JP2012154840A - Liquid level gauge - Google Patents

Liquid level gauge Download PDF

Info

Publication number
JP2012154840A
JP2012154840A JP2011015236A JP2011015236A JP2012154840A JP 2012154840 A JP2012154840 A JP 2012154840A JP 2011015236 A JP2011015236 A JP 2011015236A JP 2011015236 A JP2011015236 A JP 2011015236A JP 2012154840 A JP2012154840 A JP 2012154840A
Authority
JP
Japan
Prior art keywords
liquid
molten zinc
probes
electrodes
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011015236A
Other languages
Japanese (ja)
Inventor
Yoshinori Takeuchi
喜則 武内
Katsumasa Nakahara
勝正 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinotech Solar Energy Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kinotech Solar Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Kinotech Solar Energy Corp filed Critical Asahi Glass Co Ltd
Priority to JP2011015236A priority Critical patent/JP2012154840A/en
Publication of JP2012154840A publication Critical patent/JP2012154840A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid level gauge that can detect a position and the like of an upper layer liquid with high accuracy with a simple structure without being unnecessarily corroded even when the upper layer liquid and a lower layer liquid are kept at a high temperature and highly corrosive to metal, in a storage tank or a reaction tank storing a two-layer structured liquid whose upper layer liquid is a low conductive liquid such as an electrolyte and whose lower layer liquid has a higher specific gravity than that of the upper layer liquid to be unnecessarily mixed with the upper layer liquid and is a liquid having higher conductivity than that of the upper layer liquid.SOLUTION: A liquid level position and the like of the upper layer liquid 22 is detected according to a change in admittance output between a pair of electrodes 30, 40, 130, 140 in a state being supplied with AC current from an AC power source 50, especially a change in admittance output between probes 34, 44, 132b, 142b having a contact outer surface made of a material exhibiting corrosion resistance to the liquids.

Description

本発明は、液体中に浸漬された電極間に交流電流を流して液面位置を検出する液面計に関し、特に、高温の溶融塩の液体の下に高温の溶融金属の液体が位置する等の比重が異なり容易に混合しない腐食性の2種の高温液体から成る2層構造の液体の液面位置を検出するための液面計に関するものである。   The present invention relates to a level gauge that detects the position of a liquid surface by passing an alternating current between electrodes immersed in the liquid, and in particular, a high-temperature molten metal liquid is located under a high-temperature molten salt liquid. The present invention relates to a liquid level gauge for detecting the liquid level position of a two-layered liquid composed of two kinds of corrosive high-temperature liquids having different specific gravity and not easily mixed.

近年、貯槽や反応槽中の液体の液面の位置を検出する液面計としては、複数の電極を液中に設置して、液面の位置の変化による電極間の静電容量値等の変化で、液面の位置を検出するもの、フロートを液中に設置して、フロート位置の変化で、液面の位置を検出するもの、及び超音波やレーザー光により、液面までの距離を測定して、液面の位置を検出するもの等の構成が用いられている。   In recent years, as a level gauge for detecting the position of the liquid level in a storage tank or reaction tank, a plurality of electrodes are installed in the liquid, and the capacitance value between the electrodes due to the change in the position of the liquid level, etc. Change to detect the position of the liquid level, Install a float in the liquid, detect the position of the liquid level by changing the float position, and the distance to the liquid level by ultrasonic or laser light A configuration such as one that measures and detects the position of the liquid level is used.

これらの中で、超音波やレーザー光を用いて、上方から液面の位置を検出する構成は、液面上に液体の蒸気が冷えて形成されるミスト層が存在すると、安定した液面の位置の検出が行い難い。超音波を用いる場合には、貯槽の底部に発振器を設置し、下方から液面を検出してもよいが、溶融塩のような高温の液体を対象とする場合には、貯槽の底部への発振器の設置が難しい。   Among these, the configuration for detecting the position of the liquid level from above using ultrasonic waves or laser light is a stable liquid level when there is a mist layer formed by cooling the liquid vapor on the liquid level. It is difficult to detect the position. When using ultrasonic waves, an oscillator may be installed at the bottom of the storage tank, and the liquid level may be detected from below, but when targeting a high-temperature liquid such as a molten salt, It is difficult to install an oscillator.

