JP2012167457A - Ground improvement method - Google Patents
Ground improvement method Download PDFInfo
- Publication number
- JP2012167457A JP2012167457A JP2011027801A JP2011027801A JP2012167457A JP 2012167457 A JP2012167457 A JP 2012167457A JP 2011027801 A JP2011027801 A JP 2011027801A JP 2011027801 A JP2011027801 A JP 2011027801A JP 2012167457 A JP2012167457 A JP 2012167457A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- ground
- silica
- ground improvement
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
本発明は地盤改良工法に関し、特に沖積層や海岸埋立地のような地盤が緩く堆積している地域の液状化を防止することができる。 The present invention relates to a ground improvement method, and in particular, can prevent liquefaction in an area where the ground is loosely accumulated such as alluvium and coastal landfill.
沖積層や海岸埋立地のような地盤が緩く堆積している地域では、地震時における大規模な液状化被害が懸念されるため、これまで様々な液状化対策が実施されている。 In areas where the ground is loosely deposited, such as alluvial deposits and coastal landfills, there are concerns about large-scale liquefaction damage during earthquakes, so various liquefaction measures have been implemented so far.
砂地盤は地震等のせん断変形によりダイレタンシー現象により体積が変化する。特に、水で飽和した砂は、過剰間隙水圧が上昇し、有効応力が減少して砂の抵抗力が低下する。この結果、液状化現象が生じ、排水して体積が減少する。 Sand volume changes due to dilatancy phenomenon due to shear deformation such as earthquake. In particular, sand saturated with water increases the excess pore water pressure, reduces the effective stress, and decreases the sand resistance. As a result, a liquefaction phenomenon occurs and drains and the volume decreases.
これまでの液状化対策工法としては、地盤中に透水性の良い砕石の杭を造成することにより地震発生時の過剰間隙水圧を消散させて液状化を防止する方法(排水工法)、地盤中に砂を圧入することにより締め固められた砂杭を造成するとともに、その周辺地盤を側方に圧縮し振動締め固めを行う方法(締固め工法)が知られている。 The conventional liquefaction countermeasure methods include a method of preventing liquefaction by eliminating excess pore water pressure at the time of an earthquake by creating piles of crushed stone with good water permeability in the ground (drainage method). There is known a method (consolidation method) in which a sand pile compacted by press-fitting sand is formed, and the surrounding ground is compressed sideways to perform vibration compaction.
さらに、揚水ポンプによって地下水を汲み上げることにより地下水位を低下させる方法(地下水低下工法)、地盤中に注入した薬液(固化材)が土粒子の間隙で浸透固化し、それが接着剤となって地盤強化や止水(透水性の改良)などの効力を発揮する工法(薬液注入工法)も知られている。 Furthermore, a method of lowering the groundwater level by pumping up groundwater with a pump (groundwater lowering method), and a chemical solution (solidifying material) injected into the ground permeates and solidifies in the gaps between the soil particles, which becomes an adhesive. A construction method (chemical solution injection construction method) that exhibits effects such as strengthening and water stopping (improving water permeability) is also known.
しかし、上述したこれまでの液状化対策工法は、施工費がかなり高価である点などの理由により、経済性に見合う比較的重要な構造物に対して行われているのが現状で必ずしも一般的なものではなかった。 However, the conventional liquefaction countermeasure methods described above are currently generally applied to relatively important structures that meet the economic efficiency due to the fact that construction costs are considerably high. It was not something.
特に、地下水位低下工法は、常に揚水ポンプを稼動させる必要があるため、地下水位の低下に伴う地盤沈下やランニングコストがかなり高くなる等の課題があり、また薬液注入は経済性や地盤や地下水質汚染などの問題があった。 In particular, the groundwater level lowering method requires the pump to be operated at all times, so there are problems such as land subsidence and running costs that are considerably increased due to the groundwater level drop. There were problems such as water pollution.
また、既存構造物の直下に適用可能な液状化対策工は、注入液が広範囲に浸透しにくく、施工性が困難という問題があった。さらに、宅地のような周囲と接した場所での施工は、薬液注入による地下水への影響や地盤の変状の宅地への影響や経済性の問題があり、そのため、宅地地盤の液状化対策は大半が行われておらず、より経済的な液状化対策工の開発が急務とされていた。 In addition, the liquefaction countermeasure work that can be applied directly under an existing structure has a problem that the injected solution is difficult to penetrate in a wide range and the workability is difficult. In addition, construction in places that touch the surroundings, such as residential land, has the effect on the groundwater due to chemical injection, the impact on the residential land due to ground deformation, and economic problems. Most of them were not done, and it was urgent to develop more economical liquefaction countermeasures.
ところで、近年、直径が10μm〜100μmの多数の超微細気泡を含む高濃度空気溶存水を地盤に混入することにより地盤の不飽和を高める気泡混入工法(マイクロバブル水混入工法)が提唱されている。 By the way, in recent years, a bubble mixing method (micro bubble water mixing method) has been proposed in which high-concentration air-dissolved water containing a large number of ultrafine bubbles having a diameter of 10 μm to 100 μm is mixed into the ground to increase the unsaturation of the ground. .
この工法は、液状化時に発生する過剰間隙水圧を土粒子間に混入した気泡が収縮することによって吸収し、過剰間隙水圧の上昇を防ぎ、土粒子どうしの噛み合いを保つことで液状化強度を向上させるもので、新たな液状化対策工として期待されている。 This method absorbs excess pore water pressure generated during liquefaction by shrinkage of air bubbles mixed between soil particles, prevents increase of excess pore water pressure, and keeps the soil particles in mesh to improve liquefaction strength. It is expected to be a new countermeasure against liquefaction.
従来の液状化対策工は、固結化と不飽和化にわかれており、固結化に関しては、恒久性に優れた溶液型注入材により固結する方法であり、特に既設構造物の周辺や直下での施工性に優れている。固結化に関しては、水ガラスを主剤とするシリカグラウトが主に用いられており、特に水ガラスと酸を混合し、或いは更に炭酸カルシウム、或いは炭酸ソーダを加えて緩やかにpHを変化させてゲルタイムを調整する酸性シリカゾルが本発明者らによって開発されている。 Conventional liquefaction countermeasures are divided into consolidation and desaturation. Consolidation is a method of solidification with a solution-type injection material having excellent durability, especially around existing structures and Excellent workability directly underneath. For consolidation, silica grout with water glass as the main ingredient is mainly used. Especially, gel glass is prepared by mixing water glass and acid, or adding calcium carbonate or sodium carbonate to change pH slowly. The present inventors have developed an acidic silica sol for adjusting the above.
また、水ガラスと炭酸ガス或いは炭酸水を用いた水ガラスも開発されているが、いづれも炭酸ガスや炭酸水は水ガラスのアルカリを中和して水ガラスをゲル化する為に用いられている。また、シリカ溶液に空気の気泡を混入したグラウト提案されているが、所定量の気泡を含む水溶液の形成と、地盤中に至るまでの加圧下の送液と地中における気泡の発生のシステムが困難であることと、シリカグラウトの経済性が問題になる。 In addition, water glass and water glass using carbon dioxide or carbonated water have been developed. In any case, carbon dioxide or carbonated water is used to neutralize the alkali of the water glass and gel the water glass. Yes. In addition, a grout in which air bubbles are mixed in a silica solution has been proposed, but there is a system for forming an aqueous solution containing a predetermined amount of bubbles, feeding liquid under pressure up to the ground, and generating bubbles in the ground. Difficulties and the economics of silica grout become a problem.
これらのシリカグラウトはいづれも注入された地盤の強度はシリカグラウトの濃度によって決まるため充分な注入効果をうるにはそれに対応した充分なシリカ濃度を必要とする。 In any of these silica grouts, since the strength of the injected ground is determined by the concentration of the silica grout, a sufficient silica concentration corresponding to that is required to obtain a sufficient injection effect.
しかし、以上のような薬液注入において液状化強度は、薬液のシリカ濃度によって決まるため、また浸透性と耐久性が要求されるため特殊な材料と配合を用いる必要があり、経済性に課題があった。 However, since the liquefaction strength in chemical injection as described above is determined by the silica concentration of the chemical, and because permeability and durability are required, it is necessary to use special materials and blending, and there is a problem in economic efficiency. It was.
一方、気泡混入工法では、原料が水と空気であることから経済性に優れているとともに、充分な液状化強度を有する研究成果が示されている。 On the other hand, in the bubble mixing method, since the raw materials are water and air, it is excellent in economic efficiency, and research results having sufficient liquefaction strength are shown.
しかし、河川堤防直下など地下水流がある場合、注入された気泡が流出や拡散することにより、長期間にわたって期待した品質を確保、保持する事が出来ない可能性があった。 However, when there is a groundwater flow such as directly under a river embankment, there is a possibility that the expected quality cannot be secured and maintained over a long period of time because the injected bubbles flow out and diffuse.
