JP2012169094A - Recovery method of lithium ion battery and power supply system - Google Patents

Recovery method of lithium ion battery and power supply system Download PDF

Info

Publication number
JP2012169094A
JP2012169094A JP2011028062A JP2011028062A JP2012169094A JP 2012169094 A JP2012169094 A JP 2012169094A JP 2011028062 A JP2011028062 A JP 2011028062A JP 2011028062 A JP2011028062 A JP 2011028062A JP 2012169094 A JP2012169094 A JP 2012169094A
Authority
JP
Japan
Prior art keywords
power supply
potential
lithium ion
ion battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011028062A
Other languages
Japanese (ja)
Other versions
JP5719623B2 (en
Inventor
Takefumi Okumura
壮文 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011028062A priority Critical patent/JP5719623B2/en
Publication of JP2012169094A publication Critical patent/JP2012169094A/en
Application granted granted Critical
Publication of JP5719623B2 publication Critical patent/JP5719623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of recovering the performance of a lithium ion battery that has been deteriorated and a power supply system including recovery means of battery performance.SOLUTION: In a regeneration method of a battery, a process that raises a potential of a negative electrode above a potential of a positive electrode of a lithium ion battery that has been deteriorated, and subsequently drops the potential of the negative electrode under the potential of the positive electrode is performed at least one cycle or more. The power supply system includes means that raises a potential of a negative electrode above a potential of a positive electrode and subsequently drops the potential of the negative electrode under the potential of the positive electrode in the lithium ion battery.

Description

本発明は、リチウムイオン電池を搭載した電源システムに関する。   The present invention relates to a power supply system equipped with a lithium ion battery.

リチウムイオン電池は、充電状態が高い状態で、50℃以上の高温で貯蔵すると、抵抗の上昇が生じる。従来、高温貯蔵時の抵抗上昇抑制策として、ビニレンカーボネート等の化合物を電解液に添加する対策が提案されている。例えば、LiPF6,エチレンカーボネート、及びジメチルカーボネートから構成される電解液に、ビニレンカーボネートを2wt%添加することで、60℃貯蔵時の劣化を抑制できる電池が、非特許文献1に提案されている。ビニレンカーボネート添加により、リチウムイオン電池の負極に析出する被膜の成長等による性能劣化、特に抵抗上昇による出力低下を抑制できる。 When a lithium ion battery is stored in a high charged state at a high temperature of 50 ° C. or higher, the resistance increases. Conventionally, a countermeasure for adding a compound such as vinylene carbonate to an electrolytic solution has been proposed as a countermeasure for suppressing an increase in resistance during high-temperature storage. For example, Non-Patent Document 1 proposes a battery that can suppress deterioration during storage at 60 ° C. by adding 2 wt% of vinylene carbonate to an electrolytic solution composed of LiPF 6 , ethylene carbonate, and dimethyl carbonate. . By adding vinylene carbonate, it is possible to suppress performance deterioration due to the growth of a film deposited on the negative electrode of the lithium ion battery, particularly output decrease due to resistance increase.

Journal of The Electrochemical Society, 151(10)A1659-A1669(2004)Journal of The Electrochemical Society, 151 (10) A1659-A1669 (2004)

しかしながら、長期間の電池使用には更なる出力低下抑制技術が必要になる。例えば、ビニレンカーボネート等の添加量を増加させると、高充電状態でも高温貯蔵時の劣化を抑制できる可能性がある。しかしながら、ビニレンカーボネート等の添加量の増加は、電池の出力を損なう場合がある。   However, further output reduction suppression technology is required for long-term battery use. For example, when the addition amount of vinylene carbonate or the like is increased, there is a possibility that deterioration during high-temperature storage can be suppressed even in a highly charged state. However, an increase in the amount of vinylene carbonate or the like may impair the battery output.

従って本発明の目的は、出力の低下を伴うことなくリチウムイオン電池の劣化を抑制し、長寿命化を達成することにある。   Accordingly, an object of the present invention is to suppress the deterioration of the lithium ion battery without lowering the output and to achieve a long life.

本発明は、劣化したリチウムイオン電池を回復させる方法を提供するものである。正極と、負極と、正極と負極との間に配置されたセパレータと、電解液とを有するリチウムイオン電池の回復方法であって、負極の電位を正極よりも上昇させ、その後、負極の電位を正極よりも低下させる工程を少なくとも1サイクル以上実施することを特徴とする。   The present invention provides a method for recovering a degraded lithium ion battery. A method for recovering a lithium ion battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the potential of the negative electrode is increased above that of the positive electrode, and then the potential of the negative electrode is increased. The step of lowering the positive electrode is performed at least one cycle or more.

また、リチウムイオン電池を搭載した電源システムであって、低下した性能を回復させる手段を有するものである。具体的には、リチウムイオン電池と、リチウムイオン電池の正極及び負極に電位を与えるための電源と、該電源を制御し、リチウムイオン電池の負極の電位を正極の電位よりも上昇させた後、負極の電位を正極の電位よりも低下させる電源制御装置を備えるものである。   Moreover, it is a power supply system which mounts a lithium ion battery, Comprising: It has a means to recover the reduced performance. Specifically, after the lithium ion battery, a power source for applying a potential to the positive electrode and the negative electrode of the lithium ion battery, and controlling the power source, the potential of the negative electrode of the lithium ion battery is made higher than the potential of the positive electrode, A power supply control device that lowers the potential of the negative electrode to be lower than the potential of the positive electrode is provided.

上記構成によれば、劣化した電池の性能を回復させ、電池を長期間の使用に供することが可能となる。   According to the above configuration, the performance of the deteriorated battery can be recovered and the battery can be used for a long time.

第一の実施形態の電源システムの概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a power supply system of a first embodiment. 第二の実施形態の電源システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the power supply system of 2nd embodiment. 添加剤保持部を有するリチウムイオン電池の断面図である。It is sectional drawing of the lithium ion battery which has an additive holding | maintenance part.

環境保護,省エネルギーの観点から、エンジンとモーターとを動力源として併用したハイブリッド自動車が開発,製品化されている。また、将来的には、燃料電池をエンジンの代わりに用いる燃料電池ハイブリッド自動車の開発も盛んになっている。このハイブリッド自動車のエネルギー源として電気を繰返し充電放電可能な二次電池は必須の技術である。なかでも、リチウムイオン電池は、その動作電圧が高く、高い出力を得やすい高エネルギー密度の特徴を有する電池であり、今後、ハイブリッド自動車の電源として益々重要性が増している。   From the viewpoints of environmental protection and energy saving, hybrid vehicles using an engine and a motor as a power source have been developed and commercialized. In the future, fuel cell hybrid vehicles that use fuel cells instead of engines are also being actively developed. A secondary battery capable of repeatedly charging and discharging electricity as an energy source of this hybrid vehicle is an essential technology. Among them, the lithium ion battery is a battery having a high operating voltage and a high energy density that easily obtains a high output, and is becoming increasingly important as a power source for a hybrid vehicle in the future.

