JP2012159517A - Radiation shielding body - Google Patents

Radiation shielding body Download PDF

Info

Publication number
JP2012159517A
JP2012159517A JP2012111488A JP2012111488A JP2012159517A JP 2012159517 A JP2012159517 A JP 2012159517A JP 2012111488 A JP2012111488 A JP 2012111488A JP 2012111488 A JP2012111488 A JP 2012111488A JP 2012159517 A JP2012159517 A JP 2012159517A
Authority
JP
Japan
Prior art keywords
shield
radiation
shielding body
shielding
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012111488A
Other languages
Japanese (ja)
Other versions
JP6028261B2 (en
Inventor
Takahiro Hirayama
貴浩 平山
Koji Hiroshima
功二 廣島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Shield Technical Res Co Ltd
Osaka Kako KK
Original Assignee
Japan Shield Technical Res Co Ltd
Osaka Kako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Shield Technical Res Co Ltd, Osaka Kako KK filed Critical Japan Shield Technical Res Co Ltd
Priority to JP2012111488A priority Critical patent/JP6028261B2/en
Publication of JP2012159517A publication Critical patent/JP2012159517A/en
Application granted granted Critical
Publication of JP6028261B2 publication Critical patent/JP6028261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an assisting tool for measuring radiation emitted by a measurement object by using an available radiation measurement tool while reducing influence of peripheral radiation as far as possible.SOLUTION: A combination of large shielding body 100 and a small shielding body 300 is used for a simple calibration of a cylindrical probe P or a radiation measurement device. An amount of radiation in the environment is measured with the cylindrical probe P or the radiation measurement device. Then a bottom lid 6 is set beneath a shielding body 2 of the large shielding body 100, a sample S is placed in the small shielding body 300 housed in the large shielding body 100, a top lid 4 of the large shielding body 100 is closed, and the cylindrical probe P is inserted into a circular opening 8 of the top lid 4 to measure the amount of the radiation.

Description

本発明は、放射能による汚染度合いを測定するのに用いられる放射線遮蔽体に関する。   The present invention relates to a radiation shield used for measuring the degree of contamination by radioactivity.

2011年3月の東北地方太平洋沖地震及び津波(東日本大震災)に伴って発生した福島原子力発電施設の事故は、今現在に至っても環境中に大量の放射性物質を放出し続けるという結果を招いており、広域に亘る放射能汚染が社会問題となっているのは周知の通りである。東日本大震災から1年が経過してようやく国の方針が決まり、この方針に沿った除染作業が始まったところである。   The accident at the Fukushima nuclear power generation facility caused by the March 2011 Tohoku-Pacific Ocean Earthquake and Tsunami (Great East Japan Earthquake) has resulted in continuing to release a large amount of radioactive material into the environment. As is well known, radioactive contamination over a wide area has become a social problem. One year has passed since the Great East Japan Earthquake, and the national policy was finally decided, and decontamination work in line with this policy has just begun.

放射能は目に見えないため、除染作業を行うに当たって除染前後の放射線量を測定して除染効果を明らかにすることが求められる。放射線測定器は様々な形態の測定器が販売されているが、一つの形態として円筒状のプローブを備え、このプローブをかざすことで対象物や空間の放射線量を測定する測定器を挙げることができる。プローブを備えた入手可能なポータブル放射線測定器を例示すれば、商品名「マルチ放射線モニタ」、「NaIシンチレーションサーベイメーター」、「GMパンケーキプローブ(東洋メディック株式会社販売)」などを挙げることができる。他の形態として矩形ボックス状の検出部を備えた携帯用多目的サーベイメーターとして、セイコー・イージーアンドジー株式会社が製造販売する「RadEye-B20」を入手することができる。   Since the radioactivity is invisible, it is necessary to measure the radiation dose before and after decontamination to clarify the decontamination effect when performing decontamination work. There are various types of radiation measuring instruments on the market. As one form, there is a measuring instrument that has a cylindrical probe and measures the radiation dose of the object or space by holding the probe. it can. Examples of available portable radiation measuring instruments equipped with a probe include the trade names “Multi Radiation Monitor”, “NaI Scintillation Survey Meter”, “GM Pancake Probe (Toyo Medic Co., Ltd.)”, etc. . “RadEye-B20” manufactured and sold by Seiko EG & G Co., Ltd. can be obtained as a portable multipurpose survey meter having a rectangular box-shaped detector as another form.

目に見えない放射能であるが故に、除染作業を請負かつ除染作業を実施する際に、除染対象がどの程度汚染され、そして除染後にどの程度まで除染効果があったのかを確認するのが望ましい。この目的のために上述した業者用の放射線測定器が使われるが、放射能汚染が広域に亘っているため、例えばプローブを測定対象(汚染した土壌など)にかざしたとしても周囲からの放射線の影響を受けて、測定対象(除染対象)に付着した放射性物質が発している放射線の他に周囲からの放射線まで検知してしまうという問題がある。   Because of the invisible radioactivity, when the decontamination work is contracted and the decontamination work is performed, how much the decontamination target is contaminated, and to what extent is the decontamination effect after decontamination It is desirable to confirm. For this purpose, the above-mentioned radiation measuring instruments for commercial use are used. However, since radioactive contamination is widespread, for example, even if the probe is held over the measurement target (contaminated soil, etc.) There is a problem in that, from the influence, the radiation from the surroundings is detected in addition to the radiation emitted by the radioactive substance attached to the measurement target (decontamination target).

本発明は、かかる問題を鑑みて為されたものであり、周囲からの放射線の影響を極力低減しながら且つ入手可能な放射線測定器を使って測定対象が発する放射線を測定するための補助具としての放射線遮蔽体を提供することを目的とする。   The present invention has been made in view of such a problem, and as an auxiliary tool for measuring radiation emitted from a measurement object using an available radiation measuring instrument while reducing the influence of radiation from the surroundings as much as possible. An object of the present invention is to provide a radiation shield.

上記の技術的課題は、本発明によれば、
上端及び下端が開放した筒状の遮蔽本体と、
該遮蔽本体の上端に設けられ、中央部分に開口を有する天井蓋と、
前記遮蔽本体の下端を閉塞する底蓋と、
前記遮蔽本体の下端部に設けられる井桁状の水平仕切りとを有する放射線遮蔽体を提供することにより達成される。
According to the present invention, the above technical problem is
A cylindrical shielding body with its upper and lower ends open;
A ceiling lid provided at the upper end of the shielding body and having an opening in the central portion;
A bottom lid for closing the lower end of the shielding body;
This is achieved by providing a radiation shield having a cross-girder horizontal partition provided at the lower end of the shield body.

本発明の放射線遮蔽体は、底蓋を外した状態で遮蔽本体の中に計測器のプローブを差し入れる又は遮蔽本体の上に計測器を置くことによりコンクリート面や屋根などの放射線量を周囲の放射線の影響を抑えたなかで計測することができる。他方、底蓋を装着した遮蔽空間の中に計測対象物(検体)を入れ、そしてこの遮蔽空間の中に計測器のプローブを差し入れる又は天井蓋の開口に計測器を位置させることで周囲の放射線の影響を抑えたなかで計測することができる。   The radiation shield according to the present invention can remove the radiation dose of the concrete surface, roof, etc. by inserting a probe of a measuring instrument into the shielding body with the bottom lid removed or placing the measuring instrument on the shielding body. Measurements can be made while suppressing the effects of radiation. On the other hand, a measurement object (specimen) is placed in a shielded space equipped with a bottom cover, and a probe of the measuring instrument is inserted into the shielded space or the instrument is positioned in the opening of the ceiling cover. Measurements can be made while suppressing the effects of radiation.

本発明の好ましい実施形態では、上記の遮蔽本体の中に収容可能な筒状の小型遮蔽体を更に有する。この小型遮蔽体を上記の遮蔽本体の中に入れることで放射線遮蔽率を高めることができる。また、この小型遮蔽体を遮蔽本体の上に載置し、そしてこの小型遮蔽体の中にプローブを挿入することで遮蔽本体の中に入れた検体やコンクリート面などの測定対象面の放射線量を計測できるだけでなく筒状のプローブや矩形ボックス状の検出部を備えた携帯用多目的サーベイメーター(上記「RadEye-B20」)による放射線測定を周囲の放射線の影響を抑えたなかで実施できると共に簡易な校正等を行うことができる。   In preferable embodiment of this invention, it has further the cylindrical small shielding body which can be accommodated in said shielding main body. The radiation shielding rate can be increased by placing the small shielding body in the shielding body. In addition, by placing this small shield on the shield body and inserting a probe into this small shield, the radiation dose on the surface to be measured such as the specimen or concrete surface placed in the shield body can be reduced. In addition to measuring, radiation measurement with a portable multipurpose survey meter (above "RadEye-B20") equipped with a cylindrical probe and rectangular box-shaped detector can be performed while suppressing the influence of ambient radiation, and simple calibration Etc. can be performed.

本発明の更なる好ましい実施形態では、前記遮蔽本体の上に載置可能な筒状の追加の遮蔽体を更に有し、該追加の遮蔽体の周囲壁にパンケーキ型のプローブが通過可能な切欠きを備え、前記追加の遮蔽体が上蓋によって閉塞可能である。このような追加の遮蔽体を用意することで、「GMパンケーキプローブ(東洋メディック株式会社販売)」による放射線測定を周囲の放射線の影響を抑えたなかで実施することができる。   In a further preferred embodiment of the present invention, a cylindrical additional shield that can be placed on the shield body is further provided, and a pancake-type probe can pass through a peripheral wall of the additional shield. A cutout is provided and the additional shield can be closed by the top lid. By preparing such an additional shield, radiation measurement by “GM Pancake Probe (Toyo Medic Co., Ltd.)” can be performed while suppressing the influence of surrounding radiation.

本発明によれば、請求項1に係る放射線遮蔽体と、小型遮蔽体と、上記の追加の遮蔽体との組み合わせによって、現在入手可能な業務用の放射線測定器の全てに適用可能な遮蔽体を提供できるだけでなく簡易な校正を行うことができる。   According to the present invention, the combination of the radiation shield according to claim 1, the small shield, and the additional shield described above can be applied to all currently available commercial radiation measuring instruments. As well as providing simple calibration.

