JP2012164901A - Building material integrated type solar battery and back sheet of the solar battery - Google Patents

Building material integrated type solar battery and back sheet of the solar battery Download PDF

Info

Publication number
JP2012164901A
JP2012164901A JP2011025589A JP2011025589A JP2012164901A JP 2012164901 A JP2012164901 A JP 2012164901A JP 2011025589 A JP2011025589 A JP 2011025589A JP 2011025589 A JP2011025589 A JP 2011025589A JP 2012164901 A JP2012164901 A JP 2012164901A
Authority
JP
Japan
Prior art keywords
solar cell
back sheet
building material
cell module
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011025589A
Other languages
Japanese (ja)
Other versions
JP5731844B2 (en
Inventor
Taketo Hara
丈人 原
Kazuhiko Takahashi
和彦 高橋
Hirokazu Yano
矢野  宏和
Yugo Ota
祐吾 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2011025589A priority Critical patent/JP5731844B2/en
Publication of JP2012164901A publication Critical patent/JP2012164901A/en
Application granted granted Critical
Publication of JP5731844B2 publication Critical patent/JP5731844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem of a conventional building material integrated type solar battery in which a steel plate having the entire surface coated with a dark colored coat is used as a back sheet and thus a sunshine reflection rate and an infrared radiation rate of the back sheet are low, leading to the deterioration of the generation efficiency.SOLUTION: In a building material integrated type solar battery according to this invention, a double face painted steel plate, having a first end surface 3a on the solar battery module 2 side which is formed by a reflective coat 31 having light reflectivity and a second end surface 3b which is positioned on the reverse side of the first end surface 3a and is formed by a radioactive coat 32 having heat radiation property, is used as the back sheet 3.

Description

本発明は、建材一体型太陽電池及びそのバックシートに関し、特に、太陽電池モジュール側の第1端面が光反射性を有する反射性塗膜により構成され、第1端面の裏側に位置する第2端面が熱放射性を有する放射性塗膜により構成された両面塗装鋼板をバックシートとして用いることで、部品コストの増大を回避しつつ、発電効率を向上できるようにするための新規な改良に関するものである。   The present invention relates to a building material integrated solar cell and its back sheet, and in particular, the first end surface on the solar cell module side is formed of a reflective coating film having light reflectivity, and is located on the back side of the first end surface. The present invention relates to a novel improvement for improving power generation efficiency while avoiding an increase in component costs by using a double-sided coated steel sheet composed of a radioactive coating film having thermal radiation as a back sheet.

従来用いられていたこの種の建材一体型太陽電池及びそのバックシートとしては、例えば下記の非特許文献1等に示されている構成を挙げることができる。すなわち、従来の建材一体型太陽電池では、太陽電池モジュールの反受光面に屋根用鋼板により構成されたバックシートが固定されている。一般的に、このような建材一体型太陽電池1に用いられる屋根用鋼板としては、屋根の他の部分と色調を合わせるため、以下の表に示すような暗色系塗料(L*=35以下)により全面が塗装された鋼板が好んで使用されている。   Examples of this type of building material integrated solar cell and its back sheet that have been used in the past include the configurations shown in Non-Patent Document 1 below. That is, in the conventional building material-integrated solar cell, a back sheet made of a steel plate for roof is fixed to the anti-light-receiving surface of the solar cell module. Generally, as a steel sheet for roofs used in such a building material-integrated solar battery 1, a dark color paint (L * = 35 or less) as shown in the following table is used in order to match the color tone with other parts of the roof. A steel plate whose entire surface is coated is preferably used.

Figure 2012164901
Figure 2012164901

「太陽光発電フィールドテスト事業に関するガイドライン・基礎編 未来をになう太陽光発電」(発行日:2008年3月19日、発行:独立行政法人 新エネルギー・産業技術総合開発機構、第6頁)“Guidelines and Basics for Photovoltaic Field Testing Projects: Solar Power Generation for the Future” (Issued Date: March 19, 2008, Issued by the New Energy and Industrial Technology Development Organization, page 6)

上記のような従来の建材一体型太陽電池1では、暗色系塗料により全面が塗装された鋼板がバックシートとして使用されているので、バックシートの日照反射率(JIS K 5602)が10%以下と低い。このため、バックシートでの反射光を発電に利用できず、発電効率が低下している。
また、上記のような塗装が施された鋼板では赤外線放射率も0.6〜0.8程度と低いので、例えば夏季等の日射しが強い場合に、太陽光の輻射熱によるバックシートの温度上昇が放熱による温度低下を大きく上回る可能性が高い。このため、バックシートの温度上昇に伴い、太陽電池モジュールの温度も上昇し、発電効率が低下してしまう。太陽電池モジュール及びバックシートの冷却を考慮して、バックシートに放熱フィンを取付けることも考えられるが、部品コストの増大につながる。
In the conventional building material integrated solar cell 1 as described above, since the steel sheet coated with the dark paint is used as the back sheet, the solar reflectance (JIS K 5602) of the back sheet is 10% or less. Low. For this reason, the reflected light from the back sheet cannot be used for power generation, and power generation efficiency is reduced.
In addition, since the infrared emissivity is as low as about 0.6 to 0.8 in the steel sheet coated as described above, the temperature of the back sheet increases due to the radiant heat of sunlight, for example, in the case of strong solar radiation such as in summer. There is a high possibility that it will greatly exceed the temperature drop due to heat dissipation. For this reason, the temperature of a solar cell module also rises with the temperature rise of a back sheet, and power generation efficiency will fall. Considering the cooling of the solar cell module and the back sheet, it may be possible to attach a heat radiation fin to the back sheet, but this leads to an increase in component costs.

本発明は、上記のような課題を解決するためになされたものであり、その目的は、部品コストの増大を回避しつつ、発電効率を向上できる建材一体型太陽電池及びそのバックシートを提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a building material-integrated solar cell that can improve power generation efficiency while avoiding an increase in parts cost, and a back sheet thereof. That is.

本発明に係る建材一体型太陽電池のバックシートは、太陽電池モジュールの反受光面に固定される建材一体型太陽電池のバックシートであって、太陽電池モジュール側の第1端面が光反射性を有する反射性塗膜により構成され、第1端面の裏側に位置する第2端面が熱放射性を有する放射性塗膜により構成された両面塗装鋼板からなる。   The back sheet of the building material integrated solar cell according to the present invention is a back sheet of the building material integrated solar cell fixed to the anti-light-receiving surface of the solar cell module, and the first end surface on the solar cell module side has light reflectivity. It consists of a double-sided coated steel sheet in which the second end face located on the back side of the first end face is made of a radioactive paint film having thermal radiation.

また、本発明に係る建材一体型太陽電池は、太陽電池モジュールと、太陽電池モジュールの反受光面に固定されるバックシートとを備え、バックシートは、太陽電池モジュール側の第1端面が光反射性を有する反射性塗膜により構成され、第1端面の裏側に位置する第2端面が熱放射性を有する放射性塗膜により構成された両面塗装鋼板からなる。   Moreover, the building material integrated solar cell according to the present invention includes a solar cell module and a back sheet fixed to the non-light-receiving surface of the solar cell module, and the first end surface on the solar cell module side reflects the back sheet. It consists of a double-coated steel sheet in which a second end face located on the back side of the first end face is constituted by a radioactive paint film having thermal radiation.

本発明の建材一体型太陽電池及びそのバックシートによれば、太陽電池モジュール側の第1端面が光反射性を有する反射性塗膜により構成され、第1端面の裏側に位置する第2端面が熱放射性を有する放射性塗膜により構成された両面塗装鋼板をバックシートとして用いるので、バックシートでの反射光を発電に利用できるとともに、追加部品を使用せずにバックシート及び太陽電池モジュールの温度上昇を防止できる。これにより、部品コストの増大を回避しつつ、発電効率を向上できる。   According to the building material integrated solar cell of the present invention and the back sheet thereof, the first end surface on the solar cell module side is constituted by a reflective coating film having light reflectivity, and the second end surface located on the back side of the first end surface is Since the double-sided coated steel sheet composed of a thermal radiation coating is used as a back sheet, the reflected light from the back sheet can be used for power generation, and the temperature of the back sheet and solar cell module can be increased without using additional components. Can be prevented. As a result, power generation efficiency can be improved while avoiding an increase in component costs.

本発明の実施の形態1による建材一体型太陽電池の外観を示す図である。It is a figure which shows the external appearance of the building material integrated solar cell by Embodiment 1 of this invention. 図1の建材一体型太陽電池の変形例の外観を示す図である。It is a figure which shows the external appearance of the modification of the building material integrated solar cell of FIG. 図1及び図2の太陽電池モジュール及びバックシートを拡大して示す側面図である。It is a side view which expands and shows the solar cell module and back sheet | seat of FIG.1 and FIG.2. 図3のバックシート表面の日射反射率と太陽電池モジュールの表面温度との関係を示すグラフである。It is a graph which shows the relationship between the solar radiation reflectance of the back seat | sheet surface of FIG. 3, and the surface temperature of a solar cell module. 図3のバックシート裏面の赤外線放射率と太陽電池モジュールの表面温度との関係を示すグラフである。It is a graph which shows the relationship between the infrared emissivity of the back seat | sheet back surface of FIG. 3, and the surface temperature of a solar cell module.

以下、本発明を実施するための形態について、図面を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1による建材一体型太陽電池1の外観を示す図であり、図1の(a)は建材一体型太陽電池1の上面を示し、図1の(b)は建材一体型太陽電池1の側面を示している。図1に示すように、建材一体型太陽電池1は、太陽電池モジュール2と、バックシート3とを有している。太陽電池モジュール2は、受光面2aからの光を受けて発電を行う。なお、図面では太陽電池モジュール2に網掛けを施しているが、実際の色調を示している訳ではなく、理解を容易にするためのものである。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a view showing the appearance of a building material-integrated solar cell 1 according to Embodiment 1 of the present invention. FIG. 1 (a) shows the top surface of the building material-integrated solar cell 1, and FIG. Shows the side of the building material integrated solar cell 1. As shown in FIG. 1, the building material integrated solar cell 1 has a solar cell module 2 and a back sheet 3. The solar cell module 2 generates light by receiving light from the light receiving surface 2a. In the drawing, although the solar cell module 2 is shaded, it does not show the actual color tone, but is for easy understanding.

バックシート3は、太陽電池モジュール2の反受光面2bに固定された硬質の部材であり、全体として家屋の屋根を構成する建材となるものである。バックシート3の上下両端部には幅方向1aに沿って延在された係合部4が形成されており、この係合部4が他のバックシート3の係合部4と係合されることで、横葺屋根を形成するように複数の建材一体型太陽電池1が連結される。   The back sheet 3 is a hard member fixed to the anti-light-receiving surface 2b of the solar cell module 2, and serves as a building material constituting the roof of the house as a whole. Engaging portions 4 extending along the width direction 1 a are formed at both upper and lower end portions of the backsheet 3, and the engaging portions 4 are engaged with the engaging portions 4 of the other backsheet 3. Thus, the plurality of building material integrated solar cells 1 are connected so as to form a recumbent roof.

次に、図2は、図1の建材一体型太陽電池1の変形例の外観を示す図であり、図2の(a)は平面を示しており、図2の(b)は側面を示している。図1の建材一体型太陽電池1は横葺屋根を形成するものであるが、図2に示すように、バックシート3の係合部4を奥行方向1bに沿って延在させ、係合部4を他のバックシート3の係合部4とかしめにより係合することで縦葺屋根を形成することもできる。   Next, FIG. 2 is a figure which shows the external appearance of the modification of the building material integrated solar cell 1 of FIG. 1, (a) of FIG. 2 has shown the plane, (b) of FIG. 2 has shown the side surface. ing. The building material integrated solar cell 1 in FIG. 1 forms a recumbent roof, but as shown in FIG. 2, the engaging portion 4 of the back sheet 3 extends along the depth direction 1b, and the engaging portion A vertical roof can be formed by engaging 4 with the engaging portion 4 of another backsheet 3 by caulking.

次に、図3は、図1及び図2の太陽電池モジュール2及びバックシート3を拡大して示す側面図である。太陽電池モジュール2は、光が入射する側(前面)からカバー部材20、第1封止材21、太陽電池セル22、及び第2封止材23が順に積層されたものである。カバー部材20は、太陽電池モジュール2の受光面2aを構成する外装材であり、例えば光透過性及び耐候性に優れる樹脂製フィルム又はガラス板等により構成されている。第1及び第2封止材21,23は、結晶性シリコン等からなる太陽電池セル22を埋め込んで安定化させるためのものであり、熱流動性及び熱接着性に優れた熱可塑性樹脂を主成分とする樹脂塑性物により構成されている。これらカバー部材20、第1封止材21、太陽電池セル22、及び第2封止材23は、例えば真空ラミネート法等により一体化されている。カバー部材20の厚みは1.1mm程度であり、第1及び第2封止材21,23の厚みは0.9mm程度である。   Next, FIG. 3 is an enlarged side view showing the solar cell module 2 and the back sheet 3 of FIGS. 1 and 2. In the solar cell module 2, the cover member 20, the first sealing material 21, the solar battery cell 22, and the second sealing material 23 are sequentially laminated from the light incident side (front surface). The cover member 20 is an exterior material that constitutes the light receiving surface 2a of the solar cell module 2, and is made of, for example, a resin film or a glass plate that is excellent in light transmittance and weather resistance. The first and second sealing materials 21 and 23 are for embedding and stabilizing the solar cells 22 made of crystalline silicon or the like, and are mainly made of a thermoplastic resin excellent in thermal fluidity and thermal adhesiveness. It is comprised by the resin plastic material used as a component. These cover member 20, the 1st sealing material 21, the photovoltaic cell 22, and the 2nd sealing material 23 are integrated by the vacuum laminating method etc., for example. The cover member 20 has a thickness of about 1.1 mm, and the first and second sealing materials 21 and 23 have a thickness of about 0.9 mm.

バックシート3は、太陽電池モジュール2の反受光面2b、すなわち第2封止材23の後面に固定されている。バックシート3は、ステンレス鋼板30を基材とするものであり、表面及び裏面が異なる機能を有する塗膜により構成されている。すなわち、バックシート3は、太陽電池モジュール2側の第1端面3a(表面)が光反射性を有する反射性塗膜31により構成され、この第1端面3aの裏側に位置する第2端面3b(裏面)が熱放射性を有する放射性塗膜32により構成された両面塗装鋼板である。バックシート3の厚みは、0.27mm程度である。   The back sheet 3 is fixed to the anti-light-receiving surface 2 b of the solar cell module 2, that is, the rear surface of the second sealing material 23. The back sheet 3 is made of a stainless steel plate 30 as a base material, and is composed of a coating film having functions different on the front surface and the back surface. That is, the back sheet 3 is configured by a reflective coating 31 having a light-reflecting first end surface 3a (front surface) on the solar cell module 2, and a second end surface 3b (on the back side of the first end surface 3a). The back surface is a double-sided coated steel plate composed of a radioactive coating film 32 having thermal radiation. The thickness of the back sheet 3 is about 0.27 mm.

次に、バックシート3が両面塗装鋼板により構成されていることの作用について説明する。太陽電池モジュール2に入射する光は、カバー部材20及び第1封止材21を通過して太陽電池セル22に到達する一方で、太陽電池セル22間の隙間及び第2封止材23を通過してバックシート3の第1端面3aに到達する。このとき、第1端面3aが反射性塗膜31により構成されているので、第1端面3aに到達した光を第1端面3aで反射させることができ、この反射光を太陽電池セル22での発電に利用できる。一方で、バックシート3は入射光の輻射熱を吸収するが、熱放射性を有する放射性塗膜32により第2端面3bが構成されているので、輻射熱は太陽電池モジュール2とは逆側の第2端面3bから放熱される。これにより、放熱フィン等の追加部品を使用せずに、バックシート3が吸収した輻射熱による太陽電池モジュール2の温度上昇を小さくでき、太陽電池モジュール2の温度上昇に伴う発電効率の低下を回避できる。   Next, the effect | action that the back sheet 3 is comprised with the double-sided coated steel plate is demonstrated. The light incident on the solar cell module 2 passes through the cover member 20 and the first sealing material 21 and reaches the solar cell 22, while passing through the gap between the solar cells 22 and the second sealing material 23. As a result, the first end surface 3a of the backsheet 3 is reached. At this time, since the first end face 3a is constituted by the reflective coating 31, the light that has reached the first end face 3a can be reflected by the first end face 3a, and this reflected light is reflected by the solar battery cell 22. Can be used for power generation. On the other hand, the back sheet 3 absorbs the radiant heat of the incident light. However, since the second end surface 3b is constituted by the radiation coating film 32 having thermal radiation, the radiant heat is the second end surface opposite to the solar cell module 2. Heat is radiated from 3b. Thereby, without using additional parts, such as a radiation fin, the temperature rise of the solar cell module 2 by the radiant heat which the back seat | sheet 3 absorbed can be made small, and the fall of the power generation efficiency accompanying the temperature rise of the solar cell module 2 can be avoided. .

次に、反射性塗膜31についてより詳細に説明する。本出願人は、250mm×300mmの大きさの太陽電池モジュールに対して6個の100Wのハロゲンランプを光源として用いて、バックシート表面の日射反射率(JIS K 5602)と太陽電池モジュール表面の温度の関係を調べた。   Next, the reflective coating film 31 will be described in more detail. The present applicant uses six 100 W halogen lamps as a light source for a solar cell module having a size of 250 mm × 300 mm, and uses the solar reflectance (JIS K 5602) of the backsheet surface and the temperature of the solar cell module surface. I investigated the relationship.

図4は、図3のバックシート表面の日射反射率と太陽電池モジュールの表面温度との関係を示すグラフである。図に示すように、バックシート表面の日射反射率を高くするにつれて、太陽電池モジュールの表面温度が低くなることが分った。具体的に説明すると、日射反射率が5%のときは表面温度が39℃であったが、日射反射率を25%以上にすると表面温度を約34℃以下に抑えることができた。   FIG. 4 is a graph showing the relationship between the solar reflectance on the surface of the back sheet of FIG. 3 and the surface temperature of the solar cell module. As shown in the figure, it was found that the surface temperature of the solar cell module was lowered as the solar reflectance on the surface of the back sheet was increased. Specifically, the surface temperature was 39 ° C. when the solar reflectance was 5%, but the surface temperature could be suppressed to about 34 ° C. or lower when the solar reflectance was 25% or higher.

ここで、結晶系シリコン太陽電池の発電効率は、温度による影響が大きく、温度が1℃上昇すると発電効率が0.4〜0.5%低下するといわれている。すなわち、日射反射率を25%以上とすると、日射反射率が5%である場合に比べて表面温度を約5℃以上低くすることができるので、発電効率を2〜2.5%以上改善できることになる。この改善率は、結晶系シリコン太陽電池の発電効率の1割強以上に相当するため、十分なものである。従って、反射性塗膜31としては、25%以上の日照反射率を有する塗膜を用いることが好ましい。   Here, the power generation efficiency of the crystalline silicon solar cell is greatly influenced by temperature, and it is said that the power generation efficiency decreases by 0.4 to 0.5% when the temperature rises by 1 ° C. That is, when the solar reflectance is 25% or more, the surface temperature can be lowered by about 5 ° C. or more compared to the case where the solar reflectance is 5%, so that the power generation efficiency can be improved by 2 to 2.5% or more. become. This improvement rate is sufficient because it corresponds to more than 10% of the power generation efficiency of the crystalline silicon solar cell. Therefore, as the reflective coating 31, it is preferable to use a coating having a solar reflectance of 25% or more.

また、日射反射率を80%以上にすると、表面温度を約30℃以下に抑えることができた。すなわち、日射反射率を80%以上とすると、日射反射率が5%である場合に比べて表面温度を約10℃以上低くすることができるので、発電効率を4〜5%以上改善できることになる。この改善率は、結晶系シリコン太陽電池の発電効率の2割強以上に相当するため、かなり有用なものである。従って、反射性塗膜31として、80%以上の日照反射率を有する塗膜を用いることがさらに好ましい。   Further, when the solar reflectance was 80% or more, the surface temperature could be suppressed to about 30 ° C. or less. That is, when the solar reflectance is 80% or more, the surface temperature can be lowered by about 10 ° C. or more as compared with the case where the solar reflectance is 5%, so that the power generation efficiency can be improved by 4 to 5% or more. . Since this improvement rate corresponds to more than 20% of the power generation efficiency of the crystalline silicon solar cell, it is quite useful. Therefore, it is more preferable to use a coating film having a solar reflectance of 80% or more as the reflective coating film 31.

80%以上の日照反射率を有する塗膜としては、種々の塗膜が利用できるが、本出願人が特開2007−47601号公報、及び特開2001−243819号公報、及び特開2007−108242号公報にて開示する塗膜を用いることができる。すなわち、(1)(メタ)アクリル系重合体:2〜50質量部,(メタ)アクリル酸イソボルニル:30〜97質量%を含む(メタ)アクリル系単量体:98〜50質量部の(メタ)アクリル系混合物に熱ラジカル重合開始剤:0.1〜5質量部,架橋剤:0.1〜20質量部,分子量500以上の可塑剤:1〜20質量部,酸化チタン顔料:40〜120質量部が配合され、粘度:1〜100Pa・sに調整された熱重合型アクリル塗料から成膜され、JIS Z8722による色調測定での全反射率が94%以上、正反射光を除去した拡散反射率が91%以上である塗膜、及び(2)防錆顔料を含有するとともに、白色顔料のTiO粉末が添加された下塗り塗膜と、TiO粉末を含有するポリエステル系樹脂を主成分とし、塗膜比重Nが1.75<N<2.3、JIS Z 8722による色調測定でのL値を90超、60度鏡面光沢法による光沢を80超にした上塗り塗膜とからなる塗膜を用いることができる。このような塗膜を用いれば、より多くの反射光を太陽電池セル22での発電に利用でき、発電効率をより確実に向上させることができる。 As the coating film having a solar reflectance of 80% or more, various coating films can be used. However, the applicant of the present invention disclosed in JP 2007-47601 A, JP 2001-243819 A, and JP 2007-108242 A. It is possible to use the coating film disclosed in Japanese Patent Publication. That is, (1) (meth) acrylic polymer: 2-50 parts by mass, (meth) acrylic acid isobornyl: 30-97% by mass (meth) acrylic monomer: 98-50 parts by mass of (meth ) Thermal radical polymerization initiator in acrylic mixture: 0.1-5 parts by mass, cross-linking agent: 0.1-20 parts by mass, plasticizer with molecular weight of 500 or more: 1-20 parts by mass, titanium oxide pigment: 40-120 Diffusion reflection in which mass parts are blended and formed from a heat-polymerized acrylic paint whose viscosity is adjusted to 1 to 100 Pa · s, total reflectance in color measurement according to JIS Z8722 is 94% or more, and regular reflection light is removed. The main component is a coating film having a rate of 91% or more, and (2) an undercoating film to which a white pigment TiO 2 powder is added, and a polyester resin containing TiO 2 powder. The specific gravity N of the coating film is 1.75 <<2.3, the L value in hue measured by JIS Z 8722 90 than can be used a coating film comprising a topcoat coating film gloss by 60 ° specular gloss method 80 more than. If such a coating film is used, more reflected light can be utilized for the electric power generation in the photovoltaic cell 22, and electric power generation efficiency can be improved more reliably.

25%以上かつ80%未満の日照反射率を有する塗膜としては、本出願人が特開2002−331611号公報にて開示する塗膜、すなわち、V、Sr、Yのうちの一種類以上とMnを含む複合金属酸化物の粉末を遮熱性顔料として含有する塗膜を挙げることができる。このような塗膜を用いれば、バックシート3の第1端面3aを例えば黒色、濃茶色、及び濃青色等の濃色とすることができ、屋根の他の部分と色調を容易に合わせることができる。   As a coating film having a solar reflectance of 25% or more and less than 80%, a coating film disclosed by the present applicant in JP-A-2002-331611, that is, one or more kinds of V, Sr, and Y The coating film which contains the powder of the composite metal oxide containing Mn as a heat-shielding pigment can be mentioned. If such a coating film is used, the 1st end surface 3a of the back sheet 3 can be made into dark colors, such as black, dark brown, and dark blue, for example, and it can match | combine easily with the other part of a roof. it can.

次に、放射性塗膜32についてより詳細に説明する。本出願人は、250mm×300mmの大きさの太陽電池モジュールに対して6個の100Wのハロゲンランプを光源として用いて、バックシート裏面の赤外線放射率と太陽電池モジュールの表面温度との関係を調べた。   Next, the radioactive coating film 32 will be described in more detail. The present applicant investigated the relationship between the infrared emissivity on the back surface of the back sheet and the surface temperature of the solar cell module using six 100 W halogen lamps as light sources for the solar cell module having a size of 250 mm × 300 mm. It was.

図5は、図3のバックシート裏面の赤外線放射率と太陽電池モジュールの表面温度との関係を示すグラフである。図に示すように、バックシート裏面の赤外線放射率を高くするにつれて、太陽電池モジュールの表面温度が低くなることが分った。具体的に説明すると、赤外線放射率が0.05%のときは表面温度が48℃であったが、赤外線放射率を0.85%以上にすると表面温度を約43℃以下に抑えることができた。   FIG. 5 is a graph showing the relationship between the infrared emissivity on the back surface of the back sheet of FIG. 3 and the surface temperature of the solar cell module. As shown in the figure, it was found that the surface temperature of the solar cell module was lowered as the infrared emissivity on the back surface of the back sheet was increased. Specifically, the surface temperature was 48 ° C. when the infrared emissivity was 0.05%, but the surface temperature could be suppressed to about 43 ° C. or less when the infrared emissivity was 0.85% or more. It was.

上述したように、結晶系シリコン太陽電池の発電効率は、温度が1℃上昇するにつれて0.4〜0.5%低下するといわれている。すなわち、赤外線放射率を0.85%以上にすると、赤外線放射率が0.05%のときに比べて表面温度を約5℃以上低くすることができるので、発電効率を2〜2.5%以上改善できる。この改善率は、結晶系シリコン太陽電池の発電効率の1割強以上に相当するため、十分なものである。従って、放射性塗膜32としては、0.85以上の赤外線放射率を有する塗膜を用いることが好ましい。   As described above, the power generation efficiency of the crystalline silicon solar cell is said to decrease by 0.4 to 0.5% as the temperature increases by 1 ° C. That is, when the infrared emissivity is 0.85% or more, the surface temperature can be lowered by about 5 ° C. or more compared to when the infrared emissivity is 0.05%, so that the power generation efficiency is 2 to 2.5%. This can be improved. This improvement rate is sufficient because it corresponds to more than 10% of the power generation efficiency of the crystalline silicon solar cell. Therefore, as the radioactive coating film 32, it is preferable to use a coating film having an infrared emissivity of 0.85 or more.

0.85以上の赤外線放射率を有する放射性塗膜32としては、種々の塗膜が利用できるが、本出願人が特開2004−276483号公報にて開示する塗膜、すなわち、表面張力、硬化速度等が異なる2種以上の樹脂を混合した縮み塗料からなり、適切な条件下の塗布・焼付けによって所定の表面粗さをもつ樹脂塗膜に成膜された塗膜を用いることができる。塗料樹脂系に特段の制約が加わるものではないが、ポリエステル樹脂,アクリル樹脂等が使用される。焼付け条件は、180〜250℃,30〜120秒の範囲で選定される。縮み塗料の塗布量は、赤外線放射率を0.85以上にするため膜厚12μm以上の樹脂塗膜が形成されるように決定される。薄すぎる樹脂塗膜では、基材・金属板表面での反射による影響を受けて赤外線放射率が低くなりやすい。   As the radioactive coating film 32 having an infrared emissivity of 0.85 or more, various coating films can be used, but the coating film disclosed by the present applicant in Japanese Patent Application Laid-Open No. 2004-276383, that is, surface tension, curing. It is possible to use a paint film made of a shrink paint obtained by mixing two or more kinds of resins having different speeds and the like and formed into a resin paint film having a predetermined surface roughness by application and baking under appropriate conditions. Although there are no particular restrictions on the paint resin system, polyester resin, acrylic resin or the like is used. The baking conditions are selected in the range of 180 to 250 ° C. and 30 to 120 seconds. The application amount of the shrink paint is determined so that a resin coating film having a film thickness of 12 μm or more is formed in order to make the infrared emissivity 0.85 or more. If the resin coating is too thin, the infrared emissivity tends to be low due to the influence of reflection on the surface of the substrate / metal plate.

このような建材一体型太陽電池1及びそのバックシート3では、太陽電池モジュール2側の第1端面3aが光反射性を有する反射性塗膜31により構成され、第1端面3aの裏側に位置する第2端面3bが熱放射性を有する放射性塗膜32により構成された両面塗装鋼板をバックシート3として用いるので、バックシート3での反射光を発電に利用できるとともに、追加部品を使用せずにバックシート3及び太陽電池モジュール2の温度上昇を防止できる。これにより、部品コストの増大を回避しつつ、発電効率を向上できる。   In such a building material integrated solar cell 1 and its back sheet 3, the first end surface 3 a on the solar cell module 2 side is configured by a reflective coating 31 having light reflectivity, and is located on the back side of the first end surface 3 a. Since the double-sided coated steel plate in which the second end surface 3b is composed of the radioactive coating film 32 having thermal radiation is used as the back sheet 3, the reflected light from the back sheet 3 can be used for power generation and the back without using additional parts. The temperature rise of the sheet 3 and the solar cell module 2 can be prevented. As a result, power generation efficiency can be improved while avoiding an increase in component costs.

また、反射性塗膜31が25%以上の日照反射率を有するので、バックシート3の第1端面3aでの反射光を多くでき、より確実に発電効率を向上できる。   Moreover, since the reflective coating film 31 has a solar reflectance of 25% or more, the reflected light on the first end surface 3a of the back sheet 3 can be increased, and the power generation efficiency can be improved more reliably.

さらに、放射性塗膜32が0.85以上の赤外線放射率を有するので、バックシート3の第2端面3bからの放熱を多くでき、バックシート3及び太陽電池モジュール2の温度上昇を回避できる。これにより、太陽電池モジュール2の温度上昇に伴う発電効率の低下をより確実に回避でき、発電効率を向上できる。   Furthermore, since the radioactive coating film 32 has an infrared emissivity of 0.85 or more, heat radiation from the second end surface 3b of the back sheet 3 can be increased, and a temperature increase of the back sheet 3 and the solar cell module 2 can be avoided. Thereby, the fall of the power generation efficiency accompanying the temperature rise of the solar cell module 2 can be avoided more reliably, and the power generation efficiency can be improved.

1 建材一体型太陽電池
2 太陽電池モジュール
2b 反受光面
3 バックシート
3a 第1端面
3b 第2端面
31 反射性塗膜
32 放射性塗膜
DESCRIPTION OF SYMBOLS 1 Building material integrated solar cell 2 Solar cell module 2b Anti-light-receiving surface 3 Back sheet 3a 1st end surface 3b 2nd end surface 31 Reflective coating film 32 Radiant coating film

Claims (6)

太陽電池モジュール(2)の反受光面(2b)に固定される建材一体型太陽電池のバックシートであって、前記太陽電池モジュール(2)側の第1端面(3a)が光反射性を有する反射性塗膜(31)により構成され、前記第1端面(3a)の裏側に位置する第2端面(3b)が熱放射性を有する放射性塗膜(32)により構成された両面塗装鋼板からなることを特徴とする建材一体型太陽電池のバックシート。   A back sheet for a building material-integrated solar cell fixed to the anti-light-receiving surface (2b) of the solar cell module (2), wherein the first end surface (3a) on the solar cell module (2) side has light reflectivity. It consists of a double-coated steel sheet composed of a reflective coating (31) and a second end surface (3b) located on the back side of the first end surface (3a) composed of a radioactive coating (32) having thermal radiation. A backsheet for a building material-integrated solar cell characterized by 前記反射性塗膜(31)は、25%以上の日照反射率を有することを特徴とする請求項1記載の建材一体型太陽電池のバックシート。   The said reflective coating film (31) has a solar reflectance of 25% or more, The backsheet of the building material integrated solar cell of Claim 1 characterized by the above-mentioned. 前記放射性塗膜(32)は、0.85以上の赤外線放射率を有することを特徴とする請求項1又は請求項2に記載の建材一体型太陽電池のバックシート。   The said radioactive coating film (32) has an infrared emissivity of 0.85 or more, The back sheet | seat of the building material integrated solar cell of Claim 1 or Claim 2 characterized by the above-mentioned. 太陽電池モジュール(2)と、
前記太陽電池モジュール(2)の反受光面(2b)に固定されるバックシート(3)と
を備え、
前記バックシート(3)は、前記太陽電池モジュール(2)側の第1端面(3a)が光反射性を有する反射性塗膜(31)により構成され、前記第1端面(3a)の裏側に位置する第2端面(3b)が熱放射性を有する放射性塗膜(32)により構成された両面塗装鋼板からなることを特徴とする建材一体型太陽電池。
A solar cell module (2);
A back sheet (3) fixed to the anti-light-receiving surface (2b) of the solar cell module (2),
In the back sheet (3), the first end surface (3a) on the solar cell module (2) side is constituted by a reflective coating (31) having light reflectivity, and on the back side of the first end surface (3a). The building material integrated solar cell, wherein the second end face (3b) is made of a double-sided coated steel plate composed of a radioactive coating film (32) having thermal radiation.
前記反射性塗膜(31)は、25%以上の日照反射率を有することを特徴とする請求項4記載の建材一体型太陽電池。   The building material-integrated solar cell according to claim 4, wherein the reflective coating film (31) has a solar reflectance of 25% or more. 前記放射性塗膜(32)は、0.85以上の赤外線放射率を有することを特徴とする請求項4又は請求項5に記載の建材一体型太陽電池。   The building material-integrated solar cell according to claim 4 or 5, wherein the radioactive coating film (32) has an infrared emissivity of 0.85 or more.
JP2011025589A 2011-02-09 2011-02-09 Building material integrated solar cell and back sheet thereof Active JP5731844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025589A JP5731844B2 (en) 2011-02-09 2011-02-09 Building material integrated solar cell and back sheet thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025589A JP5731844B2 (en) 2011-02-09 2011-02-09 Building material integrated solar cell and back sheet thereof

Publications (2)

Publication Number Publication Date
JP2012164901A true JP2012164901A (en) 2012-08-30
JP5731844B2 JP5731844B2 (en) 2015-06-10

Family

ID=46843978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025589A Active JP5731844B2 (en) 2011-02-09 2011-02-09 Building material integrated solar cell and back sheet thereof

Country Status (1)

Country Link
JP (1) JP5731844B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825540A (en) * 2014-02-24 2014-05-28 于勤勇 Spliced building component solar photovoltaic tile and battery panel thereof
CN105047745A (en) * 2015-06-19 2015-11-11 湖南南方搏云新材料有限责任公司 Reflecting coating used for photovoltaic assembly backboard heat dissipation, preparation technology and application thereof
JP2018199979A (en) * 2017-05-29 2018-12-20 株式会社カナメ Metallic vertically-laid roof material with solar cells, and roof structure
CN109244168A (en) * 2018-09-28 2019-01-18 浙江中聚材料有限公司 Heat dissipation type high photovoltaic backboard and its making apparatus
WO2022065922A1 (en) * 2020-09-28 2022-03-31 주식회사 포스코 Composite resin composition having excellent weather resistance and heat-radiation characteristics, composite-resin-coated steel sheet and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012967A (en) * 2005-07-01 2007-01-18 Ceramission Kk Heat radiation film for solar cell module and solar cell module provided with heat radiation film
WO2010116649A1 (en) * 2009-03-30 2010-10-14 リンテック株式会社 Protective sheet for solar cell module undersides, solar cell module provided therewith, and method for manufacturing said solar cell modules
JP2010272710A (en) * 2009-05-22 2010-12-02 Sanyo Electric Co Ltd Solar cell module
JP2012104637A (en) * 2010-11-10 2012-05-31 Kitagawa Ind Co Ltd Back sheet for solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012967A (en) * 2005-07-01 2007-01-18 Ceramission Kk Heat radiation film for solar cell module and solar cell module provided with heat radiation film
WO2010116649A1 (en) * 2009-03-30 2010-10-14 リンテック株式会社 Protective sheet for solar cell module undersides, solar cell module provided therewith, and method for manufacturing said solar cell modules
JP2010272710A (en) * 2009-05-22 2010-12-02 Sanyo Electric Co Ltd Solar cell module
JP2012104637A (en) * 2010-11-10 2012-05-31 Kitagawa Ind Co Ltd Back sheet for solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825540A (en) * 2014-02-24 2014-05-28 于勤勇 Spliced building component solar photovoltaic tile and battery panel thereof
CN105047745A (en) * 2015-06-19 2015-11-11 湖南南方搏云新材料有限责任公司 Reflecting coating used for photovoltaic assembly backboard heat dissipation, preparation technology and application thereof
JP2018199979A (en) * 2017-05-29 2018-12-20 株式会社カナメ Metallic vertically-laid roof material with solar cells, and roof structure
CN109244168A (en) * 2018-09-28 2019-01-18 浙江中聚材料有限公司 Heat dissipation type high photovoltaic backboard and its making apparatus
CN109244168B (en) * 2018-09-28 2024-04-19 浙江中聚材料有限公司 High heat dissipation type solar photovoltaic backboard and manufacturing equipment thereof
WO2022065922A1 (en) * 2020-09-28 2022-03-31 주식회사 포스코 Composite resin composition having excellent weather resistance and heat-radiation characteristics, composite-resin-coated steel sheet and method for manufacturing same
CN116249748A (en) * 2020-09-28 2023-06-09 浦项股份有限公司 Composite resin composition excellent in weather resistance and heat radiation characteristics, composite resin coated steel sheet, and method for producing same

Also Published As

Publication number Publication date
JP5731844B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5365140B2 (en) Solar battery backsheet
JP5731844B2 (en) Building material integrated solar cell and back sheet thereof
US20090211631A1 (en) Photoluminescent backing sheet for photovoltaic modules
KR101349734B1 (en) Back sheet for solar cell module and solar cell module comprising the same
US20100288333A1 (en) Heat dissipating protective sheets and encapsulant for photovoltaic modules
JP2018110241A (en) Back sheet for photovoltaic module using infrared reflection pigment
TW201219210A (en) Film used for solar cell module and module thereof
US10236404B2 (en) Back sheet and solar cell module including the same
KR101506990B1 (en) Solar cell module connection member
CN205050854U (en) Silver color solar cell back sheet and subassembly thereof
CN103646980B (en) A kind of notacoria with ultraviolet translation function
JP2012142346A5 (en) Solar cell module
CN103943708A (en) Light reflecting film and photovoltaic module
JP2023053327A (en) Rear face protective sheet for solar cell module
JP2020032545A (en) Protective sheet for solar cell module
Weber et al. Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors
JP2012104637A (en) Back sheet for solar cell
CN217881539U (en) Novel quantum dot photovoltaic backboard and double-sided photovoltaic assembly
TW201444105A (en) Solar module
CN203932085U (en) A kind of notacoria with ultraviolet translation function
JP2010074057A (en) Solar cell backside sheet and solar cell module using the same
JP2014216492A (en) Solar cell module
Zauner et al. Light guidance film for bifacial photovoltaic modules
JP2007273737A (en) Rear-surface protective sheet for solar cell, and solar cell module
CN203800064U (en) Light reflecting film and photovoltaic module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5731844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350