JP2012160502A - Substrate for semiconductor light-emitting element, method of manufacturing the same, and semiconductor light-emitting element using substrate - Google Patents

Substrate for semiconductor light-emitting element, method of manufacturing the same, and semiconductor light-emitting element using substrate Download PDF

Info

Publication number
JP2012160502A
JP2012160502A JP2011017443A JP2011017443A JP2012160502A JP 2012160502 A JP2012160502 A JP 2012160502A JP 2011017443 A JP2011017443 A JP 2011017443A JP 2011017443 A JP2011017443 A JP 2011017443A JP 2012160502 A JP2012160502 A JP 2012160502A
Authority
JP
Japan
Prior art keywords
substrate
convex portions
semiconductor light
main surface
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011017443A
Other languages
Japanese (ja)
Other versions
JP5707978B2 (en
Inventor
Junya Narita
准也 成田
Takuya Okada
岡田  卓也
Yohei Wakai
陽平 若井
Yoshiki Inoue
芳樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2011017443A priority Critical patent/JP5707978B2/en
Publication of JP2012160502A publication Critical patent/JP2012160502A/en
Application granted granted Critical
Publication of JP5707978B2 publication Critical patent/JP5707978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for a light-emitting element having excellent crystallinity and optical extraction efficiency, and suppressing increase in a forward voltage in a high-current region, and to provide a method of manufacturing the light-emitting element substrate, and a light-emitting element using the light-emitting element substrate.SOLUTION: In a semiconductor light-emitting element substrate, a semiconductor light-emitting element is manufactured by growing a semiconductor crystal on a first principal surface on the substrate. A plurality of convex parts each having an inclined plane on which the growth of the semiconductor crystal is suppressed are formed on the first principal surface. The plurality of convex parts are arranged so that the inclined planes are unevenly distributed on the first principal surface, and that light propagated parallel to the first principal surface is reflected on any one of the convex parts.

Description

本発明は、基板表面に凸部が配置された半導体発光素子に関し、特に、この凸部の配置によって光取り出し効率を増加させた半導体発光素子およびそれに用いる基板、並びにそれらの製造方法に関する。   The present invention relates to a semiconductor light emitting device in which convex portions are arranged on the surface of a substrate, and more particularly to a semiconductor light emitting device in which light extraction efficiency is increased by the arrangement of the convex portions, a substrate used therefor, and a manufacturing method thereof.

半導体素子、例えば窒化物半導体からなる発光ダイオード(LED)は、一般に、基板上にn型半導体層、活性層、p型半導体層を順に積層し、その上に電極を形成することによって構成されている。活性層の光は、半導体構造の外部露出面(上面、側面)、基板の露出面(裏面、側面)などから素子外部に出射される。半導体層内で発生した光が電極との界面または基板との界面に対して所定の臨界角以上の角度で入射すると、全反射を繰り返しながら半導体層内を横方向に伝搬し、その間に光の一部は吸収され、光取り出し効率が低下する。   2. Description of the Related Art A semiconductor element, for example, a light emitting diode (LED) made of a nitride semiconductor is generally configured by sequentially stacking an n-type semiconductor layer, an active layer, and a p-type semiconductor layer on a substrate and forming electrodes thereon. Yes. The light in the active layer is emitted to the outside of the device from the externally exposed surface (upper surface, side surface) of the semiconductor structure, the exposed surface (back surface, side surface) of the substrate, and the like. When the light generated in the semiconductor layer is incident on the interface with the electrode or the interface with the substrate at an angle greater than a predetermined critical angle, the light propagates laterally in the semiconductor layer while repeating total reflection. A part is absorbed, and the light extraction efficiency decreases.

そこで、光取り出し効率を向上させるために、基板の半導体成長面側に凹凸を設けることが考えられた。基板の成長面に凹凸を設ける従来技術として、以下の文献があり、特許文献3に関連して、特開2006−066442号公報、特開2005−064492号公報、特開2005−101230号公報、特開2005−136106号公報、特開2005−314121号公報があり、特許文献4、5に関連して、特開2000−331937号公報、特開2002−280609号公報、特開2002−289540号公報がある。   Therefore, in order to improve the light extraction efficiency, it has been considered to provide unevenness on the semiconductor growth surface side of the substrate. As conventional techniques for providing unevenness on the growth surface of a substrate, there are the following documents, and in relation to Patent Document 3, JP 2006-066642 A, JP 2005-064492 A, JP 2005-101230 A, There are JP-A-2005-136106 and JP-A-2005-314121, and JP-A-2000-331937, JP-A-2002-280609, and JP-A-2002-289540 are related to patent documents 4 and 5. There is a publication.

特開2003−318441号公報JP 2003-318441 A 特開2005−101566号公報JP 2005-101656 A 特開2005−047718号公報Japanese Patent Laying-Open No. 2005-047718 特開2002−164296号公報JP 2002-164296 A 特開2002−280611号公報JP 2002-280611 A 特開2001−053012号公報JP 2001-053012 A 特開2008−177528号公報JP 2008-177528 A 特開2007−194450号公報JP 2007-194450 A

光取り出し効率を向上させるためには、凸部が密に配置されること、および凸部の高さが高いことが好ましい。また、半導体結晶面上に凸部が配置されていると、基板界面に発生した転位の横方向成長、結晶接合により、欠陥の伝播を抑えて半導体結晶を成長させることができるので、凸部が密に配置され且つ凸部高さが高いと、貫通転位が低減された結晶性の高い半導体が得られる。
しかし、貫通電位の低減により、半導体結晶の抵抗が大きくなって、得られる半導体発光素子の順電圧が増加するという問題が生じる。順電圧の増加は、照明用途などの大電流域で顕著に表れる。
In order to improve the light extraction efficiency, it is preferable that the convex portions are densely arranged and the height of the convex portions is high. In addition, when the convex portion is disposed on the semiconductor crystal surface, the semiconductor crystal can be grown while suppressing the propagation of defects by lateral growth of dislocations generated at the substrate interface and crystal bonding. When densely arranged and the height of the convex portion is high, a highly crystalline semiconductor with reduced threading dislocations can be obtained.
However, the reduction of the through potential causes a problem that the resistance of the semiconductor crystal increases and the forward voltage of the obtained semiconductor light emitting element increases. The increase of the forward voltage appears remarkably in a large current region such as lighting application.

そこで、本発明は、上記事情に鑑み、結晶性および光取り出し効率に優れ、かつ高電流域での順電圧増加が抑制された発光素子用基板、その発光素子基板の製造方法、およびその発光素子基板を用いた発光素子を提供することを目的とする。   Accordingly, in view of the above circumstances, the present invention provides a substrate for a light-emitting element that is excellent in crystallinity and light extraction efficiency and suppresses an increase in forward voltage in a high current region, a method for manufacturing the light-emitting element substrate, and the light-emitting element It is an object to provide a light-emitting element using a substrate.

以上の目的を達成するために、本発明に係る半導体発光素子基板は、基板上の第1主面上に半導体結晶を成長させることによって半導体発光素子が製造される半導体発光素子基板であって、
前記半導体結晶の成長が抑制される傾斜面を各々有する複数の凸部が前記第1主面上に形成されており、
前記複数の凸部は、前記傾斜面が前記第1主面上で偏在するように、即ち前記傾斜面が密に配置される領域と、粗に配置される領域とが前記第1主面上に存在するように、かつ前記第1主面に対して平行に伝搬する光がいずれかの凸部において反射されるように配置されていることを特徴とする。
To achieve the above object, a semiconductor light emitting device substrate according to the present invention is a semiconductor light emitting device substrate in which a semiconductor light emitting device is manufactured by growing a semiconductor crystal on a first main surface on a substrate,
A plurality of convex portions each having an inclined surface in which growth of the semiconductor crystal is suppressed is formed on the first main surface;
The plurality of convex portions are arranged on the first main surface such that the inclined surface is unevenly distributed on the first main surface, that is, the region where the inclined surface is densely arranged and the region where the inclined surface is roughly arranged. And the light propagating parallel to the first main surface is reflected at any one of the convex portions.

本発明に係る半導体発光素子基板は、半導体結晶の成長が抑制される傾斜面が第1主面上に偏在するように、凸部が第1主面上に配置されることにより、結晶成長面において発生する転位の一部が結晶の横方向成長によって結晶内部に閉じ込められる一方で、結晶表面に現れる貫通転位の数が増加する。また、第1主面に対して平衡に伝搬する光がいずれかの凸部において反射されるように凸部が配置されることにより、半導体発光素子基板の側面からの光の出射が妨げられ、高い光取り出し効率を保持することができる。   The semiconductor light-emitting element substrate according to the present invention has a crystal growth surface by arranging the convex portion on the first main surface so that the inclined surface on which the growth of the semiconductor crystal is suppressed is unevenly distributed on the first main surface. While some of the dislocations that occur in are confined inside the crystal by lateral growth of the crystal, the number of threading dislocations that appear on the crystal surface increases. Further, by arranging the convex portion so that the light propagating in equilibrium with respect to the first main surface is reflected at any of the convex portions, emission of light from the side surface of the semiconductor light emitting element substrate is prevented, High light extraction efficiency can be maintained.

図1は、本発明に係る窒化物半導体発光素子の断面図である。FIG. 1 is a cross-sectional view of a nitride semiconductor light emitting device according to the present invention. 図2は、従来の半導体発光素子基板の第1主面における凸部の配置の一例を示す平面図である。FIG. 2 is a plan view showing an example of the arrangement of convex portions on the first main surface of a conventional semiconductor light emitting element substrate. 図3は、本発明の第1の形態の半導体発光素子基板の第1主面における凸部の配置の一の例(実施例1)を示す平面図である。FIG. 3 is a plan view showing an example (Example 1) of the arrangement of convex portions on the first main surface of the semiconductor light emitting element substrate according to the first embodiment of the present invention. 図4は、本発明の第1の形態の半導体発光素子基板の第1主面における凸部の配置のもう1つの例(実施例2)を示す平面図である。FIG. 4 is a plan view showing another example (Example 2) of the arrangement of the protrusions on the first main surface of the semiconductor light emitting element substrate according to the first aspect of the present invention. 図5は、本発明の第2の形態の半導体発光素子基板の第1主面における凸部の配置の一の例(実施例3)を示す平面図である。FIG. 5 is a plan view showing an example (Example 3) of an arrangement of convex portions on the first main surface of the semiconductor light emitting element substrate according to the second mode of the present invention. 図6は、本発明の第2の形態の半導体発光素子基板の第1主面における凸部の配置のもう1つの例(実施例4)を示す平面図である。FIG. 6 is a plan view showing another example (Example 4) of the arrangement of the protrusions on the first main surface of the semiconductor light emitting element substrate according to the second mode of the present invention. 図7は、本発明の第2の形態の半導体発光素子基板の第1主面における凸部の配置の更にもう1つの例(実施例5)を示す平面図である。FIG. 7 is a plan view showing still another example (Example 5) of the arrangement of the protrusions on the first main surface of the semiconductor light emitting element substrate according to the second mode of the present invention. 図8は、本発明の第3の形態の半導体発光素子基板の第1主面における凸部の配置の一の例を示す平面図である。FIG. 8 is a plan view showing an example of the arrangement of convex portions on the first main surface of the semiconductor light emitting element substrate according to the third embodiment of the present invention. 図9は、本発明に係る半導体発光素子の電極の形状を模式的に示す平面図である。FIG. 9 is a plan view schematically showing the shape of the electrode of the semiconductor light emitting device according to the present invention.

以下、本発明の実施の形態について図面に基づいて説明する。ただし、以下に説明する実施の形態は、本発明の技術思想を具体化するための態様を例示するものであって、本発明を以下のものに特定しない。実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。更に、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよく、一の部材の機能を複数の部材で分担して実現することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are examples for embodying the technical idea of the present invention, and the present invention is not specified as follows. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Not too much. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and the plurality of elements are shared by one member, and the function of the one member is shared by the plurality of members. It can also be realized.

本発明の半導体発光素子は、図1に示すように、基板10の上に下地層12、第1導電型層(n型層)13、活性層(発光層)14、第2導電型層(p型層)15が順に積層された半導体積層構造11が設けられており、下地層12を成長させる基板10の第1主面2に、複数の凸部(ディンプル)1が設けられている。第1主面上に凸部が形成されることにより、横方向に伝搬する光を凸部で反射して縦方向に伝搬させることができ、その結果、半導体発光素子の光取り出し効率が改善される。また、第1主面上に凸部が形成されると、基板界面に発生する転位の横方向成長、結晶接合により、欠陥の伝播を抑えて半導体結晶を成長させることができるので、貫通転位が低減された結晶性の高い半導体が得られる。以下、結晶成長メカニズムをより詳細に説明する。   As shown in FIG. 1, the semiconductor light emitting device of the present invention has a base layer 12, a first conductivity type layer (n-type layer) 13, an active layer (light emission layer) 14, a second conductivity type layer (on a substrate 10). A semiconductor multilayer structure 11 in which p-type layers 15 are sequentially laminated is provided, and a plurality of convex portions (dimples) 1 are provided on a first main surface 2 of a substrate 10 on which a base layer 12 is grown. By forming the convex portion on the first main surface, the light propagating in the horizontal direction can be reflected by the convex portion and propagated in the vertical direction, and as a result, the light extraction efficiency of the semiconductor light emitting device is improved. The Further, when the convex portion is formed on the first main surface, the semiconductor crystal can be grown while suppressing the propagation of defects by lateral growth and crystal bonding of dislocations generated at the substrate interface. A semiconductor with reduced crystallinity and high crystallinity can be obtained. Hereinafter, the crystal growth mechanism will be described in more detail.

窒化物半導体(例えば、GaN)を結晶成長させる場合、サファイア、スピネル、SiC、GaN等の基板が用いられ、例えば、その結晶成長が可能な結晶成長面(例えばサファイアのC面(0001))上に窒化物半導体結晶が成長させられる。しかし、これらの基板を用いると、GaN結晶と基板とが格子整合していないことに起因して(基板の格子定数と窒化物半導体の格子定数の差に起因して)、形成される結晶表面において多数の転位が存在することになる。
一方、凸部は通常、基板表面と平行でない傾斜面4(または基板表面に対して垂直な面)を有する。基板表面2を窒化物半導体の結晶成長が可能な表面(以下、結晶成長面と呼ぶ)としたとき、傾斜面4(または垂直面)は、結晶成長面とは異なる面方位を有し、これらの面において結晶成長は抑制される(以下、これらの面を結晶成長抑制面と呼ぶ)。凸部は、その上部に基板表面と平行な平坦面3(結晶成長面)を有してもよい。以上より、第1主面上に凸部が形成されると、結晶成長が可能な結晶成長面の中に結晶成長抑制面が存在することになる。結晶成長面において半導体結晶が各々三次元成長し、結晶成長抑制面を覆うように側面・横方向の結晶成長が起こり、欠陥の伝搬が抑制される。その結果、成長方向に伸びる転位が下地層の内部に閉じ込められ、表面に現れる貫通転位が減少する。
When growing a nitride semiconductor (for example, GaN), a substrate such as sapphire, spinel, SiC, or GaN is used. For example, on a crystal growth surface (for example, the C-plane (0001) of sapphire) on which the crystal can be grown. A nitride semiconductor crystal is grown. However, when these substrates are used, the crystal surface formed due to the lattice mismatch between the GaN crystal and the substrate (due to the difference between the lattice constant of the substrate and the lattice constant of the nitride semiconductor) There will be a large number of dislocations.
On the other hand, the protrusion usually has an inclined surface 4 (or a surface perpendicular to the substrate surface) that is not parallel to the substrate surface. When the substrate surface 2 is a surface capable of crystal growth of a nitride semiconductor (hereinafter referred to as a crystal growth surface), the inclined surface 4 (or vertical surface) has a plane orientation different from that of the crystal growth surface. In this plane, crystal growth is suppressed (hereinafter, these planes are referred to as crystal growth suppression planes). The convex portion may have a flat surface 3 (crystal growth surface) parallel to the substrate surface at the top thereof. As described above, when the convex portion is formed on the first main surface, the crystal growth suppression surface exists in the crystal growth surface capable of crystal growth. The semiconductor crystal grows three-dimensionally on the crystal growth surface, and side and lateral crystal growth occurs so as to cover the crystal growth suppression surface, thereby suppressing the propagation of defects. As a result, dislocations extending in the growth direction are confined in the underlying layer, and threading dislocations appearing on the surface are reduced.

従来の凸部配置において、凸部は、隣接する凸部の中心間距離が同じであるように規則的に配置され、例えば三角形格子、四角形格子、または六角形格子等の多角形格子の頂点に位置するように配置される。従来の半導体発光素子基板において、凸部は、半導体発光素子の光取り出し効率を高くするために密に配置される。凸部を密に配置すると、半導体発光素子基板の第1主面における結晶成長抑制面の面積の割合が大きくなることによって、結晶成長抑制面を覆うような半導体結晶の横方向成長が増加し、転位が減少する。その結果、良好な特性を有する結晶性の高い半導体結晶が得られる。しかし、半導体結晶における転位が少ないと、特に高電流領域において順電圧が増加するという問題が生じる。   In the conventional convex arrangement, the convex parts are regularly arranged so that the distances between the centers of adjacent convex parts are the same, for example, at the apex of a polygonal lattice such as a triangular lattice, a quadrangular lattice, or a hexagonal lattice. It is arranged to be located. In the conventional semiconductor light emitting device substrate, the convex portions are densely arranged to increase the light extraction efficiency of the semiconductor light emitting device. When the convex portions are arranged densely, the ratio of the area of the crystal growth suppression surface to the first main surface of the semiconductor light emitting element substrate is increased, thereby increasing the lateral growth of the semiconductor crystal covering the crystal growth suppression surface, Dislocations are reduced. As a result, a highly crystalline semiconductor crystal having good characteristics can be obtained. However, when the number of dislocations in the semiconductor crystal is small, there arises a problem that the forward voltage increases particularly in a high current region.

従って、本発明に係る半導体発光素子基板は、隣接する凸部の中心間距離が同じであるように密に配置された従来の凸部配置(三角形格子等)から凸部の数を減少させることによって、結晶成長面の面積が増加している。
仮に、従来の凸部配置の格子寸法を大きくすることによって、隣接する凸部中心間距離が同じであるように疎らに凸部を配置して凸部数を減少させると、結晶成長面の面積は増加するが、基板の第1主面と平行に横方向に伝搬する光の一部がいずれの凸部にも反射されることなく半導体発光素子の側面から出射し、光取り出し効率が低下してしまう。
それに対して、本発明の半導体発光素子基板においては、凸部の数を減少させ、かつ傾斜面(即ち結晶成長抑制面)が偏在するように凸部を配置することによって、傾斜面が密に配置される領域と粗に配置される領域とが第1主面上に設けられ、かつ結晶成長面の面積が増加される。その結果、結晶表面における貫通転位の数が増加し、得られる半導体発光素子の順電圧が減少する。結晶表面の貫通転位の数は、結晶表面において貫通転位に起因して発生するVピットの数を、原子間力顕微鏡(AFM)を用いて測定することによって見積もることができる。半導体結晶表面におけるVピットの数は、600〜800個/10μmであることが好ましい。
また、傾斜面が偏在するように凸部が配置されることにより、隣接する凸部の中心間距離が短い部分(または凸部が密に配置されている部分)と、隣接する凸部の中心間距離が長い部分(または凸部が粗に配置されている部分)とが第1主面上に存在するように凸部が配置され、その結果、基板の第1主面と平行に横方向に伝搬する光が、第1主面上に配置されるいずれかの凸部によって反射されて縦方向に伝搬するようになる。従って、本発明の半導体発光素子は、凸部が密に配置された従来の半導体発光素子と同程度の光取り出し効率を有し得る。
Therefore, the semiconductor light emitting element substrate according to the present invention reduces the number of convex portions from the conventional convex arrangement (triangular lattice or the like) densely arranged so that the distance between the centers of adjacent convex portions is the same. As a result, the area of the crystal growth surface is increased.
If the number of convex portions is reduced by increasing the lattice size of the conventional convex portion arrangement so that the distance between the centers of adjacent convex portions is the same and reducing the number of convex portions, the area of the crystal growth surface is Although it increases, a part of the light propagating in the lateral direction parallel to the first main surface of the substrate is emitted from the side surface of the semiconductor light emitting element without being reflected by any convex part, and the light extraction efficiency is lowered. End up.
On the other hand, in the semiconductor light emitting device substrate of the present invention, the inclined surfaces are densely arranged by reducing the number of convex portions and arranging the convex portions so that the inclined surfaces (that is, crystal growth suppressing surfaces) are unevenly distributed. The region to be arranged and the region to be roughly arranged are provided on the first main surface, and the area of the crystal growth surface is increased. As a result, the number of threading dislocations on the crystal surface increases, and the forward voltage of the resulting semiconductor light emitting device decreases. The number of threading dislocations on the crystal surface can be estimated by measuring the number of V pits generated due to threading dislocations on the crystal surface using an atomic force microscope (AFM). The number of V pits on the surface of the semiconductor crystal is preferably 600 to 800/10 μm 2 .
In addition, by arranging the convex portions so that the inclined surfaces are unevenly distributed, the distance between the centers of the adjacent convex portions is short (or the portion where the convex portions are densely arranged) and the center of the adjacent convex portions. Protrusions are arranged so that a part having a long distance (or a part where the convex parts are roughly arranged) is present on the first main surface, and as a result, the horizontal direction is parallel to the first main surface of the substrate. Is propagated in the vertical direction by being reflected by one of the convex portions arranged on the first main surface. Therefore, the semiconductor light emitting device of the present invention can have the same light extraction efficiency as that of a conventional semiconductor light emitting device having convex portions arranged densely.

上述のように凸部を減少させたことにより、基板の第1主面と平行に伝搬する光が凸部において反射されることなく基板側面から出射するのを防ぐために、凸部は、光がいずれかの凸部において反射されるように配置され、かつ寸法が定められる。その結果、凸部の減少による光取り出し効率の低下が抑制される。なお、形状および/または寸法の異なる2種類以上の凸部が第1主面上に配置されてもよい。   In order to prevent the light propagating parallel to the first main surface of the substrate from being emitted from the side surface of the substrate without being reflected by the convex portion by reducing the convex portion as described above, the convex portion It arrange | positions so that it may reflect in either convex part, and a dimension is defined. As a result, a decrease in light extraction efficiency due to a decrease in the convex portion is suppressed. Two or more types of convex portions having different shapes and / or dimensions may be arranged on the first main surface.

本発明に係る凸部配置の具体的形態の例を以下に示す。   The example of the specific form of the convex part arrangement | positioning which concerns on this invention is shown below.

[第1の形態]
本発明の半導体発光素子の第1の形態において、隣接する配置位置の間の距離が等しくなるように設定された従来の凸部配置位置から一部の配置位置を周期的に取り除いた配置で、複数の凸部を基板の第1主面上に設けることによって、凸部の数が減少させられている。例えば、三角形格子の各頂点に設定された従来の配置位置から、一部の配置位置を周期的に取り除いた配置で、複数の凸部を設けることによって凸部の数を減少させることができる。凸部の配置位置が取り除かれた部分では、他の部分と比較して、結晶成長が抑制される凸部の傾斜面が減少し、隣接する凸部の中心間距離が長くなる。凸部の数は、凸部の形状および大きさ並びに配置にもよるが、従来の形態における凸部数の60〜80%程度に減少させることが好ましく、より好ましくは70〜80%に減少させる。凸部の数が少なすぎると光取り出し効率が低下し、また、結晶の高転位化により内部量子効率が低下するので好ましくない。
第1の形態の一の例を図3に示す。この例における凸部配置は、図2に示すような従来の凸部配置位置から、三角形格子21の1辺を1辺とする六角形31の中心32に対応する配置位置を取り除いた配置で複数の凸部を配置して、凸部の数を減少させた凸部配置である。
第1の形態のもう1つの例を図4に示す。この例における凸部配置は、図2に示すような従来の凸部配置位置から、三角形格子21の1辺の長さの2倍を1辺とする菱形41の中心42に対応する配置位置を取り除いた配置で複数の凸部を配置して、凸部の数を減少させた凸部配置である。
[First embodiment]
In the first embodiment of the semiconductor light emitting device of the present invention, in an arrangement in which some arrangement positions are periodically removed from the conventional convex arrangement position set so that the distance between adjacent arrangement positions becomes equal, By providing a plurality of convex portions on the first main surface of the substrate, the number of convex portions is reduced. For example, it is possible to reduce the number of convex portions by providing a plurality of convex portions in an arrangement in which some arrangement positions are periodically removed from the conventional arrangement positions set at each vertex of the triangular lattice. In the portion where the arrangement position of the convex portion is removed, the inclined surface of the convex portion in which crystal growth is suppressed is reduced, and the distance between the centers of the adjacent convex portions is longer than in other portions. The number of convex portions depends on the shape, size and arrangement of the convex portions, but is preferably reduced to about 60 to 80%, more preferably 70 to 80% of the number of convex portions in the conventional form. If the number of convex portions is too small, the light extraction efficiency decreases, and the internal quantum efficiency decreases due to the high dislocation of the crystal, which is not preferable.
An example of the first form is shown in FIG. The convex portion arrangement in this example is an arrangement obtained by removing the arrangement position corresponding to the center 32 of the hexagon 31 having one side of the triangular lattice 21 as one side from the conventional convex portion arrangement position as shown in FIG. This is a convex arrangement in which the convex parts are arranged to reduce the number of convex parts.
Another example of the first form is shown in FIG. The convex arrangement in this example is an arrangement position corresponding to the center 42 of the rhombus 41 having one side that is twice the length of one side of the triangular lattice 21 from the conventional convex arrangement position as shown in FIG. In this arrangement, a plurality of convex portions are arranged in the removed arrangement to reduce the number of convex portions.

[第2の形態]
本発明の半導体発光素子の第2の形態において、第1主面上に存在する凸部数が従来の凸部配置よりも少なくなるようにして、多角形の各頂点および中心に配置された凸部の組を周期的に配置する。この場合、光取り出し効率が低下しないように、隣接する凸部の中心間距離が短い部分と長い距離とが存在するように、そしてその結果、結晶成長が抑制される凸部の傾斜面が偏在するように、即ち傾斜面が密に存在する部分と粗に存在する部分とが存在するように、前記凸部の組が第1主面上に配置される。例えば、正五角形の各頂点および中心に配置された6個の凸部の組を、結晶成長抑制面が密に存在する部分と粗に存在する部分とが存在するように、第1主面上に周期的に配置する。
凸部の数は、凸部の形状および大きさ並びに配置にもよるが、従来の形態における凸部数の55〜80%程度に減少させることが好ましく、より好ましくは70〜80%に減少させる。凸部の数が少なすぎると光取り出し効率が低下し、また、結晶の高転位化により内部量子効率が低下するので好ましくない。
第2の形態の一の例を図5に示す。この例において、図2に示すような従来の凸部と同じ寸法の凸部が正八角形51の各頂点に配置され、従来の凸部より寸法が大きい凸部52が前記正八角形の中心に配置される。この正八角形を1組として、一の方向において、一の正八角形がそれに隣接する別の正八角形と一辺53を共有するように、正八角形が配置され、かつ、前記一の方向と直交する方向において、一の正八角形がそれに隣接する別の正八角形と別の一辺54を共有するように、正八角形が配置される。
第2の形態のもう一つの例を図6に示す。この例において、正五角形61の各頂点および中心に凸部が配置され、この正五角形を1組として、三角形格子62の各格子点に前記正五角形の中心が一致するように、第1主面上に凸部が配置される。
第2の形態の更にもう一つの例を図7に示す。この例において、正五角形71の各頂点および中心に凸部が配置される。この正五角形を1組として、第1主面上の第1列72において、同一の方向に向けられた正五角形が直線状に配置され、第2列73において、第1列と反対方向に向けられた正五角形が直線状に配置され、かつ第1列の正五角形の中心と、第2列の正五角形の中心とがジグザグ配置になるように配置される。第3列74および第4列75においては、第1列および第2列の組と線対称になるように正五角形が配置される。更に、第2列における第1の正五角形、第2列において第1の正五角形の隣に位置する第2の正五角形、第1および第2の正五角形と線対称である、第3列における第3の正五角形および第4の正五角形の各々の中心76〜79を頂点とする四角形の中心701に、凸部が配置される。以上の構成で配置される第1列〜第4列の繰り返しに従って、凸部が配置される。
[Second form]
In the second embodiment of the semiconductor light emitting device of the present invention, the convex portions arranged at the apexes and the centers of the polygons so that the number of convex portions existing on the first main surface is smaller than the conventional convex portion arrangement. Are arranged periodically. In this case, in order not to reduce the light extraction efficiency, there are portions where the distance between the centers of adjacent convex portions is short and long, and as a result, the inclined surfaces of the convex portions where crystal growth is suppressed are unevenly distributed. In other words, the set of convex portions is arranged on the first main surface so that there are a portion where the inclined surfaces are densely present and a portion where the inclined surfaces are coarsely present. For example, a set of six convex portions arranged at each vertex and center of a regular pentagon is arranged on the first main surface so that there are a portion where the crystal growth suppression surface is dense and a portion where the crystal growth suppression surface is present. Arrange periodically.
The number of convex portions depends on the shape, size and arrangement of the convex portions, but is preferably reduced to about 55 to 80%, more preferably 70 to 80% of the number of convex portions in the conventional form. If the number of convex portions is too small, the light extraction efficiency decreases, and the internal quantum efficiency decreases due to the high dislocation of the crystal, which is not preferable.
An example of the second form is shown in FIG. In this example, a convex portion having the same size as the conventional convex portion as shown in FIG. 2 is arranged at each vertex of the regular octagon 51, and a convex portion 52 having a larger dimension than the conventional convex portion is arranged at the center of the regular octagon. Is done. A direction in which the regular octagon is arranged such that one regular octagon shares one side 53 with another regular octagon adjacent to the regular octagon in one direction, with the regular octagon as one set. , The regular octagon is arranged such that one regular octagon shares another side 54 with another regular octagon adjacent thereto.
Another example of the second form is shown in FIG. In this example, convex portions are arranged at the apexes and the center of the regular pentagon 61, and the first principal surface is formed such that the center of the regular pentagon coincides with each lattice point of the triangular lattice 62 with the regular pentagon as a set. A convex part is arranged on the top.
Another example of the second embodiment is shown in FIG. In this example, a convex portion is arranged at each vertex and center of the regular pentagon 71. With this regular pentagon as a set, regular pentagons oriented in the same direction are arranged in a straight line in the first row 72 on the first main surface, and in the second row 73 in the direction opposite to the first row. The regular pentagons arranged in a straight line are arranged so that the centers of the regular pentagons in the first row and the centers of the regular pentagons in the second row are arranged in a zigzag manner. In the third row 74 and the fourth row 75, regular pentagons are arranged so as to be line-symmetric with the set of the first row and the second row. Further, the first regular pentagon in the second column, the second regular pentagon located next to the first regular pentagon in the second column, and the first and second regular pentagons are line symmetric, in the third column Convex portions are arranged at the center 701 of a quadrangle whose apexes are the centers 76 to 79 of the third regular pentagon and the fourth regular pentagon. Convex portions are arranged according to repetition of the first to fourth rows arranged in the above configuration.

[第3の形態]
本発明の半導体発光素子の第3の形態において、隣接する配置位置の間の距離が等しくなるように設定された配置位置から、隣接する複数の配置位置を取り除くことにより、半導体結晶が成長可能な平坦領域が設けられる配置で、前記複数の凸部が前記第1主面上に設けられる。その結果、平坦領域以外の部分において、結晶成長が抑制される傾斜面が密に存在しているのに対し、平坦領域においては、結晶成長が抑制される凸部の傾斜面は存在しない。また、平坦領域では、それ以外の部分と比較して、隣接する凸部の中心間距離が長くなる。
平坦領域は、好ましくは第1主面上に周期的に設けられる。平坦領域の形状はいずれの形状であってもよく、例えば、円形、多角形等であってよい。平坦領域が円形である場合、平坦領域の寸法(即ち直径)は、好ましくは8〜20μm、より好ましくは10〜15μmである。第1主面の面積に対する平坦領域の面積の割合は、好ましくは10〜30%、より好ましくは10〜20%である。第1主面面積に対する平坦領域面積の割合が大き過ぎると、結晶の高転位化により内部量子効率が低下し、また、光取り出し効率が低下するので好ましくない。
第3の形態の一の例を図8に示す。図2に示すような従来の凸部配置と同じように凸部が配置された半導体発光素子基板の第1主面において、結晶成長が可能な円形の平坦領域81が周期的に配置されている。
[Third embodiment]
In the third embodiment of the semiconductor light emitting device of the present invention, a semiconductor crystal can be grown by removing a plurality of adjacent arrangement positions from the arrangement positions set so that the distances between adjacent arrangement positions are equal. The plurality of convex portions are provided on the first main surface in an arrangement in which a flat region is provided. As a result, there are densely inclined surfaces in which crystal growth is suppressed in portions other than the flat region, whereas there are no convex inclined surfaces in which crystal growth is suppressed in the flat region. Further, in the flat region, the distance between the centers of the adjacent convex portions is longer than that in other portions.
The flat region is preferably provided periodically on the first main surface. The shape of the flat region may be any shape, and may be, for example, a circle or a polygon. When the flat region is circular, the size (ie, diameter) of the flat region is preferably 8 to 20 μm, more preferably 10 to 15 μm. The ratio of the area of the flat region to the area of the first main surface is preferably 10 to 30%, more preferably 10 to 20%. If the ratio of the flat area to the first main surface area is too large, the internal quantum efficiency is lowered due to the high dislocation of the crystal, and the light extraction efficiency is lowered, which is not preferable.
An example of the third embodiment is shown in FIG. Circular flat regions 81 capable of crystal growth are periodically arranged on the first main surface of the semiconductor light emitting device substrate on which the convex portions are arranged as in the conventional convex portion arrangement as shown in FIG. .

本発明に係る凸部配置は、上で示したもの以外であってもよい。   The convex arrangement according to the present invention may be other than those shown above.

基板の結晶形態および凸部が形成される基板表面の面方位、マスク形状及び寸法、エッチング条件を目的形状に応じて設定することによって、基板上に凸部を形成することができる。   The convex part can be formed on the substrate by setting the crystal orientation of the substrate, the surface orientation of the substrate surface on which the convex part is formed, the mask shape and dimensions, and the etching conditions according to the target shape.

エッチング方法は、ウェットエッチングとドライエッチングのいずれであってもよい。ドライエッチングとして具体的には、気相エッチング、プラズマエッチング、反応性イオンエッチングを用いることができ、その際のエッチングガスとしては、Cl系、F系ガス、例えばCl、SiCl、BCl、HBr、SF、CHF、C、CFなどの他、不活性ガスのArなどが挙げられる。
ウェットエッチングのエッチング溶液としては、例えばサファイア基板の場合、リン酸、若しくはピロリン酸、又はそれに硫酸を加えた混酸、又は水酸化カリウムを用いることができる。エッチング液については、各基板材料に応じて種々のエッチャントを用いることができ、通常高温のエッチング液、例えば熱リン酸が用いられる。マスク材料としては、例えばSiOなどのケイ素酸化物の他、基板材料、そのエッチング液に応じて適宜選択され、例えば、V、Zr、Nb、Hf、Ti、Ta、Alからなる群から選択される少なくとも一つの元素の酸化物、Si、B、Alからなる群から選択される少なくとも一つの元素の窒化物を挙げることができる。
The etching method may be either wet etching or dry etching. Specifically, gas phase etching, plasma etching, and reactive ion etching can be used as the dry etching, and as an etching gas at that time, Cl-based gas, F-based gas, for example, Cl 2 , SiCl 4 , BCl 3 , In addition to HBr, SF 6 , CHF 3 , C 4 F 8 , CF 4 and the like, an inert gas such as Ar can be used.
As an etching solution for wet etching, for example, in the case of a sapphire substrate, phosphoric acid, pyrophosphoric acid, a mixed acid obtained by adding sulfuric acid thereto, or potassium hydroxide can be used. As the etching solution, various etchants can be used depending on the substrate material, and a high temperature etching solution such as hot phosphoric acid is usually used. The mask material is appropriately selected according to the substrate material and the etching solution in addition to silicon oxide such as SiO 2, and is selected from the group consisting of V, Zr, Nb, Hf, Ti, Ta, Al, for example. And oxides of at least one element, nitrides of at least one element selected from the group consisting of Si, B, and Al.

上述のような方法で形成された半導体発光素子基板上に、窒化物半導体を成長させることによって、窒化物半導体層発光素子を形成することができる。   A nitride semiconductor layer light emitting device can be formed by growing a nitride semiconductor on the semiconductor light emitting device substrate formed by the method as described above.

[基板]
基板は、半導体積層体をエピタキシャル成長させるのに適した材料から形成される。窒化物半導体のエピタキシャル成長に適した基板としては、サファイア、スピネル等の絶縁性基板や、SiC、窒化物半導体(例えば、GaN等)等の導電性基板が挙げられる。
[substrate]
The substrate is formed from a material suitable for epitaxial growth of the semiconductor stack. Examples of the substrate suitable for the epitaxial growth of the nitride semiconductor include insulating substrates such as sapphire and spinel, and conductive substrates such as SiC and nitride semiconductor (for example, GaN).

発光素子を形成するに当たって、基板上に成長させる半導体としては、一般式InAlGa1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される窒化ガリウム系化合物半導体材料を用いることができる。特に後述のようにその二元・三元混晶を好適に用いることができる。また、窒化物半導体以外に、GaAs、GaP系化化合物半導体、AlGaAs、InAlGaP系化合物半導体等の他の半導体材料にも適用することができる。 In forming a light-emitting element, a semiconductor grown on a substrate is represented by a general formula In x Al y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). The gallium nitride compound semiconductor material can be used. In particular, the binary / ternary mixed crystal can be suitably used as described later. In addition to nitride semiconductors, the present invention can also be applied to other semiconductor materials such as GaAs, GaP compound semiconductors, AlGaAs, InAlGaP compound semiconductors.

以下に、従来技術の半導体発光素子基板、および本発明の実施例の半導体発光素子基板における凸部配置について説明する。特に言及しない限り、全ての実施例において、凸部は後述する従来技術の凸部と同じ形状および寸法である。   Hereinafter, the arrangement of the convex portions in the semiconductor light emitting device substrate of the prior art and the semiconductor light emitting device substrate of the example of the present invention will be described. Unless otherwise specified, in all the examples, the convex portion has the same shape and dimensions as those of the conventional convex portion described later.

[従来技術(比較例)]
図2に、従来の半導体発光素子基板の第1主面における凸部の配置の一例を示す。この例において、格子形状が正三角形である三角形格子21の各格子点に略三角錐形状の凸部1が配置されている。凸部の形成されていない第1主面2、および凸部上部における第1主面と平行な平坦面3が、半導体結晶が成長可能な結晶成長面である。凸部の傾斜面4は、半導体結晶の成長が抑制される結晶成長抑制面である。隣接する凸部の中心間距離は同一であり、結晶成長面および結晶成長抑制面が均一に分布している。以下、この凸部配置を「従来の凸部配置」と呼ぶ。従来の凸部配置において、半導体発光素子の光取り出し効率を高くするために、凸部は密に配置されている。
[Prior art (comparative example)]
In FIG. 2, an example of arrangement | positioning of the convex part in the 1st main surface of the conventional semiconductor light-emitting element substrate is shown. In this example, a convex portion 1 having a substantially triangular pyramid shape is arranged at each lattice point of a triangular lattice 21 whose lattice shape is a regular triangle. The first main surface 2 where no protrusion is formed and the flat surface 3 parallel to the first main surface at the top of the protrusion are crystal growth surfaces on which a semiconductor crystal can be grown. The inclined surface 4 of the convex portion is a crystal growth suppression surface on which the growth of the semiconductor crystal is suppressed. The distance between the centers of the adjacent convex portions is the same, and the crystal growth surface and the crystal growth suppression surface are uniformly distributed. Hereinafter, this convex arrangement is referred to as “conventional convex arrangement”. In the conventional protrusion arrangement, the protrusions are densely arranged in order to increase the light extraction efficiency of the semiconductor light emitting device.

[実施例1(第1の形態)]
図3に、本発明の実施例1の半導体発光素子基板の第1主面における凸部の配置を示す。実施例1の凸部配置は、従来の凸部配置位置から、三角形格子21の1辺を1辺とする六角形31の中心32に対応する配置位置を取り除いた配置で複数の凸部を配置して、凸部の数を減少させた凸部配置である。実施例1の半導体発光素子基板の第1主面上に存在する凸部の数は、従来技術における凸部の数の67%である。
[Example 1 (first embodiment)]
FIG. 3 shows the arrangement of the protrusions on the first main surface of the semiconductor light emitting device substrate of Example 1 of the present invention. The convex portion arrangement of the first embodiment has a plurality of convex portions arranged by removing the arrangement position corresponding to the center 32 of the hexagon 31 having one side of the triangular lattice 21 as one side from the conventional convex portion arrangement position. Thus, the convex portion arrangement has a reduced number of convex portions. The number of convex portions existing on the first main surface of the semiconductor light emitting element substrate of Example 1 is 67% of the number of convex portions in the prior art.

[実施例2(第1の形態)]
図4に、本発明の実施例2の半導体発光素子基板の第1主面における凸部の配置を示す。実施例2の凸部配置は、従来の凸部配置位置から、三角形格子21の1辺の長さの2倍を1辺とする菱形41の中心42に対応する配置位置を取り除いた配置で複数の凸部を配置して、凸部の数を減少させた凸部配置である。実施例2の半導体発光素子基板の第1主面上に存在する凸部の数は、従来技術における凸部の数の75%である。
[Example 2 (first embodiment)]
FIG. 4 shows the arrangement of the protrusions on the first main surface of the semiconductor light emitting device substrate of Example 2 of the present invention. The convex portion arrangement of Example 2 is a plurality of arrangements in which the arrangement position corresponding to the center 42 of the rhombus 41 having one side that is twice the length of one side of the triangular lattice 21 is removed from the conventional convex portion arrangement position. This is a convex arrangement in which the convex parts are arranged to reduce the number of convex parts. The number of convex portions existing on the first main surface of the semiconductor light emitting element substrate of Example 2 is 75% of the number of convex portions in the conventional technique.

[実施例3(第2の形態)]
図5に、本発明の実施例3の半導体発光素子基板の第1主面における凸部の配置を示す。実施例3において、従来技術の凸部と同じ寸法の凸部が正八角形51の各頂点に配置され、従来技術の凸部より寸法が大きい凸部52が前記正八角形の中心に配置される。この正八角形を1組として、一の方向において、一の正八角形がそれに隣接する別の正八角形と一辺53を共有するように、正八角形が配置され、かつ、前記一の方向と直交する方向において、一の正八角形がそれに隣接する別の正八角形と別の一辺54を共有するように、正八角形が配置される。実施例3の半導体発光素子基板の第1主面上に存在する凸部の数は、従来技術における凸部の数の60%である。
[Example 3 (second embodiment)]
FIG. 5 shows the arrangement of the protrusions on the first main surface of the semiconductor light emitting device substrate of Example 3 of the present invention. In the third embodiment, a convex portion having the same size as the convex portion of the prior art is arranged at each vertex of the regular octagon 51, and a convex portion 52 having a larger dimension than the convex portion of the conventional technology is arranged at the center of the regular octagon. A direction in which the regular octagon is arranged such that one regular octagon shares one side 53 with another regular octagon adjacent to the regular octagon in one direction, with the regular octagon as one set. , The regular octagon is arranged such that one regular octagon shares another side 54 with another regular octagon adjacent thereto. The number of convex portions existing on the first main surface of the semiconductor light emitting element substrate of Example 3 is 60% of the number of convex portions in the conventional technique.

[実施例4(第2の形態)]
図6に、本発明の実施例4の半導体発光素子基板の第1主面における凸部の配置を示す。実施例4において、正五角形61の各頂点および中心に凸部が配置され、この正五角形を1組として、三角形格子62の各格子点に前記正五角形の中心が一致するように、第1主面上に凸部が配置される。実施例4の半導体発光素子基板の第1主面上に存在する凸部の数は、従来技術における凸部の数の78%である。
[Example 4 (second embodiment)]
FIG. 6 shows the arrangement of convex portions on the first main surface of the semiconductor light emitting element substrate of Example 4 of the present invention. In the fourth embodiment, convex portions are arranged at the apexes and the center of the regular pentagon 61, and the first main pentagon is set so that the center of the regular pentagon coincides with each lattice point of the triangular lattice 62. A convex part is arranged on the surface. The number of convex portions existing on the first main surface of the semiconductor light emitting element substrate of Example 4 is 78% of the number of convex portions in the prior art.

[実施例5(第2の形態)]
図7に、本発明の実施例5の半導体発光素子基板の第1主面における凸部の配置を示す。実施例5において、正五角形71の各頂点および中心に凸部が配置される。この正五角形を1組として、第1主面上の第1列72において、同一の方向に向けられた正五角形が直線状に配置され、第2列73において、第1列と反対方向に向けられた正五角形が直線状に配置され、かつ第1列の正五角形の中心と、第2列の正五角形の中心とがジグザグ配置になるように配置される。第3列74および第4列75においては、第1列および第2列の組と線対称になるように正五角形が配置される。更に、第2列における第1の正五角形、第2列において第1の正五角形の隣に位置する第2の正五角形、第1および第2の正五角形と線対称である、第3列における第3の正五角形および第4の正五角形の各々の中心76〜79を頂点とする四角形の中心701に、凸部が配置される。以上の構成で配置される第1列〜第4列の繰り返しに従って、凸部が配置される。実施例5の半導体発光素子基板の第1主面上に存在する凸部の数は、従来技術における凸部の数の57%である。
[Example 5 (second embodiment)]
FIG. 7 shows the arrangement of convex portions on the first main surface of the semiconductor light emitting element substrate of Example 5 of the present invention. In the fifth embodiment, convex portions are arranged at the apexes and the center of the regular pentagon 71. With this regular pentagon as a set, regular pentagons oriented in the same direction are arranged in a straight line in the first row 72 on the first main surface, and in the second row 73 in the direction opposite to the first row. The regular pentagons arranged in a straight line are arranged so that the centers of the regular pentagons in the first row and the centers of the regular pentagons in the second row are arranged in a zigzag manner. In the third row 74 and the fourth row 75, regular pentagons are arranged so as to be line-symmetric with the set of the first row and the second row. Further, the first regular pentagon in the second column, the second regular pentagon located next to the first regular pentagon in the second column, and the first and second regular pentagons are line symmetric, in the third column Convex portions are arranged at the center 701 of a quadrangle whose apexes are the centers 76 to 79 of the third regular pentagon and the fourth regular pentagon. Convex portions are arranged according to repetition of the first to fourth rows arranged in the above configuration. The number of convex portions existing on the first main surface of the semiconductor light emitting element substrate of Example 5 is 57% of the number of convex portions in the conventional technique.

[半導体発光素子の作製]
比較例および実施例1〜5の基板を用いて、以下に示す手順に従って、図9に示す電極形状を有する700×240μmの半導体発光素子を作製した。
サファイア基板のC面(0001)上に、エッチングマスクとなるSiO膜を成膜、パターニングすることによってマスクを形成した。
次に、エッチング液としてリン酸と硫酸の混酸を用いたエッチング浴に基板を浸漬し、溶液温度約290℃で約5分間エッチングした。
[Fabrication of semiconductor light emitting device]
A 700 × 240 μm semiconductor light-emitting device having the electrode shape shown in FIG. 9 was produced according to the following procedure using the substrates of the comparative example and Examples 1 to 5.
On the C surface (0001) of the sapphire substrate, an SiO 2 film serving as an etching mask was formed and patterned to form a mask.
Next, the substrate was immersed in an etching bath using a mixed acid of phosphoric acid and sulfuric acid as an etchant and etched at a solution temperature of about 290 ° C. for about 5 minutes.

続いて、基板をMOCVD装置に移し、凸部が形成された第1主面上に、低温(約510℃)で20nmのGaNバッファ層を成長させ、その上に高温(約1050℃)で約2μmのGaNをc軸成長させて、表面が平坦な下地層を形成した。   Subsequently, the substrate is transferred to an MOCVD apparatus, and a GaN buffer layer of 20 nm is grown at a low temperature (about 510 ° C.) on the first main surface on which the convex portions are formed. 2 μm of GaN was grown c-axis to form an underlayer having a flat surface.

このようにして得られた下地層が形成された基板上に、n型コンタクト層などのn型層と、活性層と、p型層を形成して半導体素子構造を作製した。
具体的には、上記下地層上に、
第1導電型層(n型層)として、膜厚5μmのSi(4.5×1018/cm)ドープGaNのn側コンタクト層と、コンタクト層と活性層との間の領域に、0.3μmのアンドープGaN層と、0.03μmのSi(4.5×1018/cm)ドープGaN層と、5nmのアンドープGaN層と、4nmのアンドープGaN層と2nmのアンドープIn0.1Ga0.9N層とを繰り返し交互に10層ずつ積層された多層膜を
n型層の上の活性層として、膜厚25nmのアンドープGaNの障壁層と、膜厚3nmのIn0.3Ga0.7Nの井戸層とを繰り返し交互に6層ずつ積層し、最後に障壁層を積層した多重量子井戸構造を、
活性層の上の第2導電型層(p型層)として、4nmのMg(5×1019/cm)ドープのAl0.15Ga0.85N層と2.5nmのMg(5×1019/cm)ドープIn0.03Ga0.97N層とを繰り返し5層ずつ交互に積層し、最後に上記AlGaN層を積層したp側多層膜層と、膜厚0.12μmのMg(1×1020/cm)ドープGaNのp側コンタクト層を、積層した構造(発光波長465nm、青色LED)を形成した。
An n-type layer such as an n-type contact layer, an active layer, and a p-type layer were formed on the substrate on which the base layer obtained in this way was formed, thereby producing a semiconductor element structure.
Specifically, on the underlayer,
As a first conductivity type layer (n-type layer), in the region between the n-side contact layer of Si (4.5 × 10 18 / cm 3 ) -doped GaN having a film thickness of 5 μm and the contact layer and the active layer, 0 .3 μm undoped GaN layer, 0.03 μm Si (4.5 × 10 18 / cm 3 ) doped GaN layer, 5 nm undoped GaN layer, 4 nm undoped GaN layer, and 2 nm undoped In 0.1 Ga A multilayer film in which 10 layers of 0.9 N layers are alternately and repeatedly stacked is used as an active layer on the n-type layer, an undoped GaN barrier layer with a thickness of 25 nm, and an In 0.3 Ga 0 film with a thickness of 3 nm. .7 A multi-quantum well structure in which six N layers are alternately and alternately stacked, and finally a barrier layer is stacked,
As the second conductivity type layer (p-type layer) on the active layer, a 4 nm Mg (5 × 10 19 / cm 3 ) -doped Al 0.15 Ga 0.85 N layer and a 2.5 nm Mg (5 × 10 19 / cm 3 ) Doped In 0.03 Ga 0.97 N layers are alternately stacked 5 layers at a time, and finally the p-side multilayer film layered with the AlGaN layer and Mg film with a thickness of 0.12 μm. A structure (emission wavelength 465 nm, blue LED) in which p-side contact layers of (1 × 10 20 / cm 3 ) -doped GaN were stacked was formed.

発光構造部の表面となるp型層表面に透光性のオーミック電極として、ITO(約170nm)を形成し、そのITOの上とn側コンタクト層の上に、Rh(約100nm)/Pt(約200nm)/Au(約500nm)をこの順に積層した構造の電極を設けた。   ITO (about 170 nm) is formed as a translucent ohmic electrode on the surface of the p-type layer, which is the surface of the light emitting structure, and Rh (about 100 nm) / Pt (on the ITO and n-side contact layer). An electrode having a structure in which about 200 nm) / Au (about 500 nm) was laminated in this order was provided.

[Vピット数の計測]
比較例および実施例1〜5において、上述の方法に従って活性層まで成長させたサンプルの表面を、原子間力顕微鏡(AFM)を用いて観察し、面積10μmのサンプル表面に存在するVピットの数を計測した。
[Measurement of the number of V pits]
In Comparative Examples and Examples 1 to 5, the surface of the sample grown to the active layer according to the above-described method was observed using an atomic force microscope (AFM), and V pits existing on the sample surface with an area of 10 μm 2 were observed. The number was measured.

上述の方法で作製された、比較例および実施例1〜5の半導体発光素子に関して、Vピット数、順電流(If)−相対光出力(Po)特性試験、順電流(If)−順電圧(Vf)特性試験、周囲温度(Ta)−相対光出力(Po)特性試験、および周囲温度(Ta)−順電圧(Vf)特性試験を行った。結果を表1および表2に示す。   Regarding the semiconductor light emitting devices of the comparative example and Examples 1 to 5 manufactured by the above method, the number of V pits, forward current (If) -relative light output (Po) characteristic test, forward current (If) -forward voltage ( Vf) characteristic test, ambient temperature (Ta) -relative light output (Po) characteristic test, and ambient temperature (Ta) -forward voltage (Vf) characteristic test were performed. The results are shown in Tables 1 and 2.

Figure 2012160502
Figure 2012160502

Figure 2012160502
Figure 2012160502

[Vピット数]
実施例1〜5において、活性層表面10μmあたりのVピット数は、比較例と比較して38〜155個増加した。
[Number of V-pits]
In Examples 1 to 5, the number of V pits per 10 μm 2 of the active layer surface increased by 38 to 155 compared to the comparative example.

[If−Po特性]
高電流域(100mA)においても、実施例1〜5の半導体発光素子は、比較例の半導体発光素子と同等の相対光出力Poを有した。
[If-Po characteristics]
Even in the high current region (100 mA), the semiconductor light emitting devices of Examples 1 to 5 had a relative light output Po equivalent to that of the semiconductor light emitting device of the comparative example.

[If−Vf特性]
実施例1〜5の全ての半導体発光素子において、高電流域(100mA)における順電圧Vfの増加が、比較例の半導体発光素子よりも低減するという結果が得られた。
[If-Vf characteristics]
In all the semiconductor light emitting devices of Examples 1 to 5, the increase in the forward voltage Vf in the high current region (100 mA) was reduced as compared with the semiconductor light emitting device of the comparative example.

[Ta−Po特性およびTa−Vf特性]
100℃および25℃の周囲温度Taにおいて相対光出力Poを測定した際のPo変化量に関して、比較例および実施例1〜5において有意な差は見られなかった。一方、周囲温度Taを100℃から25℃に変化させた際の順電圧Vfの増加量は、実施例1〜5の全てにおいて比較例よりも低減するという結果が得られた。
[Ta-Po characteristics and Ta-Vf characteristics]
Regarding the amount of change in Po when the relative light output Po was measured at the ambient temperature Ta of 100 ° C. and 25 ° C., no significant difference was found in the comparative example and Examples 1-5. On the other hand, the result that the increase amount of the forward voltage Vf when the ambient temperature Ta was changed from 100 ° C. to 25 ° C. was lower than that of the comparative example in all of Examples 1 to 5 was obtained.

半導体発光素子は、発光ダイオードとして省エネ照明用途に大きな需要があり、明るさも重要であるが、効率も同様に重要である。本発明の凹凸基板作製時に凹凸のない領域を局所的かつ周期的に配することにより、窒化物半導体の結晶成長条件を変えることなく高出力・低Vfと高効率化を達成できた。   Semiconductor light emitting devices are in great demand for energy saving lighting applications as light emitting diodes, and brightness is important, but efficiency is equally important. By locally and periodically arranging a region without unevenness during the production of the uneven substrate of the present invention, high output, low Vf and high efficiency can be achieved without changing the crystal growth conditions of the nitride semiconductor.

1 凸部
2 基板の第1主面(結晶成長面)
3 凸部上部の平坦面(結晶成長面)
4 凸部の傾斜面(結晶成長抑制面)
10 基板
11 半導体積層構造
12 下地層
13 第1導電型層(n型層)
14 活性層(発光層)
15 第2導電型層(p型層)
21 三角形格子
31 三角形格子の1辺を1辺とする六角形
32 六角形の中心
41 三角形格子の1辺の長さの2倍を1辺とする菱形
42 菱形の中心
51 正八角形
52 正八角形の中心の凸部
53 正八角形51の一辺
54 正八角形51の別の一辺
61 正五角形
62 三角形格子
71 正五角形
72 第1列
73 第2列
74 第3列
75 第4列
76 第1の正五角形の中心
77 第2の正五角形の中心
78 第3の正五角形の中心
79 第4の正五角形の中心
701 76〜79を頂点とする四角形の中心
81 平坦領域
111 第1電極(第1導電型層側)
112 第2電極(第2導電型層側)
113 接触電極
114 パッド電極
DESCRIPTION OF SYMBOLS 1 Convex part 2 The 1st main surface (crystal growth surface) of a board | substrate
3 Flat surface at the top of the protrusion (crystal growth surface)
4 Inclined surface of convex part (crystal growth suppression surface)
DESCRIPTION OF SYMBOLS 10 Substrate 11 Semiconductor laminated structure 12 Underlayer 13 First conductivity type layer (n-type layer)
14 Active layer (light emitting layer)
15 Second conductivity type layer (p-type layer)
21 Triangular lattice 31 Hexagon 32 having one side of the triangular lattice 32 Hexagonal center 41 Diamond 42 having one side twice the length of one side of the triangular lattice 42 Rhombus center 51 Regular octagon 52 Regular octagon Central convex portion 53 One side of regular octagon 51 54 Another side of regular octagon 51 61 Regular pentagon 62 Triangular lattice 71 Regular pentagon 72 First row 73 Second row 74 Third row 75 Fourth row 76 First regular pentagon Center 77 Second regular pentagonal center 78 Third regular pentagonal center 79 Fourth regular pentagonal center 701 76-79 square center 81 Flat region 111 First electrode (first conductivity type layer side) )
112 Second electrode (second conductivity type layer side)
113 Contact electrode 114 Pad electrode

Claims (10)

基板上の第1主面上に半導体結晶を成長させることによって半導体発光素子が製造される半導体発光素子基板であって、
前記半導体結晶の成長が抑制される傾斜面を各々有する複数の凸部が前記第1主面上に形成されており、
前記複数の凸部は、前記傾斜面が前記第1主面上で偏在し、かつ前記第1主面に対して平行に伝搬する光がいずれかの凸部において反射されるように配置されていることを特徴とする、半導体発光素子基板。
A semiconductor light emitting device substrate in which a semiconductor light emitting device is manufactured by growing a semiconductor crystal on a first main surface on a substrate,
A plurality of convex portions each having an inclined surface in which growth of the semiconductor crystal is suppressed is formed on the first main surface;
The plurality of convex portions are arranged such that the inclined surface is unevenly distributed on the first main surface, and light propagating in parallel to the first main surface is reflected by any one of the convex portions. A semiconductor light-emitting element substrate.
前記複数の凸部は、隣接する凸部の中心間距離が長い部分と、前記中心間距離が短い部分とが前記第1主面上に存在するように配置される、請求項1に記載の半導体発光素子基板。   The plurality of convex portions are arranged such that a portion having a long center-to-center distance between adjacent convex portions and a portion having a short center-to-center distance are present on the first main surface. Semiconductor light emitting device substrate. 前記複数の凸部は、隣接する配置位置の間の距離が等しくなるように設定された配置位置から、一部の配置位置を周期的に取り除いた配置で設けられている、請求項1または2に記載の半導体発光素子基板。   The plurality of convex portions are provided in an arrangement in which some arrangement positions are periodically removed from an arrangement position set so that distances between adjacent arrangement positions are equal. A semiconductor light-emitting element substrate according to 1. 多角形の各頂点および中心に配置された凸部を1組として、その凸部の組が前記第1主面上に周期的に配置されている、請求項1または2に記載の半導体発光素子基板。   3. The semiconductor light emitting element according to claim 1, wherein the convex portions arranged at each vertex and center of the polygon are taken as one set, and the set of the convex portions is periodically arranged on the first main surface. substrate. 大きさの異なる2種類以上の凸部が前記第1主面上に配置されている、請求項1〜4のいずれか1項に記載の半導体発光素子基板。   5. The semiconductor light-emitting element substrate according to claim 1, wherein two or more types of convex portions having different sizes are disposed on the first main surface. 隣接する配置位置の間の距離が等しくなるように設定された配置位置から、隣接する複数の配置位置を取り除くことにより、半導体結晶が成長可能な平坦領域が設けられる配置で、前記複数の凸部が前記第1主面上に設けられる、請求項1〜5のいずれか1項に記載の半導体発光素子基板。   In the arrangement in which a flat region in which a semiconductor crystal can be grown is provided by removing the plurality of adjacent arrangement positions from the arrangement positions set so that the distances between the adjacent arrangement positions are equal, the plurality of convex portions The semiconductor light emitting element substrate according to any one of claims 1 to 5, wherein is provided on the first main surface. 前記平坦領域が、前記第1主面上に周期的に設けられている、請求項6に記載の半導体発光素子基板。   The semiconductor light emitting element substrate according to claim 6, wherein the flat region is periodically provided on the first main surface. 前記第1主面の面積に対する前記平坦領域の面積の割合が10〜30%である、請求項6または7に記載の基板。   The substrate according to claim 6 or 7, wherein a ratio of an area of the flat region to an area of the first main surface is 10 to 30%. 半導体発光素子基板の製造方法において、
基板の第1主面にマスクを設けるマスク工程と、
前記マスクを介して基板をエッチングすることにより基板上に凸部を形成する、基板の凸構造形成工程と、
基板表面に半導体を成長させて半導体基板を形成する工程と
を具備する方法による、請求項1〜8のいずれか1項に記載の基板の製造方法。
In the method for manufacturing a semiconductor light emitting device substrate,
A mask process for providing a mask on the first main surface of the substrate;
Forming a convex portion on the substrate by etching the substrate through the mask;
The manufacturing method of the board | substrate of any one of Claims 1-8 by the method which comprises the process of growing a semiconductor on a substrate surface and forming a semiconductor substrate.
請求項1〜8のいずれか1項に記載の基板の第1主面上に窒化物半導体を成長させることによって窒化物半導体層発光素子を形成した半導体発光素子。   A semiconductor light emitting device in which a nitride semiconductor layer light emitting device is formed by growing a nitride semiconductor on the first main surface of the substrate according to claim 1.
JP2011017443A 2011-01-31 2011-01-31 Semiconductor light emitting device substrate, method of manufacturing the same, and semiconductor light emitting device using the substrate Active JP5707978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017443A JP5707978B2 (en) 2011-01-31 2011-01-31 Semiconductor light emitting device substrate, method of manufacturing the same, and semiconductor light emitting device using the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017443A JP5707978B2 (en) 2011-01-31 2011-01-31 Semiconductor light emitting device substrate, method of manufacturing the same, and semiconductor light emitting device using the substrate

Publications (2)

Publication Number Publication Date
JP2012160502A true JP2012160502A (en) 2012-08-23
JP5707978B2 JP5707978B2 (en) 2015-04-30

Family

ID=46840814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017443A Active JP5707978B2 (en) 2011-01-31 2011-01-31 Semiconductor light emitting device substrate, method of manufacturing the same, and semiconductor light emitting device using the substrate

Country Status (1)

Country Link
JP (1) JP5707978B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031887A1 (en) * 2011-08-31 2013-03-07 旭化成株式会社 Optical substrate and semiconductor light-emitting element
WO2014136393A1 (en) * 2013-03-08 2014-09-12 国立大学法人山口大学 Processed substrate and semiconductor device using same
JP2015032768A (en) * 2013-08-06 2015-02-16 豊田合成株式会社 Group iii nitride semiconductor light emitting element
JP2015106681A (en) * 2013-12-02 2015-06-08 日亜化学工業株式会社 Light emitting element manufacturing method
KR20150097951A (en) * 2014-02-19 2015-08-27 엘지이노텍 주식회사 Light emitting device and light emitting device package including the same
JP2017069463A (en) * 2015-09-30 2017-04-06 旭化成株式会社 Semiconductor light-emitting element and manufacturing method thereof
US9640714B2 (en) 2013-08-29 2017-05-02 Nichia Corporation Method for manufacturing light emitting element
JP2017126726A (en) * 2016-01-15 2017-07-20 旭化成株式会社 Semiconductor substrate for light-emitting device, manufacturing method thereof, and semiconductor light-emitting device arranged by use thereof
CN108028299A (en) * 2015-09-30 2018-05-11 旭化成株式会社 Optical element, semiconductor light-emitting element substrate and semiconductor light-emitting elements
US10243099B2 (en) 2017-05-16 2019-03-26 Epistar Corporation Light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197961A (en) * 2001-12-27 2003-07-11 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element
JP2007088165A (en) * 2005-09-21 2007-04-05 Hamamatsu Photonics Kk Compound semiconductor substrate, manufacturing method thereof, and compound semiconductor device
JP2008098347A (en) * 2006-10-11 2008-04-24 Sanken Electric Co Ltd Semiconductor light emitting element, and its manufacturing method
JP2008270689A (en) * 2007-04-25 2008-11-06 Mitsubishi Chemicals Corp GaN-BASED LIGHT EMITTING DIODE ELEMENT AND MANUFACTURING METHOD THEREOF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197961A (en) * 2001-12-27 2003-07-11 Toyoda Gosei Co Ltd Group iii nitride-based compound semiconductor light emitting element
JP2007088165A (en) * 2005-09-21 2007-04-05 Hamamatsu Photonics Kk Compound semiconductor substrate, manufacturing method thereof, and compound semiconductor device
JP2008098347A (en) * 2006-10-11 2008-04-24 Sanken Electric Co Ltd Semiconductor light emitting element, and its manufacturing method
JP2008270689A (en) * 2007-04-25 2008-11-06 Mitsubishi Chemicals Corp GaN-BASED LIGHT EMITTING DIODE ELEMENT AND MANUFACTURING METHOD THEREOF

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031887A1 (en) * 2011-08-31 2013-03-07 旭化成株式会社 Optical substrate and semiconductor light-emitting element
US9391236B2 (en) 2011-08-31 2016-07-12 Asahi Kasei E-Materials Corporation Substrate for optics having a plurality of dot lines, semiconductor light emitting device. and exposure apparatus
JPWO2013031887A1 (en) * 2011-08-31 2015-03-23 旭化成イーマテリアルズ株式会社 Optical substrate and semiconductor light emitting device
WO2014136393A1 (en) * 2013-03-08 2014-09-12 国立大学法人山口大学 Processed substrate and semiconductor device using same
US9287450B2 (en) 2013-08-06 2016-03-15 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device
JP2015032768A (en) * 2013-08-06 2015-02-16 豊田合成株式会社 Group iii nitride semiconductor light emitting element
US9640714B2 (en) 2013-08-29 2017-05-02 Nichia Corporation Method for manufacturing light emitting element
US10084108B2 (en) 2013-08-29 2018-09-25 Nichia Corporation Method for manufacturing light emitting element
JP2015106681A (en) * 2013-12-02 2015-06-08 日亜化学工業株式会社 Light emitting element manufacturing method
KR20150097951A (en) * 2014-02-19 2015-08-27 엘지이노텍 주식회사 Light emitting device and light emitting device package including the same
KR102114937B1 (en) * 2014-02-19 2020-05-25 엘지이노텍 주식회사 Light emitting device and light emitting device package including the same
JP2017069463A (en) * 2015-09-30 2017-04-06 旭化成株式会社 Semiconductor light-emitting element and manufacturing method thereof
CN108028299A (en) * 2015-09-30 2018-05-11 旭化成株式会社 Optical element, semiconductor light-emitting element substrate and semiconductor light-emitting elements
JP2017126726A (en) * 2016-01-15 2017-07-20 旭化成株式会社 Semiconductor substrate for light-emitting device, manufacturing method thereof, and semiconductor light-emitting device arranged by use thereof
US10243099B2 (en) 2017-05-16 2019-03-26 Epistar Corporation Light-emitting device

Also Published As

Publication number Publication date
JP5707978B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5707978B2 (en) Semiconductor light emitting device substrate, method of manufacturing the same, and semiconductor light emitting device using the substrate
US8779463B2 (en) Sapphire substrate and nitride semiconductor light emitting device
US9711685B2 (en) Sapphire substrate and method for manufacturing the same and nitride semiconductor light emitting element
JP5673581B2 (en) Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, lamp, and reticle
TWI466323B (en) Light emitting diode
JP5635432B2 (en) Photoelectric device and manufacturing method thereof
KR100705226B1 (en) Device having three dimentional structure light emitting layer and method for fabricating the same
US20110244610A1 (en) Method for producing group iii nitride semiconductor light-emitting device
US8111350B2 (en) Semiconductor light-emitting device and fabrication method thereof
JPWO2012093601A1 (en) Epitaxial growth substrate and GaN-based LED device
KR20140066397A (en) Light emitting diode having a plurality of light emitting units
KR20060105396A (en) Light-emitting gallium nitride-based iii-v group compound semiconductor device with polarization inverted layer
KR20100044403A (en) Nitride semiconductor light emitting device and method of manufacturing the same
KR20140071161A (en) Semiconductor Light Emitting Diode comprising Patterned Substrate having Conformity with Crystal Orientation and Manufacturing Method Thereof
JP2011082248A (en) Semiconductor light emitting element and method of manufacturing the same, and lamp
KR20090026688A (en) Semiconductor light emitting device and fabrication method thereof
CN107735870B (en) Light emitting module and method for manufacturing light emitting module
US20110284895A1 (en) Light-emitting semiconductor device
US20230420605A1 (en) Substrate structure, manufacturing method therefor, light-emitting device and manufacturing method therefor
JP5075318B2 (en) Nitride semiconductor substrate, semiconductor device, semiconductor light emitting element, semiconductor light receiving element, and method of manufacturing nitride semiconductor substrate
KR101055266B1 (en) Substrate for semiconductor device and semiconductor device using same
KR20120010351A (en) Manufacturing method of semiconductor light emitting device
JP2007081182A (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5707978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250