フロートを用いる構成では、液面の直接的な検出に代えて、位置検出が容易なフロートを用いて検出しているに過ぎず、測定部材に関する選択肢は広がるものの、結局、フロート位置を何らかの方法で検出しなければならないことに変わりはない。   In the configuration using the float, instead of directly detecting the liquid level, the detection is merely performed using a float that is easy to detect the position. There is no change in what must be detected.

これに対して、複数の電極間の静電容量値等の変化によって液面位置を検出する構成は、構造が簡便で、高温の液体を対象として使用することができる利点がある。   On the other hand, the configuration in which the liquid surface position is detected by a change in capacitance value between a plurality of electrodes has an advantage that the structure is simple and high temperature liquid can be used as a target.

特許文献1は、いずれも真鍮やステンレス鋼の金属製である棒状中心電極及び外筒電極を備えた静電容量型液面計を開示する。   Patent Document 1 discloses a capacitance type liquid level gauge provided with a rod-shaped center electrode and an outer cylinder electrode, both of which are made of brass or stainless steel metal.

特開2004−286651号公報JP 2004-286651 A

しかしながら、本発明者の検討によれば、特許文献1が開示する静電容量型液面計は、液化ガスタンク中の液体の液面を測定するためのものであるため、真鍮やステンレス鋼といった金属製の一対の電極を備えた構成を有するものに過ぎず、高温で高腐食性の電解質や金属から成る2層構造の液体の液面や界面を検出するための構成を何等提案するものではない。   However, according to the study of the present inventor, since the capacitance type liquid level gauge disclosed in Patent Document 1 is for measuring the liquid level of the liquid in the liquefied gas tank, a metal such as brass or stainless steel is used. It only has a configuration with a pair of manufactured electrodes, and does not propose any configuration for detecting the liquid level or interface of a two-layer liquid composed of a highly corrosive electrolyte or metal at high temperatures. .

特に、本発明者の検討によれば、電解反応容器内で、溶融塩化亜鉛を電気分解して溶融亜鉛を得るような場合においては、溶融塩化亜鉛及び溶融亜鉛は、いずれも高温であって金属に対して高腐食性の液体であるため、上層に位置する溶融塩化亜鉛の液面の位置を精度よく実用的に検出することができると共に、更に拡張的に、溶融塩化亜鉛と溶融亜鉛との界面の位置を精度よく実用的に検出することができ、適宜のタイミングで溶融塩化亜鉛の供給や電気分解を停止して、溶融塩化亜鉛の液面の不要な上昇や低下を停止することに
寄与し得る構成の液面計が必要となる。
In particular, according to the study by the present inventor, in the case where molten zinc chloride is electrolyzed in an electrolytic reaction vessel to obtain molten zinc, both molten zinc chloride and molten zinc are high-temperature metals. Since the liquid is highly corrosive, the position of the liquid surface of the molten zinc chloride located in the upper layer can be detected practically with high accuracy. The position of the interface can be detected accurately and practically, and the supply and electrolysis of molten zinc chloride are stopped at an appropriate timing, contributing to stopping the unnecessary rise and fall of the molten zinc chloride liquid level. A level gauge with a possible configuration is required.

しかしながら、現状としてこのような液面計は実用化されてはおらず、電解反応容器内で、溶融塩化亜鉛を電気分解して溶融亜鉛を得るような場合に、現実に適用し得る新規な構成の液面計の実現が待望された状況にある。   However, at present, such a level gauge has not been put to practical use, and has a novel configuration that can be applied in practice when electrolysis of molten zinc chloride is performed in an electrolytic reaction vessel to obtain molten zinc. The realization of a liquid level gauge is awaited.