リチウムイオン電池は使用や長期保存等により性能劣化し、特に50℃以上の高温・高充電貯蔵時には劣化が進行しやすい。劣化抑制の技術について多々検討がなされているものの、出力特性などに影響がある可能性がある。劣化を抑制するとともに、劣化したリチウムイオン電池の性能を回復させる方法、及び電池性能の回復手段を備える電源システムによれば、低下した電池性能の回復を図り、長期の電池使用が可能となる。   The performance of lithium ion batteries deteriorates due to use, long-term storage, etc., and the deterioration is likely to proceed especially when stored at a high temperature of 50 ° C. or higher and high charge. Although many studies have been made on deterioration suppression techniques, output characteristics may be affected. According to the method for suppressing deterioration and restoring the performance of the deteriorated lithium ion battery and the power supply system including the means for recovering the battery performance, the lowered battery performance can be recovered and the battery can be used for a long time.

そこで、本発明は電池性能を回復させる方法、及び電池性能の回復手段を備える電源システムであり、負極の電位を正極よりも上昇させた後、電位を低下させることにより、劣化したリチウムイオン電池の性能を回復させることができる。また、本発明の電源システムによれば、リチウムイオン電池の性能が劣化した場合に適宜回復させられるので、長期間の使用に供することが可能となる。   Therefore, the present invention is a power supply system including a method for recovering battery performance and a means for recovering battery performance, and after increasing the potential of the negative electrode higher than that of the positive electrode, the potential of the lithium ion battery deteriorated by decreasing the potential. Performance can be restored. Further, according to the power supply system of the present invention, when the performance of the lithium ion battery is deteriorated, it can be recovered as appropriate, so that it can be used for a long period of time.

以下、図面を参照して、電源システムについて説明する。図1は、第一の実施形態の電源システムの概略構成例を示すブロック図である。電源システムはリチウムイオン電池50と、リチウムイオン電池50に接続された電源装置100を備える。電源装置100は、外部電源20,電源制御装置30,状態検知部40を有する。リチウムイオン電池50は、少なくともリチウムイオンを吸蔵放出可能な正極と、リチウムイオンを吸蔵放出可能な負極と、正極と負極との間に配置されたセパレータと、電解液とを有する。電源装置100では、リチウムイオン電池50の負極の電位を上昇後、電位を低下させる工程を少なくとも1サイクル以上実施する。再生の作用機構としては、再生操作による電気分解で、負極表面上のSEI(solid electrolyte interface)被膜中の成分がガス化や低分子化することで、被膜が除去され負極表面が再生されることにある。電源システムは、電源装置100とリチウムイオン電池50とが一体となっているものでも良いし、電源装置100が別体の電池の再生装置として構成されているものでも良い。   Hereinafter, a power supply system will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a schematic configuration example of the power supply system according to the first embodiment. The power supply system includes a lithium ion battery 50 and a power supply device 100 connected to the lithium ion battery 50. The power supply device 100 includes an external power supply 20, a power supply control device 30, and a state detection unit 40. The lithium ion battery 50 includes at least a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, a separator disposed between the positive electrode and the negative electrode, and an electrolytic solution. In the power supply device 100, after increasing the potential of the negative electrode of the lithium ion battery 50, the step of decreasing the potential is performed for at least one cycle. The regeneration mechanism is that the components in the SEI (solid electrolyte interface) coating on the negative electrode surface are gasified and reduced in molecular weight by electrolysis by the regeneration operation, so that the coating is removed and the negative electrode surface is regenerated. It is in. In the power supply system, the power supply device 100 and the lithium ion battery 50 may be integrated, or the power supply device 100 may be configured as a separate battery regeneration device.

外部電源20は、電位調整手段として、リチウムイオン電池50に電圧を印加することにより、リチウムイオン電池50の負極の電位を上昇させるものである。外部電源20は、直流電源および可変抵抗器を含む可変電源、またはパルス電圧を印加するパルス電源を有し、電源制御装置30により制御される。状態検知部40は、リチウムイオン電池50の電圧,温度を検出する。電源制御装置30は、制御手段として、状態検知部40によって検出される信号を処理し、外部電源20を制御するものである。電源制御装置30は、たとえば一般的な汎用のコンピュータであって、CPU31およびメモリ32を有する。CPU31は、外部電源20を制御する制御部として機能する。メモリ32は、状態検知部40から送られた信号を格納している。   The external power source 20 increases the potential of the negative electrode of the lithium ion battery 50 by applying a voltage to the lithium ion battery 50 as a potential adjusting means. The external power supply 20 includes a variable power supply including a DC power supply and a variable resistor, or a pulse power supply that applies a pulse voltage, and is controlled by the power supply control device 30. The state detection unit 40 detects the voltage and temperature of the lithium ion battery 50. The power supply control device 30 serves as a control means to process a signal detected by the state detection unit 40 and control the external power supply 20. The power supply control device 30 is, for example, a general general-purpose computer, and includes a CPU 31 and a memory 32. The CPU 31 functions as a control unit that controls the external power supply 20. The memory 32 stores a signal sent from the state detection unit 40.

電源制御装置による制御方法としては、リチウムイオン電池内負極の電位を上昇後、電位を低下させる手段を少なくとも1サイクル以上実施する。負極の電位を0.1V以上2V以下の範囲で正極よりも高くすることが好ましい。また、その後電位を低くした際には、負極の電位を正極の電位よりも0.1V以上5V以下の範囲で低くすることが好ましい。負極電位は、状態検知部40でモニタリングをし、正極電位に対し少なくとも0.1V以上、最大で2V以上となるよう外部電源20より制御する。電位上昇時間は少なくとも0.1秒以上で最大でも30秒以下である。さらに、電位上昇後、正極電位に対し少なくとも0.1V以下、最大で5V以下となるよう外部電源20よりパルス的に逆電位制御する。本パルス逆電位制御により、溶解した銅イオンを銅箔上に析出することが可能であり、短絡抑制の観点より好ましい。また、銅箔上の窒化膜による溶解防止技術に比べ、窒化膜による高抵抗化を抑制できる観点から好ましい。   As a control method by the power supply control device, after increasing the potential of the negative electrode in the lithium ion battery, the means for decreasing the potential is implemented for at least one cycle. The potential of the negative electrode is preferably higher than that of the positive electrode in the range of 0.1 V to 2 V. Further, when the potential is lowered thereafter, the potential of the negative electrode is preferably lowered in the range of 0.1 V or more and 5 V or less than the potential of the positive electrode. The negative electrode potential is monitored by the state detection unit 40, and is controlled by the external power source 20 so as to be at least 0.1 V or more and 2 V or more at the maximum with respect to the positive electrode potential. The potential rise time is at least 0.1 second and at most 30 seconds. Further, after the potential rise, the reverse potential control is performed in a pulsed manner from the external power source 20 so as to be at least 0.1 V or less and 5 V or less at the maximum with respect to the positive electrode potential. By this pulse reverse potential control, dissolved copper ions can be deposited on the copper foil, which is preferable from the viewpoint of short circuit suppression. Moreover, it is preferable from the viewpoint that the resistance increase by the nitride film can be suppressed as compared with the dissolution preventing technique by the nitride film on the copper foil.

負極電位を上昇させる再生操作を行うタイミングは特に問わない。例えば自動的に負極電位を上昇される機構を電源制御装置に具備させる回路を組み込み、電池使用開始から一定期間経過後や、電池抵抗値が所定の値を超えたときに自動的に再生操作を行っても良い。手動操作でも構わない。また、携帯電話やハイブリッド自動車等の使用済み電池を回収し、負極電位を上昇させ再生操作を行っても良い。   The timing for performing the regenerating operation for increasing the negative electrode potential is not particularly limited. For example, a circuit that allows the power supply control device to automatically increase the negative potential is incorporated, and a regeneration operation is automatically performed after a certain period of time has elapsed since the start of battery use or when the battery resistance value exceeds a predetermined value. You can go. Manual operation is also acceptable. Further, a used battery such as a mobile phone or a hybrid vehicle may be collected, and the negative electrode potential may be increased to perform a regeneration operation.

再生操作回数は特に問わない。操作回数は、少なくとも1サイクル以上であるが、10サイクル未満、好ましくは1サイクルである。サイクル数が多いと、銅の溶解析出回数が増加し、デンドライト析出による短絡の可能性があるため好ましくない。   The number of playback operations is not particularly limited. The number of operations is at least 1 cycle, but less than 10 cycles, preferably 1 cycle. A large number of cycles is not preferable because the number of dissolution and precipitation of copper increases and there is a possibility of short-circuiting due to dendrite precipitation.

再生操作頻度は特に問わない。例えば、状態検知部の情報を下に、電池抵抗が20%程度増加する度に、再生操作を実施しても良い。電池抵抗が初期値に比して20%以上増加となった場合、フッ化リチウム等の再生不可なSEI被膜成分比率が高い場合があり、再生しにくくなるため、20%以下の基準で再生操作を実施することが好ましい。また、再生頻度が多過ぎると、銅の溶解析出回数が増加し、デンドライト析出による短絡の可能性があるため好ましくない。   The reproduction operation frequency is not particularly limited. For example, the reproduction operation may be performed every time the battery resistance increases by about 20% with the information of the state detection unit below. When the battery resistance increases by 20% or more compared to the initial value, the ratio of non-reproducible SEI film components such as lithium fluoride may be high and it becomes difficult to regenerate. It is preferable to implement. On the other hand, if the regeneration frequency is too high, the number of times of dissolution and precipitation of copper increases, which may cause a short circuit due to dendrite precipitation.

負極表面上のSEI被膜の再生作用としては、再生操作による電気分解で、負極表面上のSEI被膜中成分がガス化や低分子化することで、被膜が除去され負極表面が再生されることにある。劣化した被膜が除去された後、新しいSEIを形成するための電解液添加剤を追加投入し、SEIを再形成することが好ましい。   The regeneration action of the SEI film on the negative electrode surface is that the components in the SEI film on the negative electrode surface are gasified or reduced in molecular weight by electrolysis by the regeneration operation, so that the film is removed and the negative electrode surface is regenerated. is there. After the deteriorated film is removed, it is preferable to recharge the SEI by adding an electrolyte additive for forming a new SEI.

図2は、第二の実施形態の電源システムの例を示すブロック図である。本例に記載されている電源システムは、リチウムイオン電池50の内部に格納された電解液に添加剤を添加する機能を備えるものである。本例の電源システムは、外部電源20,電源制御装置30,状態検知部40及びアクチュエーター60からなる電源装置200と、リチウムイオン電池70よりなる。リチウムイオン電池70は、電解液添加剤保持部16を有する。   FIG. 2 is a block diagram illustrating an example of a power supply system according to the second embodiment. The power supply system described in this example has a function of adding an additive to the electrolytic solution stored in the lithium ion battery 50. The power supply system of this example includes an external power supply 20, a power supply control device 30, a state detection unit 40 and an actuator 60, and a lithium ion battery 70. The lithium ion battery 70 has an electrolytic solution additive holding unit 16.

外部電源20は、電位調整手段として、リチウムイオン電池70に電圧を印加することにより、リチウムイオン電池70の負極の電位を上昇させる。リチウムイオン電池70内負極の電位を正極よりも上昇させた後、電位を低下させる手段を少なくとも1サイクル以上実施した後、リチウムイオン二次電池内に電解液添加剤を追加する。電源制御装置30に接続されたアクチュエーター60は、リチウムイオン電池70内電解液添加剤保持部16に対し応力をかけることでリチウムイオン電池70内に添加剤を放出せしめる機能を有する。電解液添加剤保持部16には夫々所定量の電解液添加剤が電解液から隔絶された状態で収納されている。電解液添加剤を電解液中に放出するには、収納部に内在するT字型治具等により電解液添加剤含有カプセルを破り、添加剤を電解液中に押し出す。負極被膜除去後、再度添加剤による高耐久なSEI形成を行うため、添加剤の放出なしの場合に比べ、再生後の劣化抑制が可能となるため好ましい。   The external power supply 20 increases the potential of the negative electrode of the lithium ion battery 70 by applying a voltage to the lithium ion battery 70 as a potential adjusting means. After the potential of the negative electrode in the lithium ion battery 70 is increased from that of the positive electrode, a means for decreasing the potential is implemented for at least one cycle, and then an electrolyte additive is added to the lithium ion secondary battery. The actuator 60 connected to the power supply control device 30 has a function of releasing the additive into the lithium ion battery 70 by applying stress to the electrolyte solution holding part 16 in the lithium ion battery 70. A predetermined amount of electrolyte additive is stored in the electrolyte additive holder 16 in a state of being isolated from the electrolyte. In order to release the electrolytic solution additive into the electrolytic solution, the electrolytic solution additive-containing capsule is broken with a T-shaped jig or the like inherent in the storage portion, and the additive is pushed out into the electrolytic solution. Since highly durable SEI formation with an additive is performed again after removal of the negative electrode film, deterioration after regeneration can be suppressed as compared with the case where no additive is released.

図3は、電解液の添加剤の保持部を備える円筒型リチウムイオン電池の例を説明する断面図である。正極集電体1に形成された正極合剤層2は、電解液を含むセパレータ7を介し、負極集電体3に形成された負極合剤層4と対向している。捲回、または積層された正負極よりなる電極群が負極電池缶13に挿入されており、ニッケル製の負極リード9の一端を負極集電体3に溶接し、負極リード9の他端は負極電池缶13に溶接されている。また、正極の集電をとるためにアルミニウム製の正極リード10の一端は正極集電体1に溶接されており、正極集電体1の他端を電流遮断弁8に溶接し、さらにこの電流遮断弁8を介して正極電池蓋15と電気的に接続されている。なお、図において、11は正極インシュレータ、12は負極インシュレータ、14はガスケット、15は正極電池蓋である。   FIG. 3 is a cross-sectional view illustrating an example of a cylindrical lithium ion battery including an electrolytic solution additive holding unit. The positive electrode mixture layer 2 formed on the positive electrode current collector 1 is opposed to the negative electrode mixture layer 4 formed on the negative electrode current collector 3 through a separator 7 containing an electrolytic solution. An electrode group consisting of positive and negative electrodes wound or laminated is inserted into the negative electrode battery can 13, one end of the nickel negative electrode lead 9 is welded to the negative electrode current collector 3, and the other end of the negative electrode lead 9 is the negative electrode It is welded to the battery can 13. Further, in order to collect the positive electrode, one end of the positive electrode lead 10 made of aluminum is welded to the positive electrode current collector 1, the other end of the positive electrode current collector 1 is welded to the current cutoff valve 8, and this current It is electrically connected to the positive battery lid 15 via the shutoff valve 8. In the figure, 11 is a positive insulator, 12 is a negative insulator, 14 is a gasket, and 15 is a positive battery cover.

図3では、電解液添加剤保持部16は電池の蓋部に設けられている。電解液添加剤の収納方法は、電解液に難溶解性のポリエチレン,ポリプロピレン,フッ素系樹脂等のプラスチックからなるカプセルに保持する事が好適であり、前記カプセルをリチウムイオン電池の缶上部の蓋内、あるいは注液口のキャップ内などに設ける。   In FIG. 3, the electrolytic solution additive holding unit 16 is provided on the lid of the battery. The method of storing the electrolyte additive is preferably held in a capsule made of plastic such as polyethylene, polypropylene, or fluorine resin that is hardly soluble in the electrolyte, and the capsule is placed in the lid on the top of the can of the lithium ion battery. Or in the cap of the injection port.

電解液添加剤としては、ビニレンカーボネート(VC),メチルビニレンカーボネート(MVC),ジメチルビニレンカーボネート(DMVC),エチルビニレンカーボネート(EVC),ジエチルビニレンカーボネート(DEVC),ジメタリルカーボネート(DMAC)等を用いることができる。特に、VCは、分子量が小さく、緻密な電極被膜を形成すると考えられるため好ましい。VCにアルキル基を置換したMVC,DMVC,EVC,DEVC等は、アルキル鎖の大きさに従い、密度の低い電極被膜を形成すると考えられ、低温特性向上には有効に作用するものと考えられる。   As an electrolytic solution additive, vinylene carbonate (VC), methyl vinylene carbonate (MVC), dimethyl vinylene carbonate (DMVC), ethyl vinylene carbonate (EVC), diethyl vinylene carbonate (DEVC), dimethallyl carbonate (DMAC), or the like is used. be able to. In particular, VC is preferable because it has a low molecular weight and is considered to form a dense electrode film. MVC, DMVC, EVC, DEVC, and the like in which an alkyl group is substituted for VC are considered to form an electrode film having a low density in accordance with the size of the alkyl chain, and are considered to act effectively to improve low-temperature characteristics.

リチウムイオン電池の正極は、正極活物質,電子導電性材料及びバインダから構成される正極合剤層が集電体であるアルミニウム箔上に塗布されることにより形成される。また、電子抵抗の低減のため更に正極合剤層に導電剤を加えても良い。正極活物質は、組成式LiαMnxM1yM2z2(式中、M1は、Co,Niから選ばれる少なくとも1種、M2は、Co,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種であり、x+y+z=1,0<α<1.2,0.2≦x≦0.6,0.2≦y≦0.4,0.05≦z≦0.4)で表されるリチウム複合酸化物が好ましい。また、その中でも、M1がNi又はCoであって、M2がCo又はNiであることがより好ましい。LiMn1/3Ni1/3Co1/32であればさらに好ましい。組成中、Niを多くすると容量が大きく取れ、Coを多くすると低温での出力が向上でき、Mnを多くすると材料コストを抑制できる。また、添加元素は、サイクル特性を安定させるのに効果がある。他に、一般式LiMxPO4(M:Fe又はMn、0.01≦X≦0.4)やLiMn1-xxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物でも良い。特に、LiMn1/3Ni1/3Co1/32は、低温特性とサイクル安定性とが高く、ハイブリット自動車(HEV)用リチウム電池材料として好適である。 A positive electrode of a lithium ion battery is formed by applying a positive electrode mixture layer composed of a positive electrode active material, an electronic conductive material, and a binder onto an aluminum foil as a current collector. Moreover, you may add a electrically conductive agent to the positive mix layer for reduction of electronic resistance. The positive electrode active material has a composition formula Li α Mn x M 1 y M 2 z O 2 (wherein M 1 is at least one selected from Co and Ni, and M 2 is Co, Ni, Al, B, Fe, Mg, Cr) X + y + z = 1, 0 <α <1.2, 0.2 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.4, 0.05 ≦ z ≦ 0.4. ) Is preferable. Among these, it is more preferable that M1 is Ni or Co and M2 is Co or Ni. LiMn 1/3 Ni 1/3 Co 1/3 O 2 is more preferable. In the composition, if Ni is increased, the capacity can be increased, if Co is increased, the output at a low temperature can be improved, and if Mn is increased, the material cost can be suppressed. In addition, the additive element is effective in stabilizing the cycle characteristics. In addition, the general formula LiM x PO 4 (M: Fe or Mn, 0.01 ≦ X ≦ 0.4) and LiMn 1-x M x PO 4 (M: divalent cation other than Mn, 0.01 ≦ An orthorhombic phosphate compound having symmetry of the space group Pmnb where X ≦ 0.4) may be used. In particular, LiMn 1/3 Ni 1/3 Co 1/3 O 2 has high low-temperature characteristics and high cycle stability, and is suitable as a lithium battery material for hybrid vehicles (HEV).

バインダは、正極を構成する材料と正極用集電体を密着させるものであればよく、例えば、フッ化ビニリデン,四フッ化エチレン,アクリロニトリル,エチレンオキシドなどの単独重合体又は共重合体,スチレン−ブタジエンゴムなどを挙げることができる。導電剤は、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。   The binder may be any material as long as the material constituting the positive electrode and the current collector for the positive electrode are in close contact with each other. For example, a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene-butadiene, or the like. Examples include rubber. The conductive agent is, for example, a carbon material such as carbon black, graphite, carbon fiber, and metal carbide, and each may be used alone or in combination.

負極としては、負極活物質、及びバインダから構成される負極合剤層が集電体である銅箔上に塗布されることにより形成される。また、電子抵抗の低減のため更に負極合剤層に導電剤を加えても良い。前記負極活物質は、負極活物質として用いる材料には、天然黒鉛、天然黒鉛に乾式のCVD(Chemical Vapor Deposition)法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料,エポキシやフェノール等の樹脂原料若しくは石油や石炭から得られるピッチ系材料を原料として焼成して造られる人造黒鉛,非晶質炭素材料などの炭素質材料、又は、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属,リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素,ゲルマニウム,錫など第四族元素の酸化物若しくは窒化物を用いることができる。なお、これらを一般的に負極活物質と称する場合がある。特に、炭素質材料は、導電性が高く、低温特性,サイクル安定性の面から優れた材料である。炭素質材料の中では、炭素網面層間(d002)の広い材料が急速充放電や低温特性に優れ、好適である。しかし、d002が広い材料は、充電の初期での容量低下や充放電効率が低いことがあるので、d002は0.390nm以下が好ましく、このような炭素質材料を、擬似異方性炭素と称する場合がある。更に、電極を構成するには黒鉛質,非晶質,活性炭などの導電性の高い炭素質材料を混合しても良い。または、黒鉛質材料として、以下(1)〜(3)に示す特徴を有する材料を用いても良い。 The negative electrode is formed by applying a negative electrode mixture layer composed of a negative electrode active material and a binder onto a copper foil as a current collector. Further, a conductive agent may be further added to the negative electrode mixture layer in order to reduce electronic resistance. The negative electrode active material includes, as a negative electrode active material, natural graphite, a composite carbonaceous material in which a film formed on a natural graphite by a dry CVD (Chemical Vapor Deposition) method or a wet spray method, epoxy, Carbon materials such as artificial graphite and amorphous carbon materials made by firing from resin materials such as phenol or pitch materials obtained from petroleum and coal, or occlusion of lithium by forming compounds with lithium An oxide or nitride of a Group 4 element such as silicon, germanium, or tin, which can form and release lithium metal, form a compound with lithium, and intercalate and release lithium by being inserted into the crystal gap, can be used. In some cases, these are generally referred to as negative electrode active materials. In particular, the carbonaceous material is a material having high conductivity, and excellent in terms of low temperature characteristics and cycle stability. Among the carbonaceous materials, a material having a wide carbon network surface layer (d 002 ) is excellent in rapid charge / discharge and low temperature characteristics, and is suitable. However, since a material with a wide d 002 may have a reduced capacity and a low charge / discharge efficiency at the initial stage of charging, d 002 is preferably 0.390 nm or less. May be called. Furthermore, a carbonaceous material having high conductivity such as graphite, amorphous, activated carbon or the like may be mixed to constitute the electrode. Alternatively, a material having the characteristics shown in (1) to (3) below may be used as the graphite material.

(1)ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強
度(ID)とラマン分光スペクトルで測定される1580〜1620cm-1の範囲にあるピーク強度(IG)との強度比であるR値(ID/IG)が、0.20以上0.40以下
(2)ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピークの
半値幅Δ値が、40cm-1以上100cm-1以下
(3)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/I(004))が0.10以上0.45以下
(1) peak in the range of 1300~1400Cm -1 measured by Raman spectrum intensity (I D) and the peak intensity in the range of 1580~1620Cm -1 as measured by Raman spectroscopy spectra (I G) and the The R value (I D / I G ), which is an intensity ratio, is 0.20 or more and 0.40 or less. (2) The peak half-value width Δ value in the range of 1300 to 1400 cm −1 measured by a Raman spectrum is 40 cm -1 or more 100 cm -1 or less (3) the intensity ratio X values of the peak intensity of the (110) plane in X-ray diffraction (I (110)) and (004) plane peak intensity (I (004)) (I (110) / I (004) ) is 0.10 or more and 0.45 or less

バインダとしては、負極を構成する材料と負極用集電体を密着させるものであればよく、例えば、フッ化ビニリデン,四フッ化エチレン,アクリロニトリル,エチレンオキシドなどの単独重合体又は共重合体、スチレン−ブタジエンゴムなどを挙げることができる。導電剤は、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。   As the binder, any material may be used as long as the material constituting the negative electrode and the current collector for the negative electrode are brought into close contact with each other. For example, a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene- Examples thereof include butadiene rubber. The conductive agent is, for example, a carbon material such as carbon black, graphite, carbon fiber, and metal carbide, and each may be used alone or in combination.

電解液としては、極性の高い(高極性)溶媒と極性の低い(低極性)溶媒及び前記電解液添加剤の混合溶媒とリチウム塩を用いる。高極性溶媒は、プロピレンカーボネート(PC),エチレンカーボネート(EC),トリフロロプロピレンカーボネート(TFPC),クロロエチレンカーボネート(ClEC),フルオロエチレンカーボネート(FEC),トリフロロエチレンカーボネート(TFEC),ジフロロエチレンカーボネート(DFEC),ビニルエチレンカーボネート(VEC)等を用いることができる。特に、負極電極上の被膜形成の観点からECを用いることが好ましい。また、少量(2vol%以下)のClECやFECやTFECやVECの添加も、電極被膜形成に関与し、良好なサイクル特性を提供する。更には、TFPCやDFECは、正極電極上の被膜形成の観点から、少量(2vol%以下)添加して用いても良い。低極性溶媒は、ジメチルカーボネート(DMC),エチルメチルカーボネート(EMC),ジエチルカーボネート(DEC),メチルプロピルカーボネート(MPC),エチルプロピルカーボネート(EPC),トリフロロメチルエチルカーボネート(TFMEC)、1,1,1−トリフロロエチルメチルカーボネート(TFEMC)等を用いることができる。DMCは、相溶性の高い溶媒であり、EC等と混合して用いるのに好適である。DECは、DMCよりも融点が低く、低温(−30℃)特性には好適である。EMCは、分子構造が非対称であり、融点も低いので低温特性には好適である。EPC,TFMECは、プロピレン側鎖を有し、非対称な分子構造であるので、低温特性の調整溶媒として好適である。TFEMCは、分子の一部をフッ素化し、双極子モーメントが大きくなっており、低温でのリチウム塩の解離性を維持するに好適であり、低温特性に好適がある。電解液の混合比率は、高極性溶媒の組成比率が18.0〜30.0vol%であり、低極性溶媒の組成比率が74.0〜81.8vol%であり、電解液添加剤の組成比率が0.1〜1.0vol%である。ここで電解液添加剤の組成比率が1.0vol%以上となると、電池の内部抵抗が上昇し、電池の出力低下を招くため好ましくない。   As the electrolytic solution, a highly polar (high polarity) solvent, a low polarity (low polarity) solvent, a mixed solvent of the electrolytic solution additive, and a lithium salt are used. High polar solvents are propylene carbonate (PC), ethylene carbonate (EC), trifluoropropylene carbonate (TFPC), chloroethylene carbonate (ClEC), fluoroethylene carbonate (FEC), trifluoroethylene carbonate (TFEC), difluoroethylene. Carbonate (DFEC), vinyl ethylene carbonate (VEC), etc. can be used. In particular, it is preferable to use EC from the viewpoint of film formation on the negative electrode. In addition, addition of a small amount (2 vol% or less) of ClEC, FEC, TFEC, or VEC is also involved in electrode film formation and provides good cycle characteristics. Furthermore, TFPC and DFEC may be used by adding a small amount (2 vol% or less) from the viewpoint of film formation on the positive electrode. Low polar solvents are dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), trifluoromethyl ethyl carbonate (TFMEC), 1,1 1, 1-trifluoroethyl methyl carbonate (TFEMC) or the like can be used. DMC is a highly compatible solvent and is suitable for use in a mixture with EC or the like. DEC has a lower melting point than DMC and is suitable for low temperature (−30 ° C.) characteristics. EMC is suitable for low temperature characteristics because of its asymmetric molecular structure and low melting point. Since EPC and TFMEC have propylene side chains and an asymmetric molecular structure, they are suitable as adjusting solvents for low temperature characteristics. TFEMC fluorinates part of the molecule and has a large dipole moment, which is suitable for maintaining the dissociation property of the lithium salt at a low temperature, and is suitable for low temperature characteristics. As for the mixing ratio of the electrolyte solution, the composition ratio of the high polarity solvent is 18.0 to 30.0 vol%, the composition ratio of the low polarity solvent is 74.0 to 81.8 vol%, and the composition ratio of the electrolyte solution additive Is 0.1 to 1.0 vol%. Here, when the composition ratio of the electrolytic solution additive is 1.0 vol% or more, the internal resistance of the battery is increased, and the output of the battery is decreased.

電解液に用いる前記リチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF6,LiBF4,LiClO4,LiI,LiCl,LiBr等、また、有機リチウム塩では、LiB[OCOCF3]4,LiB[OCOCF2CF3]4,LiPF4(CF3)2,LiN(SO2CF3)2,LiN(SO2CF2CF3)2等を用いることができる。特に、民生用電池で多く用いられているLiPF6は、品質の安定性から好適な材料である。また、LiB[OCOCF3]4は、解離性,溶解性が良好で、低い濃度で高い導電率を示すので有効な材料である。 The lithium salt used for the electrolytic solution is not particularly limited, but for inorganic lithium salts, LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr, etc., and for organic lithium salts, LiB [OCOCF 3 ] 4 LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 or the like can be used. In particular, LiPF 6 frequently used in consumer batteries is a suitable material because of the stability of quality. LiB [OCOCF 3 ] 4 is an effective material because it has good dissociation and solubility and exhibits high conductivity at a low concentration.

以下、本発明を実施するための最良の形態を具体的な実施例によって説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to specific examples.

電池容量が800mAhの劣化したリチウムイオン電池の直流抵抗を測定した。直流抵抗は、以下の手法を用いて測定した。電池を定電流0.7Aで4.1Vまで充電し、定電圧4.1Vで電流値が20mAになるまで充電し、30分の運転休止の後、0.7Aで2.7Vまで放電した。この操作を3回繰返した。次に、電池を3.8Vまで定電流0.7Aで充電し、10Aで10s放電し、再度3.8Vまで定電流で充電し、20Aで10s放電し、再度3.8Vまで充電し、30Aで10s放電した。この際のI−V特性から、電池の直流抵抗を評価した。評価結果は65Ωであった。測定時温度は25℃である。   The direct current resistance of a deteriorated lithium ion battery having a battery capacity of 800 mAh was measured. The direct current resistance was measured using the following method. The battery was charged at a constant current of 0.7 A to 4.1 V, charged at a constant voltage of 4.1 V until the current value reached 20 mA, and after 30 minutes of operation stop, discharged at 0.7 A to 2.7 V. This operation was repeated three times. The battery is then charged to 3.8V at a constant current of 0.7A, discharged at 10A for 10s, charged again to 3.8V at a constant current, discharged at 20A for 10s, charged to 3.8V again, and 30A Was discharged for 10 s. The direct current resistance of the battery was evaluated from the IV characteristics at this time. The evaluation result was 65Ω. The temperature during measurement is 25 ° C.

上記の劣化したリチウムイオン電池を用い、外部電源及び電源制御装置と接続し電源システムを作製した。電源制御装置30により、リチウムイオン電池内負極端子に対し、正極端子よりも1V高い電圧を10秒印加した。さらに、1秒休止後、正極端子よりも2V低い電圧を10秒印加する制御を行った。   Using the above-described deteriorated lithium ion battery, it was connected to an external power supply and a power supply control device to produce a power supply system. The power supply control device 30 applied a voltage 1 V higher than the positive terminal to the negative electrode terminal in the lithium ion battery for 10 seconds. Further, after a pause of 1 second, control was performed to apply a voltage 2 V lower than the positive terminal for 10 seconds.

上記の再生操作後、直流抵抗評価を実施した。その結果、抵抗が20%低減したことを確認した。従って、上記のように負極の電圧を印加して負極の電位を正極よりも上昇させ、その後、負極の電位を正極よりも低下させることで、劣化により高くなった抵抗を低下させ、電池が再生することを確認した。   After the above regeneration operation, DC resistance evaluation was performed. As a result, it was confirmed that the resistance was reduced by 20%. Therefore, as described above, the negative electrode voltage is applied to raise the negative electrode potential above the positive electrode, and then the negative electrode potential is lowered below the positive electrode to reduce the resistance increased due to deterioration, and the battery is regenerated. Confirmed to do.

さらに本リチウムイオン電池を電池電圧4.1Vまで充電後、50℃にて1か月放置し直流抵抗を評価した。その結果、抵抗は5%増加していた。   Further, the lithium ion battery was charged to a battery voltage of 4.1 V, and then allowed to stand at 50 ° C. for 1 month to evaluate DC resistance. As a result, the resistance increased by 5%.

本実施例では、電池内に添加剤保持部を有するリチウムイオン電池を用いて電池システムを作製した。電池容量が800mAhで、劣化したリチウムイオン電池の直流抵抗を実施例1と同様の方法により測定した。評価結果は64Ωであった。   In this example, a battery system was manufactured using a lithium ion battery having an additive holding portion in the battery. The direct current resistance of the deteriorated lithium ion battery at a battery capacity of 800 mAh was measured by the same method as in Example 1. The evaluation result was 64Ω.

直流抵抗測定済みのリチウムイオン電池を用い、外部電源,電源制御装置,アクチュエーターと接続し、電源システムを作製した。実施例1と同様に、電源制御装置により、リチウムイオン電池内負極端子に対し、正極端子よりも1V高い電圧を10秒印加した。さらに、1秒休止後、正極端子よりも2V低い電圧を10秒印加した。その後、アクチュエーター60により電解液添加剤保持部16に応力を与え添加剤としてビニレンカーボネート0wt%含むジメチルカーボネート溶液を電池内に放出させた。   Using a lithium-ion battery that had been measured for DC resistance, an external power supply, power supply controller, and actuator were connected to create a power supply system. Similarly to Example 1, a voltage 1V higher than the positive electrode terminal was applied to the negative electrode terminal in the lithium ion battery for 10 seconds by the power supply control device. Further, after a pause of 1 second, a voltage 2 V lower than the positive terminal was applied for 10 seconds. Thereafter, stress was applied to the electrolytic solution additive holding unit 16 by the actuator 60 to release a dimethyl carbonate solution containing 0 wt% vinylene carbonate as an additive into the battery.

上記の再生操作後、直流抵抗評価を実施した。その結果、20%抵抗低減を確認した。   After the above regeneration operation, DC resistance evaluation was performed. As a result, 20% resistance reduction was confirmed.

さらに本リチウムイオン電池を電池電圧4.1Vまで充電後、50℃にて1か月放置し直流抵抗を評価した。その結果、抵抗は4%増加していた。   Further, the lithium ion battery was charged to a battery voltage of 4.1 V, and then allowed to stand at 50 ° C. for 1 month to evaluate DC resistance. As a result, the resistance increased by 4%.

本実施例では、電池内に添加剤保持部を有するリチウムイオン電池を用いて電池システムを作製した。電池容量が800mAhで、劣化したリチウムイオン電池の直流抵抗を実施例1と同様の方法により測定した。評価結果は64Ωであった。   In this example, a battery system was manufactured using a lithium ion battery having an additive holding portion in the battery. The direct current resistance of the deteriorated lithium ion battery at a battery capacity of 800 mAh was measured by the same method as in Example 1. The evaluation result was 64Ω.

直流抵抗測定済みのリチウムイオン電池を用い、外部電源,電源制御装置,アクチュエーターと接続し、電源システムを作製した。実施例1と同様に、電源制御装置により、リチウムイオン電池内負極端子に対し、正極端子よりも1V高い電圧を10秒印加した。さらに、1秒休止後、正極端子よりも2V低い電圧を10秒印加した。その後、アクチュエーター60により電解液添加剤保持部16に応力を与え添加剤としてビニレンカーボネート10wt%含むジメチルカーボネート溶液を電池内に放出させた。   Using a lithium-ion battery that had been measured for DC resistance, an external power supply, power supply controller, and actuator were connected to create a power supply system. Similarly to Example 1, a voltage 1V higher than the positive electrode terminal was applied to the negative electrode terminal in the lithium ion battery for 10 seconds by the power supply control device. Further, after a pause of 1 second, a voltage 2 V lower than the positive terminal was applied for 10 seconds. Thereafter, stress was applied to the electrolytic solution additive holding unit 16 by the actuator 60 to release a dimethyl carbonate solution containing 10 wt% vinylene carbonate as an additive into the battery.

上記の再生操作後、直流抵抗評価を実施した。その結果、20%抵抗低減を確認した。   After the above regeneration operation, DC resistance evaluation was performed. As a result, 20% resistance reduction was confirmed.

さらに本リチウムイオン電池を電池電圧4.1Vまで充電後、50℃にて1か月放置し直流抵抗を評価した。その結果、抵抗は1%増加していた。従って、電解液に添加剤を追加することにより、実施例2に比して50℃放置後の性能劣化抑制が可能であった。添加後の4.1V充電時に、添加剤を電気化学的に還元分解することにより劣化しにくいSEI形成が起こり、再生後の劣化を抑制していると考える。   Further, the lithium ion battery was charged to a battery voltage of 4.1 V, and then allowed to stand at 50 ° C. for 1 month to evaluate DC resistance. As a result, the resistance increased by 1%. Therefore, by adding an additive to the electrolytic solution, it was possible to suppress performance deterioration after being left at 50 ° C. as compared with Example 2. It is considered that during the 4.1 V charge after the addition, SEI formation which is difficult to deteriorate occurs due to electrochemical reductive decomposition of the additive, and the deterioration after regeneration is suppressed.

〔比較例1〕
実施例1,2と同様に電池容量が800mAhの劣化したリチウムイオン電池の直流抵抗を測定した後、リチウムイオン電池内負極端子に対し、正極端子よりも1V高い電圧を10秒印加した。本操作後、直流抵抗評価を実施した。その結果、内部短絡が発生し、電池機能が損なわれるに至り、劣化電池の性能回復には至らなかった。電池解体の結果、短絡理由は負極表面に析出した銅由来であることが明らかとなった。
[Comparative Example 1]
Similar to Examples 1 and 2, the DC resistance of a deteriorated lithium ion battery having a battery capacity of 800 mAh was measured, and then a voltage 1 V higher than the positive electrode terminal was applied to the negative electrode terminal in the lithium ion battery for 10 seconds. After this operation, DC resistance evaluation was performed. As a result, an internal short circuit occurred, the battery function was impaired, and the performance of the deteriorated battery was not recovered. As a result of battery disassembly, it was clarified that the reason for the short circuit originated from copper deposited on the negative electrode surface.

以上の検討より明らかな通り、リチウムイオン電池に対し、負極の電位を正極よりも上昇させた後、電位を低下させる工程を少なくとも1サイクル以上実施することで、抵抗が低減し、電池を再生する効果が確認できた。さらに、上記の工程とともに電解液中に電解液添加剤を加えることで、再生後の更なる劣化を抑制する効果が得られた。負極被膜除去後、再度添加剤による高耐久なSEI形成を行うため、添加剤の放出なしの場合比べ、再生後の劣化抑制が可能となるため好ましい。   As is clear from the above examination, the resistance is reduced and the battery is regenerated by performing at least one cycle of the step of lowering the potential of the lithium ion battery after the potential of the negative electrode is raised from that of the positive electrode. The effect was confirmed. Furthermore, the effect which suppresses the further deterioration after reproduction | regeneration was acquired by adding electrolyte solution additive in electrolyte solution with said process. Since highly durable SEI formation with an additive is performed again after the removal of the negative electrode film, deterioration after regeneration can be suppressed as compared with the case where no additive is released.

また、単に電位を上昇させ、電位を低下させる工程を行わない場合、電池の性能の回復は確認できなかった。   In addition, when the step of simply increasing the potential and decreasing the potential was not performed, recovery of the battery performance could not be confirmed.

1 正極集電体
2 正極合剤層
3 負極集電体
4 負極合剤層
7 セパレータ
8 電流遮断弁
9 負極リード
10 正極リード
11 正極インシュレータ
12 負極インシュレータ
13 負極電池缶
14 ガスケット
15 正極電池蓋
16 電解液添加剤保持部
20 外部電源
30 電源制御装置
31 CPU
32 メモリ
40 状態検知部
50,70 リチウムイオン電池
60 アクチュエーター
100,200 電源装置
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode mixture layer 3 Negative electrode collector 4 Negative electrode mixture layer 7 Separator 8 Current cutoff valve 9 Negative electrode lead 10 Positive electrode lead 11 Positive electrode insulator 12 Negative electrode insulator 13 Negative electrode battery can 14 Gasket 15 Positive electrode battery lid 16 Electrolysis Liquid additive holding unit 20 External power supply 30 Power supply control device 31 CPU
32 Memory 40 State detection unit 50, 70 Lithium ion battery 60 Actuator 100, 200 Power supply

Claims (10)

リチウムイオン電池と、前記リチウムイオン二次電池に電位を付与し、負極の電位が正極の電位よりも高い状態とする外部電源と、前記外部電源を制御する電源制御装置とを備えたことを特徴とする電源システム。   A lithium-ion battery, an external power supply that applies a potential to the lithium-ion secondary battery and has a negative electrode potential higher than a positive electrode potential, and a power supply control device that controls the external power supply And power system. 請求項1に記載された電源システムであって、
前記リチウムイオン電池の状態を検知する状態検知部を備えたことを特徴とする電源システム。
The power supply system according to claim 1,
A power supply system comprising a state detection unit for detecting a state of the lithium ion battery.
請求項1または2に記載された電源システムであって、
前記リチウムイオン電池の電解液に追加する添加剤を保持する添加剤保持部と、前記添加剤保持部に保持された添加剤を電解液内に放出させるアクチュエーターとを備えることを特徴とする電源システム。
The power supply system according to claim 1 or 2,
A power supply system comprising: an additive holding unit that holds an additive added to the electrolytic solution of the lithium ion battery; and an actuator that releases the additive held in the additive holding unit into the electrolytic solution. .
請求項3に記載された電源システムであって、
前記添加剤はビニレンカーボネート,メチルビニレンカーボネート,ジメチルビニレンカーボネート,エチルビニレンカーボネート,ジエチルビニレンカーボネート,ジメタリルカーボネートの少なくともいずれかを含むことを特徴とする電源システム。
A power supply system according to claim 3, wherein
The power supply system according to claim 1, wherein the additive includes at least one of vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, and dimethallyl carbonate.
請求項3に記載された電源システムであって、
前記添加剤保持部は前記リチウムイオン電池の内部に設けられていることを特徴とする電源システム。
A power supply system according to claim 3, wherein
The power supply system, wherein the additive holding part is provided inside the lithium ion battery.
請求項1に記載された電源システムであって、
前記電源制御装置は、前記負極の電位を前記正極の電位に対し0.1V以上2V以下の範囲で高い状態とした後、前記負極の電位を前記正極の電位に対し0.1V以上5V以下の範囲で低い状態とすることを特徴とする電源システム。
The power supply system according to claim 1,
The power supply control device sets the negative electrode potential to a high level in a range of 0.1 V to 2 V with respect to the positive electrode potential, and then sets the negative electrode potential to 0.1 V to 5 V with respect to the positive electrode potential. A power supply system characterized by a low state in the range.
請求項1に記載された電源システムであって、
前記電源制御装置は、0.1〜30秒の間、前記負極の電位を前記正極の電位に対し高い状態とすることを特徴とする電源システム。
The power supply system according to claim 1,
The power supply control device sets the negative electrode potential to be higher than the positive electrode potential for 0.1 to 30 seconds.
リチウムイオン電池の性能を向上させる電池の再生方法であって、
前記リチウムイオン電池の負極を正極よりも高い電位とした後に、前記負極の電位を正極よりも低い電位とする電位制御工程を少なくとも1サイクル実施することを特徴とする再生方法。
A battery regeneration method for improving the performance of a lithium ion battery,
A regeneration method comprising performing at least one cycle of a potential control step of setting the potential of the negative electrode lower than that of the positive electrode after setting the negative electrode of the lithium ion battery to a potential higher than that of the positive electrode.
請求項8に記載されたリチウムイオン電池の再生方法であって、
前記電位制御工程の後に、リチウムイオン二次電池内に電解液添加剤を追加する工程を有することを特徴とする再生方法。
A method for regenerating a lithium ion battery according to claim 8,
A regeneration method comprising a step of adding an electrolyte solution additive in the lithium ion secondary battery after the potential control step.
請求項8に記載されたリチウムイオン電池の再生方法であって、
電池使用開始から一定期間経過後、または所定の電池抵抗値となったときに前記電位制御工程を行うことを特徴とする再生方法。
A method for regenerating a lithium ion battery according to claim 8,
A regeneration method comprising performing the potential control step after a predetermined period of time has elapsed from the start of battery use or when a predetermined battery resistance value is reached.
JP2011028062A 2011-02-14 2011-02-14 Lithium ion battery recovery method and power supply system Expired - Fee Related JP5719623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028062A JP5719623B2 (en) 2011-02-14 2011-02-14 Lithium ion battery recovery method and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028062A JP5719623B2 (en) 2011-02-14 2011-02-14 Lithium ion battery recovery method and power supply system

Publications (2)

Publication Number Publication Date
JP2012169094A true JP2012169094A (en) 2012-09-06
JP5719623B2 JP5719623B2 (en) 2015-05-20

Family

ID=46973074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028062A Expired - Fee Related JP5719623B2 (en) 2011-02-14 2011-02-14 Lithium ion battery recovery method and power supply system

Country Status (1)

Country Link
JP (1) JP5719623B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197392A (en) * 2013-03-08 2014-10-16 株式会社半導体エネルギー研究所 Lease system for battery
JP2017033825A (en) * 2015-08-04 2017-02-09 トヨタ自動車株式会社 Method for recovering performance deterioration in lithium ion secondary battery
JP2018081823A (en) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 Battery manufacturing method
JP2019091690A (en) * 2017-11-15 2019-06-13 三星電子株式会社Samsung Electronics Co., Ltd. Lithium battery electrolyte additive, organic electrolyte solution containing the same and lithium battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064593A (en) * 1996-08-23 1998-03-06 Toshiba Battery Co Ltd Charging/discharging control circuit and secondary battery pack
JP2009501419A (en) * 2005-07-13 2009-01-15 エルジー・ケム・リミテッド Lithium secondary battery containing capsules for sustained release of additives
JP2010135649A (en) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd Positive electrode active material for lithium ion power storage device, and the lithium ion power storage device using the same
JP2010146899A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Lithium-ion secondary battery
WO2010092815A1 (en) * 2009-02-13 2010-08-19 パナソニック株式会社 Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064593A (en) * 1996-08-23 1998-03-06 Toshiba Battery Co Ltd Charging/discharging control circuit and secondary battery pack
JP2009501419A (en) * 2005-07-13 2009-01-15 エルジー・ケム・リミテッド Lithium secondary battery containing capsules for sustained release of additives
JP2010135649A (en) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd Positive electrode active material for lithium ion power storage device, and the lithium ion power storage device using the same
JP2010146899A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Lithium-ion secondary battery
WO2010092815A1 (en) * 2009-02-13 2010-08-19 パナソニック株式会社 Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197392A (en) * 2013-03-08 2014-10-16 株式会社半導体エネルギー研究所 Lease system for battery
JP2017033825A (en) * 2015-08-04 2017-02-09 トヨタ自動車株式会社 Method for recovering performance deterioration in lithium ion secondary battery
JP2018081823A (en) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 Battery manufacturing method
JP2019091690A (en) * 2017-11-15 2019-06-13 三星電子株式会社Samsung Electronics Co., Ltd. Lithium battery electrolyte additive, organic electrolyte solution containing the same and lithium battery

Also Published As

Publication number Publication date
JP5719623B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5303857B2 (en) Nonaqueous electrolyte battery and battery system
JP4774426B2 (en) Lithium secondary battery
KR101186425B1 (en) Method for manufacturing secondary battery
US20160133991A1 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6908966B2 (en) Non-aqueous electrolyte secondary battery
JP2007317582A (en) Energy storing device
JP2010232117A (en) Lithium secondary battery
JP2011150920A (en) Lithium ion battery
CN111354980B (en) Manufacturing method of lithium ion battery and lithium ion battery
JP5719623B2 (en) Lithium ion battery recovery method and power supply system
JP6652072B2 (en) Nonaqueous electrolyte, power storage element and method for manufacturing power storage element
JP5147870B2 (en) Lithium ion battery and method for regenerating the same
JP6260279B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2011124055A (en) Lithium secondary battery
CN106910933B (en) Lithium ion secondary battery
JP2010135190A (en) Lithium ion secondary battery
JP5193921B2 (en) Lithium secondary battery
CN109643828B (en) Nonaqueous electrolyte storage element
JP5870767B2 (en) Battery maintenance and regeneration method for non-aqueous electrolyte secondary battery
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
JP5171854B2 (en) Lithium secondary battery
KR102500701B1 (en) Liquid composition, method of restoring capacity of non-aqueous electrolyte secondary battery, method of producing liquid composition, and non-aqueous electrolyte secondary battery
JP2019145343A (en) Nonaqueous electrolyte, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element
JP7464445B2 (en) Method for manufacturing liquid-type lithium-ion secondary battery, and performance improver for liquid-type lithium-ion secondary battery
JP7015450B2 (en) How to recover the capacity of a non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

LAPS Cancellation because of no payment of annual fees