JP2008038379A - Liquefaction prevention construction method - Google Patents

Liquefaction prevention construction method Download PDF

Info

Publication number
JP2008038379A
JP2008038379A JP2006210917A JP2006210917A JP2008038379A JP 2008038379 A JP2008038379 A JP 2008038379A JP 2006210917 A JP2006210917 A JP 2006210917A JP 2006210917 A JP2006210917 A JP 2006210917A JP 2008038379 A JP2008038379 A JP 2008038379A
Authority
JP
Japan
Prior art keywords
dissolved
gas
aqueous solution
solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006210917A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamazaki
浩之 山崎
Kouki Zen
功企 善
Kentaro Hayashi
健太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Original Assignee
Kyushu University NUC
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Penta Ocean Construction Co Ltd, National Institute of Maritime Port and Aviation Technology filed Critical Kyushu University NUC
Priority to JP2006210917A priority Critical patent/JP2008038379A/en
Publication of JP2008038379A publication Critical patent/JP2008038379A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquefaction prevention construction method for arranging air bubbles simply and uniformly. <P>SOLUTION: In this liquefaction prevention construction method 1, a gas-dissolved solution 3 having lower temperature than temperature of sand bed ground 2 is poured into the sand bed ground 2 and permeates into the sand bed ground 2, and then the dissolved gas is formed into minute air bubbles as temperature of the gas dissolved solution 3 rises. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は液状化防止工法に関するものである。   The present invention relates to a liquefaction prevention method.

砂層地盤中に空気を送り込み、該砂層地盤中の不飽和度を高めると地震の震動による過剰間隙水の上昇過程が完全飽和に比べて遅れることから液状化しにくい砂層地盤になることが分かっている。図4によると砂層地盤内の間隙圧係数(B値)と液状化にいたるまでの繰り返し回数との関係が示されており、間隙圧係数は裁荷による過剰間隙水圧の上昇値と主応力の増分の比で表される値であり、地盤内部の飽和度が増し、完全飽和状態になると100%となる値である。この図から間隙圧係数を0.1程度下げることにより、液状化に至る繰り返し回数は10倍大きくなることがわかる。すなわち、間隙圧係数を低下させることにより地盤の液状化強度は上昇する。そこで地盤を不飽和状態にするための施工法として、例えば、(1)矢板などで矩形に囲い込んだ地盤中の地下水を低下させて空気を送り込んだ後、再度地下水を上昇させて不飽和地盤を形成する工法(特開平8−3975号公報)、(2)地盤内に空気を送り込む工法(特開2000−34736号公報)、(3)地下水圧よりも高い圧力で空気を溶存させた水を地中に注入する工法(特開2001−193048号公報)が提案されている。
特開平8−3975号公報 特開2000−34736号公報 特開2001−193048号公報
It is known that when air is fed into the sand layer ground and the degree of unsaturation in the sand layer ground is increased, the rising process of excess pore water due to earthquake vibration will be delayed compared to full saturation, making it difficult to liquefy. . Fig. 4 shows the relationship between the pore pressure coefficient (B value) in the sand layer ground and the number of repetitions until liquefaction. It is a value represented by a ratio of increments, and is a value that becomes 100% when the degree of saturation inside the ground increases and becomes fully saturated. From this figure, it can be seen that the number of repetitions leading to liquefaction increases 10 times by lowering the pore pressure coefficient by about 0.1. That is, the liquefaction strength of the ground increases by lowering the pore pressure coefficient. Therefore, as a construction method to bring the ground into an unsaturated state, for example, (1) After lowering the groundwater in the ground enclosed in a rectangle with a sheet pile etc. and sending air, the groundwater is raised again and the unsaturated ground (2) Method of sending air into the ground (JP 2000-34736), (3) Water in which air is dissolved at a pressure higher than the groundwater pressure Has been proposed (Japanese Patent Laid-Open No. 2001-193048).
JP-A-8-3975 JP 2000-34736 A JP 2001-193048 A

しかし、上記の(1)の工法では、確率的に均一な不飽和地盤が形成されるが、不飽和度の調整が難しいため矢板で囲むなどの補助的な施工が必要でありコストがかかるという問題があった。また(2)および(3)の工法では、注入地点からの距離により気泡の量が変化して均一な気泡の配置が困難であるという問題があった。   However, in the construction method (1) described above, a uniform unsaturated ground is formed stochastically. However, since it is difficult to adjust the degree of unsaturation, auxiliary construction such as surrounding with a sheet pile is necessary and costs are high. There was a problem. In the methods (2) and (3), there is a problem that the amount of bubbles changes depending on the distance from the injection point and it is difficult to arrange the bubbles uniformly.

本願発明は上記のような問題に鑑みてなされたものであり、その目的は、簡単かつ均一に気泡の配置ができる液状化防止工法を提供することである。   This invention is made | formed in view of the above problems, The objective is to provide the liquefaction prevention construction method which can arrange | position a bubble easily and uniformly.

以上の課題を解決するための液状化防止工法は、砂層地盤に、該砂層地盤の温度よりも低い温度のガス溶存溶液を注入して浸透させた後、該ガス溶存溶液の温度の上昇にともなって溶存ガスを微少な気泡にすることを特徴とする。またガス溶存溶液は、水にガスを溶存させたガス溶存水溶液、シリカ水溶液にガスを溶存させたガス溶存シリカ水溶液、またはシリカ水溶液とガス溶存水溶液とを混合したガス溶存シリカ水溶液のいずれかであることを含むものである。また、ここにおいて砂層地盤への打設時におけるシリカ水溶液中のシリカ濃度(SiO濃度)は重量で1〜10%のものを使用する。またシリカ濃度が1%未満の場合は効果が発揮されず、シリカ濃度が10%を超える場合は施工が困難になり、かつ均等に分散できないという不具合がある。 In order to solve the above problems, the liquefaction prevention method involves injecting a gas-dissolved solution having a temperature lower than the temperature of the sand-layer ground into the sand-layer ground and then infiltrating it, and as the temperature of the gas-dissolved solution increases. It is characterized by making dissolved gas into minute bubbles. The gas-dissolved solution is either a gas-dissolved aqueous solution in which gas is dissolved in water, a gas-dissolved silica aqueous solution in which gas is dissolved in a silica aqueous solution, or a gas-dissolved silica aqueous solution in which a silica aqueous solution and a gas-dissolved aqueous solution are mixed. Including things. Here, the silica concentration (SiO 2 concentration) in the silica aqueous solution at the time of placing on the sand layer ground is 1 to 10% by weight. Further, when the silica concentration is less than 1%, the effect is not exhibited, and when the silica concentration exceeds 10%, there is a problem that the construction becomes difficult and cannot be evenly dispersed.

砂層地盤中に注入された低温のガス溶存溶液は、砂層地盤を浸透するうちに水温が地下水の温度まで上昇する。これに伴って溶液中の溶存可能なガス量が少なくなることから、溶存していたガスは微少な気泡となる。このため水温と溶存可能なガス量が事前に把握できて、地下水の温度と溶液の水温との温度差から溶液の温度上昇の経時変化が予想可能であるため、微少な気泡を均一かつ定量的に砂層地盤内に配置することができ、砂層地盤の液状化強度を増加させることができる。またガス溶存シリカ水溶液は微少な気泡が発生した後に固結するため、気泡が永久に固定されて、砂層地盤の液状化強度の増加を恒久的にすることができる。   The temperature of the low-temperature gas-dissolved solution injected into the sand layer ground rises to the temperature of the groundwater while penetrating the sand layer ground. Along with this, the amount of gas that can be dissolved in the solution decreases, so that the dissolved gas becomes minute bubbles. For this reason, the water temperature and the amount of gas that can be dissolved can be ascertained in advance, and the change in the temperature of the solution over time can be predicted from the temperature difference between the temperature of the groundwater and the temperature of the solution. It can be arranged in the sand layer ground, and the liquefaction strength of the sand layer ground can be increased. Further, since the gas-dissolved silica aqueous solution is solidified after the generation of minute bubbles, the bubbles are permanently fixed, and the increase in the liquefaction strength of the sand layer ground can be made permanent.

以下、本願発明の液状化防止工法の実施の形態を図面に基づいて詳細に説明する。この液状化防止工法は飽和した砂層地盤を対象とし、この砂層地盤よりも低温のガス溶存溶液を注入し、この溶存ガスを微少な気泡にして飽和度を低下させることにより地震時における砂層地盤の液状化を防止するものである。またこの工法における各実施の形態において同じ構成は同じ符号を付して説明し、異なった構成は異なった符号を付して説明する。   Hereinafter, embodiments of the liquefaction prevention method of the present invention will be described in detail with reference to the drawings. This liquefaction prevention method is intended for saturated sand layer ground, injecting a gas dissolved solution at a temperature lower than that of this sand layer ground, and making this dissolved gas a fine bubble to lower the saturation, thereby reducing the degree of saturation of the sand layer ground during an earthquake. It prevents liquefaction. In each embodiment of the construction method, the same components are described with the same reference numerals, and different configurations are described with different reference numerals.

図1は第1の実施の形態の液状化防止工法1であり、この液状化防止工法1は、まず液状化対象の砂層地盤2よりも低温の水を曝気して、この水中にCOを溶存させたCO溶存水溶液3を製造する。例えば、水へのCOの溶解度は、水温が0℃の場合、水の体積の171%(0℃、1atm)、10℃の場合が125%、20℃の場合が88%であり、0℃の完全溶解状態の溶液を20℃まで上昇させると、1atm状態で体積の83%の溶存ガスが気泡化する。 FIG. 1 shows a liquefaction prevention method 1 according to the first embodiment. In this liquefaction prevention method 1, water having a temperature lower than that of the sand layer ground 2 to be liquefied is first aerated, and CO 2 is supplied into the water. A dissolved CO 2 dissolved aqueous solution 3 is produced. For example, the solubility of CO 2 in water is 171% (0 ° C., 1 atm) of water volume when the water temperature is 0 ° C., 125% at 10 ° C., 88% at 20 ° C., and 0% When the solution in a completely dissolved state at 20 ° C. is raised to 20 ° C., 83% by volume of dissolved gas is bubbled in the 1 atm state.

そこで、例えば水温が20℃の砂層地盤2に、これよりも低温のCO溶存水溶液3、例えば5℃〜12℃のCO溶存水溶液3をポンプ4によって注入孔5の注入用外管6から砂層地盤2に注入する。そして、このCO溶存水溶液3が砂層地盤2中を浸透するうちに20℃の水温まで上昇することにより溶存ガス(CO)が気泡化する。これにより微少な気泡を砂層地盤2中の間隙に配置することができる。 Therefore, for example, a CO 2 dissolved aqueous solution 3 having a lower temperature than this, for example, a CO 2 dissolved aqueous solution 3 having a temperature of 5 ° C. to 12 ° C. It injects into the sand layer ground 2. The dissolved gas by the CO 2 dissolved solution 3 rises to the water temperature of 20 ° C. while penetrating the sand ground 2 medium (CO 2) is aerated. Thereby, minute bubbles can be arranged in the gaps in the sand layer ground 2.

これは、例えば、1000ccの飽和地盤の場合、土粒子が体積の約50%、間隙水が50%であったとすると、COが完全溶解した10℃で500ccの間隙水が20℃になると、気泡化するCOは、185cc(20℃、1atm)となるため、COが気泡化する際には、間隙圧係数(B値)は大幅に減少する。 For example, in the case of a saturated ground of 1000 cc, assuming that the soil particles are about 50% of the volume and the pore water is 50%, the CO 2 is completely dissolved and the 500 cc pore water becomes 20 ° C. Since CO 2 to be bubbled is 185 cc (20 ° C., 1 atm), the pore pressure coefficient (B value) is greatly reduced when CO 2 is bubbled.

この溶存ガス(CO)の気泡化は2時間程度であり、注入時間も2〜4時間程度と同程度であるため、気泡を砂層地盤2内に均一に配置することができて、砂層地盤2中の不飽和度を高めて液状化強度を上昇させることができる。これは従来のように砂層地盤2中に気泡を直接注入するのではなく、砂層地盤2中に浸透させた水溶液の溶存ガス(CO)を気泡化させるので、気泡を砂層地盤内に均一に配置することができる。 Since the dissolved gas (CO 2 ) is bubbled for about 2 hours and the injection time is about 2 to 4 hours, the bubbles can be uniformly arranged in the sand layer ground 2 and the sand layer ground. The degree of unsaturation in 2 can be increased and the liquefaction strength can be increased. This does not directly inject bubbles into the sand layer ground 2 as in the prior art, but bubbles the dissolved gas (CO 2 ) in the aqueous solution that has penetrated into the sand layer ground 2 so that the bubbles are uniformly distributed in the sand layer ground. Can be arranged.

また図2は第2の実施の形態の液状化防止工法7であり、この液状化防止工法7はシリカ水溶液8と、COを溶存させたCO溶存水溶液3とを混合して製造したCO溶存シリカ水溶液9を使用するものである。これは低温のCO溶存水溶液3を砂層地盤2中に注入し続けなくても長期的に一定の液状化防止効果を保持することを可能にするものである。 CO also Figure 2 is a liquefaction prevention method 7 of the second embodiment, in which the liquefaction prevention method 7 silica solution 8 was prepared by mixing a CO 2 dissolved solution 3 obtained by dissolved the CO 2 2 Dissolved silica aqueous solution 9 is used. This makes it possible to maintain a constant liquefaction preventing effect for a long time without continuing to inject the low temperature CO 2 dissolved aqueous solution 3 into the sand layer ground 2.

これは、図2に示すように、まず固結時間が2〜10時間で15℃のシリカ水溶液8と、ほぼ同量のCOを溶存させた5℃程度のCO溶存水溶液3を製造する。そして、このシリカ水溶液(30〜70重量%)8と、CO溶存水溶液(30〜70重量%)3とを攪拌混合して、砂層地盤2の水温よりも低温の10℃のCO溶存シリカ水溶液9を製造する。このCO溶存シリカ水溶液9中のシリカ濃度(SiO濃度)は重量で1〜10%である。そして、これを上記と同じ方法で砂層地盤2に注入すると、これが砂層地盤2中を浸透するうちに20℃まで上昇することにより溶存ガス(CO)が気泡化する。これにより微少な気泡を砂層地盤2の間隙に配置することができる。 As shown in FIG. 2, first, a silica aqueous solution 8 having a consolidation time of 2 to 10 hours and a CO 2 dissolved aqueous solution 3 of about 5 ° C. in which substantially the same amount of CO 2 is dissolved are produced. . Then, this aqueous silica solution (30-70 wt%) 8, CO 2 dissolved in water (30-70 wt%) 3 and stirring and mixing the low temperature of 10 ° C. of CO 2 dissolved silica than the water temperature of the sand layer ground 2 An aqueous solution 9 is produced. The silica concentration (SiO 2 concentration) in the CO 2 -dissolved silica aqueous solution 9 is 1 to 10% by weight. When this is injected into the sand ground 2 in the same manner as described above, which dissolved gas (CO 2) by raising to 20 ° C. While penetrating the sand ground 2 medium is aerated. Thereby, minute bubbles can be arranged in the gap between the sand layer ground 2.

この溶存ガス(CO)の気泡化は2時間程度で行われるため、固結時間が2〜10時間のCO溶存シリカ水溶液9が固結する前に砂層地盤2内に気泡を均一に配置することができる。したがって、気泡が均一に配置された後に、CO溶存シリカ水溶液9がゲル状に固結して均一配置の気泡が永久に固定されるため、不飽和度が高められて液状化強度の上昇を恒久的にすることが可能になる。このため低温のCO溶存水溶液3を砂層地盤2中に注入し続けなくても長期的に一定の液状化防止効果を保持することが可能になる。 Since the dissolved gas (CO 2 ) is bubbled in about 2 hours, the bubbles are uniformly arranged in the sand layer ground 2 before the CO 2 dissolved silica aqueous solution 9 having a consolidation time of 2 to 10 hours is consolidated. can do. Therefore, after the bubbles are uniformly arranged, the CO 2 -dissolved silica aqueous solution 9 is solidified in a gel state and the uniformly arranged bubbles are permanently fixed, so that the degree of unsaturation is increased and the liquefaction strength is increased. It becomes possible to be permanent. For this reason, a constant liquefaction prevention effect can be maintained for a long time without continuing to inject the low temperature CO 2 dissolved aqueous solution 3 into the sand layer ground 2.

また図3は第3の実施の形態の液状化防止工法10であり、この液状化防止工法10は固結時間が2〜10時間のシリカ水溶液8にCOを溶存させて製造したCO溶存シリカ水溶液9を使用するものである。 The Figure 3 is a liquefaction prevention method 10 of the third embodiment, the liquefaction prevention method 10 CO 2 dissolved was prepared by dissolved the CO 2 in the silica aqueous solution 8 of consolidation time 2 to 10 hours A silica aqueous solution 9 is used.

これは、図3に示すように、まず液状化対象の砂層地盤2の土中温度(20℃)よりも低温の10℃のシリカ水溶液8を曝気して、このシリカ水溶液8中にCOを溶存させたCO溶存シリカ水溶液9を製造する。このCO溶存シリカ水溶液9中のシリカ濃度(SiO濃度)は重量で1〜10%である。そして、これを上記と同じ方法で砂層地盤2に注入すると、これが砂層地盤2中を浸透するうちに土中温度(20℃)まで上昇することにより溶存ガス(CO)が気泡化する。これにより微少な気泡を砂層地盤2の間隙に配置することができる。よって、上記と同様に、CO溶存シリカ水溶液9がゲル状に固結して均一配置の気泡が永久に固定されるため、不飽和度が高められて液状化強度の上昇を恒久的にすることが可能になる。 As shown in FIG. 3, first, an aqueous silica solution 8 having a temperature of 10 ° C. lower than the soil temperature (20 ° C.) of the sand layer ground 2 to be liquefied is aerated, and CO 2 is contained in the aqueous silica solution 8. A dissolved CO 2 -dissolved silica aqueous solution 9 is produced. The silica concentration (SiO 2 concentration) in the CO 2 -dissolved silica aqueous solution 9 is 1 to 10% by weight. When this is injected into the sand ground 2 in the same manner as described above, which is bubbled dissolved gas (CO 2) is by raising up soil temperature (20 ° C.) while penetrating the sand ground 2 medium. Thereby, minute bubbles can be arranged in the gap between the sand layer ground 2. Therefore, in the same manner as described above, the CO 2 -dissolved silica aqueous solution 9 is solidified in a gel state and the uniformly arranged bubbles are permanently fixed, so that the degree of unsaturation is increased and the increase in liquefaction strength is made permanent. It becomes possible.

なお、上記の第1〜第3の実施の形態の液状化防止工法1、7、10においてガス溶存水溶液はCO溶存水溶液3を対象として説明したが、これはCO溶存水溶液3に限らず、液状化対象の砂層地盤2よりも低温の水を曝気して、この水中に空気を溶存させた空気溶存水溶液を使用することもできる。すなわち溶存ガスとしてCOの他に空気を使用することもできる。 The gas dissolved solution in liquefaction prevention method 1,7,10 of the first to third embodiments described above has been described as a target of CO 2 dissolved solution 3, which is not limited to CO 2 dissolved solution 3 It is also possible to use an air-dissolved aqueous solution in which air having a temperature lower than that of the sand layer ground 2 to be liquefied is aerated and air is dissolved in the water. That is, air can be used in addition to CO 2 as the dissolved gas.

第1の実施の形態の液状化防止工法の断面図である。It is sectional drawing of the liquefaction prevention construction method of 1st Embodiment. 第2の実施の形態の液状化防止工法の断面図である。It is sectional drawing of the liquefaction prevention construction method of 2nd Embodiment. 第3の実施の形態の液状化防止工法の断面図である。It is sectional drawing of the liquefaction prevention construction method of 3rd Embodiment. 液状化強度曲線を表した図である。It is a figure showing the liquefaction intensity curve.

符号の説明Explanation of symbols

1、7、10 液状化防止工法
2 砂層地盤
3 CO溶存水溶液
4 ポンプ
5 注入孔
6 注入用外管
8 シリカ水溶液
9 CO溶存シリカ水溶液
1,7,10 liquefaction prevention method 2 sand ground 3 CO 2 dissolved solution 4 pump 5 injection hole 6 injection outer tube 8 silica solution 9 CO 2 dissolved silica solution

Claims (2)

砂層地盤に、該砂層地盤の温度よりも低い温度のガス溶存溶液を注入して浸透させた後、該ガス溶存溶液の温度の上昇にともなって溶存ガスを微少な気泡にすることを特徴とする液状化防止工法。   A gas dissolved solution having a temperature lower than the temperature of the sand layer ground is injected into and infiltrated into the sand layer ground, and then the dissolved gas is made into fine bubbles as the temperature of the gas dissolved solution increases. Liquefaction prevention method. ガス溶存溶液は、水にガスを溶存させたガス溶存水溶液、シリカ水溶液にガスを溶存させたガス溶存シリカ水溶液、またはシリカ水溶液とガス溶存水溶液とを混合したガス溶存シリカ水溶液のいずれかであることを特徴とする請求項1に記載の液状化防止工法。   The gas-dissolved solution is either a gas-dissolved aqueous solution in which gas is dissolved in water, a gas-dissolved silica aqueous solution in which gas is dissolved in a silica aqueous solution, or a gas-dissolved silica aqueous solution in which a silica aqueous solution and a gas-dissolved aqueous solution are mixed. The liquefaction prevention method according to claim 1, wherein:
JP2006210917A 2006-08-02 2006-08-02 Liquefaction prevention construction method Withdrawn JP2008038379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210917A JP2008038379A (en) 2006-08-02 2006-08-02 Liquefaction prevention construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210917A JP2008038379A (en) 2006-08-02 2006-08-02 Liquefaction prevention construction method

Publications (1)

Publication Number Publication Date
JP2008038379A true JP2008038379A (en) 2008-02-21

Family

ID=39173731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210917A Withdrawn JP2008038379A (en) 2006-08-02 2006-08-02 Liquefaction prevention construction method

Country Status (1)

Country Link
JP (1) JP2008038379A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034360A (en) * 2010-07-29 2012-02-16 Pantech Co Ltd Mobile communication terminal and content processing method of the same
JP4940462B1 (en) * 2011-02-10 2012-05-30 強化土エンジニヤリング株式会社 Ground improvement method
JP2013029001A (en) * 2011-07-29 2013-02-07 Kyokado Kk Liquefaction prevention method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034360A (en) * 2010-07-29 2012-02-16 Pantech Co Ltd Mobile communication terminal and content processing method of the same
JP4940462B1 (en) * 2011-02-10 2012-05-30 強化土エンジニヤリング株式会社 Ground improvement method
JP2013029001A (en) * 2011-07-29 2013-02-07 Kyokado Kk Liquefaction prevention method

Similar Documents

Publication Publication Date Title
US8100178B2 (en) Method of oil recovery using a foamy oil-external emulsion
EP2722378A1 (en) Method for fracturing or fraccing a well
JP2009011964A (en) Method of feeding liquefied carbon dioxide underground and its underground feeding device
CN102434137A (en) Ultralow interface tension coupling type air-foam oil displacement method
JP2008038379A (en) Liquefaction prevention construction method
CN109505570A (en) Spontaneous CO in sublevel is taken turns in a kind of improvement more2The method of profile modification
JP2004204573A (en) Method of preventing liquefaction of ground
CN107794031A (en) A kind of nitrogen foam fracturing fluid system suitable for the poor aqueous coal bed gas well of low pressure
JP5278856B2 (en) Ground improvement method
CN107178345A (en) A kind of composition is in reduction CO2With the application in crude oil minimum miscibility pressure
JP5158390B2 (en) Liquefaction prevention method
JP2001355228A (en) Liquefaction preventing method by unsaturation
JP5589197B2 (en) Ultrafine atomization method and ultrafine atomization system of liquid carbon dioxide
JP2007182724A (en) Ground liquefaction preventing method and device
JP3193950B2 (en) Liquefaction countermeasure method for sand ground by chemical injection
JP2000170152A (en) Liquefaction prevention method for sand ground and equipment therefor
JP2018104912A (en) Ground improvement body and ground improvement method
JP6886812B2 (en) Water stop body and water stop method
CN101126312B (en) Fluctuation petroleum exploitation method
JP7044339B2 (en) Improved ground and ground improvement method
JP4788001B2 (en) Liquefaction prevention structure and construction method
JP2002242173A (en) Chemical grouting method
KR102357387B1 (en) Method for grouting using urea resin foam for preventing leakage of grout material
JP2009249891A (en) Retaining wall supporting structure and retaining wall supporting construction method
JP4953056B2 (en) Methane collection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006