本発明は、以上の検討を経てなされたもので、上層液体が電解液等の導電性が低い液体で、下層液体が上層液体よりも比重が重く上層液体と不要に混合せず、かつ上層液体よりも導電性の高い液体である2層構造の液体が貯留されている貯槽や反応槽において、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置等を高精度に検出可能な液面計を提供することを目的とする。   The present invention has been made through the above-described studies. The upper layer liquid is a liquid having low conductivity such as an electrolytic solution, the lower layer liquid has a higher specific gravity than the upper layer liquid, and is not unnecessarily mixed with the upper layer liquid. In a storage tank or reaction tank in which a liquid having a two-layer structure, which is a liquid with higher conductivity, is stored, both the upper liquid and the lower liquid are maintained at high temperatures and are highly corrosive to metals. An object of the present invention is to provide a liquid level gauge that can detect the position of the liquid level of the upper liquid layer and the like with a simple configuration without causing unnecessary corrosion.

以上のような目的を達成するため、本発明は、第1の局面において、容器内に溜められて金属に対して腐食性を有する電解質である第1の液体と、前記容器内に前記第1の液体よりも下方に溜められて金属に対して腐食性を有する導電性の第2の液体と、の成す界面を横断自在に、前記第1の液体及び前記第2の液体に対して同一の浸漬長さでもって浸漬自在であって、前記第1の液体及び前記第2の液体に対して耐腐食性を呈する材料から成る接触外面を伴う探触子を、それぞれ有する一対の電極と、前記一対の電極のそれぞれの前記探触子の間に交流電流を供給自在な交流電源と、前記一対の電極のそれぞれの前記探触子の先端が、前記第1の液体内に位置する場合に、前記探触子間を流れる前記交流電流に基づくアドミッタンス出力の変化に応じて、前記第1の液体の液面の位置を検出自在である検出部と、を備える液面計である。   In order to achieve the above object, in the first aspect, the present invention provides a first liquid that is an electrolyte that is stored in a container and has corrosiveness to a metal, and the first liquid in the container. The same as the first liquid and the second liquid so as to be able to traverse the interface formed with the conductive second liquid that is stored below the liquid and is corrosive to the metal. A pair of electrodes each having a probe with a contact outer surface made of a material that is immersable with an immersion length and is resistant to corrosion with respect to the first liquid and the second liquid; When the AC power source capable of supplying an AC current between each of the probes of a pair of electrodes and the tip of each of the probes of the pair of electrodes are located in the first liquid, Admittance output based on the alternating current flowing between the probes Depending on the reduction, a detecting unit is freely detect the position of the liquid surface of the first liquid, a liquid level meter comprising.

また本発明は、第1の局面に加えて、前記検出部は、更に、前記一対の電極のそれぞれの前記探触子の前記先端が、前記第1の液体と前記第2の液体と界面を横切る際に、前記探触子間を流れる前記交流電流に基づくアドミッタンス出力の変化に応じて、前記界面の位置を検出自在であることを第2の局面とする。   Further, according to the present invention, in addition to the first aspect, the detection unit further includes an interface between the tip of the probe of each of the pair of electrodes and the interface between the first liquid and the second liquid. It is a second aspect that the position of the interface can be detected in accordance with a change in admittance output based on the alternating current flowing between the probes when crossing.

また本発明は、第1又は第2の局面に加えて、前記一対の電極のそれぞれの前記探触子は、その先端部に前記界面と平行に設定自在な平坦面を有する円柱状部材であることを第3の局面とする。   Further, in addition to the first or second aspect, the present invention is a columnar member in which each of the probes of the pair of electrodes has a flat surface that can be set parallel to the interface at a tip portion thereof. This is the third aspect.

また本発明は、第1から第3のいずれかの局面に加えて、前記一対の電極のそれぞれの前記探触子は、グラファイト製であることを第4の局面とする。   In addition to any one of the first to third aspects, a fourth aspect of the present invention is that each of the probes of the pair of electrodes is made of graphite.

また本発明は、第1から第4のいずれかの局面に加えて、前記一対の電極のそれぞれの前記探触子は、前記第一対の電極の導電部材に対応して連絡し、前記導電部材は、前記第1の液体及び前記第2の液体に対して耐腐食性を呈する絶縁部材で覆われることを第5の局面とする。   According to the present invention, in addition to any one of the first to fourth aspects, each of the probes of the pair of electrodes communicates with a conductive member of the pair of electrodes, and the conductive According to a fifth aspect, the member is covered with an insulating member exhibiting corrosion resistance with respect to the first liquid and the second liquid.

また本発明は、第1又は第2の局面に加えて、前記一対の電極のそれぞれの前記探触子は、シース型熱電対を構成し、前記検出部は、更に、前記第1の液体及び前記第2の液体の温度を検出自在であることを第6の局面とする。   According to the present invention, in addition to the first or second aspect, each of the probes of the pair of electrodes constitutes a sheath type thermocouple, and the detection unit further includes the first liquid and The sixth aspect is that the temperature of the second liquid can be detected.

また本発明は、第6の局面に加えて、前記シース型熱電対は、絶縁性セラミック製の保護管に収容されることを第7の局面とする。   In addition to the sixth aspect, the present invention has a seventh aspect in which the sheath-type thermocouple is accommodated in a protective tube made of an insulating ceramic.

また本発明は、第1から第7のいずれかの局面に加えて、前記第1の液体が溶融塩化亜
鉛を含有する溶融塩であり、前記第2の液体が溶融亜鉛を含有する溶融金属であることを第8の局面とする。
In addition to any one of the first to seventh aspects of the present invention, the first liquid is a molten salt containing molten zinc chloride, and the second liquid is a molten metal containing molten zinc. It is assumed that there is an eighth aspect.

本発明の第1の局面における液面計においては、容器内に溜められて金属に対して腐食性を有する電解質である第1の液体及び容器内で第1の液体よりも下方に溜められて金属に対して腐食性を有する導電性の第2の液体の中に同一の浸漬長さでもって浸漬自在であって、第1の液体及び第2の液体に対して耐腐食性を呈する材料から成る接触外面を伴う探触子をそれぞれ有する一対の電極を用いて、かかる探触子の間に交流電流を供給しながら第1の液体内に位置させて、探触子間を流れる交流電流に基づくアドミッタンス値の変化に応じて、第1の液体の液面の位置を検出することにより、上層液体が電解液等の導電性が低い液体で、下層液体が上層液体よりも比重が重く上層液体と不要に混合せず、かつ上層液体よりも導電性の高い液体である2層構造の液体が貯留されている貯槽や反応槽において、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても、簡便な構成で、上層液体の液面の位置を高精度に検出することができ、必要に応じて、所望のタイミングで上層液体の液面の不要な変化を確実に停止することができる。   In the liquid level gauge according to the first aspect of the present invention, the liquid is stored in the container and is stored below the first liquid in the container and the first liquid that is corrosive to the metal. A material that can be immersed in a conductive second liquid that is corrosive to metal with the same immersion length and that is resistant to corrosion with respect to the first liquid and the second liquid. Using a pair of electrodes each having a probe with a contact outer surface, and supplying the alternating current between the probes while being positioned in the first liquid, the alternating current flowing between the probes By detecting the position of the liquid surface of the first liquid according to the change of the admittance value based on the upper liquid, the upper liquid is a liquid having a low conductivity, such as an electrolytic solution, and the lower liquid has a higher specific gravity than the upper liquid. Liquid that is not mixed unnecessarily and has higher conductivity than the upper liquid layer In the storage tank or reaction tank in which the liquid of the two-layer structure is stored, the upper layer liquid and the lower layer liquid are both maintained at a high temperature and are highly corrosive to metals. The position of the liquid level can be detected with high accuracy, and an unnecessary change in the liquid level of the upper liquid can be reliably stopped at a desired timing as necessary.

また本発明の第2の局面における液面計においては、更に、一対の電極のそれぞれの探触子の先端が、第1の液体と第2の液体と界面を横切る際に、探触子間を流れる交流電流に基づくアドミッタンス出力の変化に応じて、かかる界面の位置を検出自在であることにより、簡便な構成で、上層液体の液面の位置を高精度に検出することができると共に、上層液体と下層液体との界面の位置を高精度に検出することができ、必要に応じて、所望のタイミングで上層液体の液面の不要な変化や上層液体と下層液体との界面の不要な変化をより確実に停止することができる。   Further, in the liquid level gauge according to the second aspect of the present invention, when the tips of the probes of the pair of electrodes cross the interface between the first liquid and the second liquid, the distance between the probes is further reduced. The position of the interface can be detected in accordance with the change in the admittance output based on the alternating current flowing through the liquid crystal, so that the position of the liquid surface of the upper liquid can be detected with high accuracy with a simple configuration. The position of the interface between the liquid and the lower liquid can be detected with high accuracy, and if necessary, unnecessary changes in the liquid level of the upper liquid and unnecessary changes in the interface between the upper liquid and the lower liquid can be performed at the desired timing. Can be stopped more reliably.

また本発明の第3の局面における液面計においては、一対の電極のそれぞれの探触子が、その先端部に界面と平行に設定自在な平坦面を有する円柱状部材であることにより、特に、上層液体と下層液体との界面を瞬時に横切ることができ、上層液体と下層液体との界面の位置をより高精度に検出することができる。   In the liquid level gauge according to the third aspect of the present invention, each probe of the pair of electrodes is a cylindrical member having a flat surface that can be set parallel to the interface at the tip thereof. The interface between the upper liquid and the lower liquid can be instantaneously crossed, and the position of the interface between the upper liquid and the lower liquid can be detected with higher accuracy.

また本発明の第4の局面における液面計においては、一対の電極のそれぞれの探触子が、グラファイト製であることにより、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置や、上層液体と下層液体との界面の位置を高精度に検出することができる。   In the liquid level gauge according to the fourth aspect of the present invention, the probes of the pair of electrodes are made of graphite, so that both the upper layer liquid and the lower layer liquid are maintained at a high temperature and corrode against the metal. Even if it has high properties, it does not corrode unnecessarily, and with a simple configuration, the position of the liquid surface of the upper liquid and the position of the interface between the upper liquid and the lower liquid can be detected with high accuracy.

また本発明の第5の局面における液面計においては、一対の電極のそれぞれの探触子が、電極の導電部材に対応して連絡し、導電部材は、第1の液体及び第2の液体に対して耐腐食性を呈する絶縁部材で覆われることにより、かかる電極の探触子以外の部分が上層液体等の液滴やガスに接触した場合でも、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置や、上層液体と下層液体との界面の位置を高精度に検出することができる。   In the liquid level gauge according to the fifth aspect of the present invention, the probes of the pair of electrodes communicate with the conductive members of the electrodes, and the conductive members are the first liquid and the second liquid. By covering with an insulating member that is resistant to corrosion, the upper layer liquid and the lower layer liquid are both kept at a high temperature even when parts other than the probe of the electrode come into contact with droplets or gases such as the upper layer liquid. Even if it is highly corrosive to metals, it does not corrode unnecessarily, and with a simple configuration, the position of the liquid surface of the upper liquid and the position of the interface between the upper liquid and the lower liquid are highly accurate. Can be detected.

また本発明の第6の局面における液面計においては、一対の電極のそれぞれの探触子が、シース型熱電対を構成し、第1の液体及び第2の液体の温度を検出自在であることにより、上層液体の液面の位置等を検出することに加えて液温も検出するという付加的な機能をも実現し得て、使用する電極等の総数を減らしながら、上層液体の液面の位置や液温等を高精度に検出することができる。   In the liquid level gauge according to the sixth aspect of the present invention, each probe of the pair of electrodes constitutes a sheath type thermocouple and can detect the temperatures of the first liquid and the second liquid. In addition to detecting the position of the liquid level of the upper liquid layer, an additional function of detecting the liquid temperature can also be realized, and the liquid level of the upper liquid layer can be reduced while reducing the total number of electrodes used. The position, liquid temperature, etc. can be detected with high accuracy.