また、土粒表面に微粒子気泡を吸着させることを原理としているため微粒子気泡を含む水溶液を製造し、それを注入管を通して加圧状態を保ちながら地盤中に注入して圧力を開放して地盤中に気泡を発生させなくてはならないため、それに対応したシステムや操作が要求されていた。 In addition, because it is based on the principle that fine particle bubbles are adsorbed on the surface of the soil particles, an aqueous solution containing fine particle bubbles is manufactured and injected into the ground while maintaining a pressurized state through an injection tube to release the pressure. In order to generate air bubbles, the system and operation corresponding to that had been required.
即ち、気泡を発生する装置を用いて気泡を混入した気泡混入液を生成し、それを加圧状態を保ったまま、注入管を通して地盤中に導入して、地盤中で圧力が開放されて地盤中に気泡が発生して不飽和状態に至るシステムが複雑で地盤に開放して気泡を発生させるまでの加圧状態を保つ事が難しいという問題があった。 That is, an air bubble mixed liquid is generated using a device that generates air bubbles, and is introduced into the ground through the injection pipe while maintaining the pressurized state, and the pressure is released in the ground. There is a problem that the system in which bubbles are generated and become unsaturated is complicated and it is difficult to maintain a pressurized state until the bubbles are generated by opening to the ground.
本発明は、以上の課題を解決するためになされたもので、特殊な気泡発生装置や工程を必要とせず、地盤中で簡便に二酸化炭素の気泡を発生させて地盤を不飽和化して地盤の液状化を防止できるようにした地盤改良工法を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and does not require a special bubble generating device or process, and easily generates carbon dioxide bubbles in the ground to unsaturate the ground and An object of the present invention is to provide a ground improvement method capable of preventing liquefaction.
請求項1記載の地盤改良工法は、二酸化炭素の気泡を地盤中で生成することにより地盤を不飽和化することを特徴とするものである。二酸化炭素の気泡で不飽和化した地盤の形成は空気の微粒子気泡による不飽和化に比べて、簡便な方法で可能であるのみならず不飽和度が同一でも高い液状化強度が得られる。これは、二酸化炭素は地下水面下の地盤において、多かれ少なかれ存在するカルシウムやマグネシウム分と反応して不溶性の炭酸カルシウムや炭酸マグネシウムを土粒子同士の接触面に沈積するためと思われる。
The ground improvement method according to
特に、液状化対策が必要となる沿海部では貝殻やサンゴに起因するコーラルサンド等のカルシウム分が多い。しばしばその量はカルシウム含有量が10%付近に達することもある。このため液状化強度は二酸化炭素の気泡による効果と炭酸カルシウムによる土粒子固定効果が生じ空気の微細気泡と同じ不飽和度でもより大きな液状化強度が得られる。 Especially in coastal areas where countermeasures against liquefaction are required, there is a large amount of calcium such as coral sand caused by shells and corals. Often the amount can reach around 10% calcium content. For this reason, the liquefaction strength has an effect of carbon dioxide bubbles and a soil particle fixing effect of calcium carbonate, and a greater liquefaction strength can be obtained even with the same degree of unsaturation as fine air bubbles.
本発明の実施においてはこのような場合、カルシウム分と反応して消費される二酸化炭素の量を算定して所定の不飽和度を得るに必要な二酸化炭素を加算した量の炭酸ガスが形成されるようにすればよい。 In the practice of the present invention, in such a case, the amount of carbon dioxide that reacts with the calcium content and is consumed to calculate the amount of carbon dioxide that is consumed to obtain a predetermined degree of unsaturation is formed. You can do so.
請求項2記載の地盤改良工法は、炭酸化合物と酸を混合することにより得られる二酸化炭素の気泡を地盤中で生成することにより地盤を不飽和化することを特徴とするものである。
The ground improvement method according to
本発明は、従来の物理的(或いは機械的)手法でバブルの形成と地中への圧送を行うことによる課題を、化学的手法を応用して地盤中で簡便に二酸化炭素の気泡を発生させて地盤を不飽和化させて液状化強度を得ることができる。 The present invention solves the problem of bubble formation and pumping into the ground by the conventional physical (or mechanical) method, and easily generates carbon dioxide bubbles in the ground by applying a chemical method. The soil can be desaturated to obtain liquefaction strength.
本発明の原理は、地下水面下で炭酸化合物と酸を反応させて二酸化炭素の気泡を発生させて地下水面下の地盤を不飽和化することにあり、従って、例えば、地盤中に設けた複数の流路をもつ注入管の合流部でA液として炭酸化合物の含有液、B液として酸性液を合流して二酸化炭素を発生させれば、注入管合流部で化学的反応によって急激に生成された二酸化炭素の気泡が微細粒子となって土粒子間隙に侵入して、容易に地盤を不飽和化することができる。 The principle of the present invention is to generate carbon dioxide bubbles by reacting a carbonic acid compound and an acid under the groundwater surface to desaturate the ground under the groundwater surface. If carbon dioxide is generated by joining a carbonate-containing liquid as the A liquid and an acidic liquid as the B liquid at the junction of the injection pipe having the flow path, it is rapidly generated by a chemical reaction at the injection pipe junction. The carbon dioxide bubbles are fine particles that enter the soil particle gaps, and can easily desaturate the ground.
このため、微粒子気泡の注入工法のように特殊な気泡発生装置や注入管から地盤中にいたる管路において加圧状態を保って空気の体積を縮小した状態に保ち地盤中で加圧状態が開放されて不飽和化するという工程が簡易化され、かつ特殊な装置を必要とせず作業性が簡便に行われるという画期的利点が得られる。 For this reason, as in the method of injecting fine particle bubbles, a special bubble generator and a pipeline from the injection tube to the ground keep the pressurized state and keep the air volume reduced to release the pressurized state in the ground. Thus, the process of desaturation is simplified, and an epoch-making advantage that workability is easily performed without requiring a special apparatus is obtained.
本発明では二酸化炭素の形成は液化炭酸ガスを炭酸ガスボンベから供給してもよい。また、工場や火力発電所からの排ガスであってもよい。また、これらにエアーコンプレッサーにより空気を混入してもよい。マイクロバブルと知られている微粒子気泡を混入した液体の二酸化炭素であってもよい。 In the present invention, carbon dioxide may be formed by supplying liquefied carbon dioxide from a carbon dioxide cylinder. Moreover, the exhaust gas from a factory or a thermal power plant may be sufficient. Moreover, you may mix air with these with an air compressor. It may be liquid carbon dioxide mixed with microbubbles known as microbubbles.
この場合、土粒子表面に二酸化炭素の微細な気泡が吸着して地震荷重により過剰間隙水圧が上昇した場合、二酸化炭素の体積が収縮して過剰間隙水圧を吸収して、液状化を防止することができる。 In this case, when fine bubbles of carbon dioxide are adsorbed on the surface of the soil particles and the excess pore water pressure increases due to the seismic load, the volume of carbon dioxide contracts to absorb the excess pore water pressure and prevent liquefaction. Can do.
請求項3記載の地盤改良工法は、請求項1または2記載の地盤改良工法において、
A液:酸性液
B液:炭酸化合物含有液
を有効成分としてA液とB液を合流して地盤中に二酸化炭素の気泡による不飽和土を形成することを特徴とするものである。
The ground improvement method according to claim 3 is the ground improvement method according to
Liquid A: Acidic liquid B liquid: Carbonate-containing liquid is used as an active ingredient, and liquid A and liquid B are merged to form unsaturated soil due to carbon dioxide bubbles in the ground.
地盤中に設けた複数の流路をもつ注入管の合流部でA液として炭酸化合物含有液、B液として酸性液を合流して二酸化炭素を発生させれば、注入管の合流部で急激な化学的反応によって生成された二酸化炭素の気泡は微細粒子となって土粒子間隙に侵入して、容易に地盤を不飽和化することができる。 If carbon dioxide is generated by joining a carbonate compound-containing liquid as the A liquid and an acidic liquid as the B liquid at the junction of the injection pipe having a plurality of flow paths provided in the ground, abruptly occurs at the junction of the injection pipe. The bubbles of carbon dioxide generated by the chemical reaction become fine particles and enter the soil particle gap, and the ground can be easily desaturated.
本発明における酸としては、硫酸、リン酸等の無機酸、硫酸水素ナトリウム、塩化アルミニウム塩の酸性を呈する酸性塩、クエン酸、酢酸、コハク酸等の有機酸、グリオキザールやエテレンガボネート、トリアセチン、ジアセチン等の有機エステル等、水ガラスやシリカコロイドのアルカリの存在下で酸として作用する有機化合物をあげることができる。 Examples of acids in the present invention include inorganic acids such as sulfuric acid and phosphoric acid, sodium hydrogen sulfate, acidic salts such as aluminum chloride, organic acids such as citric acid, acetic acid, and succinic acid, glyoxal, etheric bonate, triacetin, Examples thereof include organic compounds that act as an acid in the presence of water glass or silica colloid alkali, such as organic esters such as diacetin.
また、炭酸塩としては重炭酸や炭酸のアルカリ金属塩、炭酸カルシウム、炭酸マグネシウム等の難水溶性炭酸塩等をあげることができるが水溶性のアルカリ金属塩が特に適している。その他任意の酸や塩を併用してゲル化やpHを調整することができる。 Examples of carbonates include bicarbonate, alkali metal carbonates, and poorly water-soluble carbonates such as calcium carbonate and magnesium carbonate. Water-soluble alkali metal salts are particularly suitable. Any other acid or salt can be used in combination to adjust the gelation and pH.
請求項4記載の地盤改良工法は、請求項1記載の地盤改良工法において、酸は無機酸、有機酸または酸性塩のいずれか一種または複数種であることを特徴とするものである。
The ground improvement method according to claim 4 is characterized in that, in the ground improvement method according to
請求項5記載の地盤改良工法は、請求項1〜4のいずれかひとつに記載の地盤改良工法において、二酸化炭素の気泡を地盤中で発生させて液状化対策工を行うことを特徴とするものである。
The ground improvement construction method according to
本発明は、特に沖積層や海岸埋立地のような地盤が緩く堆積している地域の液状化を防止にすることができる。 The present invention can prevent liquefaction in areas where the ground is loosely accumulated, such as alluvium and coastal landfill.
請求項6記載の地盤改良工法は、請求項1〜5のいずれかひとつに記載の地盤改良工法において、さらにシリカを有効成分として含むことを特徴とするものである。
The ground improvement construction method according to
組成物としてシリカを有効成分として加えることで、地盤中の二酸化炭素の周辺がシリカと酸が反応して生じたシリカゲルによって覆われて地下水の流動にもかかわらず、所定の注入領域に保持し、かつ二酸化炭素が地下水に溶けて地下水による飽和度が増大することが防げるため、不飽和化が低減することを防ぐことができる。 By adding silica as an active ingredient as a composition, the surrounding area of carbon dioxide in the ground is covered with silica gel generated by the reaction of silica and acid, and maintained in a predetermined injection area despite the flow of groundwater, And since it can prevent that a carbon dioxide melt | dissolves in groundwater and the saturation degree by groundwater increases, it can prevent that desaturation reduces.
二酸化炭素を含むシリカ溶液は、土粒子同志の接触面をシリカ粒子が接着するとともに、二酸化炭素の気泡は土粒子表面に吸着される。このため、地震荷重による過剰間隙水圧は、二酸化炭素気泡の収縮によって吸収されると同時にシリカ粒子の接着力によって、土粒子の骨格構造が維持される。 In the silica solution containing carbon dioxide, the silica particles adhere to the contact surfaces of the soil particles, and bubbles of carbon dioxide are adsorbed on the surface of the soil particles. For this reason, the excess pore water pressure due to the seismic load is absorbed by the contraction of the carbon dioxide bubbles, and at the same time, the skeleton structure of the soil particles is maintained by the adhesive force of the silica particles.
この結果、大きな地震動による繰返しせん断応力に対してせん断応力が低減して、土の骨格構造が破壊されることを防ぐことができるために液状化現象による地盤沈下を生じない事になる。また、二酸化炭素の気泡とシリカの粘着力の相乗効果によって大きな地震動にも耐え、また小さいシリカ濃度でも大きな液状化強度を発現しうる。 As a result, since the shear stress is reduced with respect to the repeated shear stress caused by the large earthquake motion and the skeletal structure of the soil is prevented from being destroyed, the ground subsidence due to the liquefaction phenomenon does not occur. In addition, it can withstand large earthquake motions due to the synergistic effect of carbon dioxide bubbles and silica adhesion, and can exhibit high liquefaction strength even at low silica concentrations.
また、二酸化炭素発生量を大きくしても土粒子をブロック状にふくむ多数の不飽和土ブロックを形成し、かつその土粒子同士はシリカゲルで固定されるため、注入地盤全体の不飽和度が高まり大きな液状化強度を期待できる。 In addition, even if the amount of carbon dioxide generated is increased, many unsaturated soil blocks that contain soil particles in blocks are formed, and the soil particles are fixed with silica gel, which increases the degree of unsaturation of the entire injected ground. High liquefaction strength can be expected.
このことは、シリカ濃度が小さくても充分な液状化強度を得る事ができ、経済性に優れた地盤改良効果を得ることになる。 This means that a sufficient liquefaction strength can be obtained even if the silica concentration is small, and an excellent ground improvement effect can be obtained.
またこの場合、土粒子間の間隙に存在する低濃度のシリカゲルは荷重に対して破壊することなく変形して、追随する。このため、大きな地震のせん断応力に対して、土粒子間に存在するゲルは破壊することなく変形して二酸化炭素の気泡に作用して二酸化炭素の体積を収縮させて地震動荷重を吸収させるものと思われる。 In this case, the low-concentration silica gel present in the gaps between the soil particles deforms and follows the load without breaking. For this reason, the gel existing between the soil particles is deformed without breaking against the shear stress of a large earthquake and acts on carbon dioxide bubbles to contract the volume of carbon dioxide to absorb the seismic load. Seem.
また、一般の薬液注入ではシリカ濃度を大きくし間隙充填率を充分とらなくては充分な液状化強度を得る事ができない。しかし、本発明では、シリカ濃度を低濃度にすることによりゲルが寒天状になるため、地震による過剰間隙水圧の増大に対して破壊することなく変形可能なため、二酸化炭素のバブルがゲルの変形に順応して過剰間隙水圧の増加を吸収することにより不飽和地盤の耐震効果を発現することができ、しかもシリカゲルの砂粒子同士の固着効果に加わるため、シリカ濃度が低くても土粒子の骨格構造を崩すことなく大きな液状化強度が得られる。また、二酸化炭素の発生量を大きくとって、不飽和度を高める事ができるが、その場合シリカ濃度を高くして、かつ注入量を少なくすることにより大きな不飽和土ブロックを薄いシリカゲル膜で包むことにより、不飽和土ブロックを地下水の流動に対して保持する事ができ、かつ地震時には、硬くても薄いゲル膜が容易に破壊して内部の気体が圧縮して地震荷重を吸収して大きな液状化強度を得る事ができる。これらの研究結果(図1、表1)より、シリカ濃度は0.1〜40wt%とすることができ。特に0.1〜6wt%が好ましい。 Moreover, in general chemical injection, sufficient liquefaction strength cannot be obtained unless the silica concentration is increased and the gap filling rate is sufficiently increased. However, in the present invention, since the gel becomes agar-like by lowering the silica concentration, it can be deformed without breaking against an increase in excess pore water pressure due to an earthquake, so carbon dioxide bubbles are deformed in the gel. It is possible to express the seismic effect of unsaturated ground by adapting to the increase in excess pore water pressure, and in addition to the fixing effect of silica gel sand particles, the skeleton of soil particles even if the silica concentration is low Large liquefaction strength can be obtained without breaking the structure. In addition, it is possible to increase the degree of unsaturation by increasing the amount of carbon dioxide generated. In that case, a large unsaturated soil block is wrapped with a thin silica gel membrane by increasing the silica concentration and decreasing the injection amount. It is possible to hold the unsaturated soil block against the flow of groundwater, and at the time of an earthquake, even if it is hard, the thin gel film is easily broken and the internal gas is compressed to absorb the seismic load and become large Liquefaction strength can be obtained. From these research results (FIG. 1, Table 1), the silica concentration can be 0.1-40 wt%. 0.1 to 6 wt% is particularly preferable.
また、シリカ溶液は酸の存在によってゲル化を伴うとともに脱アルカリによってシリカゲルは中性〜酸性領域になり、シリカの耐久性が得られるとともに二酸化炭素は溶解度が低下する。なぜならば二酸化炭素はアルカリの存在下で水に溶け易いからである。 In addition, the silica solution is gelated due to the presence of an acid, and the silica gel becomes neutral to acidic region by dealkalization, whereby the durability of silica is obtained and the solubility of carbon dioxide is lowered. This is because carbon dioxide is easily dissolved in water in the presence of alkali.
請求項8記載の地盤改良工法は、請求項7記載の地盤改良工法において、シリカは水ガラスまたはシリカコロイドであることを特徴とするものである。
The ground improvement construction method according to
シリカ溶液をゲル化させ、28日養生後のシリカ濃度と破壊ひずみの関係を図1に、シリカ濃度とゲルの状態について表1に示す。 FIG. 1 shows the relationship between the silica concentration after gelling of the silica solution and the 28-day curing, and Table 1 shows the silica concentration and the gel state.
シリカゲルはシリカ濃度が低くなるほどホモゲル自体の強度は低くなるが、破壊ひずみが大きくなる。或いはゼリー状のゲルとなり、破壊を示すピークが現れることなく、ひずみが増大する。このような場合でもゲルが析出するシリカ濃度であればシリカ粒子の接着力が作用して、土粒子の骨格構造が維持される。シリカゲルはシリカ濃度2%程度でゆるいゲル状になり、0.1wt%以上で全量の水を包含する能力はないがシリカゲルが析出し、土粒子間を結合するのに有効にはたらく。 Silica gel has lower strength as the silica concentration decreases, but the fracture strain increases. Or it becomes a jelly-like gel, and the distortion increases without showing a peak indicating fracture. Even in such a case, if the silica concentration is such that the gel is precipitated, the adhesive force of the silica particles acts and the skeleton structure of the soil particles is maintained. Silica gel forms a loose gel at a silica concentration of about 2%, and at 0.1 wt% or more, it has no ability to contain the entire amount of water, but silica gel precipitates and works effectively to bind soil particles.
これより、請求項7においてはシリカ濃度0.1wt%以上40wt%までのシリカ溶液を地盤改良工法に用いることを特徴とするものである。シリカ濃度が40wt%以上では強度が高くなり、二酸化炭素が存在してもその液状化強度はシリカ濃度で決まってしまう。また、シリカ濃度が6%wt以上になると不飽和度を大きくすることにより使用するシリカ量は小さくなり、二酸化炭素による不飽和化による効果が大きくなり、同時に経済効果も得ることができる。不飽和度は3%以上あればよく、不飽和度が大きければ大きいほど、地下水面下に不飽和地盤を形成することにより液状化が生じない事になるが、大きな量の二酸化炭素を発生しても地上に逃げないようにシリカで不飽和土ブロックを地下水面下に固定させればよい。具体的には不飽和度は95%以内なら良い。 Accordingly, in claim 7, a silica solution having a silica concentration of 0.1 wt% to 40 wt% is used for the ground improvement method. When the silica concentration is 40 wt% or more, the strength increases, and even if carbon dioxide is present, the liquefaction strength is determined by the silica concentration. Further, when the silica concentration is 6% wt or more, the amount of silica to be used is reduced by increasing the degree of unsaturation, the effect of desaturation by carbon dioxide is increased, and an economic effect can be obtained at the same time. The degree of unsaturation should be 3% or more. The higher the degree of unsaturation, the less liquefaction will occur due to the formation of unsaturated ground below the groundwater surface, but a large amount of carbon dioxide will be generated. However, the unsaturated soil block may be fixed below the groundwater surface with silica so as not to escape to the ground. Specifically, the degree of unsaturation should be within 95%.
請求項9記載の地盤改良工法は、請求項1〜8のいずれか記載の地盤改良工法において、空気の気泡を含むことを特徴とするものであり、エアー発生装置やマイクロバブル発生装置を併用して空気の気泡を発生させることにより、必要に応じて飽和度を調整することができる。この場合、目標とする不飽和度に対応した気体量から空気量を差引いて残りの気体量が得られる炭酸ガスを設定すればよい。
The ground improvement construction method according to claim 9 is characterized in that in the ground improvement construction method according to any one of
請求項10において土粒子間の固着は二酸化炭素にカルシウム化合物やマグネシウム化合物のようなアルカリ土金属の塩や水酸化物を反応させて土粒子間でアルカリ土金属の不溶性の炭酸塩を沈殿させることを特徴とする。カルシウム化合物として消石灰をもちいた場合、炭酸カルシウムが沈積し、あるいは海水や製塩の際に副生される廃液中のCaイオンとMgイオンと反応させても同様の効果を得る。この場合、含まれるアルカリ土金属塩と炭酸ガスの反応によって消費される炭酸ガス量を計算して目的とする不飽和度に対応した炭酸ガスの量が得られる設計を行えばよい。また請求項11は請求項10においてアルカリ土類金属化合物として海水を用いることを特徴とする。
The adhesion between soil particles according to
請求項12記載の地盤改良工法は、請求項1〜3のいずれかひとつに記載の地盤改良工法において、所定の改良領域の目標とする不飽和度を設定して必要とする体積の二酸化炭素の気泡が得られるように二酸化炭素の量を設定して二酸化炭素の気泡を地盤中で生成することにより地盤を不飽和化することを特徴とするものである。炭酸化合物と酸を配合して二酸化炭素を形成する場合はそのように配合設計を行えばよい。また空気の気泡を併用したり、或いは地盤や地下水にCa化合物が含有される場合、それに消費される二酸化炭素の量を算定し、必要とされる不飽和度が得られる二酸化炭素の量を設定すればよい。
The ground improvement method according to
本発明の研究の結果、本発明は以下の特徴があることが判った。 As a result of research on the present invention, it has been found that the present invention has the following characteristics.
(1)二酸化炭素気泡による不飽和砂の場合は微粒子気泡による不飽和砂の場合と同程度以上に無処理の飽和砂に比べて液状化強度が増大する。即ち簡便な手法で液状化強度を発現しうる。特にCa分を含有する地盤においてはその効果は著しい。 (1) In the case of unsaturated sand due to carbon dioxide bubbles, the liquefaction strength increases compared to that of untreated saturated sand more than the same as in the case of unsaturated sand due to fine particle bubbles. That is, the liquefaction strength can be expressed by a simple method. The effect is remarkable especially in the ground containing Ca.
(2)不飽和度が同一の場合、シリカを加えた二酸化炭素気泡は空気による微粒子気泡のみによる場合よりも液状化強度が大幅に増大する。 (2) When the degree of unsaturation is the same, the liquefaction strength of the carbon dioxide bubbles added with silica is greatly increased as compared with the case of only air bubbles.
(3)シリカを加えた二酸化炭素気泡の場合はシリカ溶液のみの場合と比べてシリカ濃度が同じでも大幅に液状化強度が増大する。またこの場合、その液状化強度はシリカ溶液のみの液状化強度と二酸化炭素のみの液状化強度を合計した強度よりも大きくなりその相乗効果が得られる。このためシリカ溶液のゲル化のみによる液状化対策工では得ることのできない低濃度シリカを用いても充分な液状化強度を得ることができる。 (3) In the case of carbon dioxide bubbles to which silica is added, the liquefaction strength is greatly increased even if the silica concentration is the same as in the case of only the silica solution. In this case, the liquefaction strength is larger than the total strength of the liquefaction strength of only the silica solution and the liquefaction strength of only carbon dioxide, and the synergistic effect is obtained. For this reason, sufficient liquefaction strength can be obtained even if low-concentration silica, which cannot be obtained by liquefaction countermeasures only by gelation of the silica solution, is used.
(4)上記においてシリカ濃度は、シリカ溶液のみのグラウトでは注入効果が得られない薄い濃度でも効果がある。即ち、シリカ溶液のみではシリカゲルが配合液の水分の全量を包含しえない程のうすい濃度でも効果があり、これは注入中にシリカゲルが土粒子間の接触面に吸着して土粒子間を固定する為とおもわれる。 (4) In the above, the silica concentration is effective even at a thin concentration where an injection effect cannot be obtained with a grout of only a silica solution. In other words, the silica solution alone is effective even at such a thin concentration that the silica gel cannot contain the total amount of water in the blended solution. It is thought to do.
(5)二酸化炭素は水ガラスやコロイダルシリアのアルカリと反応してシリカを析出させ、かつシリカゲルの耐久性を向上させる効果がある。このため、シリカを加えた二酸化炭素溶液にさらに空気の気泡を加えた場合、空気の気泡はシリカのゲルで地盤中に土粒子間に固定されて液状化強度をさらに向上される効果がある。 (5) Carbon dioxide has the effect of reacting with alkali of water glass or colloidal Syria to precipitate silica and improving the durability of silica gel. Therefore, when air bubbles are further added to the carbon dioxide solution to which silica is added, the air bubbles are fixed between the soil particles in the ground with silica gel, and the liquefaction strength is further improved.
本発明によれば、特殊な気泡発生装置や気泡を地盤中に注入するための特殊な工程を必要とせず、地盤中で簡便に二酸化炭素の気泡を発生させて地盤を不飽和化することにより地盤の液状化を防止することができ、特に沖積層や海岸埋立地のような地盤が緩く堆積している地域の液状化防止に適している。 According to the present invention, a special bubble generating device or a special process for injecting bubbles into the ground is not required, and carbon dioxide bubbles are simply generated in the ground to desaturate the ground. It can prevent liquefaction of the ground, and is particularly suitable for prevention of liquefaction in areas where the ground is loosely deposited, such as alluvium and coastal landfill.
また特に、シリカを加えることで地盤中の二酸化炭素の周辺がシリカと酸との反応により生じたシリカゲルによって地震時に土粒子の骨格構造をそのままにして過剰間隙水圧を低減させ、かつ地震が起きるまでの期間において、地下水の流動による不飽和度の低減を阻止することにより地下水による不飽和化を防止することができる。 In particular, by adding silica, the excess pore water pressure is reduced by maintaining the skeletal structure of the soil particles at the time of the earthquake by silica gel produced by the reaction of silica and acid around the carbon dioxide in the ground, and until the earthquake occurs In this period, it is possible to prevent the desaturation due to the groundwater by preventing the reduction of the unsaturation due to the flow of the groundwater.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
二酸化炭素を注入した地盤、および二酸化炭素とシリカ溶液を注入した地盤の効果を実証する為、表2に示す供試体を作成し液状化強度を測定した。 In order to verify the effect of the ground injected with carbon dioxide and the ground injected with carbon dioxide and silica solution, specimens shown in Table 2 were prepared and the liquefaction strength was measured.
実施例1においては供試体中で二酸化炭素の気泡を発生させ飽和度90%とした。また、比較例1として飽和度100%とし二酸化炭素の有無による液状化強度の比較を行った。実施例2においては供試体中にシリカ溶液の注入及び二酸化炭素の気泡を発生させ飽和度を90%とした。また、比較例2としてシリカ溶液のみを注入し飽和度100%とし二酸化炭素の有無による液状化強度の比較を行った。 In Example 1, bubbles of carbon dioxide were generated in the specimen to adjust the saturation to 90%. Further, as Comparative Example 1, the degree of saturation was set to 100%, and the liquefaction strength was compared with the presence or absence of carbon dioxide. In Example 2, the silica solution was injected and carbon dioxide bubbles were generated in the specimen, and the saturation was 90%. Further, as Comparative Example 2, only the silica solution was injected to obtain a saturation degree of 100%, and the liquefaction strength with and without carbon dioxide was compared.
本実施例において改良地盤中に所定の体積の二酸化炭素を発生させ不飽和化させる為に、地盤中の間隙水圧中に溶解する二酸化炭素の量を調整する。 In this embodiment, in order to generate and desaturate a predetermined volume of carbon dioxide in the improved ground, the amount of carbon dioxide dissolved in the pore water pressure in the ground is adjusted.
二酸化炭素は可溶性である。水溶液中への二酸化炭素の溶解量(ガスボリューム)は温度と圧力により影響する。図2に二酸化炭素吸収係数表を示す。 Carbon dioxide is soluble. The amount of carbon dioxide dissolved in the aqueous solution (gas volume) is affected by temperature and pressure. FIG. 2 shows a carbon dioxide absorption coefficient table.
20℃において間隙水圧が0.1MPaの地盤中においては地下水1Lあたり1.745Lの二酸化炭素が溶解する。
・体積 (L) = 水の体積 (L) × GV = 1 × 1.745= 1.745 L
地盤の飽和度下げる為には不飽和度に相当する量の二酸化炭素を発生させる必要がある。
In the ground with a pore water pressure of 0.1 MPa at 20 ° C, 1.745 L of carbon dioxide dissolves per liter of groundwater.
・ Volume (L) = Volume of water (L) x GV = 1 x 1.745 = 1.745 L
In order to lower the saturation of the ground, it is necessary to generate carbon dioxide in an amount corresponding to the degree of unsaturation.
よって本実施例においては二酸化炭素を体積の10%発生させるためには、上記化学反応により0.1Lの二酸化炭素を過剰に発生させる必要がある。そこで、地盤中において1L当たり1.845Lの二酸化炭素を作成した。 Therefore, in this embodiment, in order to generate 10% of the volume of carbon dioxide, it is necessary to excessively generate 0.1 L of carbon dioxide by the above chemical reaction. Therefore, 1.845L of carbon dioxide per liter was created in the ground.
同様に、二酸化炭素を間隙中に20%発生させるために必要な二酸化炭素の量は1L当たり1.945Lとなる。 Similarly, the amount of carbon dioxide required to generate 20% carbon dioxide in the gap is 1.945 L per liter.
地盤中における二酸化炭素の発生方法としては数式1、2に示すようにクエン酸と炭酸水素ナトリウム(重曹)の反応により二酸化炭素を発生して行った。
As a method for generating carbon dioxide in the ground, carbon dioxide was generated by the reaction of citric acid and sodium hydrogen carbonate (bicarbonate) as shown in
なお、本発明における二酸化炭素の発生方法としては炭酸塩と酸を反応させる方法であれば良く、炭酸塩としては炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム等を用いることができる。また、酸としてはリン酸、硫酸、クエン酸や硫酸水素ナトリウム等の酸性塩等を用いることができる。 The carbon dioxide generation method in the present invention may be any method in which carbonate and acid are reacted. As the carbonate, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate or the like can be used. . As the acid, an acid salt such as phosphoric acid, sulfuric acid, citric acid or sodium hydrogen sulfate can be used.
本発明において間隙中で10%の二酸化炭素を発生させるに必要な二酸化炭素1L当たり1.845Lを配合するには、二酸化炭素の気体密度1.98、二酸化炭素のモル質量 44.01 g/molより、0.083molの二酸化炭素が必要である。 In the present invention, 1.845 L per 1 L of carbon dioxide required to generate 10% carbon dioxide in the gap is mixed with a gas density of carbon dioxide of 1.98 and a molar mass of carbon dioxide of 44.01 g / mol. Carbon dioxide is needed.
・質量 (g) : 体積 (L) × 二酸化炭素の気体密度 (g/L)
= 1.845 × 1.98 = 3.65g
・モル数 (mol) : 質量 (g) ÷ モル質量 (g/mol)
= 3.65 ÷ 44.01 = 0.083mol
・ Mass (g): Volume (L) × Carbon dioxide gas density (g / L)
= 1.845 × 1.98 = 3.65g
-Number of moles (mol): Mass (g) ÷ Molar mass (g / mol)
= 3.65 ÷ 44.01 = 0.083mol
数式2の反応式より、二酸化炭素1.845 Lを生成するのに必要なクエン酸(無水、モル質量 192.12 g/mol)
は5.38gである。
From the reaction formula of
Is 5.38 g.
・モル数 (mol) : 二酸化炭素の1/3
= 0.083 ÷ 3 = 0.028(mol)
・質量 (g) : モル数 (mol) × モル質量 (g/mol)
= 0.028 × 192.12 = 5.38g
-Number of moles (mol): 1/3 of carbon dioxide
= 0.083 ÷ 3 = 0.028 (mol)
・ Mass (g): Number of moles (mol) × molar mass (g / mol)
= 0.028 x 192.12 = 5.38g
反応式より、二酸化炭素1.845 Lを生成するのに必要な炭酸水素ナトリウムは6.97gである。
(モル質量 84.007 g/mol)
・モル数 (mol) : 二酸化炭素と同量
= 0.083 mol
・質量 (g) : モル数 (mol) × モル質量 (g/mol)
= 0.083× 84.007 = 6.97g
From the reaction formula, 6.97 g of sodium hydrogen carbonate necessary to produce 1.845 L of carbon dioxide is obtained.
(Molar mass 84.007 g / mol)
-Number of moles (mol): Same amount as carbon dioxide
= 0.083 mol
・ Mass (g): Number of moles (mol) × molar mass (g / mol)
= 0.083 x 84.007 = 6.97g
A液にクエン酸5.38g、B液に炭酸水素ナトリウム6.37gを添加し地盤中で反応させることにより二酸化炭素1.745Lが溶解し、0.1Lの二酸化炭素が発生する。 By adding 5.38 g of citric acid to the A liquid and 6.37 g of sodium hydrogen carbonate to the B liquid and reacting them in the ground, 1.745 L of carbon dioxide is dissolved and 0.1 L of carbon dioxide is generated.
実験に用いた配合を下記に示す。 The formulation used for the experiment is shown below.
(1)実施例1
酸性溶液としてクエン酸水溶液500mlと炭酸水素ナトリウム水溶液500mlを混合し二酸化炭素を発生させた。
(1) Example 1
Carbonic acid was generated by mixing 500 ml of an aqueous citric acid solution and 500 ml of an aqueous sodium bicarbonate solution as an acidic solution.
(2)実施例2
酸性シリカゾル溶液としてシリカ濃度4wt%のシリカゾルに二酸化炭素を発生させる為のクエン酸を溶解させた水溶液500mlと炭酸水素ナトリウム水溶液500mlを混合し二酸化炭素を発生させた。また供試体内でのシリカ濃度は2wt%に設定した。
(2) Example 2
Carbon dioxide was generated by mixing 500 ml of an aqueous solution in which citric acid was dissolved in a silica sol having a silica concentration of 4 wt% as an acidic silica sol solution and 500 ml of an aqueous sodium hydrogen carbonate solution. The silica concentration in the specimen was set to 2 wt%.
(3)比較例1
脱気した水を使用した。
(3) Comparative Example 1
Degassed water was used.
(4)比較例2
シリカ濃度2%の酸性シリカゾル溶液を注入した。
(4) Comparative example 2
An acidic silica sol solution having a silica concentration of 2% was injected.
図3に示す装置において装置内の供試体12に豊浦砂をDr=60%となるように入れ、5、6、7タンクからそれぞれの注入を行った。実施例1、2においては13注入口でA液には酸性溶液又は酸性シリカゾル溶液、B液には炭酸水素ナトリウム(重曹)水溶液を合流し、12供試体内で反応させ二酸化炭素を発生させた。
In the apparatus shown in FIG. 3, Toyoura sand was placed in the
作成した供試体は7日間室温養生し、非排水繰り返し三軸試験を行った。 The prepared specimens were cured at room temperature for 7 days, and repeated undrained triaxial tests.
試験条件はセル圧(200kPa)−背圧(100kPa)=初期有効拘束圧(100kPa)とし、繰り返し回数Nは両振幅ひずみDAが5%に達した状態とした。繰り返し回数20回でのせん断応力比を液状化強度Rlとし、結果を図4に示す。 The test conditions were cell pressure (200 kPa) −back pressure (100 kPa) = initial effective restraint pressure (100 kPa), and the number of repetitions N was such that both amplitude strains DA reached 5%. The shear stress ratio after 20 repetitions is defined as liquefaction strength Rl, and the results are shown in FIG.
結果より、水のみを注入した比較例1の液状化強度が0.15であったのに対し、二酸化炭素を発生させた実施例1の液状化強度は0.25であった。また、比較例2の液状化強度が0.28であったのに対し、実施例2液状化強度が0.6であった。これより、二酸化炭素を発生させることで液状化強度が高くなり、さらにシリカゾル中に二酸化炭素を発生させることで粘弾性のある供試体を作成することができ、相乗効果により高い液状化強度を得ることができる。 From the results, the liquefaction strength of Comparative Example 1 in which only water was injected was 0.15, whereas the liquefaction strength of Example 1 in which carbon dioxide was generated was 0.25. The liquefaction strength of Comparative Example 2 was 0.28, whereas the liquefaction strength of Example 2 was 0.6. From this, the liquefaction strength is increased by generating carbon dioxide, and further, a viscoelastic specimen can be created by generating carbon dioxide in the silica sol, and a high liquefaction strength is obtained by a synergistic effect. be able to.
また、図3の5水タンクにマイクロバブル発生装置を設置し、飽和度90%の供試体を作成液状化強度を測定した場合0.25と実施例1と同じ値が得られたことから二酸化炭素の発生により飽和度が調整できることがわかる。 In addition, when a microbubble generator was installed in the 5 water tank shown in FIG. 3 and a specimen having a saturation of 90% was prepared and the liquefaction strength was measured, the same value as in Example 1 was obtained. It can be seen that the saturation can be adjusted by generation.
また、改良地盤中にアルカリ土金属化合物が存在する場合、二酸化炭素と反応して結晶化することにより液状化強度を上げることができる。 Further, when an alkaline earth metal compound is present in the improved ground, the liquefaction strength can be increased by reacting with carbon dioxide and crystallizing.
図3に示す装置において供試体に貝殻の混入した海砂を用いた場合においては、マイクロバブル発生装置による飽和度90%の供試体の場合の液状化強度は豊浦砂と同じ0.25であったのに対し、二酸化炭素を用いて飽和度90%としたときの液状化強度は0.29と上昇した。 In the case of using sea sand mixed with shells in the specimen shown in Fig. 3, the liquefaction strength of the specimen with 90% saturation by the microbubble generator was 0.25, the same as that of Toyoura sand. On the other hand, the liquefaction strength when saturation was 90% using carbon dioxide increased to 0.29.
同様にシリカ濃度2%の薬液に二酸化炭素を混入し、二酸化炭素による飽和度90%としたときの液状化強度は0.64であり豊浦砂に比べて高い値を示したことから、アルカリ土金属化合物の炭酸塩が析出し液状化強度を上げることがわかる。なお、本実施例の貝殻混じりの海砂を用いた場合、地盤の地下水である海水中にマグネシウムイオン1.27g/kg、カルシウムイオン0.40g/kgが存在し、マグネシウムイオン及びカルシウムイオンと二酸化炭素の反応は下記の式に表わされる。 Similarly, when carbon dioxide is mixed into a chemical solution with a silica concentration of 2% and the saturation level due to carbon dioxide is 90%, the liquefaction strength is 0.64, which is higher than that of Toyoura sand. It can be seen that the carbonates of the above precipitate and increase the liquefaction strength. In addition, when sea sand mixed with shells of this example is used, magnesium ions 1.27 g / kg and calcium ions 0.40 g / kg are present in the groundwater as the groundwater, and magnesium ions, calcium ions, and carbon dioxide. The reaction is represented by the following formula:
Mg2+ + CO3 - → Mg2CO3
Ca2+ + CO3 - → Ca2CO3
Mg 2+ + CO 3 - → Mg 2 CO 3
Ca 2+ + CO 3 - → Ca 2 CO 3
これより、上記地盤においてはマグネシウムイオン0.052mol、カルシウム0.010 molイオンが存在し、等量の二酸化炭素と反応する。これより、この地盤に本発明を適用する場合0.062mol多く二酸化炭素を発生するさせた。 As a result, 0.052 mol magnesium ion and 0.010 mol calcium ion are present in the above ground and react with an equal amount of carbon dioxide. As a result, when the present invention was applied to this ground, 0.062 mol of carbon dioxide was generated.
さらに、本発明では
飽和度は97%以下、望ましくは95%以下に設定することが好ましく、さらに、エアー発生装置やマイクロバブル発生装置を併用し飽和度を調整することができる。
Furthermore, in the present invention, the saturation is preferably set to 97% or less, and desirably 95% or less, and the saturation can be adjusted by using an air generator or a microbubble generator.
さらに、工場等により排出した二酸化炭素をガスボンベに集めたものや、液化器により液化したもの、水に溶解したもの、圧縮機によりドライアイス化したもの、化学反応させ重曹等の炭酸塩としたものを用いることもできる。 In addition, carbon dioxide discharged from factories, etc., collected in gas cylinders, liquefied by a liquefier, dissolved in water, converted to dry ice by a compressor, or chemically reacted into carbonates such as baking soda Can also be used.
これらの場合も含有する二酸化炭素の量を算出して所定の不飽和度に対する量を地盤中に注入して対象地盤の不飽和化をはかればよい。 In these cases as well, the amount of carbon dioxide contained may be calculated, and an amount corresponding to a predetermined degree of unsaturation may be injected into the ground to desaturate the target ground.
本発明は、地盤中で簡便に二酸化炭素の気泡を発生させて地盤を不飽和化することにより、特に沖積層や海岸埋立地のような地盤が緩く堆積している地域の液状化を防止することができる。 The present invention prevents liquefaction particularly in areas where the ground is loosely deposited, such as alluvium and coastal landfill, by simply generating carbon dioxide bubbles in the ground and desaturating the ground. be able to.
請求項1記載の地盤改良工法は、地盤中の地下水面下に設置した注入管の複数の管路を通して水ガラスまたはシリカコロイドに酸を加えてなるシリカ濃度が0.1wt〜40wt%の酸性シリカ溶液に炭酸塩または重炭酸塩を反応させて地盤中の間隙中にCOThe ground improvement method according to
請求項2記載の地盤改良工法は、請求項1記載の地盤改良工法において、炭酸塩がアルカリ土金属化合物の炭酸塩であることを特徴とするものである。 The ground improvement method according to
請求項3記載の地盤改良工法は、請求項2記載の地盤改良工法において、アルカリ土金属化合物として海水を用いることを特徴とするものである。 The ground improvement method according to claim 3 is the ground improvement method according to
請求項4記載の地盤改良工法は、請求項1〜3いずれかひとつに記載の地盤改良工法において、エアー発生装置またはマイクロバブル発生装置の併用により空気の気泡を発生させることを特徴とするものである。 The ground improvement construction method according to claim 4 is characterized in that in the ground improvement construction method according to any one of
請求項5記載の地盤改良工法は、請求項1〜4のいずれかひとつに記載の地盤改良工法において、所定の改良領域の目標とする不飽和度を設定して必要とする体積の二酸化炭素を地盤中に発生せしめることを特徴とするものである。The ground improvement method according to
二酸化炭素の気泡で不飽和化した地盤の形成は空気の微粒子気泡による不飽和化に比べて、簡便な方法で可能であるのみならず不飽和度が同一でも高い液状化強度が得られる。これは、二酸化炭素は地下水面下の地盤において、多かれ少なかれ存在するカルシウムやマグネシウム分と反応して不溶性の炭酸カルシウムや炭酸マグネシウムを土粒子同士の接触面に沈積するためと思われる。The formation of the ground unsaturated with carbon dioxide bubbles is not only possible by a simple method, but also has a high liquefaction strength even when the degree of unsaturation is the same as compared with the desaturation caused by air fine particle bubbles. This seems to be because carbon dioxide reacts with the calcium and magnesium components present more or less in the ground below the groundwater surface to deposit insoluble calcium carbonate and magnesium carbonate on the contact surface between the soil particles.
特に、液状化対策が必要となる沿海部では貝殻やサンゴに起因するコーラルサンド等のカルシウム分が多い。しばしばその量はカルシウム含有量が10%付近に達することもある。このため液状化強度は二酸化炭素の気泡による効果と炭酸カルシウムによる土粒子固定効果が生じ空気の微細気泡と同じ不飽和度でもより大きな液状化強度が得られる。Especially in coastal areas where countermeasures against liquefaction are required, there is a large amount of calcium such as coral sand caused by shells and corals. Often the amount can reach around 10% calcium content. For this reason, the liquefaction strength has an effect of carbon dioxide bubbles and a soil particle fixing effect of calcium carbonate, and a greater liquefaction strength can be obtained even with the same degree of unsaturation as fine air bubbles.
本発明の実施においてはこのような場合、カルシウム分と反応して消費される二酸化炭素の量を算定して所定の不飽和度を得るに必要な二酸化炭素を加算した量の炭酸ガスが形成されるようにすればよい。In the practice of the present invention, in such a case, the amount of carbon dioxide that reacts with the calcium content and is consumed to calculate the amount of carbon dioxide that is consumed to obtain a predetermined degree of unsaturation is formed. You can do so.
また、地盤中に設けた複数の流路をもつ注入管の合流部でA液として炭酸化合物含有液、B液として酸性液を合流して二酸化炭素を発生させれば、注入管の合流部で急激な化学的反応によって生成された二酸化炭素の気泡は微細粒子となって土粒子間隙に侵入して、容易に地盤を不飽和化することができる。 Also, if carbon dioxide is generated by joining a carbonate compound-containing liquid as the A liquid and an acidic liquid as the B liquid at the junction of the injection pipe having a plurality of channels provided in the ground, the junction at the injection pipe The bubbles of carbon dioxide generated by the rapid chemical reaction become fine particles and enter the soil particle gap, and the ground can be easily desaturated.
また、本発明において、組成物としてシリカを有効成分として加えることで、地盤中の二酸化炭素の周辺がシリカと酸が反応して生じたシリカゲルによって覆われて地下水の流動にもかかわらず、所定の注入領域に保持し、かつ二酸化炭素が地下水に溶けて地下水による飽和度が増大することが防げるため、不飽和化が低減することを防ぐことができる。 Further, in the present invention, by adding silica as an active ingredient as a composition, the surrounding area of carbon dioxide in the ground is covered with silica gel produced by the reaction of silica and acid, regardless of the flow of groundwater. It is possible to prevent the desaturation from being reduced because the carbon dioxide is retained in the injection region and carbon dioxide dissolves in the groundwater and the saturation due to the groundwater can be prevented from increasing.
また、一般の薬液注入ではシリカ濃度を大きくし間隙充填率を充分とらなくては充分な液状化強度を得る事ができない。しかし、本発明では、シリカ濃度を低濃度にすることによりゲルが寒天状になるため、地震による過剰間隙水圧の増大に対して破壊することなく変形可能なため、二酸化炭素のバブルがゲルの変形に順応して過剰間隙水圧の増加を吸収することにより不飽和地盤の耐震効果を発現することができ、しかもシリカゲルの砂粒子同士の固着効果に加わるため、シリカ濃度が低くても土粒子の骨格構造を崩すことなく大きな液状化強度が得られる。また、二酸化炭素の発生量を大きくとって、不飽和度を高める事ができるが、その場合シリカ濃度を高くして、かつ注入量を少なくすることにより大きな不飽和土ブロックを薄いシリカゲル膜で包むことにより、不飽和土ブロックを地下水の流動に対して保持する事ができ、かつ地震時には、硬くても薄いゲル膜が容易に破壊して内部の気体が圧縮して地震荷重を吸収して大きな液状化強度を得る事ができる。これらの研究結果(図1、表1)より、シリカ濃度は0.1〜40wt%とすることができ、特に0.1〜6wt%が好ましい。 Moreover, in general chemical injection, sufficient liquefaction strength cannot be obtained unless the silica concentration is increased and the gap filling rate is sufficiently increased. However, in the present invention, since the gel becomes agar-like by lowering the silica concentration, it can be deformed without breaking against an increase in excess pore water pressure due to an earthquake, so carbon dioxide bubbles are deformed in the gel. It is possible to express the seismic effect of unsaturated ground by adapting to the increase in excess pore water pressure, and in addition to the fixing effect of silica gel sand particles, the skeleton of soil particles even if the silica concentration is low Large liquefaction strength can be obtained without breaking the structure. In addition, it is possible to increase the degree of unsaturation by increasing the amount of carbon dioxide generated. In that case, a large unsaturated soil block is wrapped with a thin silica gel membrane by increasing the silica concentration and decreasing the injection amount. It is possible to hold the unsaturated soil block against the flow of groundwater, and at the time of an earthquake, even if it is hard, the thin gel film is easily broken and the internal gas is compressed to absorb the seismic load and become large Liquefaction strength can be obtained. These findings (Figure 1, Table 1) than the silica concentration can be 0.1 to 40%, in particular 0.1~6Wt% is preferred.
また、シリカ溶液は酸の存在によってゲル化を伴うとともに脱アルカリによってシリカゲルは中性〜酸性領域になり、シリカの耐久性が得られるとともに二酸化炭素は溶解度が低下する。なぜならば二酸化炭素はアルカリの存在下で水に溶け易いからである。なお、シリカは水ガラスまたはシリカコロイドである。 In addition, the silica solution is gelated due to the presence of an acid, and the silica gel becomes neutral to acidic region by dealkalization, whereby the durability of silica is obtained and the solubility of carbon dioxide is lowered. This is because carbon dioxide is easily dissolved in water in the presence of alkali. Silica is water glass or silica colloid.
また、シリカ濃度0.1wt%以上40wt%までのシリカ溶液を地盤改良工法に用いるのがのぞましい。シリカ濃度が40wt%以上では強度が高くなり、二酸化炭素が存在してもその液状化強度はシリカ濃度で決まってしまう。また、シリカ濃度が6%wt以上になると不飽和度を大きくすることにより使用するシリカ量は小さくなり、二酸化炭素による不飽和化による効果が大きくなり、同時に経済効果も得ることができる。不飽和度は3%以上あればよく、不飽和度が大きければ大きいほど、地下水面下に不飽和地盤を形成することにより液状化が生じない事になるが、大きな量の二酸化炭素を発生しても地上に逃げないようにシリカで不飽和土ブロックを地下水面下に固定させればよい。具体的には不飽和度は95%以内なら良い。 In addition, it is preferable to use a silica solution having a silica concentration of 0.1 wt% to 40 wt% for the ground improvement method . When the silica concentration is 40 wt% or more, the strength increases, and even if carbon dioxide is present, the liquefaction strength is determined by the silica concentration. Further, when the silica concentration is 6% wt or more, the amount of silica to be used is reduced by increasing the degree of unsaturation, the effect of desaturation by carbon dioxide is increased, and an economic effect can be obtained at the same time. The degree of unsaturation should be 3% or more. The higher the degree of unsaturation, the less liquefaction will occur due to the formation of unsaturated ground below the groundwater surface, but a large amount of carbon dioxide will be generated. However, the unsaturated soil block may be fixed below the groundwater surface with silica so as not to escape to the ground. Specifically, the degree of unsaturation should be within 95%.
また、エアー発生装置やマイクロバブル発生装置を併用して空気の気泡を発生させることにより、必要に応じて飽和度を調整することができる。この場合、目標とする不飽和度に対応した気体量から空気量を差引いて残りの気体量が得られる炭酸ガスを設定すればよい。 Moreover, the saturation can be adjusted as necessary by generating air bubbles by using an air generator or a microbubble generator. In this case, carbon dioxide gas that can be obtained by subtracting the air amount from the gas amount corresponding to the target degree of unsaturation to obtain the remaining gas amount may be set.
また、土粒子間の固着は二酸化炭素にカルシウム化合物やマグネシウム化合物のようなアルカリ土金属の塩や水酸化物を反応させて土粒子間でアルカリ土金属の不溶性の炭酸塩を沈殿させることができる。カルシウム化合物として消石灰をもちいた場合、炭酸カルシウムが沈積し、あるいは海水や製塩の際に副生される廃液中のCaイオンとMgイオンと反応させても同様の効果を得る。この場合、含まれるアルカリ土金属塩と炭酸ガスの反応によって消費される炭酸ガス量を計算して目的とする不飽和度に対応した炭酸ガスの量が得られる設計を行えばよい。また、アルカリ土類金属化合物として海水を用いることを特徴とする。 Further, sticking between the soil particles may be precipitated alkaline earth metal carbonate insoluble among alkaline earth metal salts or hydroxides are reacted with the soil particles, such as calcium compounds and magnesium compounds to carbon dioxide . When slaked lime is used as the calcium compound, the same effect can be obtained even when calcium carbonate is deposited or reacted with Ca ions and Mg ions in the waste liquid by-produced during seawater or salt production. In this case, the design may be such that the amount of carbon dioxide consumed by the reaction between the alkaline earth metal salt contained and carbon dioxide is calculated to obtain the amount of carbon dioxide corresponding to the target degree of unsaturation. Further, seawater is used as the alkaline earth metal compound .
また、所定の改良領域の目標とする不飽和度を設定して必要とする体積の二酸化炭素の気泡が得られるように二酸化炭素の量を設定して二酸化炭素の気泡を地盤中で生成することにより地盤を不飽和化することができる。
炭酸化合物と酸を配合して二酸化炭素を形成する場合はそのように配合設計を行えばよい。また空気の気泡を併用したり、或いは地盤や地下水にCa化合物が含有される場合、それに消費される二酸化炭素の量を算定し、必要とされる不飽和度が得られる二酸化炭素の量を設定すればよい。
In addition, by setting the target degree of unsaturation in a given improvement area and setting the amount of carbon dioxide so that the required volume of carbon dioxide bubbles is obtained, carbon dioxide bubbles are generated in the ground. The ground can be desaturated.
When carbon dioxide is formed by blending a carbonic acid compound and an acid, the blending design may be performed as such. Also, when air bubbles are used together, or when Ca compound is contained in the ground or groundwater, calculate the amount of carbon dioxide consumed and set the amount of carbon dioxide that can obtain the required degree of unsaturation do it.
請求項1記載の地盤改良工法は、地盤中の地下水面下に設置した注入管の複数の管路を通して水ガラスまたはシリカコロイドに酸を加えてなるシリカ濃度が0.1wt〜40wt%の酸性シリカ溶液に炭酸塩または重炭酸塩を前記注入管の合流部で化学反応させて地盤中の間隙中にCO2を発生せしめ、地盤の不飽和度を3%以上とすることによって地盤の不飽和化と固結を行って液状化対策工を行うことを特徴とするものである。
請求項2記載の地盤改良工法は、請求項1記載の地盤改良工法において、地盤または地下水に含有するCa化合物と反応して消費されるCO 2 の量を算定して、地盤の不飽和度を3%以上とするのに必要なCO 2 の量を発生させる酸と炭酸塩または重炭酸塩の量を設定して必要なCO 2 を発生させることを特徴とするものである。
請求項3記載の地盤改良工法は、請求項1または2記載の地盤改良工法において、炭酸塩がアルカリ土金属化合物の炭酸塩であることを特徴とするものである。
請求項4記載の地盤改良工法は、請求項3記載の地盤改良工法において、アルカリ土金属化合物として海水を用いることを特徴とするものである。
請求項5記載の地盤改良工法は、請求項1〜4いずれかひとつに記載の地盤改良工法において、エアー発生装置またはマイクロバブル発生装置の併用により空気の気泡を発生させることを特徴とするものである。
請求項6記載の地盤改良工法は、請求項1〜5のいずれかひとつに記載の地盤改良工法において、所定の改良領域の目標とする不飽和度を設定して必要とする体積の二酸化炭素を地盤中に発生せしめることを特徴とするものである。
The ground improvement method according to
The ground improvement method according to
Ground improvement method according to claim 3, wherein, in the ground improvement method according to
The ground improvement method according to claim 4 is the ground improvement method according to claim 3 , wherein seawater is used as the alkaline earth metal compound.
The ground improvement construction method according to
The ground improvement method according to
Claims (12)
(1) 炭酸化合物と酸を混合して形成される二酸化炭素。
(2) 液化二酸化炭素
(3) 排ガス The ground improvement construction method in which the carbon dioxide of Claim 1 is formed by either of the following.
(1) Carbon dioxide formed by mixing carbonate compounds and acids.
(2) Liquefied carbon dioxide
(3) Exhaust gas
A液:酸性液
B液:炭酸化合物
を有効成分としてA液、B液を合流して地盤中に二酸化炭素による不飽和土を形成することを特徴とする地盤改良工法。 The ground improvement construction method according to claim 1 or 2, characterized in that liquid A, acid liquid B, liquid carbonate A is combined with liquid A and liquid B as an active ingredient to form unsaturated soil by carbon dioxide in the ground.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011027801A JP4940462B1 (en) | 2011-02-10 | 2011-02-10 | Ground improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011027801A JP4940462B1 (en) | 2011-02-10 | 2011-02-10 | Ground improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4940462B1 JP4940462B1 (en) | 2012-05-30 |
JP2012167457A true JP2012167457A (en) | 2012-09-06 |
Family
ID=46395346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011027801A Expired - Fee Related JP4940462B1 (en) | 2011-02-10 | 2011-02-10 | Ground improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4940462B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115125935B (en) * | 2022-06-09 | 2023-04-21 | 河海大学 | Device for reducing saturation of sand foundation by packaging carbon dioxide and construction method |
CN115949052B (en) * | 2022-10-19 | 2024-04-30 | 中国科学院武汉岩土力学研究所 | CO2Device and method for reinforcing calcareous sand foundation |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686985A (en) * | 1979-12-15 | 1981-07-15 | Kyokado Eng Co Ltd | Soil grouting process |
JP3236154B2 (en) * | 1993-12-10 | 2001-12-10 | 宇部マテリアルズ株式会社 | Composition for civil engineering materials |
JP2003138250A (en) * | 2001-11-06 | 2003-05-14 | Toagosei Co Ltd | Method for stabilizing ground |
JP2003278140A (en) * | 2002-03-26 | 2003-10-02 | Shimizu Corp | Method for measuring degree of saturation of ground and method for preventing liquefaction |
JP4212315B2 (en) * | 2002-08-05 | 2009-01-21 | 強化土エンジニヤリング株式会社 | Soil consolidation method and concrete frame processing method |
JP4628082B2 (en) * | 2004-12-14 | 2011-02-09 | 株式会社不動テトラ | How to prevent ground liquefaction |
JP4240501B2 (en) * | 2006-06-14 | 2009-03-18 | 強化土エンジニヤリング株式会社 | Ground improvement method |
JP4869805B2 (en) * | 2006-06-22 | 2012-02-08 | 佐藤工業株式会社 | Ground improvement method |
JP4621634B2 (en) * | 2006-06-29 | 2011-01-26 | 国立大学法人北海道大学 | Method of consolidation of ground containing calcium using microorganisms |
JP2008038379A (en) * | 2006-08-02 | 2008-02-21 | Port & Airport Research Institute | Liquefaction prevention construction method |
JP4608669B2 (en) * | 2007-01-26 | 2011-01-12 | 国立大学法人北海道大学 | Ground improvement method containing calcium using microorganisms |
-
2011
- 2011-02-10 JP JP2011027801A patent/JP4940462B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4940462B1 (en) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6489569B1 (en) | Ground improvement method | |
CN106946255B (en) | A kind of method of near coal-mine coal-burning power plant's waste processing and carbon dioxide sequestration | |
JP5599032B2 (en) | Ground improvement method | |
JP5360578B2 (en) | Ground injection method | |
JP2006169940A (en) | Soil improving method and grout used for soil improvement method | |
JP5578642B2 (en) | Ground injection agent and ground injection method | |
JP2008008023A (en) | Method of consolidating ground containing calcium, by using microorganisms | |
CN103288330A (en) | Freshwater sludge curing agent | |
JP4517050B2 (en) | Ground improvement method and apparatus | |
JP2010185020A (en) | Grouting agent and grouting method | |
CN101386548A (en) | Light foaming concrete and production method and use thereof | |
KR101607062B1 (en) | Grout for filling pore space in ground and Method for grouting using the same | |
JP2008063794A (en) | Method of treating soil or building skeleton | |
JP4940462B1 (en) | Ground improvement method | |
JP2008138069A (en) | Method for treating soil or construction skeleton | |
JP2008063495A (en) | Method for treating soil or building skeleton | |
JP4662957B2 (en) | Suction prevention injection method | |
JP2008161778A (en) | Soil purifying method | |
JP2008223475A (en) | Grouting method | |
CN116143468B (en) | Premixed fluid state solidified salty soil and preparation method thereof | |
JP2015212513A (en) | Liquefaction countermeasure method for ground | |
JP2006226014A (en) | Grouting construction method | |
JP5017592B2 (en) | Ground injection material and ground injection method | |
JP5158390B2 (en) | Liquefaction prevention method | |
Zhang et al. | Improved methods, properties, applications and prospects of microbial induced carbonate precipitation (MICP) treated soil: A review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4940462 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |