JP4953056B2 - Methane collection method - Google Patents

Methane collection method Download PDF

Info

Publication number
JP4953056B2
JP4953056B2 JP2006136601A JP2006136601A JP4953056B2 JP 4953056 B2 JP4953056 B2 JP 4953056B2 JP 2006136601 A JP2006136601 A JP 2006136601A JP 2006136601 A JP2006136601 A JP 2006136601A JP 4953056 B2 JP4953056 B2 JP 4953056B2
Authority
JP
Japan
Prior art keywords
water
fatty acid
acid ester
methane
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006136601A
Other languages
Japanese (ja)
Other versions
JP2007308891A (en
Inventor
秀紀 皆川
英夫 成田
清史 鈴木
靖英 坂本
武 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006136601A priority Critical patent/JP4953056B2/en
Publication of JP2007308891A publication Critical patent/JP2007308891A/en
Application granted granted Critical
Publication of JP4953056B2 publication Critical patent/JP4953056B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

本発明はメタンハイドレート堆積物からメタンガスを生産する方法に関する。   The present invention relates to a method for producing methane gas from methane hydrate deposits.

日本近海に存在するメタンハイドレート(以下、MHと言う)は、わが国の年間天然ガス消費量の約100年分にも相当する資源量が試算されており、将来の国産エネルギーとしての開発が期待されている。
現在考案されているMH貯留層からのメタンガスの回収法には熱刺激法、減圧法、インヒビター圧入法等が挙げられるが、いずれも原位置でMHをガスと水とに分解させてガスを生産する方法である。
在来型エネルギー資源である石油・天然ガスとは異なり、MHは固体であり流動性を持たないことが特徴である。そのため、MHはガスや水の流動を妨げる物質として取り扱われ、その存在下での貯留層における流体の流れ易さを表す浸透率値の大小が、ガスの生産性を評価する上で重要な因子となる。
熱刺激法の1つである熱水圧入法は、熱水を圧入して貯留層の温度を上昇させることにより、MHの分解を促進させる方法であり、他の回収法と比較して高いガスの生産性が期待されている。しかし、分解により生成したメタンガスは堆積物の孔隙内に存在することで水の流動を阻害し、さらに分解により生成したメタンガスと水が、MHが未分解かつ低温の下流区域に流入することに起因して、MHの成長・再生成が促進され、結果として著しく浸透性が低下し、熱水圧入の継続が不可能となることが懸念される。
Methane hydrate (hereinafter referred to as MH) in the waters near Japan has been estimated for the amount of resources equivalent to approximately 100 years of Japan's annual natural gas consumption, and is expected to develop as domestic energy in the future. Has been.
Currently devised methods of recovering methane gas from MH reservoirs include thermal stimulation, decompression, and inhibitor injection, etc., all of which produce gas by decomposing MH into gas and water in situ. It is a method to do.
Unlike oil and natural gas, which are conventional energy resources, MH is solid and has no fluidity. Therefore, MH is treated as a substance that hinders the flow of gas and water, and the permeability value that represents the ease of fluid flow in the reservoir in the presence of MH is an important factor in evaluating gas productivity. It becomes.
The hot water injection method, which is one of the thermal stimulation methods, is a method that accelerates the decomposition of MH by injecting hot water and raising the temperature of the reservoir, and is a gas that is higher than other recovery methods. Productivity is expected. However, the methane gas generated by the decomposition is present in the pores of the sediment, which hinders the flow of water, and the methane gas and water generated by the decomposition flow into the undecomposed and low temperature downstream area. As a result, the growth and regeneration of MH are promoted, and as a result, the permeability is remarkably lowered, and there is a concern that the hot water injection cannot be continued.

本発明は、メタンハイドレート堆積物中において、MHの再生成を抑制し、かつ生成したメタンガスを細泡化あるいは消泡化することで、MH堆積物中の浸透率の増加とMHの分解を促進させ、MH堆積物からの高効率でメタンガスを採取できる方法を提供する。   The present invention suppresses the regeneration of MH in the methane hydrate deposit and reduces the generated methane gas into fine bubbles or defoams, thereby increasing the permeability and decomposing MH in the MH deposit. Provide a method that can facilitate and extract methane gas from MH deposits with high efficiency.

本発明者たちは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明によればMH分解・メタンガス生成に起因した浸透性低下を生じることなく、水の圧入を継続することが可能なことや、従来の熱水圧入法と比較して、MHの分解および分解生成ガスの産出が早期に終了する利点を有することを明らかにした。
即ち、本発明は、メタンハイドレート堆積物中に水を圧入してメタンハイドレートを分解するメタン採取法において、水に代えて水溶性消泡剤の圧入を行うことを特徴とするメタン採取方法である。
また、本発明は、水溶性消泡剤の温度を1.0〜80℃とし、シリコーン系樹脂と脂肪酸エステルからなる消泡剤を用いることが出来る。
さらに、本発明は、脂肪酸エステルとして、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルから選ばれる1種若しくは2種以上を用いるkとが出来る。
さらにまた、本発明は、水溶性消泡剤として、シリコーン樹脂30wt%、ソルビタン脂肪酸エステル3wt%、グリセリン脂肪酸エステル1wt%、ショ糖脂肪酸エステル0.5wt%、残部が純水である原液を水で0.05wt%〜10wt%に希釈して圧入することができる。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, according to the present invention, it is possible to continue the water injection without causing a decrease in permeability due to MH decomposition / methane gas generation, or the decomposition of MH compared with the conventional hot water injection method. And it was clarified that the production of cracked gas has the advantage of ending early.
That is, the present invention relates to a methane collection method in which water is injected into a methane hydrate deposit to decompose methane hydrate, and a water-soluble antifoaming agent is injected in place of water. It is.
Moreover, the temperature of a water-soluble antifoamer can be 1.0-80 degreeC, and this invention can use the antifoamer which consists of silicone resin and fatty acid ester.
Furthermore, this invention can use k which uses 1 type, or 2 or more types chosen from sorbitan fatty acid ester, glycerol fatty acid ester, and sucrose fatty acid ester as fatty acid ester.
Furthermore, the present invention provides a water-soluble antifoaming agent as a stock solution in which 30% by weight of silicone resin, 3% by weight of sorbitan fatty acid ester, 1% by weight of glycerin fatty acid ester, 0.5% by weight of sucrose fatty acid ester, and the balance is pure water. It can be injected by diluting to 0.05 wt% to 10 wt%.

本発明のメタン採取方法は、MH分解・メタンガス生成に起因した浸透性低下を生じることなく、水溶性消泡剤の圧入を継続することが可能なことや、従来の熱水圧入法と比較して、MHの分解および分解生成ガスの産出が早期に終了するという利点を有する。   The methane collection method of the present invention is capable of continuing the injection of the water-soluble antifoaming agent without causing a decrease in permeability due to MH decomposition and methane gas generation, and compared with the conventional hot water injection method. Thus, there is an advantage that the decomposition of MH and the production of the decomposition product gas are completed early.

本発明において用いる水溶性消泡剤は、水溶性であればどのような消泡剤でも使えるが、化学的に安定であり抑泡性にすぐれた消泡剤が好ましく、典型的にはメチルシロキサンに代表されるシリコーン系樹脂であり、その典型的な配合例は、シリコーン樹脂(メチルシロキサン)に脂肪酸エステルを配合した組成物が良い。
配合する脂肪酸エステルは、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル等が挙げられ、単独若しくは複数の脂肪酸エステルを併用することが出来る。
例えば、シリコーン樹脂30%、ソルビタン脂肪酸エステル3%、グリセリン脂肪酸エステル1%、ショ糖脂肪酸エステル0.5%の混合溶液を純水で希釈した原液が好適に用いられる。本発明においては、この原液を水で0.05wt%〜10wt%に希釈して圧入する。原液が0.05wt%未満では、十分な効果を得ることが出来ない。また、10wt%以上では、経済的に採算が合わなくなる恐れがある。0.05wt%〜1.0wt%の範囲で用いることが好ましい。
As the water-soluble antifoaming agent used in the present invention, any antifoaming agent can be used as long as it is water-soluble. However, an antifoaming agent that is chemically stable and excellent in antifoaming property is preferable, and typically methylsiloxane. A typical compounding example is a composition in which a fatty acid ester is blended with a silicone resin (methylsiloxane).
Examples of the fatty acid ester to be blended include sorbitan fatty acid ester, glycerin fatty acid ester, and sucrose fatty acid ester, and a single or a plurality of fatty acid esters can be used in combination.
For example, a stock solution obtained by diluting a mixed solution of 30% silicone resin, 3% sorbitan fatty acid ester, 1% glycerin fatty acid ester, and 0.5% sucrose fatty acid ester with pure water is preferably used. In the present invention, this stock solution is diluted with water to 0.05 wt% to 10 wt% and press-fitted. If the stock solution is less than 0.05 wt%, a sufficient effect cannot be obtained. On the other hand, if it is 10 wt% or more, there is a risk that it will not be economically profitable. It is preferable to use in the range of 0.05 wt% to 1.0 wt%.

本発明においては、蒸留水による通水後、消泡剤溶液を通水することで、MH安定領域においては2倍〜100倍の浸透率増加がもたらされる。   In the present invention, by passing water through the defoamer solution after passing through with distilled water, the permeation rate is increased by 2 to 100 times in the MH stable region.

本発明においては、MH分解領域においてメタンガス発生等に伴う見かけ上の浸透率の減少を生じることなく、単調に浸透率が増加する。   In the present invention, the permeability increases monotonously without causing an apparent decrease in permeability due to methane gas generation or the like in the MH decomposition region.

次に本発明を実施例によりさらに詳細に説明する。
(水溶性消泡剤の製造)
シリコーン樹脂(メチルシロキサン)30wt%、ソルビタン脂肪酸エステル3wt%、グリセリン脂肪酸エステル1wt%、ショ糖脂肪酸エステル0.5wt%の混合溶液を純水で希釈した原液を作成した。
(圧入テスト)
この実施例においては静水圧型コアホルダーを用い、深度1000m以上の海底地下におけるMH堆積層からのメタンガス生産を模擬して実験を行った。
コアホルダー内部のラバースリーブ中に豊浦標準砂を直径5.08cmφ×長さ12cmに整形した堆積物を装填し、拘束圧15MPa、孔隙内圧10MPa、にてメタンハイドレートを堆積物の孔隙内中に作製した。
(水の浸透率Kaの測定)
圧力を維持した状態で、コア片端から蒸留水を圧入し、この状態で浸透率Kwを計測する。
減圧によりMHを分解すると、蒸留水を通水した場合、コア内部でメタンガスが発生し、見かけ上の浸透率は減少する。さらにコア内部の放出ガスの増加に伴い見かけ上の水浸透率は減少する。消泡剤溶液を通水した場合、MHを分解すると、コア内部で発生したメタンガスが細泡化され、さらには高圧下の水中へ溶泡することで、コア内部の放出ガスの増加に伴い見かけ上の水浸透率は単調に増加した。
Next, the present invention will be described in more detail with reference to examples.
(Production of water-soluble antifoaming agent)
A stock solution was prepared by diluting a mixed solution of silicone resin (methylsiloxane) 30 wt%, sorbitan fatty acid ester 3 wt%, glycerin fatty acid ester 1 wt%, and sucrose fatty acid ester 0.5 wt% with pure water.
(Press-fit test)
In this example, an experiment was conducted using a hydrostatic core holder and simulating methane gas production from an MH deposit in the seabed underground at a depth of 1000 m or more.
A rubber sleeve inside the core holder is loaded with a deposit made of Toyoura standard sand with a diameter of 5.08cmφ x 12cm in length, and methane hydrate is put into the pores of the deposit at a restraint pressure of 15MPa and a pore pressure of 10MPa. Produced.
(Measurement of water permeability Ka)
While maintaining the pressure, distilled water is injected from one end of the core, and the permeability Kw is measured in this state.
When MH is decomposed by decompression, when distilled water is passed, methane gas is generated inside the core, and the apparent permeability decreases. Furthermore, the apparent water permeability decreases with the increase of the gas released inside the core. When the defoamer solution is passed through, when MH is decomposed, the methane gas generated inside the core is made finer and further dissolved into water under high pressure. The water penetration rate above increased monotonously.

(水溶性消泡剤の浸透率Kaの測定)
次に消泡剤溶液を蒸留水の代わりに圧入し、浸透率Kaを計測した。
孔隙内中のメタンハイドレートの密度に応じてKw及びKaはそれぞれ異なるが、MH安定領域においてはKa/Kw=2〜100であり。著しく浸透率が増加した。
図1は、MH安定領域において蒸留水から消泡剤溶液(1.0wt%)に通水を代えた時の、圧力、差圧、浸透率のプロファイルを示す。蒸留水を通水したときは浸透率0.01mDであるが、消泡剤溶液(1.0wt%)を通水したときは0.5mD以上にまで浸透率が増加していることが解る。
(Measurement of penetration rate Ka of water-soluble antifoaming agent)
Next, the antifoaming agent solution was injected instead of distilled water, and the permeation rate Ka was measured.
Kw and Ka are different depending on the density of methane hydrate in the pores, but Ka / Kw = 2-100 in the MH stable region. The penetration rate increased significantly.
FIG. 1 shows the pressure, differential pressure, and permeability profiles when water is changed from distilled water to antifoam solution (1.0 wt%) in the MH stable region. It is understood that the permeability is 0.01 mD when distilled water is passed, but the permeability is increased to 0.5 mD or more when the defoamer solution (1.0 wt%) is passed.

図2は、MH分解領域における浸透率変化の典型的な例を示す。
蒸留水通水時にはMHの分解に伴い、浸透率が一時的に減少する。コア内部に微量のメタンガスが残留するため、MHが完全に分解した後も、コアの絶対浸透率10Dに漸近はするが、達することはない。
一方消泡剤溶液通水においては、浸透率の一時的な減少も観察されず、MHの分解に伴い単調にコアの絶対浸透率値10D(10000mD)に浸透率は増加することが解った。
FIG. 2 shows a typical example of permeability change in the MH decomposition region.
When distilled water is passed, the permeability decreases temporarily as MH decomposes. Since a very small amount of methane gas remains in the core, the absolute permeability 10D of the core is asymptotic even after MH is completely decomposed, but never reached.
On the other hand, when the defoamer solution was passed through, no temporary decrease in the permeability was observed, and it was found that the permeability increased monotonously to the absolute permeability value 10D (10000 mD) of the core as MH decomposed.

図3は、MH飽和率に対する浸透率の変化を示す。
比較のため、インヒビター法の一つとして用いられるメタノール水溶液(5wt%、1wt%)を通水した場合、浸透率は純水を通水した場合と比較して10%〜20%増加するが、実施例1の消泡剤を通水した場合に観測されたような、数倍〜100倍程度の浸透率増加は観察されなかった。
FIG. 3 shows the change in permeability with respect to MH saturation.
For comparison, when passing an aqueous methanol solution (5 wt%, 1 wt%) used as one of the inhibitor methods, the permeability increases by 10% to 20% compared to passing pure water, The permeation rate increase of several to 100 times as observed when the antifoaming agent of Example 1 was passed through was not observed.

本発明のメタン採取方法は、メタンハイドレート堆積物中に水を圧入してメタンハイドレートを分解するメタン採取法において、水に代えて水溶性消泡剤の圧入することで、効率よくメタンを採取でき、眠っている資源を効率よく利用でき、産業上の利用可能性が高いものである。   The methane collection method of the present invention is a methane collection method for decomposing methane hydrate by injecting water into the methane hydrate deposit, and efficiently injecting methane by injecting a water-soluble antifoaming agent instead of water. It can be collected, the sleeping resources can be used efficiently, and the industrial applicability is high.

MH安定領域において蒸留水から消泡剤溶液(1.0wt%)に通水を代えた時の、圧力、差圧、浸透率のプロファイル図Profile diagram of pressure, differential pressure, and permeability when passing water from distilled water to antifoam solution (1.0wt%) in MH stable region MH堆積物のMH分解時の圧力、差圧、浸透率、温度変化、積算放出ガス量 (a)純水通水、(b)消泡剤溶液(1.0wt%)通水の比較図Comparison of MH sedimentation pressure, differential pressure, permeation rate, temperature change, accumulated release gas amount (a) Pure water flow, (b) Defoamer solution (1.0 wt%) flow MH飽和率に対する浸透率の変化図Figure of change in permeability against MH saturation

Claims (4)

メタンハイドレート堆積物中に水を圧入してメタンハイドレートを分解するメタン採取法において、水に代えて水溶性消泡剤の圧入を行うことを特徴とするメタン採取方法。   In the methane collection | recovery method which injects water in a methane hydrate deposit and decomposes | disassembles methane hydrate, it replaces with water and press-fits a water-soluble antifoamer, It is characterized by the above-mentioned. 水溶性消泡剤が、温度1.0〜80℃であり、シリコーン系樹脂と脂肪酸エステルからなる消泡剤である請求項1に記載したメタン採取方法。   The method for collecting methane according to claim 1, wherein the water-soluble antifoaming agent has a temperature of 1.0 to 80 ° C and is a defoaming agent comprising a silicone resin and a fatty acid ester. 脂肪酸エステルが、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステルから選ばれる1種若しくは2種以上である請求項2に記載したメタン採取方法。   The method for collecting methane according to claim 2, wherein the fatty acid ester is one or more selected from sorbitan fatty acid ester, glycerin fatty acid ester, and sucrose fatty acid ester. 水溶性消泡剤が、シリコーン樹脂30wt%、ソルビタン脂肪酸エステル3wt%、グリセリン脂肪酸エステル1wt%、ショ糖脂肪酸エステル0.5wt%、残部が純水である原液を水で0.05wt%〜10wt%に希釈して圧入する請求項2又は請求項3に記載したメタン採取方法。
Water-soluble antifoaming agent is 30 wt% silicone resin, 3 wt% sorbitan fatty acid ester, 1 wt% glycerin fatty acid ester, 0.5 wt% sucrose fatty acid ester, and 0.05 wt% to 10 wt% of the stock solution with the balance being pure water The method for collecting methane according to claim 2 or 3, wherein the methane is diluted and injected.
JP2006136601A 2006-05-16 2006-05-16 Methane collection method Expired - Fee Related JP4953056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136601A JP4953056B2 (en) 2006-05-16 2006-05-16 Methane collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006136601A JP4953056B2 (en) 2006-05-16 2006-05-16 Methane collection method

Publications (2)

Publication Number Publication Date
JP2007308891A JP2007308891A (en) 2007-11-29
JP4953056B2 true JP4953056B2 (en) 2012-06-13

Family

ID=38842004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136601A Expired - Fee Related JP4953056B2 (en) 2006-05-16 2006-05-16 Methane collection method

Country Status (1)

Country Link
JP (1) JP4953056B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127812B2 (en) * 2013-07-31 2017-05-17 日油株式会社 Methane gas sampling method and rehydration inhibitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914994B2 (en) * 2004-01-28 2007-05-16 独立行政法人産業技術総合研究所 Integrated facilities with natural gas production facilities and power generation facilities from methane hydrate sediments
JP2006096779A (en) * 2004-09-28 2006-04-13 National Institute Of Advanced Industrial & Technology Method and apparatus for decomposing methane hydrate by nitrogen

Also Published As

Publication number Publication date
JP2007308891A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
CN103865509B (en) Long-acting mixed fluorocarbon surfactant treating agent for improving condensate gas reservoir recovery efficiency and application of mixed fluorocarbon surfactant treating agent
CN102220126B (en) Preparation method of oil stabilizing and water controlling proppant
EP2970742B1 (en) Composition and method for remediation of near wellbore damage
RU2656282C2 (en) Method, system and composition for producing oil
CN114836184B (en) Degradable temporary plugging agent for offshore large-leakage oil-water well workover and use method thereof
CA2721843A1 (en) Viscoelastic composition with improved stability
CN105062444A (en) High temperature swellable granule plugging agent and preparation method thereof
EP2394021A2 (en) Method for producing natural gas from hydrocarbon hydrates while simultaneously storing carbon dioxide in geological formations
RU2011117402A (en) METHOD FOR OIL PRODUCTION AND OTHER RESERVOIR FLUIDS FROM THE COLLECTOR (OPTIONS)
CN103806885B (en) Stratum chemical heat production deep blockage removing method of injection and production system
CN101993684B (en) Temporary acidizing plugging agent for low-permeability oilfield water injection well
AU2012231266B2 (en) Systems and methods for separating oil and/or gas mixtures
Skauge et al. Low salinity polymer flooding
JP4953056B2 (en) Methane collection method
CA2684230A1 (en) Water flooding method for secondary hydrocarbon recovery
WO2013096198A1 (en) Oil recovery process
RU2249101C1 (en) Acidic surfactant compound for processing face-adjacent zone
Li et al. A novel method to greatly increase methane hydrate exploitation efficiency via forming impermeable overlying CO2 cap
EP2109650B1 (en) Compositions for increasing gas production from a subterranean formation
RU2527053C1 (en) Development method of fractured-porous types of reservoirs
Wojnicki Experimental investigations of oil displacement using the WAG method with carbon dioxide
EP0434544B1 (en) Process and composition for the selective reduction of the water permeability in warm and salt hydrocarbon reservoirs
JP4919257B2 (en) How to collect methane gas
RU2633466C1 (en) Method for stabilising intake capacity profile of pressure well (versions)
RU2307240C1 (en) Method for oil field development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4953056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees