JP2012166115A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst Download PDF

Info

Publication number
JP2012166115A
JP2012166115A JP2011026818A JP2011026818A JP2012166115A JP 2012166115 A JP2012166115 A JP 2012166115A JP 2011026818 A JP2011026818 A JP 2011026818A JP 2011026818 A JP2011026818 A JP 2011026818A JP 2012166115 A JP2012166115 A JP 2012166115A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
ceo
zro
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011026818A
Other languages
Japanese (ja)
Other versions
JP5673173B2 (en
Inventor
Satoshi Nagao
諭 長尾
Yusaku Inatomi
雄作 稲冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011026818A priority Critical patent/JP5673173B2/en
Publication of JP2012166115A publication Critical patent/JP2012166115A/en
Application granted granted Critical
Publication of JP5673173B2 publication Critical patent/JP5673173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purifying catalyst, wherein both performances of heat resistance and catalytic activities are improved.SOLUTION: The exhaust gas purifying catalyst contains CoO, and CeO-ZrOcomposite oxide shown by general formula xCeO-(1-x) ZrO, where 0.3<x<1.0.

Description

本発明は、排ガス浄化用触媒、より詳しくは触媒成分として酸化コバルト(II,III)(Co34)を含む排ガス浄化用触媒に関する。 The present invention relates to an exhaust gas purification catalyst, and more particularly, to an exhaust gas purification catalyst containing cobalt oxide (II, III) (Co 3 O 4 ) as a catalyst component.

従来、自動車の排ガス浄化用触媒としては、一酸化炭素(CO)及び炭化水素(HC)の酸化と窒素酸化物(NOx)の還元とを同時に行う三元触媒が用いられている。このような触媒としては、アルミナ(Al23)等の多孔質酸化物担体に、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の白金族元素を担持させたものが広く知られている。 Conventionally, a three-way catalyst that simultaneously oxidizes carbon monoxide (CO) and hydrocarbons (HC) and reduces nitrogen oxides (NOx) is used as an exhaust gas purification catalyst for automobiles. As such a catalyst, a catalyst in which a platinum group element such as platinum (Pt), rhodium (Rh) or palladium (Pd) is supported on a porous oxide carrier such as alumina (Al 2 O 3 ) is widely known. It has been.

しかしながら、これらの白金族元素は、自動車の排ガス規制の強化とともに使用量が増加しており、それゆえ資源の枯渇が懸念されている。このため、白金族元素の使用量を減らすとともに、将来的には、白金族元素の役割を他の金属等で代替することが必要とされている。   However, the amount of these platinum group elements is increasing with the tightening of exhaust gas regulations for automobiles, and therefore there is a concern about the depletion of resources. For this reason, while reducing the usage-amount of a platinum group element, it is required to substitute the role of a platinum group element with another metal etc. in the future.

そこで、白金族元素の使用量を減らすための又はそれに代わる触媒成分について多くの研究が行われている。このような触媒成分の1つに酸化コバルト(II,III)(Co34)があり、これを用いた排ガス浄化用触媒について幾つかの提案がなされている。 Thus, much research has been conducted on catalyst components for reducing or replacing the amount of platinum group elements used. One such catalyst component is cobalt oxide (II, III) (Co 3 O 4 ), and several proposals have been made on exhaust gas purification catalysts using the same.

特許文献1では、平均粒子径が1nm〜2μmであり、且つ、酸素の電子の結合エネルギーが531.3eVより低エネルギー側にシフトしている遷移金属酸化物から成る触媒粉末を含有し、上記遷移金属酸化物の表面に担持され、又は上記遷移金属酸化物と固溶体を形成している酸素放出材料をさらに含有することを特徴とする浄化触媒が記載され、実施例において、上記の遷移金属酸化物として酸化コバルト(II,III)(Co34)、そして上記の酸素放出材料として酸化セリウム(CeO2)を使用した浄化触媒が具体的に開示されている。また、特許文献1では、このような構成を有する浄化触媒によれば、遷移金属酸化物が活性点としてより効果的に機能することができると記載されている。 Patent Document 1 includes a catalyst powder made of a transition metal oxide having an average particle diameter of 1 nm to 2 μm and a binding energy of oxygen electrons shifted to a lower energy side than 531.3 eV. A purification catalyst characterized in that it further comprises an oxygen-releasing material supported on the surface of the metal oxide or forming a solid solution with the transition metal oxide is described. Specifically, a purification catalyst using cobalt oxide (II, III) (Co 3 O 4 ) as the above and cerium oxide (CeO 2 ) as the oxygen release material is specifically disclosed. Moreover, in patent document 1, according to the purification catalyst which has such a structure, it describes that a transition metal oxide can function more effectively as an active point.

特許文献2では、粒径が150μm未満の、アルミナ粉末と酸化ニッケル及び/又は酸化コバルト粉末とを、混合、成型した触媒であって、酸化ニッケル及び/又は酸化コバルトが1〜10重量%含有することを特徴とする排ガス中の窒素酸化物浄化用触媒が記載されている。また、特許文献2では、このような構成を有する排ガス中の窒素酸化物浄化用触媒によれば、酸素過剰雰囲気下の排ガス中に存在する窒素酸化物を高い転化率で窒素ガスに分解することができ、さらに一酸化二窒素の副生を完全に抑制することが可能であると記載されている。   In Patent Document 2, a catalyst obtained by mixing and molding alumina powder and nickel oxide and / or cobalt oxide powder having a particle size of less than 150 μm, and containing 1 to 10% by weight of nickel oxide and / or cobalt oxide. A catalyst for purifying nitrogen oxides in exhaust gas is described. Moreover, in patent document 2, according to the catalyst for purifying nitrogen oxides in the exhaust gas having such a configuration, nitrogen oxides present in the exhaust gas in an oxygen-excess atmosphere are decomposed into nitrogen gas at a high conversion rate. In addition, it is described that it is possible to completely suppress the by-product of dinitrogen monoxide.

特開2010−104973号公報JP 2010-104973 A 特開平7−080308号公報Japanese Patent Laid-Open No. 7-080308

自動車排ガス浄化用触媒の用途では、触媒の曝される温度が常温と約1000℃の間で繰り返し変動するため、このような使用条件下においても、触媒の熱劣化を抑制して高い触媒活性を維持することが極めて重要である。   In automotive exhaust gas purification catalysts, the temperature at which the catalyst is exposed repeatedly fluctuates between room temperature and about 1000 ° C. Therefore, even under such conditions of use, high catalyst activity can be achieved by suppressing thermal degradation of the catalyst. It is extremely important to maintain.

特許文献1及び2では、上記のとおり、触媒成分としてCo34等の酸化コバルトを含む触媒について検討がなされている。しかしながら、これらの特許文献では、触媒の熱劣化の抑制すなわち耐熱性の改善と、触媒活性の向上という2つの観点からは必ずしも十分な検討がなされていない。したがって、これらの特許文献に記載の触媒では、その触媒性能に関して依然として改善の余地があった。 In Patent Documents 1 and 2, as described above, a catalyst containing cobalt oxide such as Co 3 O 4 as a catalyst component is studied. However, in these patent documents, sufficient examination is not necessarily made from two viewpoints of suppression of thermal deterioration of the catalyst, that is, improvement of heat resistance and improvement of catalyst activity. Therefore, the catalysts described in these patent documents still have room for improvement with respect to the catalyst performance.

そこで、本発明は、新規な構成により、耐熱性と触媒活性の両方の性能が改善された排ガス浄化用触媒を提供することを目的とする。   Therefore, an object of the present invention is to provide an exhaust gas purifying catalyst in which both performances of heat resistance and catalytic activity are improved by a novel configuration.

上記課題を解決する本発明は下記にある。
(1)Co34と、一般式xCeO2・(1−x)ZrO2で表されるCeO2−ZrO2複合酸化物とを含み、式中、0.3<x<1.0であることを特徴とする、排ガス浄化用触媒。
(2)前記CeO2−ZrO2複合酸化物がCeO2−ZrO2固溶体であることを特徴とする、上記(1)に記載の排ガス浄化用触媒。
(3)0.4≦x<1.0であることを特徴とする、上記(1)又は(2)に記載の排ガス浄化用触媒。
(4)x=0.5であることを特徴とする、上記(3)に記載の排ガス浄化用触媒。
The present invention for solving the above problems is as follows.
(1) Co 3 O 4 and a CeO 2 —ZrO 2 composite oxide represented by the general formula xCeO 2. (1-x) ZrO 2 , wherein 0.3 <x <1.0 An exhaust gas purifying catalyst, characterized in that it exists.
(2) The exhaust gas-purifying catalyst according to (1), wherein the CeO 2 —ZrO 2 composite oxide is a CeO 2 —ZrO 2 solid solution.
(3) The exhaust gas purifying catalyst as described in (1) or (2) above, wherein 0.4 ≦ x <1.0.
(4) The exhaust gas-purifying catalyst as described in (3) above, wherein x = 0.5.

本発明によれば、触媒成分としての酸化コバルト(II,III)(Co34)を、セリウムとジルコニウムのモル比(Ce/Zr比)が3/7よりも大きいCeO2−ZrO2複合酸化物、特にはCeO2−ZrO2固溶体と組み合わせることにより、Co34粉末をAl23粉末と混合してなる従来の触媒に比べて、得られる排ガス浄化用触媒の耐熱性を顕著に改善するとともに、優れた触媒活性、特には優れたCO酸化活性を達成することが可能である。 According to the present invention, cobalt oxide (II, III) (Co 3 O 4 ) as a catalyst component is a CeO 2 —ZrO 2 composite in which the molar ratio of cerium to zirconium (Ce / Zr ratio) is greater than 3/7. Combining with oxides, especially CeO 2 —ZrO 2 solid solution, the heat resistance of the resulting exhaust gas purification catalyst is remarkable compared to conventional catalysts made by mixing Co 3 O 4 powder with Al 2 O 3 powder. In addition, it is possible to achieve excellent catalytic activity, particularly excellent CO oxidation activity.

CeO2−ZrO2複合酸化物中に含まれるCeの割合と触媒の耐熱性との関係を示すグラフである。It is a graph showing the relationship between the ratio and the catalyst heat resistance of Ce contained in the CeO 2 -ZrO 2 composite oxide.

本発明の排ガス浄化用触媒は、Co34と、一般式xCeO2・(1−x)ZrO2で表されるCeO2−ZrO2複合酸化物とを含み、式中、0.3<x<1.0であることを特徴としている。 The exhaust gas purifying catalyst of the present invention includes Co 3 O 4 and a CeO 2 —ZrO 2 composite oxide represented by a general formula xCeO 2. (1-x) ZrO 2 , wherein 0.3 < It is characterized by x <1.0.

酸化コバルト(II,III)(Co34)は、酸化物イオンの立方最密充填単位格子の八面体間隙にCo3+イオンが配置され、さらに四面体間隙にCo2+イオンが配置されたスピネル型構造を有する金属酸化物であり、そのCo3+イオンの存在のために高い酸化活性を有することが一般的に知られている。 Cobalt oxide (II, III) (Co 3 O 4 ) has Co 3+ ions arranged in the octahedral gap of the cubic close-packed unit cell of oxide ions, and Co 2+ ions arranged in the tetrahedral gap. It is generally known that the metal oxide has a spinel structure and has high oxidation activity due to the presence of Co 3+ ions.

また、このCo34の粉末を、例えば、排ガス浄化用触媒等において一般的に用いられるアルミナ(Al23)粉末と混合することで、一酸化炭素(CO)や炭化水素(HC)に対して酸化活性を有する触媒を調製することが可能である。しかしながら、このような触媒はその耐熱性が必ずしも十分なものでない場合があり、それゆえ、このような触媒を、触媒の曝される温度が常温と約1000℃の間で繰り返し変動する自動車排ガス浄化用触媒の用途において適用することは困難である。 Further, by mixing this Co 3 O 4 powder with alumina (Al 2 O 3 ) powder generally used in, for example, an exhaust gas purification catalyst, carbon monoxide (CO) or hydrocarbon (HC) It is possible to prepare a catalyst having oxidation activity against However, such a catalyst may not always have sufficient heat resistance, and therefore, the exhaust gas purification of an automobile in which the temperature at which the catalyst is exposed repeatedly fluctuates between room temperature and about 1000 ° C. It is difficult to apply in the use of the catalyst.

何ら特定の理論に束縛されることを意図するものではないが、Co34粉末とAl23粉末を混合してなる触媒では、高温の使用時にCo34とAl23の固溶が進行してCoAl24からなる固溶体が形成すると考えられる。このような固溶体が形成することで、当初のCo34中に含まれていたCo3+イオンがCo2+イオンに変化し、結果として触媒の活性が低下するものと考えられる。 No Without intending to be bound by any particular theory, the catalyst comprising a mixture of Co 3 O 4 powder and Al 2 O 3 powder, at a high temperature of use of Co 3 O 4 and Al 2 O 3 It is considered that the solid solution progresses and a solid solution composed of CoAl 2 O 4 is formed. By forming such a solid solution, it is considered that Co 3+ ions contained in the original Co 3 O 4 are changed to Co 2+ ions, and as a result, the activity of the catalyst is lowered.

本発明者らは、Co34粉末を、特定のCe/Zr比(モル比)を有するCeO2−ZrO2複合酸化物の粉末と組み合わせることにより、Co34粉末をAl23粉末と混合してなる従来の触媒に比べて、得られる排ガス浄化用触媒の耐熱性を顕著に改善することができ、さらには優れた触媒活性、特には優れたCO酸化活性を達成することができることを見出した。 The present inventors have, Co 3 O 4 powder, combined with the powder of CeO 2 -ZrO 2 composite oxide having a specific Ce / Zr ratio (molar ratio), Co 3 O 4 powder Al 2 O 3 Compared with conventional catalysts mixed with powder, the heat resistance of the obtained exhaust gas purification catalyst can be remarkably improved, and further, excellent catalytic activity, particularly excellent CO oxidation activity can be achieved. I found out that I can do it.

本発明の排ガス浄化用触媒において用いられるCo34としては、商業的に入手可能な任意のCo34を使用することができる。あるいはまた、Co34は、当業者に公知の任意の方法によって調製してもよい。例えば、Co34は、金属コバルトや、その酸化物、炭酸塩、硝酸塩、水酸化物等を空気中800℃以下の温度において加熱焼成することにより調製することができる。 As Co 3 O 4 used in the exhaust gas purifying catalyst of the present invention, any commercially available Co 3 O 4 can be used. Alternatively, Co 3 O 4 may be prepared by any method known to those skilled in the art. For example, Co 3 O 4 can be prepared by heating and firing metallic cobalt, its oxide, carbonate, nitrate, hydroxide, etc. in air at a temperature of 800 ° C. or lower.

なお、上記のCo34は、排ガス中の有害成分、特にはCOやHCの酸化に対して触媒活性を示すのに十分な量において使用すればよく特に限定されないが、一般的には、Co34中のCo量が排ガス浄化用触媒全体の質量に対して0.1〜60wt%となるような量において使用することができる。 The above Co 3 O 4 is not particularly limited as long as it is used in an amount sufficient to exhibit catalytic activity against harmful components in exhaust gas, particularly CO and HC, but in general, It can be used in such an amount that the amount of Co in Co 3 O 4 is 0.1 to 60 wt% with respect to the total mass of the exhaust gas purifying catalyst.

本発明の排ガス浄化用触媒は、上記のCo34とともに、一般式xCeO2・(1−x)ZrO2で表され、式中、0.3<x<1.0であるCeO2−ZrO2複合酸化物を含む。 The exhaust gas purifying catalyst of the present invention, together with Co 3 O 4 above, is represented by the general formula xCeO 2 · (1-x) ZrO 2, wherein, 0.3 <x <1.0 in which CeO 2 - Includes ZrO 2 composite oxide.

上記式中のxが0.3以下の場合、すなわち、CeO2−ZrO2複合酸化物中に含まれるセリウムとジルコニウムのモル比(Ce/Zr比)が3/7以下の場合には、得られる排ガス浄化用触媒の耐熱性の向上に関して十分な効果を達成することができない。一方で、上記式中のxが1.0の場合、すなわち、ZrO2を全く含まないCeO2単独の金属酸化物をCo34とともに使用した場合には、得られる排ガス浄化用触媒の耐熱性は改善されるものの、触媒活性の観点においては必ずしも高い触媒性能を達成することができない。本発明によれば、上記式中のxが0.3<x<1.0、好ましくは0.4≦x<1.0、より好ましくはx=0.5であるCeO2−ZrO2複合酸化物をCo34とともに使用することで、耐熱性の向上だけでなく、触媒活性、特にはCO酸化活性の点においても顕著に改善された排ガス浄化用触媒を得ることができる。さらに言えば、特に低温での浄化性能の観点からも、CeO2には少なくともZrを添加することが好ましい。すなわち、CeO2に少なくともZrを添加したCeO2−ZrO2複合酸化物をCo34とともに使用することで、CeO2単独の金属酸化物を使用した場合に比べて低温での浄化性能を顕著に改善することができる。 When x in the above formula is 0.3 or less, that is, when the molar ratio of cerium and zirconium contained in the CeO 2 —ZrO 2 composite oxide (Ce / Zr ratio) is 3/7 or less, A sufficient effect cannot be achieved with respect to the improvement of the heat resistance of the exhaust gas purifying catalyst. On the other hand, when x in the above formula is 1.0, that is, when a metal oxide of CeO 2 alone containing no ZrO 2 is used together with Co 3 O 4 , the heat resistance of the obtained exhaust gas purification catalyst Although the performance is improved, high catalyst performance cannot always be achieved in terms of catalyst activity. According to the present invention, the CeO 2 —ZrO 2 composite wherein x in the above formula is 0.3 <x <1.0, preferably 0.4 ≦ x <1.0, more preferably x = 0.5. By using the oxide together with Co 3 O 4 , it is possible to obtain an exhaust gas purifying catalyst that is remarkably improved not only in heat resistance but also in catalytic activity, particularly in CO oxidation activity. Furthermore, it is preferable to add at least Zr to CeO 2 from the viewpoint of purification performance particularly at low temperatures. That is, by using a CeO 2 -ZrO 2 composite oxide prepared by adding at least Zr in CeO 2 with Co 3 O 4, remarkable purification performance at low temperatures as compared with the case of using CeO 2 alone metal oxides Can be improved.

先に述べたとおり、Co34は、Co3+イオンとCo2+イオンの両方を含む金属酸化物である。そして、このCo34を用いた触媒においてCOやHC等の酸化に対して十分な触媒活性を発揮するためには、Co3+イオンの存在が極めて重要であると考えられる。ところが、このCo34を高温下において使用すると、例えば、Co34中に含まれるCo3+イオンがCo2+イオン等へ還元され、あるいはCo34がCoO(酸化コバルト(II))等に変化するなどして、酸化活性を有するCo3+イオンの量が減少すると考えられる。その結果として、このような金属酸化物を触媒成分として含む触媒の活性が低下してしまう。 As described above, Co 3 O 4 is a metal oxide containing both Co 3+ ions and Co 2+ ions. The presence of Co 3+ ions is considered to be extremely important for the catalyst using Co 3 O 4 to exhibit sufficient catalytic activity for oxidation of CO, HC and the like. However, using this Co 3 O 4 at high temperatures, for example, Co 3 O 4 Co 3+ ions contained in is reduced to Co 2+ ions, or Co 3 O 4 is CoO (cobalt oxide (II )) Etc., the amount of Co 3+ ions having oxidation activity is considered to decrease. As a result, the activity of the catalyst containing such a metal oxide as a catalyst component is reduced.

何ら特定の理論に束縛されることを意図するものではないが、本発明の排ガス浄化用触媒においてその耐熱性が向上したのは、Co34をCeO2−ZrO2複合酸化物とともに使用することで、上記のようなCo3+イオンからCo2+イオンへの還元が抑制されたことによるものと考えられる。 Although not intended to be bound by any particular theory, the heat resistance of the exhaust gas purifying catalyst of the present invention is improved because Co 3 O 4 is used together with CeO 2 —ZrO 2 composite oxide. Thus, it is considered that the reduction from the Co 3+ ion to the Co 2+ ion as described above is suppressed.

より詳しく説明すると、CeO2−ZrO2複合酸化物は、三元触媒等の排ガス浄化能力を高めるために排ガス中の酸素濃度が高いときには酸素を吸蔵し、排ガス中の酸素濃度が低いときには酸素を放出する、いわゆる酸素吸放出能(OSC能)を有する材料として当技術分野において一般的に知られている。したがって、このような材料をCo34と組み合わせて使用することで、例えば、高温の使用条件下においても、CeO2−ZrO2複合酸化物から放出される酸素によってCo34中のCo3+イオンのCo2+イオンへの還元が抑制され、あるいはCo34からCoO等への変化を抑制することができると考えられる。 More specifically, the CeO 2 —ZrO 2 composite oxide occludes oxygen when the oxygen concentration in the exhaust gas is high in order to enhance the exhaust gas purification ability of a three-way catalyst or the like, and absorbs oxygen when the oxygen concentration in the exhaust gas is low. It is generally known in the art as a material to be released, so-called oxygen storage / release capability (OSC capability). Therefore, by using a combination of such materials with Co 3 O 4, for example, even at a high temperature use conditions, the oxygen released from the CeO 2 -ZrO 2 composite oxide in Co 3 O 4 Co It is considered that the reduction of 3+ ions to Co 2+ ions is suppressed, or the change from Co 3 O 4 to CoO or the like can be suppressed.

本発明におけるCeO2−ZrO2複合酸化物としては、商業的に入手可能な任意のCeO2−ZrO2複合酸化物又は当業者に公知の任意の方法によって調製したCeO2−ZrO2複合酸化物を使用することができ、好ましくはセリアとジルコニアが互いに固溶したCeO2−ZrO2固溶体を使用することができる。 The CeO 2 —ZrO 2 composite oxide in the present invention includes any commercially available CeO 2 —ZrO 2 composite oxide or a CeO 2 —ZrO 2 composite oxide prepared by any method known to those skilled in the art. Preferably, a CeO 2 —ZrO 2 solid solution in which ceria and zirconia are in solid solution with each other can be used.

本発明におけるCeO2−ZrO2複合酸化物として、このようなCeO2−ZrO2固溶体を使用することで、得られる排ガス浄化用触媒の耐熱性と触媒活性の両方をさらに顕著に改善することができると考えられる。より詳しく説明すると、CeO2を含む酸素吸放出材では、一般に以下の反応式によって酸素が吸放出される。
CeO2 ⇔ CeO1.5 + 1/4O2
By using such a CeO 2 —ZrO 2 solid solution as the CeO 2 —ZrO 2 composite oxide in the present invention, both the heat resistance and catalytic activity of the resulting exhaust gas purifying catalyst can be remarkably improved. It is considered possible. More specifically, in an oxygen storage / release material containing CeO 2 , oxygen is generally absorbed and released by the following reaction formula.
CeO 2 ⇔ CeO 1.5 + 1 / 4O 2

上記の反応式からも明らかなように、CeO2から酸素が放出されると、CeO2中のCe4+イオンがCe3+イオンへと還元される。しかしながら、このようなCe4+イオンからCe3+イオンへの還元によるイオン半径の増大は結晶学的には極めて大きな変化であり、それゆえCeO2の結晶格子の歪みを引き起こして格子を不安定化させる。したがって、このような反応はエネルギー的には非常に不利な反応である。しかしながら、CeO2−ZrO2固溶体では、CeO2結晶格子中のCeイオンの一部がよりイオン半径の小さなZrイオンに置き換わるため、Ceイオンのイオン半径の増大に伴う結晶格子の歪みを緩和することが可能となる。このため、CeO2−ZrO2固溶体は、CeO2に比べて非常に高いOSC能を有する。したがって、このような高いOSC能を有するCeO2−ZrO2固溶体をCo34と組み合わせて使用することにより、酸化活性を有するCo3+イオンのCo2+イオンへの還元をより顕著に抑制することができ、結果として、得られる排ガス浄化用触媒の耐熱性と触媒活性の両方をさらに改善することができると考えられる。 As is apparent from the above reaction formula, the oxygen is released from the CeO 2, Ce 4+ ions in CeO 2 is reduced to Ce 3+ ions. However, the increase of the ionic radius due to the reduction from Ce 4+ ions to Ce 3+ ions is a very large change in crystallography, and hence causes distortion of the crystal lattice of CeO 2 , which makes the lattice unstable. Make it. Therefore, such a reaction is very disadvantageous in terms of energy. However, in the CeO 2 —ZrO 2 solid solution, part of the Ce ions in the CeO 2 crystal lattice is replaced with Zr ions having a smaller ion radius, so that the distortion of the crystal lattice accompanying the increase in the ion radius of the Ce ions can be reduced. Is possible. For this reason, the CeO 2 —ZrO 2 solid solution has a much higher OSC ability than CeO 2 . Therefore, by using CeO 2 —ZrO 2 solid solution having such high OSC ability in combination with Co 3 O 4 , the reduction of Co 3+ ions having oxidation activity to Co 2+ ions can be more remarkably suppressed. As a result, it is considered that both the heat resistance and catalytic activity of the obtained exhaust gas purifying catalyst can be further improved.

なお、このようなCeO2−ZrO2固溶体は、当業者に公知の任意の方法によって調製することができる。例えば、当該固溶体を構成するセリウムとジルコニウムの各塩を、所望のCe/Zr比(モル比)に対応した量において溶解した混合溶液に、アンモニア水等のアルカリ性物質を加えて共沈させ、それを熱処理することによってセリアとジルコニアが互いに固溶したCeO2−ZrO2固溶体を調製することができる。 Such a CeO 2 —ZrO 2 solid solution can be prepared by any method known to those skilled in the art. For example, an alkaline substance such as aqueous ammonia is coprecipitated in a mixed solution obtained by dissolving each salt of cerium and zirconium constituting the solid solution in an amount corresponding to a desired Ce / Zr ratio (molar ratio). A CeO 2 —ZrO 2 solid solution in which ceria and zirconia are solid-solved with each other can be prepared by heat-treating.

また、本発明の1つの実施態様によれば、上記のCeO2−ZrO2複合酸化物は、触媒成分であるCo34と粉末状態において物理的に混合され、必要に応じてペレット等の形状に成形されて使用される。しかしながら、本発明の排ガス浄化用触媒は、このような実施態様に何ら限定されるものではなく、例えば、CeO2−ZrO2複合酸化物を触媒担体として使用し、それに触媒成分であるCo34を担持してもよいし、あるいはCeO2−ZrO2複合酸化物とCo34が固溶体を形成したものを本発明の排ガス浄化用触媒として使用してもよい。 Further, according to one embodiment of the present invention, the CeO 2 —ZrO 2 composite oxide is physically mixed in a powder state with the catalyst component Co 3 O 4 and, if necessary, a pellet or the like. Used after being molded into a shape. However, the exhaust gas purifying catalyst of the present invention is not limited to such an embodiment. For example, CeO 2 —ZrO 2 composite oxide is used as a catalyst carrier, and Co 3 O as a catalyst component is used. 4 may be supported, or a CeO 2 —ZrO 2 composite oxide and Co 3 O 4 forming a solid solution may be used as the exhaust gas purifying catalyst of the present invention.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples at all.

[実施例1]
[CeO2−ZrO2複合酸化物の調製]
まず、セリウム塩としての硝酸セリウムアンモニウム((NH42Ce(NO36)とジルコニウム塩としてのオキシ硝酸ジルコニウム二水和物(ZrO(NO32・2H2O)とをCe/Zr比(モル比)=1.0となるような量において所定量の蒸留水に溶解した。次いで、この溶液に中和剤としてアンモニア水を加えて共沈させ、得られた共沈物を120℃で8時間乾燥し、500℃で2時間焼成してセリアとジルコニアが互いに固溶したCeO2−ZrO2複合酸化物(Ce/Zr比=1.0、比表面積:50〜60m2/g)の粉末を得た。
[Example 1]
[Preparation of CeO 2 —ZrO 2 Composite Oxide]
First, cerium ammonium nitrate ((NH 4 ) 2 Ce (NO 3 ) 6 ) as a cerium salt and zirconium oxynitrate dihydrate (ZrO (NO 3 ) 2 .2H 2 O) as a zirconium salt are used as Ce / It was dissolved in a predetermined amount of distilled water in such an amount that the Zr ratio (molar ratio) = 1.0. Next, aqueous ammonia as a neutralizing agent was added to this solution to coprecipitate, and the obtained coprecipitate was dried at 120 ° C. for 8 hours and calcined at 500 ° C. for 2 hours to dissolve CeO and zirconia in a solid solution. A powder of 2- ZrO 2 composite oxide (Ce / Zr ratio = 1.0, specific surface area: 50 to 60 m 2 / g) was obtained.

[触媒の調製]
アルドリッチ社製のCo34ナノパウダー(結晶子径:24nm)と上で調製したCeO2−ZrO2複合酸化物の粉末を、Co34ナノパウダー中のCoが触媒全体の質量に対して5.0wt%(Co34としては6.8wt%)となるような量において乳鉢内で物理的に混合し、Co34とCeO2−ZrO2複合酸化物の混合粉末からなる排ガス浄化用触媒を得た。
[Preparation of catalyst]
The Co 3 O 4 nanopowder (crystallite diameter: 24 nm) manufactured by Aldrich and the CeO 2 —ZrO 2 composite oxide powder prepared above were compared with the mass of Co in the Co 3 O 4 nanopowder with respect to the total mass of the catalyst. Thus, it is physically mixed in the mortar in an amount of 5.0 wt% (Co 3 O 4 is 6.8 wt%), and consists of a mixed powder of Co 3 O 4 and CeO 2 —ZrO 2 composite oxide. An exhaust gas purification catalyst was obtained.

[比較例1]
CeO2−ZrO2複合酸化物の代わりにCeO2を用いたこと以外は実施例1と同様にして、Co34とCeO2の混合粉末からなる排ガス浄化用触媒を得た。
[Comparative Example 1]
Exhaust gas purification catalyst comprising a mixed powder of Co 3 O 4 and CeO 2 was obtained in the same manner as in Example 1 except that CeO 2 was used instead of CeO 2 —ZrO 2 composite oxide.

[比較例2]
CeO2−ZrO2複合酸化物の代わりにAl23を用いたこと以外は実施例1と同様にして、Co34とAl23の混合粉末からなる排ガス浄化用触媒を得た。
[Comparative Example 2]
Exhaust gas purification catalyst comprising a mixed powder of Co 3 O 4 and Al 2 O 3 was obtained in the same manner as in Example 1 except that Al 2 O 3 was used instead of CeO 2 —ZrO 2 composite oxide. .

[触媒の評価]
実施例1並びに比較例1及び2の各排ガス浄化用触媒について、それらのCO酸化活性及びHC酸化活性を評価した。なお、上で調製した各排ガス浄化用触媒の粉末を196MPaの圧力でプレスしてペレット状に成形したものを評価用試料とした。次に、これらの各ペレット触媒2.0gについて、表1に示す各評価用モデルガスを10L/分の流量で触媒床に流しながら、当該触媒床の温度を100℃から20℃/分の昇温速度で昇温し、CO又はC36の浄化率が50%になる温度をそれぞれCO50%浄化温度及びHC50%浄化温度として測定した。その結果を表2に示す。
[Evaluation of catalyst]
Regarding the exhaust gas purifying catalysts of Example 1 and Comparative Examples 1 and 2, their CO oxidation activity and HC oxidation activity were evaluated. A sample for evaluation was prepared by pressing each exhaust gas-purifying catalyst powder prepared above at a pressure of 196 MPa into a pellet. Next, with respect to 2.0 g of each of the pellet catalysts, the temperature of the catalyst bed was raised from 100 ° C. to 20 ° C./min while flowing each model gas for evaluation shown in Table 1 at a flow rate of 10 L / min. The temperature was raised at a temperature rate, and the temperatures at which the CO or C 3 H 6 purification rate was 50% were measured as the CO 50% purification temperature and the HC 50% purification temperature, respectively. The results are shown in Table 2.

なお、実施例1並びに比較例1及び2における各排ガス浄化用触媒の耐熱性を調べるために、空気中700℃で5時間焼成した後の各排ガス浄化用触媒のCO50%浄化温度及びHC50%浄化温度についてもそれぞれ測定した。そして、このような熱処理を行わなかった場合のCO50%浄化温度及びHC50%浄化温度との温度差をそれぞれ算出することで、各排ガス浄化用触媒の耐熱性を評価した。これらの結果についても併せて表2に示している。   In order to investigate the heat resistance of each exhaust gas purifying catalyst in Example 1 and Comparative Examples 1 and 2, the CO 50% purification temperature and HC 50% purification of each exhaust gas purifying catalyst after calcination at 700 ° C. for 5 hours in air. Each temperature was also measured. And the heat resistance of each exhaust gas purification catalyst was evaluated by calculating the temperature difference between the CO 50% purification temperature and the HC 50% purification temperature when such heat treatment was not performed. These results are also shown in Table 2.

Figure 2012166115
Figure 2012166115

Figure 2012166115
Figure 2012166115

表2を参照すると、700℃の熱処理を行っていない初期の触媒活性について言えば、Co34とAl23の混合粉末からなる比較例2の排ガス浄化用触媒では、実施例1及び比較例1の各排ガス浄化用触媒に比べてCO及びHC50%浄化温度が低く、それゆえCO及びHCの酸化活性が高かった。しかしながら、700℃の熱処理を施すことにより、比較例2の排ガス浄化用触媒のCO及びHC50%浄化温度は大きく上昇し、すなわちCO及びHCの酸化活性が大きく低下したのに対し、実施例1及び比較例1の各排ガス浄化用触媒では、700℃熱処理後のCO及びHC酸化活性の低下が非常に小さく、それゆえ触媒の耐熱性が大きく向上した。 Referring to Table 2, regarding the initial catalytic activity not subjected to heat treatment at 700 ° C., in the exhaust gas purifying catalyst of Comparative Example 2 made of a mixed powder of Co 3 O 4 and Al 2 O 3 , Example 1 and Compared with the exhaust gas purifying catalysts of Comparative Example 1, the CO and HC 50% purification temperature was low, and therefore the oxidation activity of CO and HC was high. However, by performing the heat treatment at 700 ° C., the CO and HC 50% purification temperature of the exhaust gas purification catalyst of Comparative Example 2 greatly increased, that is, the oxidation activity of CO and HC decreased greatly, whereas Example 1 and In each exhaust gas purification catalyst of Comparative Example 1, the decrease in CO and HC oxidation activity after heat treatment at 700 ° C. was very small, and therefore the heat resistance of the catalyst was greatly improved.

一方で、Co34とCeO2の混合粉末からなる比較例1の排ガス浄化用触媒では、触媒の耐熱性は向上したものの、比較例2の排ガス浄化用触媒に比べてCO及びHC50%浄化温度が非常に高く、それゆえCO及びHCの酸化活性が低かった。これに対し、Co34とCeO2−ZrO2複合酸化物の混合粉末からなる実施例1の排ガス浄化用触媒では、触媒の耐熱性が向上しただけでなく、触媒活性の観点でも比較例2の排ガス浄化用触媒と同等か又はそれよりも高い酸化活性を示し、特に700℃の熱処理後において高いCO酸化活性を示した。なお、表2に示す実施例1と比較例1の結果からも明らかなように、CeO2単独の金属酸化物ではなく、CeO2−ZrO2複合酸化物をCo34とともに使用することで、低温での浄化性能が顕著に向上した。 On the other hand, in the exhaust gas purification catalyst of Comparative Example 1 made of a mixed powder of Co 3 O 4 and CeO 2 , although the heat resistance of the catalyst was improved, the CO and HC 50% purification was compared with the exhaust gas purification catalyst of Comparative Example 2. The temperature was very high and therefore the oxidation activity of CO and HC was low. In contrast, the exhaust gas purifying catalyst of Example 1 composed of a mixed powder of Co 3 O 4 and CeO 2 —ZrO 2 composite oxide not only improved the heat resistance of the catalyst but also was a comparative example from the viewpoint of catalytic activity. It exhibited oxidation activity equivalent to or higher than that of No. 2 exhaust gas purification catalyst, and particularly showed high CO oxidation activity after heat treatment at 700 ° C. As is clear from the results of Example 1 and Comparative Example 1 shown in Table 2, CeO 2 —ZrO 2 composite oxide is used together with Co 3 O 4 instead of CeO 2 alone. The purification performance at low temperature was significantly improved.

[CeO2−ZrO2複合酸化物中のCe量の影響]
次に、実施例1の排ガス浄化用触媒について、CeO2−ZrO2複合酸化物中に含まれるCeの割合を0〜100モル%まで変化させた場合の各排ガス浄化用触媒の耐熱性を調べた。なお、試験は、上で説明したのと同様の操作によって行い、すなわち、各排ガス浄化用触媒について700℃熱処理前後のCO50%浄化温度を測定し、それらの温度差を算出することで各排ガス浄化用触媒の耐熱性を評価した。その結果を図1に示す。
[Effect of Ce content in CeO 2 —ZrO 2 composite oxide]
Next, regarding the exhaust gas purification catalyst of Example 1, the heat resistance of each exhaust gas purification catalyst when the ratio of Ce contained in the CeO 2 —ZrO 2 composite oxide was changed from 0 to 100 mol% was examined. It was. The test is performed in the same manner as described above, that is, each exhaust gas purification catalyst is measured for CO50% purification temperature before and after 700 ° C. heat treatment, and the temperature difference between them is calculated to calculate each exhaust gas purification. The heat resistance of the catalyst was evaluated. The result is shown in FIG.

図1は、CeO2−ZrO2複合酸化物中に含まれるCeの割合と触媒の耐熱性との関係を示すグラフである。図1は、横軸にCeO2−ZrO2複合酸化物中に含まれるセリウムとジルコニウムの全モル量に対するセリウムの割合(モル%)を示し、縦軸に700℃熱処理前後におけるCO50%浄化温度の温度差(℃)を示している。図1の結果から明らかなように、CeO2−ZrO2複合酸化物中のセリウムの割合を30モル%よりも多くすることで、とりわけセリウムの割合を40モル%以上とすることで、得られる排ガス浄化用触媒の耐熱性が顕著に向上した。 FIG. 1 is a graph showing the relationship between the ratio of Ce contained in the CeO 2 —ZrO 2 composite oxide and the heat resistance of the catalyst. FIG. 1 shows the ratio (mol%) of cerium to the total molar amount of cerium and zirconium contained in the CeO 2 —ZrO 2 composite oxide on the horizontal axis, and the vertical axis of the CO 50% purification temperature before and after 700 ° C. heat treatment. The temperature difference (° C.) is shown. As is apparent from the results of FIG. 1, it can be obtained by increasing the cerium ratio in the CeO 2 —ZrO 2 composite oxide to more than 30 mol%, particularly by setting the cerium ratio to 40 mol% or more. The heat resistance of the exhaust gas purifying catalyst was significantly improved.

Claims (4)

Co34と、一般式xCeO2・(1−x)ZrO2で表されるCeO2−ZrO2複合酸化物とを含み、式中、0.3<x<1.0であることを特徴とする、排ガス浄化用触媒。 Co 3 O 4 and a CeO 2 —ZrO 2 composite oxide represented by the general formula xCeO 2. (1-x) ZrO 2 , wherein 0.3 <x <1.0 An exhaust gas purifying catalyst that is characterized. 前記CeO2−ZrO2複合酸化物がCeO2−ZrO2固溶体であることを特徴とする、請求項1に記載の排ガス浄化用触媒。 It characterized in that the CeO 2 -ZrO 2 composite oxide is CeO 2 -ZrO 2 solid solution, a catalyst for purification of exhaust gas according to claim 1. 0.4≦x<1.0であることを特徴とする、請求項1又は2に記載の排ガス浄化用触媒。   The exhaust gas-purifying catalyst according to claim 1, wherein 0.4 ≦ x <1.0. x=0.5であることを特徴とする、請求項3に記載の排ガス浄化用触媒。   The exhaust gas-purifying catalyst according to claim 3, wherein x = 0.5.
JP2011026818A 2011-02-10 2011-02-10 Exhaust gas purification catalyst Active JP5673173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026818A JP5673173B2 (en) 2011-02-10 2011-02-10 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026818A JP5673173B2 (en) 2011-02-10 2011-02-10 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2012166115A true JP2012166115A (en) 2012-09-06
JP5673173B2 JP5673173B2 (en) 2015-02-18

Family

ID=46970825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026818A Active JP5673173B2 (en) 2011-02-10 2011-02-10 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5673173B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157236A (en) * 2014-02-21 2015-09-03 マツダ株式会社 Catalyst material for purifying engine exhaust gas, and particulate filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242149A (en) * 1988-03-24 1989-09-27 Toyota Motor Corp Catalyst for purification of exhaust gas
JPH09253496A (en) * 1996-03-22 1997-09-30 Nissan Motor Co Ltd Catalyst for clarification of exhaust gas and method for clarification of exhaust gas
JPH11169712A (en) * 1997-12-17 1999-06-29 Johnson Massey Japan Kk Catalyst for purification of exhaust gas
JPH11262666A (en) * 1998-03-19 1999-09-28 Toyota Central Res & Dev Lab Inc Nitrogen oxides cleaning catalyst
JP2006320797A (en) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd Catalyst and its manufacturing method
JP2006326478A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Oxygen absorbing and releasing material for cleaning emission gas, and catalyst for cleaning emission gas
JP2010104973A (en) * 2007-12-14 2010-05-13 Nissan Motor Co Ltd Purifying catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242149A (en) * 1988-03-24 1989-09-27 Toyota Motor Corp Catalyst for purification of exhaust gas
JPH09253496A (en) * 1996-03-22 1997-09-30 Nissan Motor Co Ltd Catalyst for clarification of exhaust gas and method for clarification of exhaust gas
JPH11169712A (en) * 1997-12-17 1999-06-29 Johnson Massey Japan Kk Catalyst for purification of exhaust gas
JPH11262666A (en) * 1998-03-19 1999-09-28 Toyota Central Res & Dev Lab Inc Nitrogen oxides cleaning catalyst
JP2006320797A (en) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd Catalyst and its manufacturing method
JP2006326478A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Oxygen absorbing and releasing material for cleaning emission gas, and catalyst for cleaning emission gas
JP2010104973A (en) * 2007-12-14 2010-05-13 Nissan Motor Co Ltd Purifying catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014012451; LIOTTA, L.F. et al: 'Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite oxides for methane combustion: Inf' Applied Catalysis B: Environmental Vol.70, No.1-4, 20060621, p.314-322 *
JPN6014012452; LIOTTA, L.F. et al: 'Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion: Correlation between morph' Catal. Commun. Vol.6, No.5, 20050317, p.329-336 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157236A (en) * 2014-02-21 2015-09-03 マツダ株式会社 Catalyst material for purifying engine exhaust gas, and particulate filter

Also Published As

Publication number Publication date
JP5673173B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5720772B2 (en) Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
JP2001269578A (en) Exhaust gas cleaning catalyst
JP5900395B2 (en) Composite oxide particles and exhaust gas purification catalyst using the same
WO2014038294A1 (en) Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method for producing exhaust gas purification catalyst
JP2010099638A (en) Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst
RU2623227C2 (en) Ammonia oxidation catalyst for nitric acid production based on doped yttrium orthocobaltate
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JP6146436B2 (en) Exhaust gas purification catalyst
JPWO2009001902A1 (en) Catalyst carrier and exhaust gas purification catalyst
JP2014200714A (en) Exhaust gas purification catalyst
JP5673173B2 (en) Exhaust gas purification catalyst
JP5720558B2 (en) Exhaust gas purification catalyst
JP6181260B1 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
EP3984634A2 (en) HEAT-RESISTANT RUTHENIUM COMPOSITE AND USE THEREOF AS CATALYST FOR NOxSTORAGE AND REDUCTION
JP5585805B2 (en) PM oxidation catalyst and production method thereof
JP5190797B2 (en) Composite oxide catalyst, diesel particulate filter using the same, and method for producing composite oxide catalyst
JP5956377B2 (en) Method for producing hydrocarbon reforming catalyst
JP6889012B2 (en) Diesel oxidation catalyst for light oil combustion and exhaust gas purification device for diesel engine using this
JP2009028575A (en) Catalyst for cleaning exhaust gas
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2005104799A (en) Compound oxide and catalyst for cleaning exhaust gas
JP4265276B2 (en) Exhaust gas purification catalyst
KR101282690B1 (en) Perovskite-based Catalyst with Improved Thermal Stability
JP4853086B2 (en) Exhaust gas decomposition catalyst body
JP2010029772A (en) Compound oxide and exhaust gas cleaning catalyst containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151