JP2012161836A - Tig welding method and apparatus therefor - Google Patents

Tig welding method and apparatus therefor Download PDF

Info

Publication number
JP2012161836A
JP2012161836A JP2011026217A JP2011026217A JP2012161836A JP 2012161836 A JP2012161836 A JP 2012161836A JP 2011026217 A JP2011026217 A JP 2011026217A JP 2011026217 A JP2011026217 A JP 2011026217A JP 2012161836 A JP2012161836 A JP 2012161836A
Authority
JP
Japan
Prior art keywords
welding
permanent magnet
electrode
arc
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011026217A
Other languages
Japanese (ja)
Other versions
JP5353921B2 (en
Inventor
Takeshi Hayakawa
毅 早河
Hideaki Shirai
秀彰 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011026217A priority Critical patent/JP5353921B2/en
Priority to US13/366,822 priority patent/US9061364B2/en
Priority to CN201210028365.6A priority patent/CN102632325B/en
Publication of JP2012161836A publication Critical patent/JP2012161836A/en
Application granted granted Critical
Publication of JP5353921B2 publication Critical patent/JP5353921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode

Abstract

PROBLEM TO BE SOLVED: To provide a TIG welding method and apparatus which enable a higher aspect ratio weld zone cross-sectional shape to be obtained and which further can prevent the heat radiated from a weld arc from causing permanent magnets to overheat.SOLUTION: In the TIG welding method which causes an arc discharge between a workpiece 5 and an electrode 4 of a welding torch 3 to cause the generation of a weld arc 8, uses permanent magnets 7 to generate a magnetic field around the weld arc 8, and causes an electromagnetic force which is generated by electromagnetic interaction between the magnetic field and a current to act on a weld pool 17 of the workpiece 5 in welding, the permanent magnets 7 are arranged around the electrode 4 of the welding torch 3, and moved to make the magnetic field fluctuate to thereby make the drive force of convection which is applied to the weld pool 17 fluctuate for welding.

Description

本発明は、TIG溶接方法およびその装置に関する。より詳細には、被接合物と溶接トーチの電極との間にアーク放電させて溶接アークを発生させ、永久磁石により溶接アークの周囲に磁界を発生させ、磁界と電流との電磁気的相互作用により生じる電磁力を、被接合物の溶融部に作用させ、接合するTIG溶接方法およびその装置に関する。   The present invention relates to a TIG welding method and an apparatus therefor. More specifically, an arc discharge is generated between the work piece and the electrode of the welding torch to generate a welding arc, and a magnetic field is generated around the welding arc by a permanent magnet, and an electromagnetic interaction between the magnetic field and the current is generated. The present invention relates to a TIG welding method and an apparatus for joining by causing the generated electromagnetic force to act on a melted portion of a workpiece.

被接合物と溶接トーチの電極との間にアーク放電させて溶接アークを発生させ、永久磁石により溶接アークの周囲に磁界を発生させ、該磁界と前記溶接アークに流れるアーク電流との電磁気的相互作用により生じる電磁力を、前記溶接アークに作用させ、被接合物を溶接アークにより溶融して接合するTIG溶接方法およびその装置として、特許文献1に記載の方法等がある。   An arc discharge is generated between the workpiece and the electrode of the welding torch to generate a welding arc, and a magnetic field is generated around the welding arc by a permanent magnet, and an electromagnetic interaction between the magnetic field and the arc current flowing through the welding arc is generated. As a TIG welding method and apparatus for causing an electromagnetic force generated by the action to act on the welding arc and melting and joining the objects to be joined by the welding arc, there is a method described in Patent Document 1.

特開2008−105056号公報JP 2008-105056 A

しかしながら、特許文献1の溶接方法を使用した場合には、より高いアスペクト比の溶接部断面形状を得ることができない。アスペクト比とは、溶け込み深さHと平均溶融幅Wとの比を言う。また、特許文献1の実施例2(図2)に示されたように、永久磁石を溶接トーチの電極の周囲に配列した場合、溶接アークの放射熱により永久磁石が過熱する場合があるという不具合もある。   However, when the welding method of Patent Document 1 is used, it is not possible to obtain a welded section shape having a higher aspect ratio. The aspect ratio refers to the ratio between the penetration depth H and the average melt width W. Moreover, as shown in Example 2 (FIG. 2) of Patent Document 1, when the permanent magnets are arranged around the electrodes of the welding torch, the permanent magnets may be overheated by the radiant heat of the welding arc. There is also.

本発明は、上記問題に鑑みてなされたものであり、その目的は、より高いアスペクト比の溶接部断面形状を得ることができ、更に溶接アークの放射熱により永久磁石が過熱することを防止できるTIG溶接方法およびその装置を提供することである。   The present invention has been made in view of the above problems, and the object thereof is to obtain a welded cross-sectional shape with a higher aspect ratio and to prevent the permanent magnet from being overheated by the radiant heat of the welding arc. It is to provide a TIG welding method and apparatus.

