存した。24時間後、恒温恒湿槽内のサンプルを取り出した後の重量を測定した。その後、サンプルを400℃の水酸化ナトリウムに4分浸漬させて絶縁皮膜を除去し、水で洗い流した後に、残った導体の重量を測定して、サンプルの絶縁皮膜の重量差から吸湿率を算出した。
(Measurement of moisture absorption rate)
A coiled sample was prepared by winding a 30 mm turn of an enamel wire on a round bar having a diameter of 25 mm, and the sample was cured in a constant temperature bath at 100 ° C. for 15 minutes. Next, after the initial weight of the sample immediately after taking out from the thermostat was measured, it was stored in a thermostatic oven of 40 ° C. × 95% RH. After 24 hours, the weight after taking out the sample in the constant temperature and humidity chamber was measured. After that, the sample was immersed in sodium hydroxide at 400 ° C for 4 minutes to remove the insulating film, rinsed with water, then the weight of the remaining conductor was measured, and the moisture absorption rate was calculated from the weight difference of the sample insulating film. did.
(実施例1)
第1段目の合成として、ジアミン成分(C)としてBAPP307.7g(0.75モル)、トリカルボン酸無水物(A)としてTMA96.1g(0.5モル)とテトラカルボン酸二無水物(B)としてODPA156.0g(0.5モル)及び溶剤として1051gのNMPと共沸溶剤として105.1gのキシレンとを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として62.6g(0.25モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP451gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
Example 1
As the synthesis of the first stage, 307.7 g (0.75 mol) of BAPP as diamine component (C), 96.1 g (0.5 mol) of TMA as tricarboxylic acid anhydride (A) and tetracarboxylic dianhydride (B ) ODPA 156.0 g (0.5 mol), 1051 g of NMP as a solvent and 105.1 g of xylene as an azeotropic solvent were added, and synthesis was performed while taking water out of the system at 180 ° C. After cooling to 60 ° C. while maintaining, as the second stage synthesis, 62.6 g (0.25 mol) of MDI was added as the diisocyanate component (D) and synthesis was carried out at 140 ° C. After 1 hour, about 2% benzyl alcohol and 451 g of NMP were added and stirred for 30 minutes to obtain a polyamide-imide resin insulating paint.
(実施例2)
第1段目の合成として、ジアミン成分(C)としてBAPP348.7g(0.85モル)、トリカルボン酸無水物(A)としてTMA57.6g(0.3モル)とテトラカルボン酸二無水物(B)としてODPA218.4g(0.7モル)及び溶剤として1133gのNMPと共沸溶剤として113.3gのキシレンとを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として37.5g(0.15モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP451gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
(Example 2)
As the synthesis in the first stage, 348.7 g (0.85 mol) of BAPP as the diamine component (C), 57.6 g (0.3 mol) of TMA as the tricarboxylic acid anhydride (A), and tetracarboxylic dianhydride (B ) ODPA 218.4 g (0.7 mol), 1133 g NMP as a solvent and 113.3 g xylene as an azeotropic solvent, and synthesizing while leaving water out at 180 ° C. After cooling to 60 ° C. while maintaining, 37.5 g (0.15 mol) of MDI was added as a diisocyanate component (D) as the second stage synthesis, and synthesis was carried out at 140 ° C. After 1 hour, about 2% benzyl alcohol and 451 g of NMP were added and stirred for 30 minutes to obtain a polyamide-imide resin insulating paint.
(実施例3)
第1段目の合成として、ジアミン成分(C)としてBAPP389.7g(0.95モル)、トリカルボン酸無水物(A)としてTMA19.2g(0.1モル)とテトラカルボン酸二無水物(B)としてODPA280.8g(0.9モル)及び溶剤として1214gのNMPと共沸溶剤として121.4gのキシレンとを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として12.5g(0.05モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP520gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
(Example 3)
As the synthesis of the first stage, 389.7 g (0.95 mol) of BAPP as the diamine component (C), 19.2 g (0.1 mol) of TMA as the tricarboxylic acid anhydride (A) and tetracarboxylic dianhydride (B ) 280.8 g (0.9 mol) of ODPA and 1214 g of NMP as a solvent and 121.4 g of xylene as an azeotropic solvent, and synthesizing while taking water out of the system at 180 ° C. After cooling to 60 ° C. while maintaining, as the second stage synthesis, 12.5 g (0.05 mol) of MDI was added as the diisocyanate component (D), and synthesis was carried out at 140 ° C. After 1 hour, about 2% benzyl alcohol and 520 g of NMP were added and stirred for 30 minutes to obtain a polyamide-imide resin insulating paint.
(実施例4)
第1段目の合成として、ジアミン成分(C)としてODA150.0g(0.75モル)、トリカルボン酸無水物(A)としてTMA96.1g(0.5モル)とテトラカルボン酸二無水物(B)としてBTDA161.1g(0.5モル)及び溶剤として761gのNMPと共沸溶剤として76.1gのキシレンとを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として62.6g(0.25モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP326gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
Example 4
As the synthesis in the first stage, 150.0 g (0.75 mol) of ODA as the diamine component (C), 96.1 g (0.5 mol) of TMA as the tricarboxylic acid anhydride (A), and tetracarboxylic dianhydride (B ) BTDA 161.1 g (0.5 mol), 761 g of NMP as a solvent and 76.1 g of xylene as an azeotropic solvent were added, and synthesis was carried out while taking water out of the system at 180 ° C. After cooling to 60 ° C. while maintaining, as the second stage synthesis, 62.6 g (0.25 mol) of MDI was added as the diisocyanate component (D) and synthesis was carried out at 140 ° C. One hour later, about 2% benzyl alcohol and 326 g of NMP were added and stirred for 30 minutes to obtain a polyamide-imide resin insulating paint.
(実施例5)
第1段目の合成として、ジアミン成分(C)としてODA170.0g(0.85モル)、トリカルボン酸無水物(A)としてTMA57.6g(0.3モル)とテトラカルボン酸二無水物(B)としてBTDA225.5g(0.7モル)及び溶剤として824gのNMPと共沸溶剤として82.4gのキシレンとを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として37.5g(0.15モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP353gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
(Example 5)
As the synthesis of the first stage, 170.0 g (0.85 mol) of ODA as the diamine component (C), 57.6 g (0.3 mol) of TMA as the tricarboxylic acid anhydride (A) and tetracarboxylic dianhydride (B ) BTDA 225.5 g (0.7 mol), 824 g of NMP as a solvent and 82.4 g of xylene as an azeotropic solvent, and synthesizing while taking water out of the system at 180 ° C. After cooling to 60 ° C. while maintaining, 37.5 g (0.15 mol) of MDI was added as a diisocyanate component (D) as the second stage synthesis, and synthesis was carried out at 140 ° C. After 1 hour, about 2% benzyl alcohol and 353 g of NMP were added and stirred for 30 minutes to obtain a polyamide-imide resin insulating paint.
(実施例6)
第1段目の合成として、ジアミン成分(C)としてODA190.0g(0.95モル)、トリカルボン酸無水物(A)としてTMA19.2g(0.1モル)とテトラカルボン酸二無水物(B)としてBTDA290.0g(0.9モル)及び溶剤として871gのNMPと共沸溶剤として87.1gのキシレンとを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として12.5g(0.05モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP373gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
(Example 6)
As the synthesis of the first stage, 190.0 g (0.95 mol) of ODA as the diamine component (C), 19.2 g (0.1 mol) of TMA as the tricarboxylic acid anhydride (A) and tetracarboxylic dianhydride (B ) 290.0 g (0.9 mol) of BTDA and 871 g of NMP as a solvent and 87.1 g of xylene as an azeotropic solvent were added, and synthesis was performed while taking water out of the system at 180 ° C. After cooling to 60 ° C. while maintaining, as the second stage synthesis, 12.5 g (0.05 mol) of MDI was added as the diisocyanate component (D), and synthesis was carried out at 140 ° C. After 1 hour, about 2% benzyl alcohol of acid component and 373 g of NMP were added and stirred for 30 minutes to obtain a polyamideimide resin insulating coating.
(比較例1)
トリカルボン酸無水物(A)としてTMA192.1g(1.0モル)とジイソシアネート成分(D)としてMDI250.0g(1.0モル)及び溶剤として1300gのNMPを投入して、140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP373gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
(Comparative Example 1)
TMA 192.1 g (1.0 mol) as the tricarboxylic acid anhydride (A), MDI 250.0 g (1.0 mol) as the diisocyanate component (D) and 1300 g NMP as the solvent were added and synthesized at 140 ° C. It was. After 1 hour, about 2% benzyl alcohol of acid component and 373 g of NMP were added and stirred for 30 minutes to obtain a polyamideimide resin insulating coating.
(比較例2)
第1段目の合成として、ジアミン成分(C)としてBAPP215.4g(0.53モル)、トリカルボン酸無水物(A)としてTMA182.5g(0.95モル)とテトラカルボン酸二無水物(B)としてODPA15.6g(0.05モル)及び溶剤として853gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として118.9g(0.48モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP366gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
(Comparative Example 2)
As the synthesis of the first stage, 215.4 g (0.53 mol) of BAPP as the diamine component (C), 182.5 g (0.95 mol) of TMA as the tricarboxylic acid anhydride (A) and tetracarboxylic dianhydride (B ) 15.6 g (0.05 mol) of ODPA and 853 g of NMP as a solvent, and synthesis was carried out while discharging water outside the system at 180 ° C., and after cooling to 60 ° C. while maintaining a nitrogen atmosphere, As the second stage synthesis, 118.9 g (0.48 mol) of MDI was added as the diisocyanate component (D), and synthesis was performed at 140 ° C. After 1 hour, about 2% benzyl alcohol and 366 g of NMP were added and stirred for 30 minutes to obtain a polyamide-imide resin insulating paint.
(比較例3)
第1段目の合成として、ジアミン成分(C)としてBAPP291.1g(0.71モル)、トリカルボン酸無水物(A)としてTMA111.4g(0.58モル)とテトラカルボン酸二無水物(B)としてDSDA150.4g(0.42モル)及び溶剤として1200gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目合成として、ジイソシアネート成分(D)として72.5g(0.29モル)のMDIを投入して140℃で合成を行った。1時間後、酸成分の約2%ベンジルアルコールとNMP600gを加えて30分撹拌した後、ポリアミドイミド樹脂絶縁塗料を得た。
(Comparative Example 3)
As the synthesis of the first stage, 291.1 g (0.71 mol) of BAPP as the diamine component (C), 111.4 g (0.58 mol) of TMA as the tricarboxylic acid anhydride (A) and tetracarboxylic dianhydride (B ) DSDA 150.4 g (0.42 mol) and 1200 g NMP as a solvent were added, and synthesis was performed while discharging water outside the system at 180 ° C., and after cooling to 60 ° C. while maintaining a nitrogen atmosphere, As the second-stage synthesis, 72.5 g (0.29 mol) of MDI was added as the diisocyanate component (D) and synthesized at 140 ° C. After 1 hour, about 2% benzyl alcohol of acid component and 600 g of NMP were added and stirred for 30 minutes to obtain a polyamideimide resin insulating coating.
(比較例4)
第1段目の合成として、ジアミン成分(C)としてBAPP409.2g(0.9975モル)、トリカルボン酸無水物(A)としてTMA1.0g(0.005モル)とテトラカルボン酸二無水物(B)としてODPA310.4g(0.995モル)及び溶剤として1237gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、ゲル化が起こり塗料が得られなかった。
(Comparative Example 4)
As the synthesis of the first stage, 409.2 g (0.9975 mol) of BAPP as the diamine component (C), 1.0 g (0.005 mol) of TMA as the tricarboxylic acid anhydride (A), and tetracarboxylic dianhydride (B ) ODPA 310.4 g (0.995 mol) and 1237 g NMP as a solvent were added, and synthesis was performed while discharging water outside the system at 180 ° C., and after cooling to 60 ° C. while maintaining a nitrogen atmosphere, The paint was not obtained.
比較例1は汎用的に用いられているポリアミドイミドエナメル線を示すものであるが、可撓性、密着性は良好であるが、比誘電率が高く、部分放電開始電圧が低い。また、40℃、95%RHにおける24時間後の吸湿率は4.8%と高い。 Comparative Example 1 shows a polyamide-imide enameled wire that is used for general purposes, but has good flexibility and adhesion, but has a high relative dielectric constant and a low partial discharge starting voltage. The moisture absorption after 24 hours at 40 ° C. and 95% RH is as high as 4.8%.
これに対し、実施例1〜6のポリアミドイミドエナメル線は、部分放電開始電圧が大きく改善している。また、実施例1〜3では、40℃、95%RHにおける24時間後の吸湿率が特に低い。 On the other hand, the partial discharge starting voltage is greatly improved in the polyamideimide enamel wires of Examples 1 to 6. Moreover, in Examples 1-3, the moisture absorption rate after 24 hours in 40 degreeC and 95% RH is especially low.
比較例3は、トリカルボン酸無水物(A)とテトラカルボン酸二無水物(B)の配合モル比58/42の例である。比誘電率が高く、部分放電開始電圧が低い。また、40℃、95%RHにおける24時間後の吸湿率は3.5%と高い。 Comparative Example 3 is an example having a blending molar ratio 58/42 of the tricarboxylic acid anhydride (A) and the tetracarboxylic acid dianhydride (B). The relative dielectric constant is high and the partial discharge start voltage is low. Moreover, the moisture absorption after 24 hours in 40 degreeC and 95% RH is as high as 3.5%.
比較例4は、実施例1〜3と同じ原料を用いてトリカルボン酸無水物(A)とテトラカルボン酸二無水物(B)の配合モル比0.5/99.5の例である。第1段目合成終了後、冷却すると固体が析出し、ポリアミドイミド塗料を得ることができなかった。繰り返し単位あたりのイミド基濃度が大きく、溶解性が著しく落ちたためである。 Comparative Example 4 is an example having a mixing molar ratio of 0.5 / 99.5 of tricarboxylic acid anhydride (A) and tetracarboxylic acid dianhydride (B) using the same raw materials as in Examples 1 to 3. After the completion of the first stage synthesis, a solid was deposited upon cooling, and a polyamideimide paint could not be obtained. This is because the imide group concentration per repeating unit is large and the solubility is significantly reduced.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011033125A JP5712661B2 (en) | 2011-02-18 | 2011-02-18 | Polyamideimide resin insulating paint and insulated wire using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011033125A JP5712661B2 (en) | 2011-02-18 | 2011-02-18 | Polyamideimide resin insulating paint and insulated wire using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012172002A true JP2012172002A (en) | 2012-09-10 |
JP5712661B2 JP5712661B2 (en) | 2015-05-07 |
Family
ID=46975218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011033125A Active JP5712661B2 (en) | 2011-02-18 | 2011-02-18 | Polyamideimide resin insulating paint and insulated wire using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5712661B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015127424A (en) * | 2015-03-26 | 2015-07-09 | 日立化成株式会社 | Polyamideimide resin, insulating coating material, insulating coating and insulating wire using the same |
JPWO2019009037A1 (en) * | 2017-07-03 | 2020-04-30 | 東レ株式会社 | Resin, resin composition, non-woven fabric using the same, textile product, separator, secondary battery, electric double layer capacitor and non-woven fabric manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61162525A (en) * | 1985-01-04 | 1986-07-23 | ゼネラル エレクトリツク カンパニイ | New copolyamideimide, its production and prepolymer thereof and its production |
JPS62116632A (en) * | 1985-09-27 | 1987-05-28 | ゼネラル・エレクトリツク・カンパニイ | Novel copolyamideimide, its prepolymer and its production |
JPH11130831A (en) * | 1997-10-29 | 1999-05-18 | Hitachi Chem Co Ltd | Siloxane-containing polyamide imide, its production and varnish containing the polymer |
JP2007099842A (en) * | 2005-09-30 | 2007-04-19 | Kaneka Corp | Novel polyimide resin |
JP2009161683A (en) * | 2008-01-09 | 2009-07-23 | Hitachi Magnet Wire Corp | Polyamideimide resin insulating paint and insulation wire using the same |
JP2009280661A (en) * | 2008-05-20 | 2009-12-03 | Kaneka Corp | Novel polyimide precursor composition, use thereof and production process thereof |
-
2011
- 2011-02-18 JP JP2011033125A patent/JP5712661B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61162525A (en) * | 1985-01-04 | 1986-07-23 | ゼネラル エレクトリツク カンパニイ | New copolyamideimide, its production and prepolymer thereof and its production |
JPS62116632A (en) * | 1985-09-27 | 1987-05-28 | ゼネラル・エレクトリツク・カンパニイ | Novel copolyamideimide, its prepolymer and its production |
JPH11130831A (en) * | 1997-10-29 | 1999-05-18 | Hitachi Chem Co Ltd | Siloxane-containing polyamide imide, its production and varnish containing the polymer |
JP2007099842A (en) * | 2005-09-30 | 2007-04-19 | Kaneka Corp | Novel polyimide resin |
JP2009161683A (en) * | 2008-01-09 | 2009-07-23 | Hitachi Magnet Wire Corp | Polyamideimide resin insulating paint and insulation wire using the same |
JP2009280661A (en) * | 2008-05-20 | 2009-12-03 | Kaneka Corp | Novel polyimide precursor composition, use thereof and production process thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015127424A (en) * | 2015-03-26 | 2015-07-09 | 日立化成株式会社 | Polyamideimide resin, insulating coating material, insulating coating and insulating wire using the same |
JPWO2019009037A1 (en) * | 2017-07-03 | 2020-04-30 | 東レ株式会社 | Resin, resin composition, non-woven fabric using the same, textile product, separator, secondary battery, electric double layer capacitor and non-woven fabric manufacturing method |
JP7206911B2 (en) | 2017-07-03 | 2023-01-18 | 東レ株式会社 | Resins, resin compositions, nonwoven fabrics, textile products, separators, secondary batteries, electric double layer capacitors and nonwoven fabrics using these |
Also Published As
Publication number | Publication date |
---|---|
JP5712661B2 (en) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5365899B2 (en) | Polyamideimide resin insulating paint and insulated wire using the same | |
JP4584014B2 (en) | Partially discharge-resistant insulating paint, insulated wire, and method for producing the same | |
JP4473916B2 (en) | Polyamideimide resin insulating paint and insulated wire using the same | |
JP5609732B2 (en) | Insulating paint and insulated wire using the same | |
WO2012102121A1 (en) | Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same | |
US20120318555A1 (en) | Polyamide-imide resin insulating coating material, insulated wire and coil | |
JP2011190434A (en) | Insulating coating material and manufacturing method thereof as well as insulating electric wire using the same and manufacturing method thereof | |
JP2012184416A (en) | Polyamideimide resin insulation coating and insulated electric wire formed by using the same | |
JP2013049843A (en) | Polyamide-imide resin insulating varnish and method of manufacturing the same, insulated wire, and coil | |
JP2012195290A (en) | Insulated wire | |
JP6394697B2 (en) | Insulated wires and coils | |
JP2013253124A (en) | Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same | |
JP2012233123A (en) | Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor | |
JP2012234625A (en) | Insulation wire, electric machine coil using the same, and motor | |
JP2013051030A (en) | Insulated wire and armature coil using the same, motor | |
JP5712661B2 (en) | Polyamideimide resin insulating paint and insulated wire using the same | |
JP5617698B2 (en) | Insulating paint and insulated wire using the same | |
JP2013155281A (en) | Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire | |
CN109935392B (en) | Varnish for insulated wire, and motor | |
JP2013028695A (en) | Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same | |
JP2012243614A (en) | Insulated wire, and electric coil and motor using the same | |
JP5622129B2 (en) | Insulated wire | |
JP2013101758A (en) | Insulation wire, electric machine coil using the same, and motor | |
JP5427276B2 (en) | Polyamideimide resin insulating paint and insulated wire using the same | |
JP5081258B2 (en) | Polyamideimide resin insulating paint and insulated wire using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130621 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5712661 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |