JP2012167045A - Ionic liquid and ionic liquid-decorated base material - Google Patents

Ionic liquid and ionic liquid-decorated base material Download PDF

Info

Publication number
JP2012167045A
JP2012167045A JP2011028243A JP2011028243A JP2012167045A JP 2012167045 A JP2012167045 A JP 2012167045A JP 2011028243 A JP2011028243 A JP 2011028243A JP 2011028243 A JP2011028243 A JP 2011028243A JP 2012167045 A JP2012167045 A JP 2012167045A
Authority
JP
Japan
Prior art keywords
ionic liquid
group
compound
substrate
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011028243A
Other languages
Japanese (ja)
Inventor
Tomohiko Inomata
智彦 猪股
Tatsuya Kitagawa
竜也 北川
Yasuhiro Funabashi
靖博 舩橋
Tomohiro Ozawa
智宏 小澤
Hideki Masuda
秀樹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2011028243A priority Critical patent/JP2012167045A/en
Publication of JP2012167045A publication Critical patent/JP2012167045A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide ionic liquid and an ionic liquid-decorated base material, allowing introducing various object compounds onto the surface of the base material without modifying the nature of the compounds.SOLUTION: As the ionic liquid, only an organic phosphorus-type or quaternary amine-type ionic liquid is used that can produce spatial gaps only for introducing the object compounds into the ionic liquid chemically bonded to the surface of the base material.

Description

本発明は、常温で液体であるイオン化合物である「イオン液体」を基材表面に修飾する技術およびその技術により得られた「イオン液体修飾基材」上に様々な化合物を好適に導入する技術に関するものである。   The present invention is a technique for modifying an ionic liquid, which is an ionic compound that is liquid at room temperature, on the surface of the substrate and a technique for suitably introducing various compounds onto the ionic liquid-modified substrate obtained by the technique. It is about.

電極などの基材表面を合目的に化合物で修飾する技術は、これまでに様々な方法が提案されている。特に自己組織化単分子膜を利用した基材表面への化合物の修飾方法は、その簡便性などから非常に多くの研究が行われている。ただし、この方法では、化合物自身に何らかの結合性の官能基を導入することが必要であり、それら官能基を通して直接基材表面と、あるいは基材表面に別途修飾した化合物と結合させることで、化合物の基材表面への固定化を実現している。そのため、基材表面に修飾したい分子に官能基を導入する必要があり、そのため、化合物構造の再設計や、官能基の導入による性質が大きく変化することがしばしば報告されている。発明者等の研究グル−プにおいても、酸素の活性化が可能な化合物を電極上に修飾し、その酸素活性化能を以前に検討したが、電極表面へ化学結合により修飾したために、その性質が大きく変わり、通常の状態に比べてその酸素活性化能力は大きく損なわれてしまった(非特許文献1参照)。   Various methods for modifying the surface of a substrate such as an electrode with a compound for a purpose have been proposed. In particular, a great deal of research has been conducted on methods for modifying compounds on the surface of substrates using self-assembled monolayers because of their simplicity. However, in this method, it is necessary to introduce some binding functional group into the compound itself, and the compound is bonded directly to the substrate surface or a compound modified separately on the substrate surface through these functional groups. To the surface of the substrate. For this reason, it is necessary to introduce a functional group into a molecule to be modified on the surface of the base material. For this reason, it is often reported that the properties due to redesign of the compound structure and the introduction of the functional group greatly change. Even in the research group of the inventors, a compound capable of activating oxygen was modified on the electrode, and its oxygen activation ability was previously examined. Changed significantly, and its oxygen activation ability was greatly impaired compared to the normal state (see Non-Patent Document 1).

そこで、この対策として、溶液に近い状態で基材表面に目的の化合物を固定化するためにイオン液体の利用を考えた。イオン液体は常温で液体の分子性液体であり、近年、様々な分野で応用研究が進められている化合物である。イオン液体はこれまでに様々な構造のものが報告・市販されており、分子構造をかなり自由に制御することができる。また、イオン液体を電極に修飾したイオン液体修飾電極に関する研究例も近年幾つか報告されている。さらに、イオン液体修飾電極へ化合物を導入する試みも行われているが、現在の所、イミダゾ−ル型イオン液体を用いたものが殆どであり、イオン液体の対陰イオンを他の陰イオンに交換するイオン交換法によるものが殆どである(例えば、非特許文献2参照)。   Therefore, as a countermeasure, the use of an ionic liquid was considered in order to immobilize the target compound on the substrate surface in a state close to a solution. An ionic liquid is a molecular liquid that is liquid at room temperature, and is a compound that has recently been applied in various fields. Various ionic liquids have been reported and marketed so far, and the molecular structure can be controlled quite freely. In recent years, several examples of research on an ionic liquid modified electrode in which an ionic liquid is modified to an electrode have been reported. Furthermore, attempts have been made to introduce a compound into an ionic liquid modified electrode, but at present, most of them use an imidazole type ionic liquid, and the counter anion of the ionic liquid is changed to another anion. Most are based on the ion exchange method of exchanging (see, for example, Non-Patent Document 2).

猪股智彦、篠崎数馬、林裕也、有井秀和、舩橋靖博、小澤智宏、増田秀樹、「ケミカルコミュニケ−ションズ」(英国)、2008年、p.392Tomohiko Minamata, Kazuma Shinozaki, Hiroya Hayashi, Hidekazu Arii, Toshihiro Takahashi, Tomohiro Ozawa, Hideki Masuda, “Chemical Communications” (UK), 2008, p. 392 チ−(Y.Shik.Chi)、ファン(S.Hwang)、リ−(B.S.Lee)、クォク(J.Kwak)、チョイ(I.S.Choi)、リ−(S.Lee)、「ラングミュア」、(米国)、2005年、21巻、p.4268Chi (Y. Shik. Chi), Fan (S. Hwang), Lee (B. S. Lee), Qu. (J. Kwak), Choi (IS Choi), Lee (S. Lee) "Langmuir", (USA), 2005, Vol. 21, p. 4268

上記の通り、従来法によるイオン液体修飾電極への外来性の化合物の導入は、静電的相互作用を利用したイオン交換法であり、そのため導入可能な化合物は、基材表面に修飾されたイオン液体に対して反対の電荷を持つ分子に限られるという欠点があった。そのため、様々な目的化合物を基材表面上へ固定化するための要素技術としては不十分であった。   As described above, the introduction of an exogenous compound into the ionic liquid modified electrode by the conventional method is an ion exchange method using electrostatic interaction, and therefore the compound that can be introduced is an ion modified on the surface of the substrate. There was the disadvantage that it was limited to molecules with the opposite charge to the liquid. Therefore, it was insufficient as an elemental technique for immobilizing various target compounds on the substrate surface.

本発明は上記点に鑑みて、基材表面に目的化合物を修飾するためのイオン液体およびそのイオン液体が修飾されたイオン液体修飾基材であって、様々な目的化合物をその性質を改変することなく基材表面へ導入できるイオン液体およびイオン液体修飾基材を提供することを目的とする。   In view of the above points, the present invention is an ionic liquid for modifying a target compound on the surface of the base material and an ionic liquid-modified base material in which the ionic liquid is modified, and the properties of various target compounds are modified. An object of the present invention is to provide an ionic liquid and an ionic liquid-modified base material that can be introduced to the surface of the base material without any problems.


本発明者等は、従来のイオン液体修飾電極やこれまでに報告されているイオン液体の構造・性質を幅広く検討した結果、本発明に到達した。

As a result of extensive studies on the structures and properties of conventional ionic liquid-modified electrodes and ionic liquids reported so far, the present inventors have reached the present invention.

すなわち、本発明の第1の特徴は、基材表面に目的化合物を修飾するためのイオン液体であって、一般式(I)で表される構造単位を含む有機リン型もしくは4級アミン型のイオン液体であり、本発明の第2の特徴は、このイオン液体が基材表面に修飾されたイオン液体修飾基材である。   That is, the first feature of the present invention is an ionic liquid for modifying a target compound on the surface of a substrate, which is an organic phosphorus type or quaternary amine type containing a structural unit represented by the general formula (I). It is an ionic liquid, and the second feature of the present invention is an ionic liquid modified base material in which the surface of the base material is modified.

(一般式(I)中、MはP元素またはN元素である。一般式(I)中、R〜Rは、それぞれ独立に、炭素数1〜30のアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパ−フルオロアルキル基、炭素数6〜30のアリ−ル基、炭素数7〜30のアラルキル基、またはカルボニル基を有するアルキル基、アルケニル基、アリ−ル基もしくはアラルキル基を表し、またはRとRn+1(nは1〜3の整数)が結合して環状構造を有していても良い。ただし、一般式(I)中のR〜Rの少なくとも1つは、少なくとも1つの結合性官能基(−SH基、−SS−基、−S−基、−COOH基、−NH基、シラノ−ル基、リン酸基、アルケニル基、アルキニル基、またはアジ基)を有する。一般式(I)中、Xは対陰イオンを表す。)
対陰イオンXは一価あるいはそれ以上の価数を有する陰イオンであり、各種ハロゲンイオン,BF ,PF ,CFSO (略称TfO),(CFSO(略称Tf)などが好適に用いられる。
(In General Formula (I), M is a P element or N element. In General Formula (I), R 1 to R 4 are each independently an alkyl group having 1 to 30 carbon atoms or 2 to 30 carbon atoms. Alkenyl group, C2-C30 alkynyl group, C1-C30 alkoxyalkyl group, C1-C30 aminoalkyl group, C1-C30 perfluoroalkyl group, C6-C30 An aryl group of 7 to 30 carbon atoms, an alkyl group, an alkenyl group, an aryl group or an aralkyl group having a carbonyl group, or R n and R n + 1 (n is an integer of 1 to 3) ) May be bonded to each other to have a cyclic structure, provided that at least one of R 1 to R 4 in the general formula (I) is at least one binding functional group (—SH group, —SS—). group, -S- group, -COOH group, -NH 2 group Silanol -. Group, a phosphate group, an alkenyl group, an alkynyl group, or in the general formula (I) having an azide group),, X - represents a counter anion).
The counter anion X is an anion having a valence of one or more, and various halogen ions, BF 4 , PF 6 , CF 3 SO 3 (abbreviation TfO ), (CF 3 SO 2 ). 2 N (abbreviation Tf 2 N ) and the like are preferably used.

本発明のイオン液体修飾基材では、イオン液体が一般式(I)で表される構造単位を有するので、従来型のイオン液体修飾電極とは異なり、基材表面に修飾されたイオン液体において、目的化合物を導入するだけの空間的な隙間を作り出すことができる。すなわち、この空間的な隙間に目的化合物を導入することができる(後述の実施例18〜22参照)。このため、本発明によれば、イオン液体に対して反対の電荷を持つ分子(目的化合物)に限らず、様々な目的化合物をその性質を改変することなく基材表面へ導入できる。   In the ionic liquid modified substrate of the present invention, since the ionic liquid has a structural unit represented by the general formula (I), unlike the conventional ionic liquid modified electrode, in the ionic liquid modified on the surface of the substrate, Spatial gaps can be created to introduce the target compound. That is, the target compound can be introduced into this spatial gap (see Examples 18 to 22 described later). For this reason, according to the present invention, not only molecules (target compounds) having a charge opposite to that of the ionic liquid but also various target compounds can be introduced onto the substrate surface without modifying their properties.

なお、目的化合物の性質が改変されないのは、このときの目的化合物はイオン液体に溶け込んだ状態であり、目的化合物がイオン液体との間での相互作用によって固定され、化学結合によって固定されるものではないからである。   The property of the target compound is not modified when the target compound is dissolved in the ionic liquid, and the target compound is fixed by an interaction with the ionic liquid and fixed by a chemical bond. It is not.

上記の条件を満足する一般式(I)で表される化合物(イオン液体)として、下記の化合物を例示できるが、これらに限定されるものではない。なお、下記の化合物は、一般式(I)中のRに、「−SS−基」もしくは「−S−基」を有している。 Examples of the compound (ionic liquid) represented by the general formula (I) that satisfies the above conditions include the following compounds, but are not limited thereto. The compound of the following, in R 1 in the general formula (I), - and a "SS- group" or "-S- group".

本発明の実施例1における化合物1のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 1 in Example 1 of the present invention. 本発明の実施例2における化合物2のFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum of the compound 2 in Example 2 of this invention. 本発明の実施例3における化合物3のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 3 in Example 3 of the present invention. 本発明の実施例4における化合物4のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of Compound 4 in Example 4 of the present invention. 本発明の実施例5における化合物5のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 5 in Example 5 of the present invention. 本発明の実施例6における化合物6のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of Compound 6 in Example 6 of the present invention. 本発明の実施例7における化合物7のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 7 in Example 7 of the present invention. 本発明の実施例8における化合物8のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 8 of Example 8 of the present invention. 本発明の実施例9における化合物9のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 9 in Example 9 of the present invention. 本発明の実施例10における化合物10のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 10 in Example 10 of the present invention. 本発明の実施例11における化合物11のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 11 in Example 11 of the present invention. 本発明の実施例12における化合物12のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 12 in Example 12 of the present invention. 本発明の実施例14における化合物14のH−NMRスペクトルを示す図である。It is a chart showing 1 H-NMR spectrum of compound 14 in Example 14 of the present invention. 本発明の実施例15における化合物15のORTEP図を示す図である。It is a figure which shows the ORTEP figure of the compound 15 in Example 15 of this invention. 本発明の実施例17におけるイオン液体修飾基板(上)およびイオン液体(下)のFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum of the ionic liquid modification board | substrate (top) and ionic liquid (bottom) in Example 17 of this invention. 本発明の実施例18における鉄複核錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of the ionic liquid modification board | substrate in which the iron binuclear complex in Example 18 of this invention was introduce | transduced. 本発明の実施例19におけるコバルト単核錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of the ionic liquid modification board | substrate in which the cobalt mononuclear complex in Example 19 of this invention was introduce | transduced. 本発明の実施例20におけるイオン液体修飾電極(左)およびフェロセンが導入されたイオン液体修飾基板(右)のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of the ionic liquid modification electrode (left) and the ionic liquid modification board | substrate (right) in which the ferrocene was introduce | transduced in Example 20 of this invention. 本発明の実施例21におけるヘキサシアノ鉄(III)錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of the ionic liquid modification board | substrate in which the hexacyano iron (III) complex in Example 21 of this invention was introduce | transduced. 本発明の実施例22におけるヘキサアンミンルテニウム(II)錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of the ionic liquid modification board | substrate in which the hexaammine ruthenium (II) complex in Example 22 of this invention was introduce | transduced.

本発明における上述のイオン液体の基材表面への修飾法について説明する。   A method for modifying the surface of the ionic liquid described above in the present invention will be described.

まず、修飾する基材としては、金属、金属酸化物、ガラス、シリコン、ゼオライトやFSMなどの無機細孔材料などが好適に用いられる。イオン液体に含まれる結合性官能基の種類により、例えば、−SH基、−SS−基、−S−基には金、銀、銅などの金属基板が好適に用いられる。リン酸基を含むイオン液体については、酸化ジルコニウムなどが好適に用いられる。またシラノ−ル基を含むイオン液体については、ガラス基板やシリコン基板、あるいはシリカ材料などが好適に用いられる。これらの基板はそのままでも特に問題なくイオン液体を結合することができるが、好ましくは清浄化などの表面処理をしておくことが望ましい。好ましくは濃硝酸、ピランハ溶液、あるいはフッ化水素酸による基板処理をイオン液体修飾前に行うことが望ましい。   First, as the base material to be modified, metals, metal oxides, glass, silicon, inorganic pore materials such as zeolite and FSM are preferably used. Depending on the type of the binding functional group contained in the ionic liquid, for example, a metal substrate such as gold, silver, or copper is suitably used for the —SH group, —SS— group, and —S— group. For the ionic liquid containing a phosphate group, zirconium oxide or the like is preferably used. For the ionic liquid containing a silanol group, a glass substrate, a silicon substrate, or a silica material is preferably used. Even if these substrates are used as they are, the ionic liquid can be bonded without any particular problem, but it is preferable to perform surface treatment such as cleaning. Preferably, the substrate treatment with concentrated nitric acid, piranha solution, or hydrofluoric acid is performed before the ionic liquid modification.

本発明の結合性官能基を含むイオン液体を目的の基材表面へ化学結合させる方法としては、例えば、有機溶媒にイオン液体を溶解させた溶液に基材表面を浸漬する方法、あるいは溶液を基材表面にスプレ−コ−トやスピンコ−トなどにより塗布する方法により、目的のイオン液体修飾基材を形成することができる。またイオン液体そのものに基材を浸漬、あるいはイオン液体を上記方法により塗布することでも目的のイオン液体修飾基材を得ることができる。浸漬する時間はイオン液体が基材表面に固定されれば特に制限されることはないが、好ましくは5分〜60時間、より好ましくは1〜24時間である。また必要に応じて浸漬あるいは塗布する際に基材や溶液を加熱しても良い。溶液にする場合、イオン液体の濃度としては、0.01mmol/L〜100mmol/L、好ましくは0.1mmol/L〜50mmol/L程度である。溶媒としては、アルコ−ル類、エ−テル類、ニトリル類、エステル類、ケトン類、炭化水素、クロロホルムなどを用いることができる。   As a method of chemically bonding the ionic liquid containing the binding functional group of the present invention to the target substrate surface, for example, a method of immersing the substrate surface in a solution in which the ionic liquid is dissolved in an organic solvent, or a solution based The target ionic liquid-modified base material can be formed by a method of applying to the material surface by spray coating or spin coating. Moreover, the target ionic liquid modified base material can also be obtained by immersing the base material in the ionic liquid itself or applying the ionic liquid by the above method. The immersion time is not particularly limited as long as the ionic liquid is fixed to the substrate surface, but is preferably 5 minutes to 60 hours, more preferably 1 to 24 hours. Moreover, you may heat a base material and a solution when immersing or apply | coating as needed. When the solution is used, the concentration of the ionic liquid is about 0.01 mmol / L to 100 mmol / L, preferably about 0.1 mmol / L to 50 mmol / L. As the solvent, alcohols, ethers, nitriles, esters, ketones, hydrocarbons, chloroform and the like can be used.

上記により得られたイオン液体修飾基材への目的化合物の導入方法としては、例えば、目的化合物の溶液にイオン液体修飾基材を浸漬する方法、あるいは溶液をイオン液体修飾基材にスプレ−コ−トやスピンコ−トなどにより塗布する方法などが挙げられる.浸漬する時間は目的化合物がイオン液体修飾基材に導入されれば特に制限されることはないが、好ましくは5分〜60時間、より好ましくは1〜24時間である。また必要に応じて浸漬あるいは塗布する際にイオン液体修飾基材や溶液を加熱しても良い。溶液にする場合、目的化合物の濃度としては、0.01mmol/L〜100mmol/L、好ましくは0.1mmol/L〜50mmol/L程度である。溶媒としては、アルコ−ル類、エ−テル類、ニトリル類、エステル類、ケトン類、炭化水素、クロロホルム、水などを用いることができる。   Examples of a method for introducing the target compound into the ionic liquid modified substrate obtained as described above include, for example, a method of immersing the ionic liquid modified substrate in a solution of the target compound, or a spray coating of the solution on the ionic liquid modified substrate. For example, a coating method using a coat or a spin coat. The immersion time is not particularly limited as long as the target compound is introduced into the ionic liquid modified substrate, but is preferably 5 minutes to 60 hours, more preferably 1 to 24 hours. Moreover, you may heat an ionic liquid modification base material and a solution when immersing or apply | coating as needed. When the solution is used, the concentration of the target compound is about 0.01 mmol / L to 100 mmol / L, preferably about 0.1 mmol / L to 50 mmol / L. As the solvent, alcohols, ethers, nitriles, esters, ketones, hydrocarbons, chloroform, water and the like can be used.

また、他の導入方法として、基材表面へのイオン液体修飾の際に、導入したい化合物を共存させた溶液を調整し、一度にイオン液体と目的化合物を基材表面上に修飾・固定することも可能である。その際の溶液を浸漬する時間は目的化合物およびイオン液体が基材上に導入されれば特に制限されることはないが、好ましくは5分〜60時間、より好ましくは1〜24時間である。また必要に応じて浸漬する際に基材や溶液を加熱しても良い。溶液にする場合、目的化合物の濃度としては、0.01mmol/L〜100mmol/L、好ましくは0.1mmol/L〜50mmol/L程度である。溶媒としては、アルコ−ル類、エ−テル類、ニトリル類、エステル類、ケトン類、炭化水素、クロロホルムなどを用いることができる。   As another introduction method, when modifying the ionic liquid on the substrate surface, prepare a solution in which the compound to be introduced coexists, and modify and fix the ionic liquid and the target compound on the substrate surface at once. Is also possible. Although the time for immersing the solution in that case will not be restrict | limited especially if a target compound and an ionic liquid are introduce | transduced on a base material, Preferably it is 5 minutes-60 hours, More preferably, it is 1 to 24 hours. Moreover, you may heat a base material and a solution, when immersing as needed. When the solution is used, the concentration of the target compound is about 0.01 mmol / L to 100 mmol / L, preferably about 0.1 mmol / L to 50 mmol / L. As the solvent, alcohols, ethers, nitriles, esters, ketones, hydrocarbons, chloroform and the like can be used.

更に、別の導入方法として、イオン液体修飾基材を電極とし、電気化学測定装置を用いて、目的化合物を含んだ電解質溶液中で電気化学測定、好ましくはサイクリックボルタンメトリ−などのポテンシオメトリ−測定を行うことにより、イオン液体修飾電極中に電解質溶液中の化合物を導入することが可能である。測定の際の各種条件(濃度、温度、溶媒、測定時間、用いる電解質など)は目的化合物がイオン液体修飾電極中に導入されれば特に制限されることはないが、導入する目的化合物の濃度は好ましくは0.05mmol/L〜10mmol/L、より好ましくは0.1mmol/L〜5mmol/Lである。また測定する際の温度は好ましくは-10℃〜100℃、より好ましくは0℃〜30℃である。溶媒としては、アルコ−ル類、エ−テル類、ニトリル類、エステル類、ケトン類、炭化水素、クロロホルム、水などを用いることができる。測定時間は好ましくは1分〜2時間程度、より好ましくは5〜30分程度である。電解質に関しては、通常の電気化学測定に使用する電解質であれば特に制限はなく、溶媒が水系であれば、過塩素酸リチウムや過塩素酸ナトリウム、有機溶媒であればテトラアルキルアンモニウムのテトラボレ−ト塩やヘキサフルオロリン酸塩、あるいは過塩素酸塩が好適に用いられる。   Furthermore, as another introduction method, an ionic liquid modified base material is used as an electrode, and an electrochemical measurement device is used to perform electrochemical measurement in an electrolyte solution containing the target compound, preferably a potentiometric method such as cyclic voltammetry. By performing a measurement, it is possible to introduce the compound in the electrolyte solution into the ionic liquid modified electrode. Various conditions for measurement (concentration, temperature, solvent, measurement time, electrolyte to be used, etc.) are not particularly limited as long as the target compound is introduced into the ionic liquid modified electrode, but the concentration of the target compound to be introduced is Preferably they are 0.05 mmol / L-10 mmol / L, More preferably, they are 0.1 mmol / L-5 mmol / L. Moreover, the temperature at the time of measuring becomes like this. Preferably it is -10 degreeC-100 degreeC, More preferably, it is 0 degreeC-30 degreeC. As the solvent, alcohols, ethers, nitriles, esters, ketones, hydrocarbons, chloroform, water and the like can be used. The measurement time is preferably about 1 minute to 2 hours, more preferably about 5 to 30 minutes. The electrolyte is not particularly limited as long as it is an electrolyte used for ordinary electrochemical measurements. If the solvent is aqueous, lithium perchlorate or sodium perchlorate, and if it is an organic solvent, tetraalkylammonium tetraborate. A salt, hexafluorophosphate, or perchlorate is preferably used.

本発明のイオン液体修飾基材に導入可能な化合物としては、どのような分子・材料も使用可能であるが、好ましくは有機化合物、有機金属、金属錯体、金属酸化物、ゼオライトやFSMなどの無機細孔材料、有機高分子、DNAやタンパク質などの生体高分子などを導入することが可能である。より好ましくは修飾されたイオン液体に可溶な分子や無機材料、高分子を用いることができる。また電荷を有する化合物も好適にイオン液体修飾基材に導入することが可能である。空気中で不安定な化合物や材料をイオン液体修飾基材へ導入する場合は、上記の導入操作をグロ−ブボックス内で行うことで、目的の化合物が導入された修飾基材を好適に得ることができる。   As the compound that can be introduced into the ionic liquid-modified base material of the present invention, any molecule / material can be used, but preferably an organic compound, an organic metal, a metal complex, a metal oxide, an inorganic material such as zeolite or FSM. It is possible to introduce pore materials, organic polymers, biopolymers such as DNA and proteins, and the like. More preferably, a molecule, an inorganic material, or a polymer that is soluble in the modified ionic liquid can be used. A compound having a charge can also be suitably introduced into the ionic liquid-modified substrate. When introducing an unstable compound or material in the air into the ionic liquid-modified base material, the modified base material into which the target compound is introduced is suitably obtained by performing the above-described introduction operation in the globe box. be able to.

下記の実施例1〜22のうち、実施例5がイオン液体(化合物5)の合成例であり、実施例1〜4が化合物5を合成するための化合物の合成例である。また、実施例15が目的化合物(化合物15)の合成例であり、実施例6〜14が化合物15を合成するための化合物の合成例である。また、実施例16が基板の作製例であり、実施例17がイオン液体修飾基板の作製例である。また、実施例18〜実施例22のそれぞれが、実施例17のイオン液体修飾基板への様々な目的化合物の導入例である。
(実施例1)
<化合物1の合成>
Ar雰囲気下において200ml三口ナスフラスコに1、12−ジブロモドデカン(2.00g、6.10mmol)とトルエン10mlを加え、1、12−ジブロモドデカンが溶解するまで撹拌した。得られた溶液にトルエン10mlに溶解したトリヘキシルホスフィン(1.75g、6.11mmol)を滴下漏斗を用いて3時間かけて滴下した。得られた混合物を室温、Ar雰囲気下で92時間撹拌後、真空ラインにより乾固させた。得られた白色固体をシリカゲルカラム(酢酸エチル:メタノ−ル=9:1)によって分離した。目的物の含まれたフラクションをエバポレ−タ−によって濃縮乾燥し、薄黄色透明の粘性のある液体を得た。収量1.82g(48.6%)。なお、化合物1はH−NMR、ESI−MS及びFT−IRスペクトルにより同定した。図1に化合物1のH−NMRスペクトルを示す。
Among Examples 1-22 below, Example 5 is a synthesis example of an ionic liquid (Compound 5), and Examples 1-4 are synthesis examples of a compound for synthesizing Compound 5. In addition, Example 15 is a synthesis example of the target compound (Compound 15), and Examples 6 to 14 are synthesis examples of the compound for synthesizing Compound 15. Further, Example 16 is an example of manufacturing a substrate, and Example 17 is an example of manufacturing an ionic liquid modified substrate. Each of Examples 18 to 22 is an example of introducing various target compounds into the ionic liquid modified substrate of Example 17.
Example 1
<Synthesis of Compound 1>
Under an Ar atmosphere, 1,12-dibromododecane (2.00 g, 6.10 mmol) and 10 ml of toluene were added to a 200 ml three-necked eggplant flask and stirred until 1,12-dibromododecane was dissolved. To the obtained solution, trihexylphosphine (1.75 g, 6.11 mmol) dissolved in 10 ml of toluene was dropped over 3 hours using a dropping funnel. The resulting mixture was stirred for 92 hours at room temperature in an Ar atmosphere, and then dried to dryness using a vacuum line. The obtained white solid was separated by a silica gel column (ethyl acetate: methanol = 9: 1). The fraction containing the target product was concentrated and dried by an evaporator to obtain a light yellow transparent viscous liquid. Yield 1.82 g (48.6%). Compound 1 was identified by 1 H-NMR, ESI-MS and FT-IR spectrum. FIG. 1 shows the 1 H-NMR spectrum of Compound 1.

(実施例2)
<化合物2の合成>
チオ尿素(0.13g、1.71mmol)および化合物1(1.09g、1.77mmol)を100ml二口ナスフラスコに入れ、エタノ−ル25mlに溶解し、90℃で44時間還流した。その後、溶液を減圧濃縮することで得られた残渣をクロロホルム100mlに溶解させた。水(50ml)で2回、飽和食塩水(50ml)で2回洗浄後、有機相に硫酸ナトリウムを加えて乾燥させた。硫酸マグネシウムを濾去し、減圧乾燥することで薄黄色透明の粘性のある液体を得た。収量1.17g(100%)。なお、化合物2はESI−MS及びFT−IRスペクトルにより同定した。図2に化合物2のFT−IRスペクトルを示す。
(Example 2)
<Synthesis of Compound 2>
Thiourea (0.13 g, 1.71 mmol) and compound 1 (1.09 g, 1.77 mmol) were placed in a 100 ml two-necked eggplant flask, dissolved in 25 ml of ethanol, and refluxed at 90 ° C. for 44 hours. Then, the residue obtained by concentrating the solution under reduced pressure was dissolved in 100 ml of chloroform. After washing twice with water (50 ml) and twice with saturated brine (50 ml), sodium sulfate was added to the organic phase and dried. Magnesium sulfate was removed by filtration and dried under reduced pressure to obtain a light yellow transparent viscous liquid. Yield 1.17 g (100%). Compound 2 was identified by ESI-MS and FT-IR spectrum. FIG. 2 shows the FT-IR spectrum of Compound 2.

(実施例3)
<化合物3の合成>
200mlナスフラスコ中に化合物2(0.63g、0.91mmol)を加え、エタノ−ル(15ml)に溶解した。そこへ小過剰の水酸化ナトリウムを加え、室温で3日間撹拌した。その後、反応溶液をクロロホルム(40ml)により3回抽出した。続いて有機相を水(60ml)で2回洗浄し、硫酸ナトリウムを加えて脱水した。硫酸ナトリウムを吸引濾過によって濾去し、エバポレ−タ−で濃縮することにより、黄色透明の粘性のある液体を得た。収量0.41g(80.4%)。化合物3はH−NMR、ESI−MS及びFT−IRスペクトルにより同定した。図3に化合物3のH−NMRスペクトルを示す。
(Example 3)
<Synthesis of Compound 3>
Compound 2 (0.63 g, 0.91 mmol) was added to a 200 ml eggplant flask and dissolved in ethanol (15 ml). A small excess of sodium hydroxide was added thereto, and the mixture was stirred at room temperature for 3 days. Thereafter, the reaction solution was extracted three times with chloroform (40 ml). Subsequently, the organic phase was washed twice with water (60 ml) and dehydrated by adding sodium sulfate. Sodium sulfate was removed by suction filtration and concentrated by an evaporator to obtain a yellow transparent viscous liquid. Yield 0.41 g (80.4%). Compound 3 was identified by 1 H-NMR, ESI-MS and FT-IR spectrum. FIG. 3 shows the 1 H-NMR spectrum of Compound 3.

(実施例4)
<化合物4の合成>
100mlナスフラスコに化合物3(0.35g、0.31mmol)およびクロロホルム20mlを加えた。続いてビス(トリフルオロメタンスルホニル)イミドリチウム(0.215g、0.773mmol)のエタノ−ル溶液(10ml)を加え、室温で2時間撹拌した。得られた反応溶液をエバポレ−タ−により濃縮乾固した。ここへクロロホルム50mlを加え、得られた懸濁液を洗液中にBrイオンが含まれなくなるまで水で洗浄した。有機相を硫酸ナトリウムで脱水後、硫酸ナトリウムを濾去し、有機相をエバポレ−タ−により濃縮乾固した。薄黄色透明の粘性のある液体を得た。収量0.43g(90.9%)。化合物4はH−NMR、ESI−MS及びFT−IRスペクトルにより同定した。図4に化合物4のH−NMRスペクトルを示す。
Example 4
<Synthesis of Compound 4>
Compound 3 (0.35 g, 0.31 mmol) and 20 ml of chloroform were added to a 100 ml eggplant flask. Subsequently, an ethanol solution (10 ml) of bis (trifluoromethanesulfonyl) imidolithium (0.215 g, 0.773 mmol) was added, and the mixture was stirred at room temperature for 2 hours. The resulting reaction solution was concentrated to dryness with an evaporator. To this was added 50 ml of chloroform, and the resulting suspension was washed with water until the washing solution contained no Br ions. The organic phase was dehydrated with sodium sulfate, sodium sulfate was removed by filtration, and the organic phase was concentrated to dryness with an evaporator. A pale yellow transparent viscous liquid was obtained. Yield 0.43 g (90.9%). Compound 4 was identified by 1 H-NMR, ESI-MS and FT-IR spectrum. FIG. 4 shows the 1 H-NMR spectrum of Compound 4.

(実施例5)
<化合物5の合成>
200mlナスフラスコに化合物3(0.65g、0.57mmol)を入れ、クロロホルム35ml加えた。その後トリフルオロメタンスルホン酸ナトリウム(0.238g、1.38mmol)のエタノ−ル溶液(15ml)を加え、室温で6時間撹拌した。得られた反応溶液を洗浄液中にBrが含まれなくなるまで水で洗浄した。有機相を硫酸ナトリウムで脱水後、濾去し、エバポレ−タ−及び真空ラインを用いて濃縮乾固した。薄黄色透明の粘性のある液体を得た。収量0.61g(84.7%)。化合物5はH−NMR、ESI−MS及びFT−IRスペクトルにより同定した。図5に化合物5のH−NMRスペクトルを示す。
(Example 5)
<Synthesis of Compound 5>
Compound 3 (0.65 g, 0.57 mmol) was placed in a 200 ml eggplant flask, and 35 ml of chloroform was added. Thereafter, an ethanol solution (15 ml) of sodium trifluoromethanesulfonate (0.238 g, 1.38 mmol) was added, and the mixture was stirred at room temperature for 6 hours. The obtained reaction solution was washed with water until Br was not contained in the washing solution. The organic phase was dehydrated with sodium sulfate, filtered, and concentrated to dryness using an evaporator and a vacuum line. A pale yellow transparent viscous liquid was obtained. Yield 0.61 g (84.7%). Compound 5 was identified by 1 H-NMR, ESI-MS and FT-IR spectrum. FIG. 5 shows the 1 H-NMR spectrum of Compound 5.

なお、化合物5は、一般式(I)において、MがP原子、R1が結合性官能基として−SS−基を有する−(CH12SS(CH12−基、R2〜R4がC13−基、XがCFSO (TfO)である。
(実施例6)
<鉄複核錯体の合成>
<化合物6の合成>
2−アミノ−6−メチルピコリン(0.54mol)とトリエチルアミン(0.54mol)をジクロロメタン(300ml)に溶かし、撹拌しながらピコリン酸クロリド(0.54mol)のジクロロメタン溶液(100ml)を滴下した。反応の様子をTLC(展開溶媒;ヘキサン:酢酸エチル=4:1)により追跡し、原料のスポットが消失したことで反応終了を確認した。その後、反応に伴って析出した白色粉末を濾去し、ジクロロメタン溶液に対して抽出操作を行った。まず有機層を水で3回洗浄し、続いて1Nの塩酸、0.5Nの炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄した後、無水硫酸マグネシウムを加えて数時間放置した。無水硫酸マグネシウムを濾去し、ロ−タリ−エバポレ−タ−で減圧濃縮して得られた粗結晶をジエチルエ−テルに溶解させ、数日放置することにより析出した無色柱状結晶を濾過して集めることにより、目的物を得た。収量62.6g(59.7%).化合物6はH−NMRにより同定した。図6に化合物6のH−NMRスペクトルを示す。
The compound 5, in general formula (I), M has a P atom, -SS- group as R1 is bonded functional group - (CH 2) 12 SS ( CH 2) 12 - group, is R2~R4 C 6 H 13 - radical, X - is CF 3 SO 3 - is - (TfO).
(Example 6)
<Synthesis of iron binuclear complex>
<Synthesis of Compound 6>
2-Amino-6-methylpicoline (0.54 mol) and triethylamine (0.54 mol) were dissolved in dichloromethane (300 ml), and a solution of picolinic acid chloride (0.54 mol) in dichloromethane (100 ml) was added dropwise with stirring. The state of the reaction was monitored by TLC (developing solvent; hexane: ethyl acetate = 4: 1), and the completion of the reaction was confirmed by the disappearance of the raw material spot. Then, the white powder precipitated with the reaction was removed by filtration, and an extraction operation was performed on the dichloromethane solution. First, the organic layer was washed with water three times, then washed with 1N hydrochloric acid, 0.5N aqueous sodium hydrogen carbonate solution and saturated brine in this order, and then anhydrous magnesium sulfate was added and left for several hours. The anhydrous magnesium sulfate is filtered off, and the crude crystals obtained by concentration under reduced pressure with a rotary evaporator are dissolved in diethyl ether and allowed to stand for several days. Thus, the desired product was obtained. Yield 62.6 g (59.7%). Compound 6 was identified by 1 H-NMR. FIG. 6 shows the 1 H-NMR spectrum of Compound 6.

(実施例7)
<化合物7の合成>
化合物6(0.16mol)を四塩化炭素(300ml)に溶かし、撹拌しながらN−ブロモスクシンイミド(NBS;5.3x10−2mol)と2、2’−アゾビスイソブチロニトリル(AIBN;3.0x10−3mol)を加え、80℃で還流を開始した。開始2時間後にNBS(5.3x10−2mol)とAIBN(3.0x10−3mol)を追加し、次いで、NBS(2.7x10−2mol)とAIBN(2.0x10−3mol)を1時間毎に2回加え、更に1時間還流した後、放冷し、濾過した四塩化炭素溶液に対して洗浄操作を行った。まず有機層を0.5Nの炭酸水素ナトリウム水溶液、飽和食塩水の順で洗浄し、無水硫酸マグネシウムを加えて数時間放置した。無水硫酸マグネシウムを濾去し、ロ−タリ−エバポレ−タ−で減圧濃縮して得られた褐色油状物をシリカゲルカラム(溶離液;ヘキサン:酢酸エチル=10:1)により精製し、目的物を含む褐色油状物(20.75g)を得た。この褐色油状物は目的物の化合物7だけでなく原料である化合物6との混合物であったため、化合物7の含有量はH−NMRスペクトルにより計算した。収量13.3g(30.8%)。化合物7はH−NMRにより同定した。図7に化合物7のH−NMRスペクトルを示す。
(Example 7)
<Synthesis of Compound 7>
Compound 6 (0.16 mol) was dissolved in carbon tetrachloride (300 ml) and stirred with N-bromosuccinimide (NBS; 5.3 × 10 −2 mol) and 2,2′-azobisisobutyronitrile (AIBN; 3 0.0 × 10 −3 mol) was added and refluxing was started at 80 ° C. Add the NBS (5.3x10 -2 mol) AIBN and (3.0x10 -3 mol) in 2 hours after the start, then, with NBS (2.7x10 -2 mol) AIBN and (2.0x10 -3 mol) 1 The solution was added twice every hour and further refluxed for 1 hour, then allowed to cool and washed with respect to the filtered carbon tetrachloride solution. First, the organic layer was washed with 0.5N aqueous sodium hydrogen carbonate solution and saturated brine in this order, and anhydrous magnesium sulfate was added and left for several hours. The anhydrous magnesium sulfate was removed by filtration, and the brown oil obtained by concentration under reduced pressure with a rotary evaporator was purified by a silica gel column (eluent; hexane: ethyl acetate = 10: 1). A brown oil (20.75 g) was obtained containing. Since this brown oily substance was a mixture with not only the target compound 7 but also the raw material compound 6, the content of compound 7 was calculated by 1 H-NMR spectrum. Yield 13.3 g (30.8%). Compound 7 was identified by 1 H-NMR. FIG. 7 shows the 1 H-NMR spectrum of Compound 7.

(実施例8)
<化合物8の合成>
化合物7(4.9x10−2mol)をN、N−ジメチルホルムアミド(50ml)に溶かし、撹拌しながらフタルイミドカリウム(6.26x10−2mol)を加え130℃で2時間還流した。目的物の生成はTLC(展開溶媒;ヘキサン:酢酸エチル=4:1)により確認した。反応終了を原料である化合物7のTLCスポットが消失したことで確認した後、放冷し、濾過した。N、N−ジメチルホルムアミド溶液に水(50ml)を加えて、クロロホルムで抽出操作を行った。まず目的物を有機層に抽出した後、有機物を飽和食塩水で洗浄し、無水硫酸マグネシウムを加えて数時間放置した。無水硫酸マグネシウムを濾去し、ロ−タリ−エバポレ−タ−で減圧濃縮して得られる褐色粉末をクロロホルム(100ml)に溶解させ、ジエチルエ−テル(200ml)を加えて冷蔵庫にて24時間放置することにより、褐色結晶が析出した。収量(43.3%).化合物8はH−NMRにより同定した。図8に化合物8のH−NMRスペクトルを示す。
(Example 8)
<Synthesis of Compound 8>
Compound 7 (4.9 × 10 −2 mol) was dissolved in N, N-dimethylformamide (50 ml), potassium phthalimide (6.26 × 10 −2 mol) was added with stirring, and the mixture was refluxed at 130 ° C. for 2 hours. Formation of the target product was confirmed by TLC (developing solvent; hexane: ethyl acetate = 4: 1). The completion of the reaction was confirmed by the disappearance of the TLC spot of compound 7 as a raw material, and then the mixture was allowed to cool and filtered. Water (50 ml) was added to the N, N-dimethylformamide solution, followed by extraction with chloroform. First, the target product was extracted into an organic layer, and then the organic material was washed with saturated brine, anhydrous magnesium sulfate was added, and the mixture was left for several hours. Anhydrous magnesium sulfate is removed by filtration, and the brown powder obtained by concentration under reduced pressure with a rotary evaporator is dissolved in chloroform (100 ml). Diethyl ether (200 ml) is added and left in the refrigerator for 24 hours. As a result, brown crystals were precipitated. Yield (43.3%). Compound 8 was identified by 1 H-NMR. FIG. 8 shows the 1 H-NMR spectrum of Compound 8.

(実施例9)
<化合物9の合成>
化合物8(2.12x10−2mol)をエタノ−ル(100ml)に完全に溶解させた後、撹拌しながらヒドラジン・一水和物(4.24x10−2mol)を加え、80℃で4時間還流した。目的物の生成はTLC(展開溶媒;ヘキサン:酢酸エチル=4:1)およびニンヒドリン呈色反応により確認した。反応終了を原料である化合物8のTLCスポットが消失したことで確認した後、放冷し、濾過後、濾液をロ−タリ−エバポレ−タ−で減圧濃縮して得られた白色粉末をクロロホルム(50ml)に溶解させた。不溶なフタルヒドラジドを濾別し、濾液を減圧濃縮して得られた白色粉末を再度クロロホルム(50ml)より冷蔵庫内にて再結晶させた。得られた結晶を濾取史し、数時間真空乾燥させることにより化合物9を得た。収量2.70g(69.3%)。化合物9はH−NMRにより同定した。図9に化合物9のH−NMRスペクトルを示す。
Example 9
<Synthesis of Compound 9>
Compound 8 (2.12 × 10 −2 mol) was completely dissolved in ethanol (100 ml), hydrazine monohydrate (4.24 × 10 −2 mol) was added with stirring, and the mixture was stirred at 80 ° C. for 4 hours. Refluxed. Formation of the target product was confirmed by TLC (developing solvent; hexane: ethyl acetate = 4: 1) and ninhydrin color reaction. After confirming the completion of the reaction by the disappearance of the TLC spot of compound 8 as a raw material, the mixture was allowed to cool, filtered, and the filtrate was concentrated under reduced pressure with a rotary evaporator to give a white powder obtained by chloroform ( 50 ml). Insoluble phthalhydrazide was filtered off, and the white powder obtained by concentrating the filtrate under reduced pressure was recrystallized again from chloroform (50 ml) in a refrigerator. The obtained crystals were collected by filtration and dried in vacuo for several hours to obtain Compound 9. Yield 2.70 g (69.3%). Compound 9 was identified by 1 H-NMR. FIG. 9 shows the 1 H-NMR spectrum of Compound 9.

(実施例10)
<化合物10の合成>
化合物9(0.10mol)を四塩化炭素(250ml)に溶かし、撹拌しながらNBS(3.0x10−2mol)とAIBN(6.0x10−3mol)を加え80℃で還流した。2時間後に更にNBS(3.0x10−2mol)とAIBN(6.0x10−3mol)を加え、その後1時間ごとにNBS(3.0x10−2mol)とAIBN(6.0x10−3mol)を計6回加えた。12時間後、反応溶液を放冷後、濾過し、濾液を減圧濃縮して得られた赤褐色油状物をメタノ−ル(100ml)溶解した。この溶液に水酸化カリウム(0.24mol)を含む水溶液(50ml)を加え、2時間撹拌した。TLC(展開溶媒;ヘキサン:酢酸エチル=4:1)にて化合物7のスポットが消失し、それより下に新たなスポットが出現したことで反応収量を確認した。この溶液を減圧濃縮後、ヘキサン(100ml)に溶かし、有機層を6M塩酸により洗浄し、水層に不純物を抽出した。続いて0.5Mの炭酸水素ナトリウム水溶液を塩基性になるまで加え、水層を取り除いた後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムを加えて乾燥させた。硫酸マグネシウムを濾別後、ロ−タリ−エバポレ−タ−で減圧濃縮することにより白色結晶が析出したので、これを数時間真空乾燥させた。収量12.0g(46.0%).化合物10はH−NMRにより同定した。図10に化合物10のH−NMRスペクトルを示す。
(Example 10)
<Synthesis of Compound 10>
Compound 9 (0.10 mol) was dissolved in carbon tetrachloride (250 ml), NBS (3.0 × 10 −2 mol) and AIBN (6.0 × 10 −3 mol) were added with stirring, and the mixture was refluxed at 80 ° C. Further NBS (3.0x10 -2 mol) and AIBN to (6.0x10 -3 mol) was added after 2 hours, then every hour and NBS (3.0x10 -2 mol) AIBN ( 6.0x10 -3 mol) Was added a total of 6 times. After 12 hours, the reaction solution was allowed to cool and then filtered, and the filtrate was concentrated under reduced pressure to dissolve the reddish brown oily substance in methanol (100 ml). An aqueous solution (50 ml) containing potassium hydroxide (0.24 mol) was added to this solution and stirred for 2 hours. The spot of Compound 7 disappeared by TLC (developing solvent; hexane: ethyl acetate = 4: 1), and a new spot appeared below it, thereby confirming the reaction yield. This solution was concentrated under reduced pressure, dissolved in hexane (100 ml), the organic layer was washed with 6M hydrochloric acid, and impurities were extracted into the aqueous layer. Subsequently, 0.5M aqueous sodium hydrogen carbonate solution was added until basic, and the aqueous layer was removed. The organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and concentrated under reduced pressure with a rotary evaporator to precipitate white crystals, which were vacuum dried for several hours. Yield 12.0 g (46.0%). Compound 10 was identified by 1 H-NMR. FIG. 10 shows the 1 H-NMR spectrum of Compound 10.

(実施例11)
<化合物11の合成>
化合物10(3.42x10−2mol)をアセトン(150ml)に溶かし、硝酸銀(11.37x10−2mol)を含む水溶液(40ml)を加え、室温・遮光条件下にして16時間撹拌した。目的物の生成をTLC(展開溶媒;ヘキサン:酢酸エチル=4:1)で確認した。不純物を濾別した後、濾液をロ−タリ−エバポレ−タ−により減圧濃縮し、得られた黄色油状物にジクロロメタンを加えた。まず有機層を水で洗浄し、0.5N炭酸水素ナトリウム水溶液を塩基性になるまで加えた。有機相を抽出後、飽和食塩水で洗浄し、無水硫酸マグネシウムを加えて乾燥させた。硫酸マグネシウムを濾別し、ロ−タリ−エバポレ−タ−により減圧濃縮後、数時間真空乾燥することで黄色油状物を得た。収量(71.6%).化合物11はH−NMRにより同定した。図11に化合物11のH−NMRスペクトルを示す。
(Example 11)
<Synthesis of Compound 11>
Compound 10 (3.42 × 10 −2 mol) was dissolved in acetone (150 ml), an aqueous solution (40 ml) containing silver nitrate (11.37 × 10 −2 mol) was added, and the mixture was stirred for 16 hours under room temperature / light-shielding conditions. Formation of the target product was confirmed by TLC (developing solvent; hexane: ethyl acetate = 4: 1). After impurities were filtered off, the filtrate was concentrated under reduced pressure using a rotary evaporator, and dichloromethane was added to the resulting yellow oil. First, the organic layer was washed with water, and 0.5N aqueous sodium hydrogen carbonate solution was added until basic. The organic phase was extracted, washed with saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was separated by filtration, concentrated under reduced pressure with a rotary evaporator, and then dried under vacuum for several hours to obtain a yellow oil. Yield (71.6%). Compound 11 was identified by 1 H-NMR. FIG. 11 shows the 1 H-NMR spectrum of Compound 11.

(実施例12)
<化合物12の合成>
化合物10(1.20x10−2mol)を脱水メタノ−ル(50ml)に溶かし、そこに化合物7(1.29x10−2mol)を加えて耐圧ビンに入れ、酸化白金(10mg)を触媒として、水素圧3atm、室温で接触水素化反応を行った。目的物の生成はTLC(展開溶媒;クロロホルム:メタノ−ル=7:1)およびニンヒドリン呈色反応により確認した。濾過により酸化白金を取り除いた後、濾液をロ−タリ−エバポレ−タ−で減圧濃縮することにより黄色油状物を得た。これをシリカゲルカラム(溶離液;クロロホルム)により精製し、目的物を含む橙色油状物を得た。これをアセトン(50ml)に溶解し、ゆっくりと溶媒を蒸発させることにより析出した無色結晶を濾過し、数時間減圧乾燥させることにより目的物を得た。収量1.47g(30.9%).化合物12はH−NMRにより同定した。図12に化合物12のH−NMRスペクトルを示す。
(Example 12)
<Synthesis of Compound 12>
Compound 10 (1.20 × 10 −2 mol) is dissolved in dehydrated methanol (50 ml), compound 7 (1.29 × 10 −2 mol) is added to the pressure bottle, and platinum oxide (10 mg) is used as a catalyst. The catalytic hydrogenation reaction was performed at a hydrogen pressure of 3 atm and room temperature. Formation of the target product was confirmed by TLC (developing solvent; chloroform: methanol = 7: 1) and ninhydrin color reaction. After removing platinum oxide by filtration, the filtrate was concentrated under reduced pressure with a rotary evaporator to give a yellow oil. This was purified by a silica gel column (eluent: chloroform) to obtain an orange oil containing the target product. This was dissolved in acetone (50 ml) and the colorless crystals deposited by slowly evaporating the solvent were filtered and dried under reduced pressure for several hours to obtain the desired product. Yield 1.47 g (30.9%). Compound 12 was identified by 1 H-NMR. FIG. 12 shows the 1 H-NMR spectrum of Compound 12.

(実施例13)
<化合物13の合成>
2、6−ビス(ヒドロキシメチル)パラクレゾ−ル酢酸(1.8x10−3)と少量のピリジンをジクロロメタン(15ml)に溶かし、塩化チオニル(2.1x10−2)を含むジクロロメタン溶液(30ml)を室温下で撹拌しながらゆっくりと滴下した。得られた溶液を30〜35℃で撹拌し、ジクロロメタンを揮発させることで、目的の黄白色粉末を得た。収量3.68g(100%)。化合物13はH−NMRにより同定した。
(Example 13)
<Synthesis of Compound 13>
2,6-bis (hydroxymethyl) paracresol acetic acid (1.8 × 10 −3 ) and a small amount of pyridine are dissolved in dichloromethane (15 ml), and a dichloromethane solution (30 ml) containing thionyl chloride (2.1 × 10 −2 ) is added to room temperature. The solution was slowly added dropwise with stirring. The obtained solution was stirred at 30 to 35 ° C., and dichloromethane was volatilized to obtain the intended yellowish white powder. Yield 3.68 g (100%). Compound 13 was identified by 1 H-NMR.

(実施例14)
<化合物14の合成>
化合物13(7.4x10−3mol)をテトラヒドロフラン(20ml)に溶かし、窒素雰囲気下、氷浴中で撹拌しながら、化合物12(1.8x10−2mol)、トリエチルアミン(1.8x10−2mol)を含むテトラヒドロフラン溶液(70ml)をゆっくりと滴下した。得られた溶液は室温で3日間撹拌した。生成したトリエチルアミン塩酸塩を濾別し、ロ−タリ−エバポレ−タ−により減圧濃縮することにより、黄色油状物を得た。得られた油状物をジクロロメタンに溶かし、水、飽和食塩水を用いて洗浄し、無水硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、減圧濃縮し、得られた黄色油状物をシリカゲルカラムにより、化合物13(溶離液;ヘキサン:酢酸エチル=4:1)と目的物(溶離液;ヘキサン:酢酸エチル=4:1)に分離・精製し、黄白色粉末を得た。収量5.76g(84%)。化合物14はH−NMRにより同定した。図13に化合物14のH−NMRスペクトルを示す。
(Example 14)
<Synthesis of Compound 14>
Compound 13 (7.4 × 10 −3 mol) was dissolved in tetrahydrofuran (20 ml), and while stirring in an ice bath under a nitrogen atmosphere, compound 12 (1.8 × 10 −2 mol), triethylamine (1.8 × 10 −2 mol) A tetrahydrofuran solution (70 ml) containing was slowly added dropwise. The resulting solution was stirred at room temperature for 3 days. The produced triethylamine hydrochloride was filtered off and concentrated under reduced pressure using a rotary evaporator to give a yellow oily substance. The obtained oil was dissolved in dichloromethane, washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off, and the filtrate was concentrated under reduced pressure. The resulting yellow oily substance was purified with a silica gel column using compound 13 (eluent; hexane: ethyl acetate = 4: 1) and the desired product (eluent; hexane: ethyl acetate = 4). 1) to obtain a yellowish white powder. Yield 5.76 g (84%). Compound 14 was identified by 1 H-NMR. FIG. 13 shows the 1 H-NMR spectrum of Compound 14.

(実施例15)
<化合物15の合成>
アルゴン雰囲気下、化合物14(3.6x10−5mol)をジクロロメタン及び少量のメタノ−ル混合溶液に溶かし、Fe(CFSO(7.1x10−5mol)、安息香酸ナトリウム (7.1x10−5mol)を含むメタノ−ル溶液を添加した。続いて、この溶液にトリエチルアミン(3.6x10−5mol)を加え、数時間放置した後、ゆっくりと減圧濃縮した。得られた残渣を少量のメタノ−ルに溶かし、溶媒をゆっくりと蒸発させることで、化合物15の黄色板状結晶を得た。収量10mg(19%)。化合物15はIR、UV/vis、ESI−TOF MSスペクトル、およびX線結晶構造解析により同定した。図14に化合物15の結晶構造のORTEP図を示す。
(Example 15)
<Synthesis of Compound 15>
Under an argon atmosphere, compound 14 (3.6 × 10 −5 mol) was dissolved in a mixed solution of dichloromethane and a small amount of methanol to obtain Fe (CF 3 SO 3 ) 2 (7.1 × 10 −5 mol), sodium benzoate (7. A methanol solution containing 1 × 10 −5 mol) was added. Subsequently, triethylamine (3.6 × 10 −5 mol) was added to the solution, allowed to stand for several hours, and then slowly concentrated under reduced pressure. The obtained residue was dissolved in a small amount of methanol, and the solvent was slowly evaporated to obtain yellow plate crystals of Compound 15. Yield 10 mg (19%). Compound 15 was identified by IR, UV / vis, ESI-TOF MS spectrum, and X-ray crystal structure analysis. FIG. 14 shows an ORTEP diagram of the crystal structure of Compound 15.

(実施例16)
<金蒸着基板の作製>
まず天然雲母片(mica)を14×14mm四方に切り出し、セロテ−プ(登録商標)などによりmica表面を剥がすことで、清浄で平滑な面を露出させた。続いてφ1mmのAu線(99.999%)を適量切り出し、アセトンで湿らせたキムワイプで汚れを落とした後に、適当な大きさに丸めて蒸着装置内のバスケットに設置した。切り出したmicaをAu線が入ったバスケット上部のサンプルホルダ−に設置した。続いて蒸着装置内を〜10−5Paまで減圧し、ランプヒ−タ−によりmicaを300℃で3時間加熱した。続いてバスケット内のAu線を加熱し、蒸着速度約0.9As−1で金薄膜が1000Aになるまで蒸着した。得られた金基板は使用前に水素炎によるアニ−ル処理を行った。
(実施例17)
<イオン液体修飾金基板の作製>
化合物5の1mMエタノ−ルまたはアセトニトリル溶液を調製し、あらかじめエタノ−ルまたはアセトニトリルで表面をリンスした蒸着金基板上をこの溶液中に1日間金基板を浸漬させた。続いて金基板をエタノ−ルまたはアセトニトリルでリンスし、数時間風乾させることで修飾基板1を得た。得られたイオン液体修飾基板は、FT−IRスペクトル(RAS法)、およびサイクリックボルタンメトリ−によりイオン液体の修飾を確認した。図15に修飾基板のFT−IRスペクトルを示す。FT−IRスペクトルにより、金基板上に修飾されたイオン液体に特徴的なC−H結合に由来する伸縮振動および変角振動を2940、1464cm−1に、対陰イオンに由来する伸縮振動を1265、1154、1029cm−1に観測した。またサイクリックボルタンメトリ−測定において、バックグラウンド電流が小さくなったこと、および0.5M KOH水溶液中において−0.94V(vs.Ag/AgCl)にAu−S結合の還元脱離反応に由来する還元波を観測したことから、化合物5は金電極上に−SS−結合によって化学修飾されていることが示唆された。また、この還元脱離波の電流値の解析から、化合物5は9.1(±4.3)×10−11mol・cm−2の被覆率で表面に修飾されていることが判明した。一般的な長鎖アルカンチオ−ル(C1837SH)を用いて同様の実験を行ったところ,その表面被覆率は5.4×10−10mol・cm−2となり、それに比べると被覆率は1/6程度であった。従って,イオン液体1分子あたり、アルカンチオ−ルの大きさに換算して6分子分の空間が電極表面に存在していることが示唆された。
(Example 16)
<Preparation of gold-deposited substrate>
First, natural mica pieces (mica) were cut into 14 × 14 mm 2 squares, and the mica surface was peeled off with Celote (registered trademark) to expose a clean and smooth surface. Subsequently, a suitable amount of φ1 mm Au wire (99.999%) was cut out, cleaned with Kimwipe moistened with acetone, then rolled to an appropriate size and placed in a basket in a vapor deposition apparatus. The cut mica was placed in a sample holder at the top of the basket containing Au wire. Subsequently, the pressure inside the vapor deposition apparatus was reduced to 10 −5 Pa, and mica was heated at 300 ° C. for 3 hours with a lamp heater. Subsequently, the Au wire in the basket was heated, and vapor deposition was performed at a vapor deposition rate of about 0.9 As −1 until the gold thin film reached 1000 A. The obtained gold substrate was annealed with a hydrogen flame before use.
(Example 17)
<Production of ionic liquid modified gold substrate>
A 1 mM ethanol or acetonitrile solution of compound 5 was prepared, and the gold substrate was immersed in this solution for 1 day on a vapor deposition gold substrate whose surface was rinsed in advance with ethanol or acetonitrile. Subsequently, the gold substrate was rinsed with ethanol or acetonitrile and air-dried for several hours to obtain a modified substrate 1. The obtained ionic liquid modified substrate was confirmed to be modified by FT-IR spectrum (RAS method) and cyclic voltammetry. FIG. 15 shows an FT-IR spectrum of the modified substrate. According to the FT-IR spectrum, the stretching vibration and bending vibration derived from the C—H bond characteristic of the ionic liquid modified on the gold substrate were 2940 and 1464 cm −1 , and the stretching vibration derived from the counter anion was 1265. , 1154, 1029 cm −1 . Also, in cyclic voltammetry measurement, the background current was reduced, and it was derived from the reductive elimination reaction of Au-S bond to -0.94 V (vs. Ag / AgCl) in 0.5 M KOH aqueous solution. From the observation of the reduction wave, it was suggested that Compound 5 was chemically modified by -SS- bond on the gold electrode. From the analysis of the current value of this reduced desorption wave, it was found that the surface of Compound 5 was modified with a coverage of 9.1 (± 4.3) × 10 −11 mol · cm −2 . When a similar experiment was performed using a general long-chain alkanethiol (C 18 H 37 SH), the surface coverage was 5.4 × 10 −10 mol · cm −2 . Was about 1/6. Therefore, it was suggested that a space of 6 molecules existed on the electrode surface in terms of alkanethiol size per molecule of ionic liquid.

(実施例18)
<イオン液体修飾金基板への鉄複核錯体の導入法>
イオン液体修飾基板上に、アルゴン雰囲気下において、10mMの鉄複核錯体(化合物15)を含むメタノ−ル溶液を滴下し、数日間放置した。その後、電極表面を塩化メチレン、およびアセトンを用いて洗浄後、基板を真空乾燥させた。イオン液体修飾基板への鉄複核錯体の導入は、FT−IRスペクトル(RAS法)、およびサイクリックボルタンメトリ−によりイオン液体修飾基板への鉄複核錯体の導入を確認した。図16に鉄複核錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す。
(Example 18)
<Introduction method of iron binuclear complex to ionic liquid modified gold substrate>
A methanol solution containing 10 mM iron binuclear complex (compound 15) was dropped on an ionic liquid modified substrate in an argon atmosphere and allowed to stand for several days. Thereafter, the electrode surface was washed with methylene chloride and acetone, and then the substrate was vacuum-dried. As for the introduction of the iron binuclear complex into the ionic liquid modified substrate, the introduction of the iron binuclear complex into the ionic liquid modified substrate was confirmed by FT-IR spectrum (RAS method) and cyclic voltammetry. FIG. 16 shows a cyclic voltammogram of an ionic liquid modified substrate into which an iron binuclear complex is introduced.

FT−IRスペクトルでは、導入された化合物15に由来する特徴的な吸収(アミド部位のC=O伸縮振動およびC−N伸縮振動)が1526cm−1および1109cm−1に観測された。サイクリックボルタモグラムではイオン液体修飾電極に導入された化合物15に由来する酸化還元波が0.01V(vs.Fc・Fc)に観測された。以上の結果より化合物15はイオン液体修飾電極上に固定化されたことが示唆された。
(比較例1)
非特許文献1において、鉄複核錯体を化学結合により電極上に修飾した場合の電気化学測定から、錯体の酸化還元波は−0.78V(vs.Fc・Fc)に観測された。また均一溶液中では、本鉄複核錯体は0.23V(vs.Fc・Fc)に酸化還元波が観測された。その差は約1.01Vである。一方、実施例18では、酸化還元波は0.01V(vs.Fc・Fc)に観測され、その差は約0.22Vである。従って、直接化学結合を利用して鉄複核錯体を修飾した場合に比べて、イオン液体修飾電極を利用した場合は、溶液中のものにかなり近い状態で存在していることが示唆された。
(実施例19)
<イオン液体修飾金基板へのコバルト単核錯体の導入法>
イオン液体修飾基板上に、10mMのコバルト単核錯体を含む水溶液を滴下し、数日間放置した。その後、電極表面をMilli−Q水を用いて洗浄後、基板を真空乾燥させた。イオン液体修飾基板へのコバルト単核錯体の導入は、FT−IRスペクトル(RAS法)、およびサイクリックボルタンメトリ−によりイオン液体修飾基板へのコバルト単核錯体の導入を確認した。図17にコバルト単核錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す。
In the FT-IR spectrum, characteristic absorptions (C═O stretching vibration and CN stretching vibration of the amide moiety) derived from the introduced compound 15 were observed at 1526 cm −1 and 1109 cm −1 . In the cyclic voltammogram, an oxidation-reduction wave derived from the compound 15 introduced into the ionic liquid modified electrode was observed at 0.01 V (vs. Fc · Fc + ). From the above results, it was suggested that Compound 15 was immobilized on the ionic liquid modified electrode.
(Comparative Example 1)
In Non-Patent Document 1, from the electrochemical measurement when the iron binuclear complex was modified on the electrode by chemical bonding, the redox wave of the complex was observed at −0.78 V (vs. Fc · Fc + ). In the homogeneous solution, an oxidation-reduction wave was observed at 0.23 V (vs. Fc · Fc + ) in the iron binuclear complex. The difference is about 1.01V. On the other hand, in Example 18, the oxidation-reduction wave was observed at 0.01 V (vs. Fc · Fc + ), and the difference was about 0.22 V. Therefore, it was suggested that when the ionic liquid modified electrode was used, it was present in a state much closer to that in the solution than when the iron binuclear complex was modified using direct chemical bonding.
(Example 19)
<Introduction of cobalt mononuclear complex into ionic liquid modified gold substrate>
An aqueous solution containing 10 mM cobalt mononuclear complex was dropped on the ionic liquid modified substrate and left for several days. Thereafter, the surface of the electrode was washed with Milli-Q water, and then the substrate was vacuum dried. As for the introduction of the cobalt mononuclear complex into the ionic liquid modified substrate, the introduction of the cobalt mononuclear complex into the ionic liquid modified substrate was confirmed by FT-IR spectrum (RAS method) and cyclic voltammetry. FIG. 17 shows a cyclic voltammogram of an ionic liquid modified substrate into which a cobalt mononuclear complex has been introduced.

FT−IRスペクトルでは、導入されたコバルト錯体に由来する特徴的な吸収(アミド部位のC=O伸縮振動)が1537cm−1に観測された。サイクリックボルタモグラムではイオン液体修飾電極に導入されたコバルト錯体に由来する酸化還元波が−0.70V(vs.Fc・Fc)に観測された。以上の結果から、コバルト錯体はイオン液体修飾電極上に固定化されたことが示唆された。均一溶液中でのコバルト錯体の酸化還元波は−0.79V(vs.Fc・Fc)に観測されるが、実施例19との差は殆どないことから、コバルト錯体の性質の改変は無いことが示唆される。
(実施例20)
<イオン液体修飾金基板へのフェロセンの導入法>
化合物5(0.16mmol)に市販のフェロセン(0.16mmol)を溶解し、得られた溶液を金基板上に滴下し、数日間放置した。続いて、基板表面をクロロホルム、アセトン、Milli−Q水で洗浄後、風乾させた。イオン液体の修飾、およびフェロセンの導入は、サイクリックボルタンメトリ−により確認した。図18にフェロセンが導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す。
In the FT-IR spectrum, characteristic absorption derived from the introduced cobalt complex (C═O stretching vibration of the amide moiety) was observed at 1537 cm −1 . In the cyclic voltammogram, an oxidation-reduction wave derived from the cobalt complex introduced into the ionic liquid modified electrode was observed at −0.70 V (vs. Fc · Fc + ). From the above results, it was suggested that the cobalt complex was immobilized on the ionic liquid modified electrode. The redox wave of the cobalt complex in a homogeneous solution is observed at −0.79 V (vs. Fc · Fc + ), but since there is almost no difference from Example 19, there is no modification of the properties of the cobalt complex. It is suggested.
(Example 20)
<Method of introducing ferrocene into ionic liquid modified gold substrate>
Commercially available ferrocene (0.16 mmol) was dissolved in compound 5 (0.16 mmol), and the resulting solution was dropped onto a gold substrate and allowed to stand for several days. Subsequently, the substrate surface was washed with chloroform, acetone and Milli-Q water and then air-dried. Modification of the ionic liquid and introduction of ferrocene were confirmed by cyclic voltammetry. FIG. 18 shows a cyclic voltammogram of the ionic liquid modified substrate into which ferrocene is introduced.

サイクリックボルタモグラムではイオン液体修飾電極に導入されたフェロセンに由来する酸化還元波が0.42V(vs.Ag/AgCl)に観測され、フェロセンはイオン液体修飾電極上に固定化されたことが示唆された。均一溶液中でのフェロセンの酸化還元波は0.42V(vs.Ag・AgCl)に観測されるが、実施例20との差は殆どないことから、フェロセンの性質の改変は無いことが示唆される。
(実施例21)
<イオン液体修飾金基板へのヘキサシアノ鉄(III)錯体の導入法>
0.1MのNaClO電解質溶液に市販のヘキサシアノ鉄(III)錯体(K[Fe(CN)])を0.5mMとなるように溶解させた。続いて、イオン液体修飾基板を作用極、対極を白金線、参照極を銀/塩化銀電極として、この溶液のサイクリックボルタンメトリ−測定を数回繰り返し行った。測定終了後にイオン液体修飾基板をミリQ水で洗浄し、目的の基板を得た。イオン液体修飾電極へのヘキサシアノ鉄(III)錯体の導入は、サイクリックボルタンメトリ−測定により確認した。図19にヘキサシアノ鉄(III)錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す。
In the cyclic voltammogram, a redox wave derived from ferrocene introduced into the ionic liquid modified electrode was observed at 0.42 V (vs. Ag / AgCl), suggesting that ferrocene was immobilized on the ionic liquid modified electrode. It was. Ferrocene oxidation-reduction wave in a homogeneous solution is observed at 0.42 V (vs. Ag · AgCl), but there is almost no difference from Example 20, suggesting that there is no modification of the properties of ferrocene. The
(Example 21)
<Introduction of hexacyanoiron (III) complex to ionic liquid modified gold substrate>
A commercially available hexacyanoiron (III) complex (K 3 [Fe (CN) 6 ]) was dissolved in a 0.1 M NaClO 4 electrolyte solution to a concentration of 0.5 mM. Subsequently, cyclic voltammetry measurement of this solution was repeated several times using the ionic liquid modified substrate as a working electrode, the counter electrode as a platinum wire, and the reference electrode as a silver / silver chloride electrode. After completion of the measurement, the ionic liquid modified substrate was washed with milli-Q water to obtain the target substrate. Introduction of the hexacyanoiron (III) complex into the ionic liquid modified electrode was confirmed by cyclic voltammetry measurement. FIG. 19 shows a cyclic voltammogram of an ionic liquid modified substrate into which a hexacyanoiron (III) complex has been introduced.

サイクリックボルタモグラムではイオン液体修飾電極に導入されたヘキサシアノ鉄(III)錯体に由来する酸化還元波が0.40V(vs.Ag/AgCl)に観測され、ヘキサシアノ鉄(III)錯体はイオン液体修飾電極上に固定化されたことが示唆された。均一溶液中でのヘキサシアノ鉄(III)錯体の酸化還元波は0.20V(vs.Ag・AgCl)に観測されるが、実施例21との差は殆どないことから、ヘキサシアノ鉄(III)錯体の性質の改変は無いことが示唆される。
(実施例22)
<イオン液体修飾金基板へのヘキサアンミンルテニウム(II)錯体の導入法>
0.1MのNaClO電解質溶液に市販のヘキサアンミンルテニウム(II)錯体([Ru(NH]Cl)を0.5mMとなるように溶解させた。続いて、イオン液体修飾基板を作用極、対極を白金線、参照極を銀/塩化銀電極として、この溶液のサイクリックボルタンメトリ−測定を数回繰り返し行った。測定終了後にイオン液体修飾基板をミリQ水で洗浄し、目的の基板を得た。イオン液体修飾電極へのヘキサアンミンルテニウム(II)錯体の導入は、サイクリックボルタンメトリ−測定により確認した。図20にヘキサアンミンルテニウム(II)錯体が導入されたイオン液体修飾基板のサイクリックボルタモグラムを示す。
In the cyclic voltammogram, an oxidation-reduction wave derived from the hexacyanoiron (III) complex introduced into the ionic liquid modified electrode is observed at 0.40 V (vs. Ag / AgCl), and the hexacyanoiron (III) complex is observed in the ionic liquid modified electrode. It was suggested that it was immobilized on the top. Although the redox wave of the hexacyanoiron (III) complex in the homogeneous solution is observed at 0.20 V (vs. Ag · AgCl), there is almost no difference from Example 21, so that the hexacyanoiron (III) complex It is suggested that there is no modification of the properties.
(Example 22)
<Introduction of hexaammineruthenium (II) complex to ionic liquid modified gold substrate>
A commercially available hexaammineruthenium (II) complex ([Ru (NH 3 ) 6 ] Cl 2 ) was dissolved in a 0.1 M NaClO 4 electrolyte solution to a concentration of 0.5 mM. Subsequently, cyclic voltammetry measurement of this solution was repeated several times using the ionic liquid modified substrate as a working electrode, the counter electrode as a platinum wire, and the reference electrode as a silver / silver chloride electrode. After completion of the measurement, the ionic liquid modified substrate was washed with milli-Q water to obtain the target substrate. The introduction of the hexaammineruthenium (II) complex into the ionic liquid modified electrode was confirmed by cyclic voltammetry measurement. FIG. 20 shows a cyclic voltammogram of an ionic liquid modified substrate into which a hexaammineruthenium (II) complex has been introduced.

サイクリックボルタモグラムではイオン液体修飾電極に導入されたヘキサアンミンルテニウム(II)錯体に由来する酸化還元波が−0.20V(vs.Ag/AgCl)に観測され、フェロセンはイオン液体修飾電極上に固定化されたことが示唆された。均一溶液中でのヘキサアンミンルテニウム(II)錯体の酸化還元波は−0.13V(vs.Ag・AgCl)に観測されるが、実施例22との差は殆どないことから、ヘキサアンミンルテニウム(II)錯体の性質の改変は無いことが示唆される。
In the cyclic voltammogram, a redox wave derived from the hexaammineruthenium (II) complex introduced into the ionic liquid modified electrode is observed at −0.20 V (vs. Ag / AgCl), and ferrocene is immobilized on the ionic liquid modified electrode. It was suggested that Although the redox wave of the hexaammineruthenium (II) complex in the homogeneous solution is observed at −0.13 V (vs. Ag · AgCl), there is almost no difference from Example 22, so that hexaammineruthenium ( II) It is suggested that there is no modification of the properties of the complex.

Claims (2)

基材表面に目的化合物を修飾するためのイオン液体であって、
下記の一般式(I)で表される構造単位を含む有機リン型もしくは4級アミン型のイオン液体。

(一般式(I)中、MはP元素またはN元素である。一般式(I)中、R〜Rは、それぞれ独立に、炭素数1〜30のアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数1〜30のアルコキシアルキル基、炭素数1〜30のアミノアルキル基、炭素数1〜30のパ−フルオロアルキル基、炭素数6〜30のアリ−ル基、炭素数7〜30のアラルキル基、またはカルボニル基を有するアルキル基、アルケニル基、アリ−ル基もしくはアラルキル基を表し、またはRとRn+1(nは1〜3の整数)が結合して環状構造を有していても良い。ただし、一般式(I)中のR〜Rの少なくとも1つは、少なくとも1つの結合性官能基(−SH基、−SS−基、−S−基、−COOH基、−NH基、シラノ−ル基、リン酸基、アルケニル基、アルキニル基、またはアジ基)を有する。一般式(I)中、Xは対陰イオンを表す。)
An ionic liquid for modifying a target compound on the surface of a substrate,
An organic phosphorus type or quaternary amine type ionic liquid containing a structural unit represented by the following general formula (I).

(In General Formula (I), M is a P element or N element. In General Formula (I), R 1 to R 4 are each independently an alkyl group having 1 to 30 carbon atoms or 2 to 30 carbon atoms. Alkenyl group, C2-C30 alkynyl group, C1-C30 alkoxyalkyl group, C1-C30 aminoalkyl group, C1-C30 perfluoroalkyl group, C6-C30 An aryl group of 7 to 30 carbon atoms, an alkyl group, an alkenyl group, an aryl group or an aralkyl group having a carbonyl group, or R n and R n + 1 (n is an integer of 1 to 3) ) May be bonded to each other to have a cyclic structure, provided that at least one of R 1 to R 4 in the general formula (I) is at least one binding functional group (—SH group, —SS—). group, -S- group, -COOH group, -NH 2 group Silanol -. Group, a phosphate group, an alkenyl group, an alkynyl group, or in the general formula (I) having an azide group),, X - represents a counter anion).
請求項1に記載のイオン液体が基材表面に修飾されたイオン液体修飾基材。
An ionic liquid-modified base material in which the surface of the base material is modified with the ionic liquid according to claim 1.
JP2011028243A 2011-02-14 2011-02-14 Ionic liquid and ionic liquid-decorated base material Withdrawn JP2012167045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028243A JP2012167045A (en) 2011-02-14 2011-02-14 Ionic liquid and ionic liquid-decorated base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028243A JP2012167045A (en) 2011-02-14 2011-02-14 Ionic liquid and ionic liquid-decorated base material

Publications (1)

Publication Number Publication Date
JP2012167045A true JP2012167045A (en) 2012-09-06

Family

ID=46971553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028243A Withdrawn JP2012167045A (en) 2011-02-14 2011-02-14 Ionic liquid and ionic liquid-decorated base material

Country Status (1)

Country Link
JP (1) JP2012167045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179514A (en) * 2016-03-31 2017-10-05 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device using the same
US10100418B2 (en) 2014-03-14 2018-10-16 Kabushiki Kaisha Toshiba Oxidation electrode and photoelectrochemical device
JP2020015688A (en) * 2018-07-25 2020-01-30 国立大学法人千葉大学 Phosphonium cation containing sulfur and phosphonium ionic liquid containing sulfur

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100418B2 (en) 2014-03-14 2018-10-16 Kabushiki Kaisha Toshiba Oxidation electrode and photoelectrochemical device
JP2017179514A (en) * 2016-03-31 2017-10-05 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device using the same
WO2017170199A1 (en) * 2016-03-31 2017-10-05 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device using same
JP2020015688A (en) * 2018-07-25 2020-01-30 国立大学法人千葉大学 Phosphonium cation containing sulfur and phosphonium ionic liquid containing sulfur

Similar Documents

Publication Publication Date Title
Zhang et al. Structural insight into guest binding sites in a porous homochiral metal–organic material
Uemura et al. Hydrogen-bonded porous coordination polymers: Structural transformation, sorption properties, and particle size from kinetic studies
Petrov et al. A Stable Planar-Chiral N-Heterocyclic Carbene with a 1, 1′-Ferrocenediyl Backbone
Alberto et al. Silver (I) complexes of the derivatized crown thioether ligands 3, 6, 9, 12, 15, 18-hexathianonadecanol and 3, 6, 9, 13, 16, 19-hexathiaicosanol. Determination of stability constants and the crystal structures of [Ag (19-aneS6-OH)][CF3SO3] and [Ag (20-aneS6-OH)][BF4]
Kobayashi et al. Synthesis of Metal− Hydrazone Complexes and Vapochromic Behavior of Their Hydrogen-Bonded Proton-Transfer Assemblies
Das et al. Synthesis and structures of two cobalt (III) complexes with N4 donor ligands: Isolation of a unique bis-hemiaminal ether ligand as the metal complex
Nitschke et al. Iron Salts with the Tetracyanidoborate Anion:[FeIII (H2O) 6][B (CN) 4] 3, Coordination Polymer [FeII (H2O) 2 {κ2N [B (CN) 4]} 2], and [FeII (DMF) 6][B (CN) 4] 2
US20170275321A1 (en) First-Row Transition Metal Hydrogenation and Hydrosilylation Catalysts
Okada et al. Electrochemical sensing and catalysis using Cu 3 (BTC) 2 coating electrodes from Cu (OH) 2 films
JP5729022B2 (en) Ammonia production method
Luo et al. Water-soluble lanthanide–titanium–oxo cluster, a precursor for biocompatible nanomaterial
Appel et al. Concentration of carbon dioxide by electrochemically modulated complexation with a binuclear copper complex
Zhao et al. Anticancer potency of platinum (II) complexes containing both chloride anion and chelated carboxylate as leaving groups
Dar et al. Dimensionality alteration and intra-versus inter-SBU void encapsulation in zinc phosphate frameworks
JPWO2008029804A1 (en) Perchlorate ion scavenger
Hurtubise et al. Multimetallic complexes and functionalized nanoparticles based on unsymmetrical dithiocarbamate ligands with allyl and propargyl functionality
JP2012167045A (en) Ionic liquid and ionic liquid-decorated base material
Kisko et al. Recognition of DNA base pair mismatches by a cyclometalated Rh (III) intercalator
Wong et al. Synthesis, characterization and structural studies of new heterometallic alkynyl complexes of platinum and Group 11 metals with chelating bis (diphenylphosphino) ferrocene ligand
Salimova et al. Design and synthesis of novel terpyridine-based ligands with one and two terminal aurophilic moieties and their Rh (III) and Ru (II) complexes for the adsorption on metal surfaces
Jin et al. Sonochemical effect on two new Ruthenium (II) complexes with ligand (E)-N-((6-bromopyridin-2-yl) methylene)-4-(methylthio) aniline precursors for synthesis of RuO2 nanoparticles
ES2712774T3 (en) Functionalised substrate and its applications
WO2017170199A1 (en) Carbon dioxide reduction electrode and carbon dioxide reduction device using same
Zopes et al. Hydrolytic Decomposition of Tetramethylammonium Bis (trifluoromethyl) aurate (I),[NMe4][Au (CF3) 2]: A Route for the Synthesis of Gold Nanoparticles in Aqueous Medium
US9829487B2 (en) Self-assembled monolayers and methods for using the same in biosensing applications

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513