本発明の第1形態によれば、TIG溶接方法は、
被接合物(5)と溶接トーチ(3)の電極(4)との間にアーク放電させて溶接アーク(8)を発生させ、永久磁石(7)により前記溶接アーク(8)の周囲に磁界を発生させ、該磁界と電流との電磁気的相互作用により生じる電磁力を、被接合物(5)の溶融部(17)に作用させ接合するTIG溶接方法において、
前記永久磁石(7)を前記溶接トーチ(3)の前記電極(4)の周囲に配列し、前記永久磁石(7)を移動して前記磁界を変動させることにより溶接することを特徴とする。
According to the first aspect of the present invention, the TIG welding method comprises:
An arc discharge is generated between the workpiece (5) and the electrode (4) of the welding torch (3) to generate a welding arc (8), and a magnetic field is generated around the welding arc (8) by the permanent magnet (7). In the TIG welding method in which the electromagnetic force generated by the electromagnetic interaction between the magnetic field and current is applied to the melted part (17) of the article to be joined (5) and joined.
The permanent magnet (7) is arranged around the electrode (4) of the welding torch (3), and welding is performed by moving the permanent magnet (7) and changing the magnetic field.

永久磁石を溶接トーチの電極の周囲に配列し、永久磁石を移動して磁界を変動させることにより、起電力が生じ渦電流が発生する。この渦電流発生によって溶融部のローレンツ力が増加し内向きの対流駆動力が増加する。このような作用により、高いアスペクト比の溶接部断面形状を得ることができる。更に、永久磁石が移動することにより、周囲の空気と永久磁石との間で熱伝達が加速されて、溶接アークの放射熱により永久磁石が過熱することを防止できる。   By arranging permanent magnets around the electrodes of the welding torch and moving the permanent magnets to change the magnetic field, an electromotive force is generated and an eddy current is generated. Due to this eddy current generation, the Lorentz force in the melted portion increases and the inward convection driving force increases. By such an action, a welded cross-sectional shape having a high aspect ratio can be obtained. Further, the movement of the permanent magnet accelerates the heat transfer between the surrounding air and the permanent magnet, thereby preventing the permanent magnet from being overheated by the radiant heat of the welding arc.

本発明の第2形態によれば、TIG溶接方法は、前記永久磁石(7)を前記溶接トーチ(3)の前記電極(4)の軸方向に周期的に往復動させることにより、前記磁界を変動させることを特徴とする。永久磁石の移動形態の一つを示したものである。   According to the second aspect of the present invention, the TIG welding method is configured to periodically reciprocate the permanent magnet (7) in the axial direction of the electrode (4) of the welding torch (3), thereby generating the magnetic field. It is characterized by changing. One of the movement forms of the permanent magnet is shown.

本発明の第3形態によれば、TIG溶接装置は、
被接合物(5)と溶接トーチ(3)の電極(4)との間にアーク放電させて溶接アーク(8)を発生させ、前記被接合物(5)を前記溶接アーク(8)により溶融して接合するTIG溶接装置(100)において、
前記溶接トーチ(3)の前記電極(4)と、
前記溶接トーチ(3)の前記電極(4)の周囲に配置された永久磁石(7)と、
該永久磁石(7)を前記溶接トーチ(3)の前記電極(4)に対して移動させる永久磁石移動手段(11〜15)と、
を備えることを特徴とする。
According to the third embodiment of the present invention, the TIG welding apparatus is
An arc discharge is generated between the workpiece (5) and the electrode (4) of the welding torch (3) to generate a welding arc (8), and the workpiece (5) is melted by the welding arc (8). In the TIG welding apparatus (100) to be joined together,
The electrode (4) of the welding torch (3);
A permanent magnet (7) disposed around the electrode (4) of the welding torch (3);
Permanent magnet moving means (11-15) for moving the permanent magnet (7) relative to the electrode (4) of the welding torch (3);
It is characterized by providing.

永久磁石を溶接トーチの電極の周囲に配列し、永久磁石を移動して磁界を変動させることにより、起電力が生じ渦電流が発生する。この渦電流発生によって溶融部のローレンツ力が増加し内向きの対流駆動力が増加する。このような作用により、高いアスペクト比の溶接部断面形状を得ることができる。更に、永久磁石が移動することにより、周囲の空気と永久磁石との間で熱伝達が加速されて、溶接アークの放射熱により永久磁石が過熱することを防止できる。   By arranging permanent magnets around the electrodes of the welding torch and moving the permanent magnets to change the magnetic field, an electromotive force is generated and an eddy current is generated. Due to this eddy current generation, the Lorentz force in the melted portion increases and the inward convection driving force increases. By such an action, a welded cross-sectional shape having a high aspect ratio can be obtained. Further, the movement of the permanent magnet accelerates the heat transfer between the surrounding air and the permanent magnet, thereby preventing the permanent magnet from being overheated by the radiant heat of the welding arc.

本発明の第4形態によれば、TIG溶接装置は、前記永久磁石(7)を前記溶接トーチ(3)の前記電極(4)の軸方向に周期的に往復動させることにより、前記磁界を変動させることを特徴とする。永久磁石の移動形態の一つを示したものである。   According to the fourth aspect of the present invention, the TIG welding apparatus periodically reciprocates the permanent magnet (7) in the axial direction of the electrode (4) of the welding torch (3), thereby generating the magnetic field. It is characterized by changing. One of the movement forms of the permanent magnet is shown.

本発明に係るTIG溶接装置の概観図である。1 is an overview of a TIG welding apparatus according to the present invention. 図1の溶接アーク発生部の模式図である。It is a schematic diagram of the welding arc generation | occurrence | production part of FIG. 図2の溶接アーク発生部のA−A断面図である。It is AA sectional drawing of the welding arc generation | occurrence | production part of FIG. 永久磁石により溶接アークが変形した状態を示す図である。It is a figure which shows the state which the welding arc deform | transformed with the permanent magnet. (a)は、永久磁石に上側から印加される空気圧であり、(b)は、永久磁石に下側から印加される空気圧である。(A) is an air pressure applied to the permanent magnet from the upper side, and (b) is an air pressure applied to the permanent magnet from the lower side. 本発明に係るTIG溶接方法による溶接断面部の写真である。It is a photograph of the welding section by the TIG welding method concerning the present invention. 従来のTIG溶接方法による溶接断面部の写真である。It is a photograph of the welding section by the conventional TIG welding method.

(第1実施形態)
図1は、電極4と被接合物5との間に磁界を発生させる永久磁石7を設けた本発明のTIG溶接装置100の概観図を示す。図1に示すように、TIG溶接装置100は、溶接機本体1に設置されてTIG溶接電源2の負極が接続される溶接トーチ3の電極4と、被接合物(ワーク)5に接続され正極である電極6が配設されている。イナート(不活性)ガスは、シールドガス容器9から電極4の外周部16(図2参照)へ供給される。そして、図示しないイナートガスが後述する磁石ハウジング11と電極4との間から噴出され、溶接アーク8の表面を覆って溶接部が酸化するのを防ぐ。また、溶接トーチ3の電極4の中心軸と被接合物5の被接合部(溶接線部)10は一致させる。そして、溶接実行中に、ワーク5を、Y方向(溶接線方向)に例えば10mm/sの速度で移動させる。これにより、溶接線部10に溶接ビード部が形成される。
(First embodiment)
FIG. 1 shows a schematic view of a TIG welding apparatus 100 of the present invention in which a permanent magnet 7 for generating a magnetic field is provided between an electrode 4 and a workpiece 5. As shown in FIG. 1, a TIG welding apparatus 100 is connected to an electrode 4 of a welding torch 3 that is installed in a welding machine body 1 and to which a negative electrode of a TIG welding power source 2 is connected, and a positive electrode that is connected to an object to be joined (workpiece) 5. The electrode 6 is provided. An inert gas is supplied from the shield gas container 9 to the outer peripheral portion 16 (see FIG. 2) of the electrode 4. Then, an inert gas (not shown) is ejected from between a magnet housing 11 and an electrode 4 to be described later, and covers the surface of the welding arc 8 to prevent the welded portion from being oxidized. Further, the central axis of the electrode 4 of the welding torch 3 and the bonded portion (welded line portion) 10 of the workpiece 5 are matched. Then, during welding, the workpiece 5 is moved in the Y direction (weld line direction) at a speed of 10 mm / s, for example. Thereby, a weld bead part is formed in the weld line part 10.

図2に図1の溶接アーク発生部の模式図を示し、図3に図2の溶接アーク発生部のA−A断面図を示す。電極4の先端と被接合物5との間の距離xは例えば1mmであり、後述する磁石ハウジング11の下端面と電極4の先端との間の距離yは例えば0.5mmである。図2に示すように、電極4と被接合物5との間に生じる溶接アーク8に影響を及ぼすように、電極4の中心軸から所定の距離だけ離れた位置に永久磁石7が配置されている。   FIG. 2 shows a schematic diagram of the welding arc generating portion of FIG. 1, and FIG. 3 shows a cross-sectional view of the welding arc generating portion of FIG. A distance x between the tip of the electrode 4 and the workpiece 5 is, for example, 1 mm, and a distance y between a lower end surface of a magnet housing 11 described later and the tip of the electrode 4 is, for example, 0.5 mm. As shown in FIG. 2, the permanent magnet 7 is disposed at a position away from the central axis of the electrode 4 by a predetermined distance so as to affect the welding arc 8 generated between the electrode 4 and the workpiece 5. Yes.

永久磁石7は、図2及び図3に示すように、長方形の断面を有する柱状の(直方体の)単一磁石であり、第1実施形態では4個の永久磁石7が電極4の周囲に等間隔にかつ、電極4の中心軸から等しい距離を置いた位置に、磁石ハウジング11内に配列されている。そして、永久磁石7の磁極(S磁極とN磁極)は柱の両端面に設けられており、図3に示すように平面視において、4個の永久磁石7は、相互に同一磁極が対向するように配置されている。そして、一つの永久磁石7の隣には、一つの永久磁石7の磁極と逆磁極を有する別の永久磁石7が配置されている。なお、磁界の磁力線を溶接アーク8に大量に通過させることが所望の効果を得る上で重要であり、このため、永久磁石7は磁束密度の大きい希土類磁石が好適に採用される。これにより、コンパクトにして強力な磁界が得られる。   2 and 3, the permanent magnet 7 is a columnar (cuboid) single magnet having a rectangular cross section. In the first embodiment, four permanent magnets 7 are arranged around the electrode 4. They are arranged in the magnet housing 11 at intervals and at an equal distance from the central axis of the electrode 4. The magnetic poles (S magnetic pole and N magnetic pole) of the permanent magnet 7 are provided on both end faces of the pillar. As shown in FIG. 3, the four permanent magnets 7 face each other with the same magnetic pole. Are arranged as follows. Next to one permanent magnet 7, another permanent magnet 7 having a magnetic pole opposite to the magnetic pole of one permanent magnet 7 is arranged. It is important to pass a large amount of magnetic field lines through the welding arc 8 in order to obtain a desired effect. For this reason, the permanent magnet 7 is preferably a rare earth magnet having a high magnetic flux density. Thereby, a compact and powerful magnetic field can be obtained.

TIG溶接方法は、被接合物5を溶接アーク8により溶融して接合する方法である。溶接アーク8は、電極4と電極6と導通する被接合部10との間を流れるアーク放電であり、高温のプラズマ状となった荷電粒子の流れである。アーク放電は基本的には電極4と被接合部10との最短距離の空間に生じ、電極4の中心軸上に発生し釣鐘状の形状を有する。アーク放電自体はプラズマ状となった荷電粒子の流れであり、つまり電流が流れることにより、アーク放電の周りにはこの電流、つまりアーク電流により(永久磁石7により引き起こされる磁界とは別の)磁界が生じる。   The TIG welding method is a method in which the workpiece 5 is melted and joined by the welding arc 8. The welding arc 8 is an arc discharge that flows between the electrode 4 and the bonded portion 10 that is electrically connected to the electrode 6, and is a flow of charged particles in a high-temperature plasma state. The arc discharge basically occurs in the space of the shortest distance between the electrode 4 and the bonded portion 10 and is generated on the central axis of the electrode 4 and has a bell shape. The arc discharge itself is a flow of charged particles in the form of plasma, that is, a current flows, and around this arc, a magnetic field (apart from the magnetic field caused by the permanent magnet 7) due to this current, that is, the arc current. Occurs.

永久磁石で発生する磁界は溶融部に作用する。溶接アークと同様に溶融部も電流が流れており、磁力が発生しているのでローレンツ力が作用する。それは溶融部の対流駆動力の1つとして電磁気力と言われており、溶融部断面で見た場合に外から内向きに働く力で、これが大きくなると深い溶け込み形状を得ることができる。その溶け込みを増幅する方法が磁石を動かすことである。すなわち、磁石を動かすことで起電力が生じ渦電流が発生する。永久磁石による磁力線に加え渦電流発生によってローレンツ力は磁石を動かさない場合と比べて増加する。これにより、溶融部において内向きの対流が増加して高いアスペクト比の溶融部断面形状を得ることが可能となる。
なお、図3に示す永久磁石7の配置により、図4に示すように、磁界が発生して、永久磁石7a、7b、7c、7d相互の間に磁力線21が生じる。そして、溶接アーク8は、磁界とアーク電流(電極4とワーク5との間に発生)の電磁気的相互作用により生じるローレンツ力によって偏向される。この溶接アーク8の偏向方向を溶接線方向Yに一致させる。これにより、溶接アーク8は、偏向方向つまり溶接線方向Yにアーク放電が有するエネルギの溶接線方向成分を大きく発生させることが可能となる。この作用が、平均溶融幅が狭くかつ溶接部の溶け込みが深くなることを助長し、さらに溶接アーク8の断面形状の周期的変動と相まって、高いアスペクト比の溶接部断面形状を得ることが可能となる。
The magnetic field generated by the permanent magnet acts on the melting part. Similarly to the welding arc, a current flows through the melted portion, and a magnetic force is generated, so a Lorentz force acts. It is said to be an electromagnetic force as one of the convection driving forces of the melted part, and is a force that works inward from the outside when viewed from the cross section of the melted part. When this is increased, a deep penetration shape can be obtained. The method of amplifying the penetration is to move the magnet. That is, an electromotive force is generated by moving the magnet, and an eddy current is generated. The Lorentz force is increased by the generation of eddy current in addition to the lines of magnetic force of the permanent magnet compared to the case where the magnet is not moved. As a result, inward convection increases in the melted portion, and a cross-sectional shape of the melted portion having a high aspect ratio can be obtained.
In addition, by arrangement | positioning of the permanent magnet 7 shown in FIG. 3, as shown in FIG. 4, a magnetic field generate | occur | produces and the magnetic force line 21 arises between permanent magnets 7a, 7b, 7c, and 7d. The welding arc 8 is deflected by the Lorentz force generated by the electromagnetic interaction between the magnetic field and the arc current (generated between the electrode 4 and the workpiece 5). The deflection direction of the welding arc 8 is matched with the welding line direction Y. As a result, the welding arc 8 can greatly generate the welding line direction component of the energy of the arc discharge in the deflection direction, that is, the welding line direction Y. This action promotes that the average melt width is narrow and the penetration of the welded portion is deepened. Further, coupled with the periodic variation of the sectional shape of the welding arc 8, it is possible to obtain a welded sectional shape having a high aspect ratio. Become.

磁石ハウジング11は、図2、3に示すように、円筒形をしており、4個の永久磁石7を摺動自在に収容する4つの穴11a、11b、11c、11dを有する。1つの永久磁石7aは、磁石ハウジング11の収容穴11a内に上下に摺動自在に収容されている。収容穴11aは、永久磁石7aによりその空間を分離されて、永久磁石7aの上側に空間11aaをその下側に空間11abを有する。収容穴11b、11c、11dも収容穴11aと同様な構造になっている。そして、4個の永久磁石7の上側空間11aa、11ba、11ca、11daは、所定の通路(図示せず)により接続されており、その下側空間11ab、11bb、11cb、11dbも、別な通路(図示せず)により接続されている。そして、下側空間、例えば11abの下端には空気通路12が、上側空間、例えば11aaの上端には空気通路13が接続されている。この構造により、4個の永久磁石7a、7b、7c、7dが同期して上下に移動することが可能となる。   As shown in FIGS. 2 and 3, the magnet housing 11 has a cylindrical shape and has four holes 11 a, 11 b, 11 c, and 11 d that slidably accommodate the four permanent magnets 7. One permanent magnet 7 a is accommodated in the accommodation hole 11 a of the magnet housing 11 so as to be slidable up and down. The accommodation hole 11a is separated by the permanent magnet 7a, and has a space 11aa on the upper side of the permanent magnet 7a and a space 11ab on the lower side. The accommodation holes 11b, 11c, and 11d have the same structure as the accommodation hole 11a. The upper spaces 11aa, 11ba, 11ca, 11da of the four permanent magnets 7 are connected by a predetermined passage (not shown), and the lower spaces 11ab, 11bb, 11cb, 11db are also different passages. (Not shown). An air passage 12 is connected to the lower space, for example, the lower end of 11ab, and an air passage 13 is connected to the upper space, for example, the upper end of 11aa. With this structure, the four permanent magnets 7a, 7b, 7c, and 7d can move up and down synchronously.

空気通路13には、図5(a)に示すような、大気圧と1MPaとの間を周期的に変動する脈動空気圧(パルス空気圧)15が空圧制御手段(図示せず)により印加され、空気通路12には、図5(b)に示すような大気圧より高く1MPaより低い一定の空気圧14が印加される。上記脈動空気圧の周期は例えば15Hzである。この脈動空気圧により、1つの永久磁石7aは、溶接トーチ3の電極4の軸方向に周期的に往復動することとなる。そして、磁石ハウジング11の4つの穴11a、11b、11c、11dが上記のような構造となっているため、他の永久磁石7b、7c、7dも、永久磁石7aの動きと同期する動きをすることとなる。なお、永久磁石7が往復動する距離は例えば0.5mmである。   A pulsating air pressure (pulsed air pressure) 15 that periodically fluctuates between atmospheric pressure and 1 MPa is applied to the air passage 13 by air pressure control means (not shown), as shown in FIG. A constant air pressure 14 that is higher than atmospheric pressure and lower than 1 MPa is applied to the air passage 12 as shown in FIG. The period of the pulsating air pressure is 15 Hz, for example. With this pulsating air pressure, one permanent magnet 7 a periodically reciprocates in the axial direction of the electrode 4 of the welding torch 3. Since the four holes 11a, 11b, 11c, and 11d of the magnet housing 11 have the above-described structure, the other permanent magnets 7b, 7c, and 7d also move in synchronization with the movement of the permanent magnet 7a. It will be. The distance that the permanent magnet 7 reciprocates is, for example, 0.5 mm.

この永久磁石7の周期的な往復動により、溶融部17に起電力が生じ渦電流が発生する。この渦電流発生によって溶融部のローレンツ力が増加し内向きの対流駆動力が増加する。さらに、溶接部に加えられるアーク放電によるプラズマが周期的に変動して、溶接部に非定常な熱流れが発生して、溶け込みの十分深い良好な溶接部が得られ高いアスペクト比の溶接部断面形状を得ることができる。更に、永久磁石が移動することにより、周囲の空気と永久磁石との間で熱伝達が加速されて、溶接アークの放射熱により永久磁石が過熱することを防止できる。   Due to the periodic reciprocation of the permanent magnet 7, an electromotive force is generated in the melting part 17 and an eddy current is generated. Due to this eddy current generation, the Lorentz force in the melted portion increases and the inward convection driving force increases. Furthermore, the plasma caused by arc discharge applied to the welded portion periodically fluctuates, and an unsteady heat flow is generated in the welded portion. Shape can be obtained. Further, the movement of the permanent magnet accelerates the heat transfer between the surrounding air and the permanent magnet, thereby preventing the permanent magnet from being overheated by the radiant heat of the welding arc.

図6は、本発明に係るTIG溶接方法による溶接断面部の写真であり、図7は従来の(永久磁石固定式の)TIG溶接方法による溶接断面部の写真である。本発明に係るTIG溶接方法による溶接断面部は、従来のものより明らかに溶融部が深くなっていることが分かる。   FIG. 6 is a photograph of a weld cross section by a TIG welding method according to the present invention, and FIG. 7 is a photograph of a weld cross section by a conventional (fixed permanent magnet type) TIG welding method. It can be seen that the weld cross-section by the TIG welding method according to the present invention is clearly deeper than the conventional one.

(他の実施形態)
第1実施形態では、永久磁石7の周期的な往復動を空気圧制御により実施したが、空気圧制御ではなく、例えばモーターを使用したカム駆動により周期的な往復動を実施しても良い。すなわち、永久磁石7の周期的な往復動を達成するために、空圧、油圧、機械駆動等いずれの手段を用いても良いことは、当業者が容易に想到することである。
また、第1実施形態では、永久磁石7の周期的な往復動を用いたが、周期的ではなくランダムに(不規則に)往復動させても良く、また、往復動ではなく例えば磁石ハウジング11を電極4を中心として回転させることにより永久磁石を回転(公転)させても良い。
また、第1実施形態では4個の永久磁石7を等間隔に規則的に配置したが不規則に配置しても良い。
(Other embodiments)
In the first embodiment, the periodic reciprocation of the permanent magnet 7 is performed by air pressure control. However, instead of the air pressure control, for example, periodic reciprocation may be performed by cam drive using a motor. That is, those skilled in the art can easily conceive that any means such as air pressure, hydraulic pressure, and mechanical drive may be used to achieve periodic reciprocation of the permanent magnet 7.
In the first embodiment, the periodic reciprocation of the permanent magnet 7 is used. However, the permanent magnet 7 may be reciprocated randomly (irregularly) instead of periodically. The permanent magnet may be rotated (revolved) by rotating the magnet around the electrode 4.
In the first embodiment, the four permanent magnets 7 are regularly arranged at equal intervals, but may be irregularly arranged.

100 本発明のTIG溶接装置
3 溶接トーチ
4 溶接トーチの電極
5 ワーク(被接合物)
7 永久磁石
8 溶接アーク
11 磁石ハウジング
17 溶融部
DESCRIPTION OF SYMBOLS 100 TIG welding apparatus of this invention 3 Welding torch 4 Electrode of welding torch 5 Workpiece (object to be joined)
7 Permanent magnet 8 Welding arc 11 Magnet housing 17 Melting zone

Claims (4)

被接合物(5)と溶接トーチ(3)の電極(4)との間にアーク放電させて溶接アーク(8)を発生させ、永久磁石(7)により前記溶接アーク(8)の周囲に磁界を発生させ、該磁界と電流との電磁気的相互作用により生じる電磁力を、前記被接合物(5)の溶融部(17)に作用させ、接合するTIG溶接方法において、
前記永久磁石(7)を前記溶接トーチ(3)の前記電極(4)の周囲に配列し、前記永久磁石(7)を移動して前記磁界を変動させることにより溶融部(17)に付与されるローレンツ力を変化させて溶接することを特徴とするTIG溶接方法。
An arc discharge is generated between the workpiece (5) and the electrode (4) of the welding torch (3) to generate a welding arc (8), and a magnetic field is generated around the welding arc (8) by the permanent magnet (7). In the TIG welding method in which the electromagnetic force generated by the electromagnetic interaction between the magnetic field and current is applied to the melted part (17) of the article (5) and joined.
The permanent magnet (7) is arranged around the electrode (4) of the welding torch (3), and is moved to the melting part (17) by moving the permanent magnet (7) and changing the magnetic field. A TIG welding method, wherein welding is performed by changing the Lorentz force.
前記永久磁石(7)を前記溶接トーチ(3)の前記電極(4)の軸方向に周期的に往復動させることにより、前記磁界を変動させることを特徴とする請求項1に記載のTIG溶接方法。   2. The TIG welding according to claim 1, wherein the magnetic field is varied by periodically reciprocating the permanent magnet (7) in the axial direction of the electrode (4) of the welding torch (3). Method. 被接合物(5)と溶接トーチ(3)の電極(4)との間にアーク放電させて溶接アーク(8)を発生させ、前記被接合物(5)を前記溶接アーク(8)により溶融して接合するTIG溶接装置(100)において、
前記溶接トーチ(3)の前記電極(4)と、
前記溶接トーチ(3)の前記電極(4)の周囲に配置された永久磁石(7)と、
該永久磁石(7)を前記溶接トーチ(3)の前記電極(4)に対して移動させる永久磁石移動手段(11〜15)と、
を備えることを特徴とするTIG溶接装置(100)。
An arc discharge is generated between the workpiece (5) and the electrode (4) of the welding torch (3) to generate a welding arc (8), and the workpiece (5) is melted by the welding arc (8). In the TIG welding apparatus (100) to be joined together,
The electrode (4) of the welding torch (3);
A permanent magnet (7) disposed around the electrode (4) of the welding torch (3);
Permanent magnet moving means (11-15) for moving the permanent magnet (7) relative to the electrode (4) of the welding torch (3);
A TIG welding apparatus (100) comprising:
前記永久磁石(7)を前記溶接トーチ(3)の前記電極(4)の軸方向に周期的に往復動させることにより、前記磁界を変動させることを特徴とする請求項3に記載のTIG溶接装置(100)。   The TIG welding according to claim 3, wherein the magnetic field is varied by periodically reciprocating the permanent magnet (7) in the axial direction of the electrode (4) of the welding torch (3). Device (100).
JP2011026217A 2011-02-09 2011-02-09 TIG welding method and apparatus Active JP5353921B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011026217A JP5353921B2 (en) 2011-02-09 2011-02-09 TIG welding method and apparatus
US13/366,822 US9061364B2 (en) 2011-02-09 2012-02-06 TIG welding method and apparatus
CN201210028365.6A CN102632325B (en) 2011-02-09 2012-02-09 Tig welding method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026217A JP5353921B2 (en) 2011-02-09 2011-02-09 TIG welding method and apparatus

Publications (2)

Publication Number Publication Date
JP2012161836A true JP2012161836A (en) 2012-08-30
JP5353921B2 JP5353921B2 (en) 2013-11-27

Family

ID=46599951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026217A Active JP5353921B2 (en) 2011-02-09 2011-02-09 TIG welding method and apparatus

Country Status (3)

Country Link
US (1) US9061364B2 (en)
JP (1) JP5353921B2 (en)
CN (1) CN102632325B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555006A (en) * 2016-02-16 2016-05-04 衢州迪升工业设计有限公司 Electrode applying fuse striking arc

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091974B2 (en) * 2013-04-16 2017-03-08 株式会社神戸製鋼所 Welding manufacturing method, welding method, welding apparatus
CN106735781B (en) * 2016-12-14 2018-11-30 天津大学 A kind of magnetic control K-TIG welding gun based on electromagnet cusp magnetic fields
CN107052533B (en) * 2016-12-15 2018-11-30 天津大学 A kind of magnetic control K-TIG welding gun based on permanent magnet array
CN106695086B (en) * 2016-12-15 2018-11-30 天津大学 A kind of magnetic control K-TIG welding gun based on water-cooling permanent magnet iron
CN108856973B (en) * 2018-06-14 2020-12-04 温州大学 Electric arc welding system capable of adjusting external magnetic field
CN110449699A (en) * 2019-08-15 2019-11-15 广东省智能制造研究所 A kind of multilayer wedge angle magnetic control welding generating device and welding gun

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195877A (en) * 1987-10-07 1989-04-13 Ishikawajima Harima Heavy Ind Co Ltd Method for welding austenitic alloy or the like
JPH0966365A (en) * 1995-09-01 1997-03-11 Ishikawajima Harima Heavy Ind Co Ltd Magnetic stirring welding method
JP2005279760A (en) * 2004-03-30 2005-10-13 Aisin Seiki Co Ltd Control method of charged particle flow, and control method of molten metal
JP2008105056A (en) * 2006-10-25 2008-05-08 Denso Corp Tig welding method, and equipment therefor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152643A (en) 1978-05-24 1979-12-01 Nippon Steel Corp Deflecting method for welding arc
GB2038687B (en) 1978-12-07 1982-08-11 Central Electr Generat Board Magnetic stirring in tie welding
GB2038686B (en) 1978-12-07 1982-08-11 Central Electr Generat Board Stirring an arc welding pool
JPH0195876A (en) 1987-10-06 1989-04-13 Ishikawajima Harima Heavy Ind Co Ltd Method for welding austenitic alloy or the like
JPH0437478A (en) 1990-05-31 1992-02-07 Mitsubishi Heavy Ind Ltd Ultrasonic vibration arc welding method
JPH0584571A (en) 1991-09-26 1993-04-06 Sumitomo Metal Ind Ltd Arc generator
JPH05146875A (en) 1991-11-28 1993-06-15 Toyota Motor Corp Spatter generation suppressing device for arc welding machine
JPH0732146A (en) 1993-07-15 1995-02-03 Toyota Motor Corp Method and device for detecting arc blow in arc welding
JPH07195176A (en) 1993-12-29 1995-08-01 Nissan Motor Co Ltd Arc welding equipment
JPH08338207A (en) 1995-06-15 1996-12-24 Mitsubishi Heavy Ind Ltd Exhaust heat recovery device
JP2953367B2 (en) 1995-12-29 1999-09-27 日本電気株式会社 LSI cooling system
JPH09239537A (en) 1996-03-11 1997-09-16 Fujikura Ltd Manufacture of tube by welding
US5831364A (en) * 1997-01-22 1998-11-03 Ingersoll-Dresser Pump Company Encapsulated magnet carrier
KR20020042118A (en) * 2000-11-30 2002-06-05 에릭 발리베 A holder for magnet fixing of starter motor
US6601643B2 (en) 2001-04-27 2003-08-05 Samsung Electronics Co., Ltd Flat evaporator
KR20040088554A (en) 2002-02-26 2004-10-16 미크로스 매뉴팩처링 인코포레이티드 Capillary evaporator
JP2005211919A (en) 2004-01-28 2005-08-11 Aisin Seiki Co Ltd Control method for charged particle flow, control method for welding arc and plasma, and control method for molten metal
JP2007095762A (en) 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Flexible heat pipe
JP2008153423A (en) 2006-12-18 2008-07-03 Yaskawa Electric Corp Vapor chamber, and electronic device using it
JP2008267743A (en) 2007-04-24 2008-11-06 Denso Corp Cooling device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195877A (en) * 1987-10-07 1989-04-13 Ishikawajima Harima Heavy Ind Co Ltd Method for welding austenitic alloy or the like
JPH0966365A (en) * 1995-09-01 1997-03-11 Ishikawajima Harima Heavy Ind Co Ltd Magnetic stirring welding method
JP2005279760A (en) * 2004-03-30 2005-10-13 Aisin Seiki Co Ltd Control method of charged particle flow, and control method of molten metal
JP2008105056A (en) * 2006-10-25 2008-05-08 Denso Corp Tig welding method, and equipment therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555006A (en) * 2016-02-16 2016-05-04 衢州迪升工业设计有限公司 Electrode applying fuse striking arc

Also Published As

Publication number Publication date
US20120199561A1 (en) 2012-08-09
JP5353921B2 (en) 2013-11-27
US9061364B2 (en) 2015-06-23
CN102632325A (en) 2012-08-15
CN102632325B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5353921B2 (en) TIG welding method and apparatus
CN108247226B (en) Laser welding pool control method based on Lorentz force
US7235758B2 (en) MIG-plasma welding
JP5934890B2 (en) Arc welding control method
JP6082967B2 (en) Plasma cutting machine and cutting method
CN108788419B (en) Split type magnetic control resistance spot welding device
JP5128159B2 (en) Resistance welding method
IN2014DN06764A (en)
CN110814552A (en) Scanning galvanometer laser-high frequency pulse TIG (tungsten inert gas) hybrid welding method
KR20140071360A (en) Stud welding method and apparatus for welding a component to a surface of a workpiece with varying general magnetic field angle
JP2005324246A (en) Welding tool, welding apparatus, and welding method
KR20180043284A (en) Welding method and arc welding device
JP2011161509A (en) Plasma arc welding method, multi-pass welding method, and equipment therefor
CN113102891B (en) Method and device for inhibiting aluminum alloy laser-MIG (Metal-inert gas) composite welding collapse by external magnetic field
Nomura et al. Influence of magnet configurations on magnetic controlled TIG arc welding
JP2015112636A (en) Build-up welding device and method thereof
CN105880807A (en) TIG filler wire narrow-gap welding method utilizing bypass arc induction
CN108817670A (en) A kind of electric arc combined weldering energy modulation welding method of high power laser light
CN203184841U (en) Laser-TIG electric arc paraxial hybrid welding device with external high frequency magnetic field
TWI406732B (en) Magnetic field assisted laser plasma device
Sun et al. Research status and development trend of narrow-Gap TIG welding
JP5871675B2 (en) Arc welding apparatus and arc welding method
JP2005211919A (en) Control method for charged particle flow, control method for welding arc and plasma, and control method for molten metal
JP5287962B2 (en) Welding equipment
JP5419858B2 (en) Magnetic field strength adjustment method for arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250