第1実施例の放射線遮蔽体の斜視図である。It is a perspective view of the radiation shielding body of 1st Example. 第1実施例の放射線遮蔽体の吊り下げハンドルの一部を切断した拡大側面図である。It is the expanded side view which cut | disconnected some suspension handles of the radiation shielding body of 1st Example. 第1実施例の放射線遮蔽体の正面図である。It is a front view of the radiation shielding body of 1st Example. 第1実施例の放射線遮蔽体の背面図である。It is a rear view of the radiation shielding body of 1st Example. 第1実施例の放射線遮蔽体の右側面図である。It is a right view of the radiation shielding body of 1st Example. 第1実施例の放射線遮蔽体の左側面図である。It is a left view of the radiation shielding body of 1st Example. 第1実施例の放射線遮蔽体の右側面図であり、吊り下げハンドルを倒した状態を示す。It is a right view of the radiation shielding body of 1st Example, and shows the state which fell the suspension handle. 第1実施例の放射線遮蔽体の右側面図であり、2分割した天井蓋を開いた状態を示す。It is a right view of the radiation shield of 1st Example, and shows the state which opened the ceiling cover divided into 2 parts. 第1実施例の放射線遮蔽体の平面図である。It is a top view of the radiation shielding body of 1st Example. 第1実施例の放射線遮蔽体の吊り下げハンドルの一部を切断した拡大平面図である。It is the enlarged plan view which cut | disconnected some suspension handles of the radiation shielding body of 1st Example. 底蓋を装着した状態の第1実施例の放射線遮蔽体の底面図である。It is a bottom view of the radiation shielding body of the 1st example of a state where a bottom lid was equipped. 底蓋を取り外した状態の第1実施例の放射線遮蔽体の底面図である。It is a bottom view of the radiation shield of the 1st example of a state where the bottom lid was removed. 第1実施例の放射線遮蔽体の縦断面図であり、図3のA−A線に沿って断面した図である。It is the longitudinal cross-sectional view of the radiation shielding body of 1st Example, and is the figure cut along the AA line of FIG. 第1実施例の放射線遮蔽体の縦断面図であり、図9のC−C線に沿って断面した図である。It is the longitudinal cross-sectional view of the radiation shielding body of 1st Example, and is the figure cut along the CC line of FIG. 第1実施例の放射線遮蔽体の横断面図であり、図3のB−B線に沿って断面した図である。It is the cross-sectional view of the radiation shielding body of 1st Example, and is the figure cut along the BB line of FIG. 変形例の放射線遮蔽体の要部の拡大斜視図である。It is an expansion perspective view of the principal part of the radiation shield of a modification. 図16の変形例の放射線遮蔽体の取っ手の部分を抽出した平面図である。It is the top view which extracted the part of the handle of the radiation shield of the modification of FIG. 図17と同様に取っ手の部分を抽出した斜視図であり、取っ手が揺動可能であることを説明するための図である。It is the perspective view which extracted the part of the handle like FIG. 17, and is a figure for demonstrating that a handle can rock | fluctuate. 図16、図17に示す取っ手に指を差し入れて変形例の放射線遮蔽体を持ち上げた状態を示す図である。It is a figure which shows the state which inserted the finger | toe into the handle shown to FIG. 16, FIG. 17, and lifted the radiation shield of the modification. 図1などに図示の第1実施例の遮蔽体を使って検体の放射線を計測する使用態様を説明するための図である。It is a figure for demonstrating the usage aspect which measures the radiation of a test substance using the shielding body of 1st Example illustrated in FIG. 図1などに図示の第1実施例の遮蔽体を使ってコンクリート面や屋根などの放射線を計測する使用態様を説明するための図である。It is a figure for demonstrating the usage aspect which measures radiation, such as a concrete surface and a roof, using the shielding body of 1st Example illustrated in FIG. 第2実施例の放射線遮蔽体の斜視図である。It is a perspective view of the radiation shielding body of 2nd Example. 第2実施例の放射線遮蔽体の平面図である。It is a top view of the radiation shielding body of 2nd Example. 図23のD−D線に沿って切断した断面図である。It is sectional drawing cut | disconnected along the DD line | wire of FIG. 第2実施例の放射線遮蔽体を使ってコンクリート面や屋根などの放射線を計測する使用態様を説明するための図である。It is a figure for demonstrating the usage aspect which measures radiation, such as a concrete surface and a roof, using the radiation shielding body of 2nd Example. 第1実施例と第2実施例の放射線遮蔽体の組み合わせで検体の放射線を計測する使用態様を説明するための図である。It is a figure for demonstrating the usage aspect which measures the radiation of a test substance with the combination of the radiation shield of 1st Example and 2nd Example. 第1実施例の遮蔽体の上に第2実施例の遮蔽体を載置してコンクリート面や検体の放射線を計測したり放射線測定器の校正などを行う使用態様を説明するための図である。It is a figure for demonstrating the use aspect which mounts the shield of 2nd Example on the shield of 1st Example, measures the radiation of a concrete surface or a specimen, or calibrates a radiation measuring instrument. . 第1実施例の遮蔽体の上に第2実施例の遮蔽体を載置する使用形態の断面図である。It is sectional drawing of the usage pattern which mounts the shielding body of 2nd Example on the shielding body of 1st Example. 第3実施例の遮蔽体の斜視図である。It is a perspective view of the shielding body of 3rd Example. 第3実施例の遮蔽体を第1実施例の遮蔽体の上に載置して放射線を計測する使用態様の断面図である。It is sectional drawing of the usage condition which mounts the shield of 3rd Example on the shield of 1st Example, and measures a radiation.

以下に、添付の図面に基づいて本発明の好ましい実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は第1実施例の放射線遮蔽体の斜視図であり、図2は拡大した側面図である。図1、図2を参照して、第1実施例の放射線遮蔽体100は、上下に開放した筒状の遮蔽本体2と、この遮蔽本体2の外形輪郭と相補的な形状の天井蓋4及び底蓋6との組み合わせで構成され、これら遮蔽本体2、天井蓋4、底蓋6は、放射線遮蔽材料で構成され、この実施例では、外皮としてステンレス材料、この外皮で包囲される遮蔽材料として真鍮又は鉛が採用され、外皮の中に溶融した真鍮、鉛を流し込む事により遮蔽本体2、天井蓋4、底蓋6が作られている。天井蓋4及び底蓋6は平らな上面と下面とを有しており、底蓋6は、その外周縁に上方に向けて延び且つ遮蔽本体2の外周面に遊嵌するフランジ6aを備えている。   FIG. 1 is a perspective view of the radiation shield of the first embodiment, and FIG. 2 is an enlarged side view. Referring to FIGS. 1 and 2, a radiation shield 100 according to the first embodiment includes a cylindrical shielding body 2 opened up and down, a ceiling lid 4 having a shape complementary to the outer contour of the shielding body 2, and The shielding body 2, the ceiling lid 4, and the bottom lid 6 are composed of a radiation shielding material, and in this embodiment, the stainless steel material is used as the outer skin, and the shielding material surrounded by the outer skin is used. Brass or lead is used, and the shielding body 2, the ceiling lid 4, and the bottom lid 6 are made by pouring molten brass and lead into the outer skin. The ceiling lid 4 and the bottom lid 6 have a flat upper surface and a lower surface, and the bottom lid 6 includes a flange 6 a that extends upward on the outer peripheral edge thereof and loosely fits on the outer peripheral surface of the shielding body 2. Yes.

遮蔽本体2は、この実施例では、円筒形状を有しているが、これに限定されない。遮蔽本体2は、外形輪郭の断面形状として、楕円、四角形、六角形などの任意の形状を採用してもよい。また、遮蔽本体2の内周面も断面円形の形状を有しているが、これに限定されない。遮蔽本体2の内周面の断面形状として楕円、四角形、六角形などの任意の形状を採用してもよい。   In this embodiment, the shielding main body 2 has a cylindrical shape, but is not limited thereto. The shielding body 2 may adopt an arbitrary shape such as an ellipse, a quadrangle, or a hexagon as the cross-sectional shape of the outer contour. Moreover, although the internal peripheral surface of the shielding main body 2 also has a circular cross-sectional shape, it is not limited to this. As the cross-sectional shape of the inner peripheral surface of the shielding main body 2, an arbitrary shape such as an ellipse, a quadrangle, or a hexagon may be adopted.

天井蓋4は、その中央に上下に貫通した円形の開口8を有し、この実施例では、天井蓋4を2分割した2つの天井蓋ハーフ10、10で構成されている。天井蓋4は、遮蔽本体2と別体であってもよいが、この実施例では、各天井蓋ハーフ10がヒンジ12によって遮蔽本体2に連結され、一対の天井蓋ハーフ10、10を観音開きすることができる。好ましい態様として、天井蓋ハーフ10、10を閉じた状態で遮蔽本体2を持ち運ぶ際に天井蓋ハーフ10、10を相互に連結するフック14を備えているのが良いが、このフック14は必須ではなくフック14を省いてもよい。   The ceiling lid 4 has a circular opening 8 penetrating vertically at the center thereof. In this embodiment, the ceiling lid 4 is composed of two ceiling lid halves 10 and 10 obtained by dividing the ceiling lid 4 into two. The ceiling lid 4 may be a separate body from the shielding main body 2, but in this embodiment, each ceiling lid half 10 is connected to the shielding main body 2 by a hinge 12 to open the pair of ceiling lid halves 10, 10. be able to. As a preferred embodiment, it is preferable to provide a hook 14 for connecting the ceiling lid halves 10 and 10 to each other when the shielding body 2 is carried with the ceiling lid halves 10 and 10 closed. Alternatively, the hook 14 may be omitted.

底蓋6は遮蔽本体4とは別体構造であり、測定対象に応じて、後に説明するように、底蓋6無しで遮蔽本体2を使う場合と、底蓋6を遮蔽本体2に装着して使う場合とを選択することができる。   The bottom cover 6 has a separate structure from the shielding main body 4. Depending on the measurement object, the bottom cover 6 is attached to the shielding main body 2 when the shielding main body 2 is used without the bottom cover 6 as described later. You can choose when to use.

図3は第1実施例の遮蔽体100の正面図であり、図4は背面図であり、図5は右側面図であり、図6は左側面図である。図7は第1実施例の遮蔽体100の右側面図である。この図7を参照して、重量物である遮蔽本体2は、任意であるが吊り下げハンドル16を備えているのが持ち運びに好都合であり、吊り下げハンドル16は図7に示すように回動自在であるのが良い。   3 is a front view of the shield 100 according to the first embodiment, FIG. 4 is a rear view, FIG. 5 is a right side view, and FIG. 6 is a left side view. FIG. 7 is a right side view of the shield 100 according to the first embodiment. Referring to FIG. 7, the shield body 2 which is a heavy object is optionally provided with a hanging handle 16, which is convenient to carry, and the hanging handle 16 rotates as shown in FIG. It should be free.

図16〜図19は変形例の放射線遮蔽体200を示す。これら図16〜図19から分かるように遮蔽本体2の側壁に取っ手18を設けても良い。上述した第1実施例の遮蔽体100で説明した遮蔽本体2を吊り下げるための吊り下げハンドル16と共に/又は吊り下げハンドル16無しで図16〜図19に示すように遮蔽本体2の側壁に取っ手18が設けられる。この取っ手18は遮蔽本体2の位置調整に都合がよく、この取っ手18も吊り下げハンドル16と同様に回動自在であるのが都合がよい。   FIGS. 16-19 shows the radiation shield 200 of a modification. As can be seen from FIGS. 16 to 19, a handle 18 may be provided on the side wall of the shielding body 2. A handle on the side wall of the shielding body 2 as shown in FIGS. 16 to 19 with or without the suspension handle 16 for suspending the shielding body 2 described in the shielding body 100 of the first embodiment described above. 18 is provided. The handle 18 is convenient for adjusting the position of the shielding body 2, and the handle 18 is also conveniently rotatable like the suspension handle 16.

遮蔽本体2は、前述した放射線測定器の筒状のプローブを受け入れることのできる長尺の高さ寸法を有していてもよいが、この遮蔽体100、200は、プローブの一部を受け入れる比較的短尺の高さ寸法に設定されている。長尺の高さ寸法に設定したときには、天井蓋4の円形開口8は筒状のプローブと測定器遮蔽本体とを連結するケーブルを受け入れることのできる直径に設定すればよい。逆に、短尺の高さ寸法に設定したときには、後に説明する図20、図21に図示のように、天井蓋4の開口8は筒状のプローブPを受け入れることのできる直径に設定するのが好ましい。   The shield body 2 may have a long height dimension capable of receiving the above-described radiation measuring instrument cylindrical probe, but the shields 100 and 200 are comparative examples for receiving a part of the probe. Is set to a short height. When the height is set to be long, the circular opening 8 of the ceiling lid 4 may be set to a diameter that can receive a cable connecting the cylindrical probe and the measuring instrument shielding body. Conversely, when the height is set to be short, the opening 8 of the ceiling lid 4 is set to a diameter that can receive the cylindrical probe P as shown in FIGS. 20 and 21 described later. preferable.

図13、図14、図15を参照して、遮蔽本体2は、その下端部に井桁状の水平仕切り20を有しているのが好ましい。勿論、この水平仕切り20を遮蔽本体2とは別体に作り、必要に応じて水平仕切り20を遮蔽本体2の中に設置するようにしてもよい。   Referring to FIGS. 13, 14, and 15, the shielding body 2 preferably has a cross-shaped horizontal partition 20 at its lower end. Of course, the horizontal partition 20 may be formed separately from the shielding body 2 and the horizontal partition 20 may be installed in the shielding body 2 as necessary.

第1実施例の遮蔽体100の使い方を説明すると、図20は、底蓋6を遮蔽本体2に組み込んで、遮蔽本体2と天井蓋4と底蓋6とで遮蔽空間を形成する例を示す。遮蔽本体2の水平仕切り20の上に皿22に載せた測定対象の検体Sを載せ、そして、天井蓋4の円形開口8に筒状のプローブPを差し込む。これにより、周囲の放射線の影響を受けること無しに検体Sが発する放射線量を測定できる。なお、天井蓋4の円形開口8を規定する円形輪郭とプローブPの外形輪郭との間に隙間があったとしても、測定結果は誤差程度の違いしか無いことを本願発明者の数多くの実証データから裏付けることができる。   Describing how to use the shield 100 of the first embodiment, FIG. 20 shows an example in which the bottom lid 6 is incorporated in the shielding body 2 and a shielding space is formed by the shielding body 2, the ceiling lid 4, and the bottom lid 6. . The specimen S to be measured placed on the plate 22 is placed on the horizontal partition 20 of the shielding body 2, and the cylindrical probe P is inserted into the circular opening 8 of the ceiling lid 4. Thereby, the radiation dose emitted by the specimen S can be measured without being affected by surrounding radiation. It should be noted that even if there is a gap between the circular contour that defines the circular opening 8 of the ceiling lid 4 and the outer contour of the probe P, a large number of empirical data from the inventors of the present application indicates that the measurement results are only different in error. Can be supported from.

図21は、汚染した土壌やコンクリート面を直接的に測定する例を示す。この適用例では、底蓋6無しの状態で遮蔽本体2を測定対象面(地面など)の上に置き、そして、天井蓋4の円形開口8に筒状のプローブPを差し込むことで、測定対象面の放射線量を測定できる。   FIG. 21 shows an example of directly measuring contaminated soil or concrete surface. In this application example, the shielding main body 2 is placed on the measurement target surface (the ground or the like) without the bottom lid 6, and the cylindrical probe P is inserted into the circular opening 8 of the ceiling lid 4 to thereby measure the measurement target. The radiation dose on the surface can be measured.

図22〜図24は第2実施例の放射線遮蔽体300を示す。この第2実施例の放射線遮蔽体300は筒状の形状を有し、この遮蔽体300の下端部に、任意であるが、井桁状の水平仕切り302が設けられているが、この井桁状の水平仕切り302を遮蔽体300と別体に作り、必要に応じて水平仕切り302を第2実施例の遮蔽体300に組み込むようにしてもよい。   22-24 shows the radiation shield 300 of 2nd Example. The radiation shield 300 according to the second embodiment has a cylindrical shape, and optionally, a horizontal girder-like horizontal partition 302 is provided at the lower end of the shield 300. The horizontal partition 302 may be formed separately from the shield 300, and the horizontal partition 302 may be incorporated in the shield 300 of the second embodiment as necessary.

この第2実施例の遮蔽体300は、前述した第1実施例の遮蔽体100と一緒に使うことができるように、その外形輪郭や高さ寸法を設定するのがよい。すなわち、第2実施例の遮蔽体300は、第1実施例の遮蔽体100の遮蔽本体2の中に収容できる外形輪郭及び高さ寸法に設定するのがよい。従って、この第2実施例の遮蔽体300を「小型遮蔽体」と呼んで第2実施例の遮蔽体300を説明する。そして、この小型遮蔽体300を受け入れる第1実施例の遮蔽体100を「大型遮蔽体」と呼ぶ。   The shield 300 of the second embodiment is preferably set with its outer contour and height so that it can be used together with the shield 100 of the first embodiment described above. That is, the shielding body 300 of the second embodiment is preferably set to have an outer contour and a height dimension that can be accommodated in the shielding body 2 of the shielding body 100 of the first embodiment. Therefore, the shield 300 of the second embodiment will be described as a “small shield”. The shield 100 of the first embodiment that receives the small shield 300 is referred to as a “large shield”.

小型遮蔽体300は、この実施例では、円筒形状を有しているが、これに限定されない。小型遮蔽体300は、外形輪郭の断面形状として、楕円、四角形、六角形などの任意の形状を採用してもよい。また、小型遮蔽体300の内周面も断面円形の形状を有しているが、これに限定されない。小型遮蔽体300の内周面の断面形状として楕円、四角形、六角形などの任意の形状を採用してもよい。ただし、この小型遮蔽体300の中に筒状のプローブPを差し入れることができる大きさを有し、また、小型遮蔽体300の下端開口は、前述した第1実施例の大型遮蔽体100の天井蓋4の開口8と相補的な形状及び大きさであるのが好ましいが必ずしも必須ではない。   In this embodiment, the small shield 300 has a cylindrical shape, but is not limited thereto. The small shield 300 may adopt an arbitrary shape such as an ellipse, a rectangle, or a hexagon as the cross-sectional shape of the outer contour. Moreover, although the internal peripheral surface of the small shielding body 300 also has a circular cross-sectional shape, it is not limited to this. An arbitrary shape such as an ellipse, a quadrangle, or a hexagon may be adopted as the cross-sectional shape of the inner peripheral surface of the small shield 300. However, it has a size that allows the cylindrical probe P to be inserted into the small shield 300, and the lower end opening of the small shield 300 is the same as that of the large shield 100 of the first embodiment described above. It is preferable that the shape and size be complementary to the opening 8 of the ceiling lid 4, but it is not always necessary.

小型遮蔽体300を使って放射線を測定する方法を説明すると、図25は、測定対象面(地面など)の上に小型遮蔽体300を置き、この小型遮蔽体300の中に筒状のプローブPを差し込むことで、測定対象面の放射線量を測定できる。この使い方の例は、放射線量の比較的低いエリアを想定した小型遮蔽体300の使い方であると言える。また、小型遮蔽体300の上に「GMパンケーキプローブ(東洋メディック株式会社販売)」を置くことで、測定対象面の放射線量を測定できる。   A method of measuring radiation using the small shield 300 will be described. FIG. 25 shows a case where a small shield 300 is placed on a measurement target surface (such as the ground), and a cylindrical probe P is placed in the small shield 300. The amount of radiation on the measurement target surface can be measured by inserting. An example of this usage can be said to be a usage of the small shield 300 assuming an area with a relatively low radiation dose. Further, by placing “GM Pancake Probe (Toyo Medic Co., Ltd.)” on the small shield 300, the radiation dose on the measurement target surface can be measured.

図26は小型遮蔽体300の他の使い方を例示するものである。この図26から分かるように、大型遮蔽体100の中に小型遮蔽体300を挿入することで、周囲からの放射線の遮蔽効果を高めることができる。このことは、大型遮蔽体100の遮蔽本体2の下に底蓋6を設置した場合も底蓋6を設置しない場合でも同様である。   FIG. 26 illustrates another usage of the small shield 300. As can be seen from FIG. 26, the effect of shielding radiation from the surroundings can be enhanced by inserting the small shield 300 into the large shield 100. This is the same whether the bottom cover 6 is installed under the shielding main body 2 of the large shield 100 or when the bottom cover 6 is not installed.

この図26に図示の使い方として、筒状のプローブP又は放射線測定器の簡易な校正に大型遮蔽体100と小型遮蔽体300との組み合わせを用いることができる。具体的な使用方法を説明すると、先ず、プローブP又は放射線測定器で環境中の放射線量を測定する。次いで、大型遮蔽体100の遮蔽本体2の下に底蓋6を設置し、次いで、大型遮蔽体100の中に収容した小型遮蔽体300の中に検体Sを置いて、大型遮蔽体100の天井蓋4を閉める。変形例として、小型遮蔽体300の中に検体Sを入れ、次いで、検体Sを入れた小型遮蔽体300を大型遮蔽体100の中に入れて天井蓋4を閉めるようにしてもよい。また、底蓋6をその後で遮蔽本体2の下に設置してもよい。次いで、「GMパンケーキプローブ」(東洋メディック株式会社販売)やセイコー・イージーアンドジー株式会社が製造販売する「RadEye-B20」のような円筒形でない基準となる計測器を使って大型遮蔽体100の天井蓋4の開口8からコリメートされて出てくる放射線量を測定する。次いで、他の放射線測定器で大型遮蔽体100の天井蓋4の開口8から出てくる放射線量を複数回、測定してその平均を求め、基準となる放射線測定器で求めた値と比較する。これにより放射線測定器の簡易な校正を行うことができる。   As a usage shown in FIG. 26, a combination of the large shield 100 and the small shield 300 can be used for simple calibration of the cylindrical probe P or the radiation measuring instrument. A specific method of use will be described. First, the radiation dose in the environment is measured with the probe P or radiation measuring instrument. Next, the bottom lid 6 is installed under the shielding main body 2 of the large shield 100, and then the specimen S is placed in the small shield 300 accommodated in the large shield 100, and the ceiling of the large shield 100 is placed. Close the lid 4. As a modification, the sample S may be put in the small shield 300, and then the small shield 300 containing the sample S may be put in the large shield 100 and the ceiling lid 4 may be closed. Further, the bottom cover 6 may be installed below the shielding main body 2 thereafter. Next, a large shield 100 using a non-cylindrical measuring instrument such as “GM Pancake Probe” (sold by Toyo Medic Co., Ltd.) or “RadEye-B20” manufactured and sold by Seiko EG & G Co., Ltd. The amount of radiation that is collimated from the opening 8 of the ceiling lid 4 is measured. Next, the radiation dose coming out from the opening 8 of the ceiling lid 4 of the large shield 100 is measured a plurality of times with another radiation measuring instrument, and the average is obtained and compared with the value obtained with the reference radiation measuring instrument. . Thereby, a simple calibration of the radiation measuring instrument can be performed.

大型遮蔽体100と小型遮蔽体300との組み合わせの他の使用方法を図27、図28を参照して具体的に説明すると、先ず底蓋6の上に遮蔽本体2を置き、そして、天井蓋4を閉じた大型遮蔽体100の上に小型遮蔽体300を置く。そして、この小型遮蔽体300の中にプローブPを差し込んで放射線量を測定する。これをバックグランドの放射線量と呼ぶ。次に、小型遮蔽体300を取り除いて天井蓋4を開けて大型遮蔽体100の遮蔽本体2の中に検体Sを設置し、そして天井蓋4を閉じた大型遮蔽体100の上に小型遮蔽体300を置き、この大型遮蔽体100の上の小型遮蔽体300の中に筒状のプローブPを差し込んで放射線量を測定する。筒状ではない「GMパンケーキプローブ」や「RadEye-B20」の場合には、小型遮蔽体300の上に「GMパンケーキプローブ」や「RadEye-B20」を置いて放射線量を計測する。これにより検体Sの放射線量を測定することができる。また、放射線測定器の係数などを利用して計算によりBq/Kgなどの放射能量の概算を求めることができる。   Another method of using the combination of the large shield 100 and the small shield 300 will be described in detail with reference to FIGS. 27 and 28. First, the shield body 2 is placed on the bottom cover 6, and then the ceiling cover. A small shield 300 is placed on the large shield 100 with 4 closed. Then, the probe P is inserted into the small shield 300 to measure the radiation dose. This is called the background radiation dose. Next, the small shield 300 is removed, the ceiling lid 4 is opened, the specimen S is placed in the shielding body 2 of the large shield 100, and the small shield is placed on the large shield 100 with the ceiling lid 4 closed. 300 is placed, a cylindrical probe P is inserted into the small shield 300 on the large shield 100, and the radiation dose is measured. In the case of a “GM pancake probe” or “RadEye-B20” that is not cylindrical, the “GM pancake probe” or “RadEye-B20” is placed on the small shield 300 and the radiation dose is measured. Thereby, the radiation dose of the specimen S can be measured. Further, an approximate amount of radioactivity such as Bq / Kg can be obtained by calculation using the coefficient of the radiation measuring instrument.

図29は第3実施例の遮蔽体を示し、この第3実施例の遮蔽体400は上述した第2実施例の遮蔽体200の変形例でもある。この第3実施例の遮蔽体400は「GMパンケーキプローブ」(東洋メディック株式会社販売)に好適に適用可能であることから「パンケーキ形プローブ用遮蔽体」と呼ぶこととする。   FIG. 29 shows the shield of the third embodiment, and the shield 400 of the third embodiment is also a modification of the shield 200 of the second embodiment described above. Since the shield 400 of the third embodiment can be suitably applied to a “GM pancake probe” (sold by Toyo Medic Co., Ltd.), it will be referred to as a “pancake probe shield”.

パンケーキ形プローブ用遮蔽体400の遮蔽本体402は円筒形状を有しているが、これに限定されない。遮蔽本体402は、外形輪郭の断面形状として、楕円、四角形、六角形などの任意の形状を採用してもよい。また、遮蔽本体402の内周面は円形の形状を有しているが、これに限定されず、内周面の断面形状として楕円、四角形、六角形などの任意の形状を採用してもよい。ただし、このパンケーキ形プローブ用遮蔽体400の遮蔽本体402の中にパンケーキ形プローブPpcを差し入れることができる大きさを有している。遮蔽本体402はその周囲壁に上方に向けて開放した切り欠き404を有し、この切り欠き404を通じてパンケーキ形プローブPpcが遮蔽本体402の中にセットされる(図30)。   The shield body 402 of the pancake probe shield 400 has a cylindrical shape, but is not limited thereto. The shielding main body 402 may adopt an arbitrary shape such as an ellipse, a rectangle, or a hexagon as the cross-sectional shape of the outer contour. The inner peripheral surface of the shielding main body 402 has a circular shape, but is not limited to this, and an arbitrary shape such as an ellipse, a quadrangle, or a hexagon may be adopted as a cross-sectional shape of the inner peripheral surface. . However, the pancake probe Ppc is large enough to be inserted into the shield body 402 of the pancake probe shield 400. The shield body 402 has a notch 404 opened upward on its peripheral wall, through which the pancake probe Ppc is set in the shield body 402 (FIG. 30).

パンケーキ形プローブ用遮蔽体400は、また、上蓋404を有している。上蓋404は、実施例ではヒンジ410を介して遮蔽本体402に一体化されているが、上蓋404は遮蔽本体402と別体構造であってもよい。パンケーキ形プローブ用遮蔽体400は、また、傾倒動可能な吊り下げハンドル408を有しているが、吊り下げハンドル408を省いてもよい。   The pancake probe shield 400 also has an upper lid 404. In the embodiment, the upper lid 404 is integrated with the shielding main body 402 via the hinge 410, but the upper lid 404 may have a separate structure from the shielding main body 402. The pancake probe shield 400 also has a hanging handle 408 that can be tilted, but the hanging handle 408 may be omitted.

このパンケーキ形プローブ用遮蔽体400にあっても、前述した小型遮蔽体300(図25)と同様に単独で測定対象面の放射線量を測定するのに適用できるが、大型遮蔽体100との組み合わせを用いることができる。大型遮蔽体100とパンケーキ形プローブ用遮蔽体400との組み合わせにおける具体的な使用方法を図30を参照して説明すると、大型遮蔽体100の上にパンケーキ形プローブ用遮蔽体400を置いて、このパンケーキプローブ用遮蔽体400の中にパンケーキ形プローブPpcを設置することで大型遮蔽体100の中に入れた検体S(底蓋6を設置)や底蓋6を取り除いた状態で測定対象面(地面など)の放射線量を計測することができる。   Even in this pancake probe shield 400, it can be applied to measure the radiation dose on the surface to be measured independently, similar to the above-described small shield 300 (FIG. 25). Combinations can be used. A specific method of using the combination of the large shield 100 and the pancake probe shield 400 will be described with reference to FIG. 30. The pancake probe shield 400 is placed on the large shield 100. Measured with the pancake probe Ppc installed in the pancake probe shield 400 with the specimen S (bottom lid 6 installed) and the bottom lid 6 removed from the large shield 100 removed. The amount of radiation on the target surface (the ground, etc.) can be measured.

このパンケーキ形プローブ用遮蔽体400においても、その下端部に井桁状の水平仕切り412を設けるのがよい。この水平仕切り412はパンケーキ形プローブ用遮蔽体400と一体であってもよいし別体であってもよい。図30に示す参照符号414は、上蓋404に設けられた摘みを示す。   Also in this pancake probe shield 400, it is preferable to provide a cross-shaped horizontal partition 412 at its lower end. The horizontal partition 412 may be integral with the pancake probe shield 400 or may be separate. Reference numeral 414 shown in FIG. 30 indicates a knob provided on the upper lid 404.

以上、本発明の好ましい実施例や変形例を説明したが、本発明に従う放射線遮蔽体は、上述したステンレスなどの外皮で包囲された空間に充填する鉛や真鍮のような遮蔽材料を外皮の中に流し込む手法の他に、粒状の遮蔽材料を外皮の中に充填する手法を採用してもよい。すなわち粒状の遮蔽材料を外皮で包囲する構成を採用してもよい。これによれば、本発明に従う放射線遮蔽体を廃棄するときに、外皮の一部に孔を開けて、そして粒状の遮蔽材料を外皮の孔から流出させることで、外皮の材料と、外皮の中に充填する材料とを容易に分離させることができる。変形例として、ステンレスなどの外皮の中に、粒状のステンレス材料を充填してもよい。更なる変形例として、外皮の中に、粒状の鉛、真鍮、ステンレスなどの遮蔽金属を充填すると共に、更に、水、ホウ酸ナトリウム液のような放射線遮蔽液体を外皮の中に充填してもよい。   The preferred embodiments and modifications of the present invention have been described above. However, the radiation shield according to the present invention has a shielding material such as lead or brass filled in the space surrounded by the outer skin such as stainless steel as described above. In addition to the method of pouring into the outer shell, a method of filling the outer skin with a granular shielding material may be adopted. That is, a configuration in which the granular shielding material is surrounded by the outer skin may be employed. According to this, when the radiation shield according to the present invention is discarded, a hole is made in a part of the outer skin, and the granular shielding material is allowed to flow out of the outer skin hole, so that the outer skin material and the inner skin are removed. The material to be filled in can be easily separated. As a modification, a granular stainless steel material may be filled in a shell such as stainless steel. As a further modification, the outer skin is filled with a shielding metal such as granular lead, brass or stainless steel, and further, a radiation shielding liquid such as water or sodium borate liquid is filled into the outer skin. Good.

また、水平仕切り20、302、412に関し、実施例では井桁状の形状を採用してあるが、水平仕切り20などの目(空所)の形状は任意であり、例えば線材を渦巻き状にした形状を採用してもよい。   Moreover, regarding the horizontal partitions 20, 302, and 412, the cross-shaped shape is adopted in the embodiment, but the shape of the eye (vacant space) such as the horizontal partition 20 is arbitrary, for example, a shape in which the wire is spiraled May be adopted.

100 第1実施例の遮蔽体
2 遮蔽本体
4 天井蓋
6 底蓋
6a 底蓋のフランジ
8 天井蓋の円形開口
10 天井蓋ハーフ
12 ヒンジ
14 フック
16 吊り下げハンドル
18 取っ手
20 水平仕切り
22 皿
S 検体
300 小型遮蔽体
400 パンケーキ形プローブ用遮蔽体
DESCRIPTION OF SYMBOLS 100 Shielding body of 1st Example 2 Shielding body 4 Ceiling lid 6 Bottom lid 6a Bottom lid flange 8 Ceiling lid circular opening 10 Ceiling lid half 12 Hinge 14 Hook 16 Hanging handle 18 Handle 20 Horizontal partition 22 Dish S Sample 300 Small shield 400 Shield for pancake probe

Claims (6)

上端及び下端が開放した筒状の遮蔽本体と、
該遮蔽本体の上端に設けられ、中央部分に開口を有する天井蓋と、
前記遮蔽本体の下端を閉塞する底蓋と、
前記遮蔽本体の下端部に設けられる井桁状の水平仕切りとを有する放射線遮蔽体。
A cylindrical shielding body with its upper and lower ends open;
A ceiling lid provided at the upper end of the shielding body and having an opening in the central portion;
A bottom lid for closing the lower end of the shielding body;
A radiation shield having a cross-girder horizontal partition provided at a lower end of the shield body.
前記遮蔽本体が、放射線測定器の筒状のプローブの長さ寸法よりも小さな高さ寸法を有する、請求項1に記載の放射線遮蔽体。   The radiation shielding body according to claim 1, wherein the shielding body has a height dimension smaller than a length dimension of a cylindrical probe of the radiation measuring instrument. 前記天井蓋が2つに分割した一対の天井蓋ハーフで構成されている、請求項1又は2に記載の放射線遮蔽体。   The radiation shield according to claim 1, wherein the ceiling lid is configured by a pair of ceiling lid halves divided into two. 前記遮蔽本体の中に収容可能な筒状の小型遮蔽体を更に有する、請求項1〜3のいずれか一項に記載の放射線遮蔽体。   The radiation shielding body according to any one of claims 1 to 3, further comprising a cylindrical small shielding body that can be accommodated in the shielding body. 前記小型遮蔽体の下端部に上下に連通する水平仕切りが設けられている、請求項4に記載の放射線遮蔽体。   The radiation shield according to claim 4, wherein a horizontal partition that communicates vertically is provided at a lower end of the small shield. 前記遮蔽本体の上に載置可能な筒状の追加の遮蔽体を更に有し、
該追加の遮蔽体の周囲壁にパンケーキ形プローブが通過可能な切欠きを備え、
前記追加の遮蔽体が上蓋によって閉塞可能である、請求項1〜5のいずれか一項に記載の放射線遮蔽体。
It further has a cylindrical additional shield that can be placed on the shield body,
A notch through which a pancake probe can pass is provided on the peripheral wall of the additional shield,
The radiation shield according to claim 1, wherein the additional shield is closable by an upper lid.
JP2012111488A 2012-05-15 2012-05-15 Radiation shield Active JP6028261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111488A JP6028261B2 (en) 2012-05-15 2012-05-15 Radiation shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111488A JP6028261B2 (en) 2012-05-15 2012-05-15 Radiation shield

Publications (2)

Publication Number Publication Date
JP2012159517A true JP2012159517A (en) 2012-08-23
JP6028261B2 JP6028261B2 (en) 2016-11-16

Family

ID=46840134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111488A Active JP6028261B2 (en) 2012-05-15 2012-05-15 Radiation shield

Country Status (1)

Country Link
JP (1) JP6028261B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112066A (en) * 2012-10-31 2014-06-19 Earthshield Corp Radiation source detecting method
KR101829659B1 (en) * 2016-10-05 2018-02-22 (주)엠텍정보 Portable radioactivity detector and measuring metod thereof
JP2020012743A (en) * 2018-07-19 2020-01-23 株式会社千代田テクノル Tool for calibrating survey meter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445190A (en) * 1977-09-17 1979-04-10 Mitsui Mining & Smelting Co Radiation measuring lead container
JPS54115288A (en) * 1978-02-28 1979-09-07 Mitsubishi Electric Corp Radiation detector
JPH01292295A (en) * 1988-03-31 1989-11-24 Westinghouse Electric Corp <We> Method and apparatus for reducing diffusion of gas through construction
JPH09101372A (en) * 1995-10-03 1997-04-15 Fuji Electric Co Ltd Radioactive ray shielding structure of radioactive ray measuring device
JP2000121735A (en) * 1998-10-12 2000-04-28 Japan Nuclear Cycle Development Inst States Of Projects Continuous monitoring device for atmospheric dust
JP2003050279A (en) * 2001-08-08 2003-02-21 Hitachi Ltd Charged particle measuring device and its measuring method
JP2004317338A (en) * 2003-04-17 2004-11-11 Sumitomo Metal Ind Ltd Quality control method of melting furnace by-product
JP2005300459A (en) * 2004-04-15 2005-10-27 Toshiba Corp Radioactive dust monitor
WO2010103071A1 (en) * 2009-03-13 2010-09-16 Commissariat A L'energie Atomique Et Aux Énergies Alternatives Device for x-ray characterisation protected against parasitic ionising radiation sources

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445190A (en) * 1977-09-17 1979-04-10 Mitsui Mining & Smelting Co Radiation measuring lead container
JPS54115288A (en) * 1978-02-28 1979-09-07 Mitsubishi Electric Corp Radiation detector
JPH01292295A (en) * 1988-03-31 1989-11-24 Westinghouse Electric Corp <We> Method and apparatus for reducing diffusion of gas through construction
JPH09101372A (en) * 1995-10-03 1997-04-15 Fuji Electric Co Ltd Radioactive ray shielding structure of radioactive ray measuring device
JP2000121735A (en) * 1998-10-12 2000-04-28 Japan Nuclear Cycle Development Inst States Of Projects Continuous monitoring device for atmospheric dust
JP2003050279A (en) * 2001-08-08 2003-02-21 Hitachi Ltd Charged particle measuring device and its measuring method
JP2004317338A (en) * 2003-04-17 2004-11-11 Sumitomo Metal Ind Ltd Quality control method of melting furnace by-product
JP2005300459A (en) * 2004-04-15 2005-10-27 Toshiba Corp Radioactive dust monitor
WO2010103071A1 (en) * 2009-03-13 2010-09-16 Commissariat A L'energie Atomique Et Aux Énergies Alternatives Device for x-ray characterisation protected against parasitic ionising radiation sources

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112066A (en) * 2012-10-31 2014-06-19 Earthshield Corp Radiation source detecting method
KR101829659B1 (en) * 2016-10-05 2018-02-22 (주)엠텍정보 Portable radioactivity detector and measuring metod thereof
JP2020012743A (en) * 2018-07-19 2020-01-23 株式会社千代田テクノル Tool for calibrating survey meter

Also Published As

Publication number Publication date
JP6028261B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6028261B2 (en) Radiation shield
JP5680564B2 (en) Radiation characterization equipment protected against parasitic ionizing radiation sources
WO2021022955A1 (en) Radiation detection device
JP5977608B2 (en) Method for preparing correlation sheet for converting a value measured using a survey meter into a radioactive substance concentration and a simple analysis method for radioactive cesium concentration using the sheet
AU2010200897B2 (en) Soil Core Sample Storage Container for Visual Inspection with the Naked Eye
JP3188758U (en) Portable radiation shield and radiation shield device
CN203345432U (en) Body fluid sample transfer box
CN106840778B (en) A kind of radioactivity survey method characterizing deep sandstone type uranium mineralization information
JP6038646B2 (en) Radioactivity measuring device
CN111380879A (en) Mass attenuation measuring method and device based on gamma ray total energy peak
CN209901338U (en) Chemical adsorption appearance sample cell strutting arrangement
JP2018063205A (en) Boron concentration meter and method for estimating boron concentration
JP2014010088A (en) Method for measuring underground radiation dose and underground radiation dose measurement auxiliary tool
JP6268699B2 (en) Radioactivity concentration measuring apparatus and method for measuring radioactivity concentration
JP2014228530A (en) Design method of radiation shield structure, and dosimeter shield body using the same
JP3180424U (en) Measuring instrument aids
Singleton et al. Radiation‐guided breast sentinel lymph node biopsies–is a handling delay for radiation protection necessary?
JP5674230B1 (en) Underwater radioactivity exploration device using liquid shielding effect
JP2014112070A (en) Radiation shield
CN207586071U (en) Survey the easy device of plastic density
CN214765620U (en) Test tube save set for clinical examination
CN207718828U (en) A kind of nondestructive analysis detector calibration source frame
CN210570643U (en) Instrument for survey and drawing
JP2018141696A (en) Radioactivity detection device and radioactivity measurement device
US10695021B2 (en) Image pickup apparatus for breast examination

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6028261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250