また本発明の第7の局面における液面計においては、シース型熱電対が、絶縁性セラミック製の保護管に収容されることにより、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置や液温等を高精度に検出することができる。   In the liquid level gauge according to the seventh aspect of the present invention, the sheath-type thermocouple is housed in a protective tube made of insulating ceramic, so that both the upper-layer liquid and the lower-layer liquid are maintained at a high temperature to the metal. Even if it is highly corrosive, it does not corrode unnecessarily, and the position of the upper liquid, the liquid temperature, etc. can be detected with high accuracy with a simple configuration.

また本発明の第8の局面における液面計においては、第1の液体が溶融塩化亜鉛を含有する溶融塩であり、第2の液体が溶融亜鉛を含有する溶融金属であるため、溶融塩化亜鉛を電気分解することにより、その下層に溶融亜鉛を得ながら、溶融塩化亜鉛の液面の位置等を高精度に検出することができる。   In the liquid level gauge according to the eighth aspect of the present invention, the first liquid is a molten salt containing molten zinc chloride, and the second liquid is a molten metal containing molten zinc. , The position of the liquid surface of the molten zinc chloride can be detected with high accuracy while obtaining molten zinc in the lower layer.

本発明の第1の実施形態における液面計の構成を示す模式的な断面図であり、液体を貯留する貯槽をも示す。It is typical sectional drawing which shows the structure of the liquid level meter in the 1st Embodiment of this invention, and also shows the storage tank which stores a liquid. 本実施形態における液面計のアドミッタンス出力の変化曲線を示すグラフである。It is a graph which shows the change curve of the admittance output of the liquid level meter in this embodiment. 本発明の第2の実施形態における液面計の構成を示す模式的な断面図であり、液体を貯留する貯槽をも示す。It is typical sectional drawing which shows the structure of the liquid level meter in the 2nd Embodiment of this invention, and also shows the storage tank which stores a liquid.

以下、本発明の各実施形態における液面計につき、図面を適宜参照して、詳細に説明する。なお、図中、x軸及びz軸は、直交座標系を成し、z軸の方向が鉛直の上下方向である。   Hereinafter, the liquid level gauge in each embodiment of the present invention will be described in detail with reference to the drawings as appropriate. In the figure, the x-axis and the z-axis form an orthogonal coordinate system, and the direction of the z-axis is a vertical vertical direction.

(第1の実施形態)
まず、本発明の第1の実施形態における液面計につき、図1及び図2を用いて、詳細に説明する。
(First embodiment)
First, the liquid level gauge according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

図1は、本実施形態における液面計の構成を示す模式的な断面図であり、液体を貯留する貯槽をも示す。また、図2は、本実施形態における液面計のアドミッタンス出力の変化曲線を示すグラフである。   FIG. 1 is a schematic cross-sectional view showing the configuration of the liquid level gauge in the present embodiment, and also shows a storage tank for storing a liquid. Moreover, FIG. 2 is a graph which shows the change curve of the admittance output of the liquid level meter in this embodiment.

図1に示すように、本実施形態における装置S1は、液面計10と、液体を貯留自在な貯槽20と、を備える。かかる装置S1は、単に液体を溜める貯留装置であってもよいし、図示を省略する一対の電解用電極を用いて、典型的には、溶融塩化亜鉛を電気分解し、溶融亜鉛と塩素ガスとを生成する電解装置であってもよい。また、装置S1が、電解装置である場合には、貯槽20は、電解反応容器となる。   As shown in FIG. 1, the apparatus S1 in the present embodiment includes a liquid level gauge 10 and a storage tank 20 capable of storing a liquid. Such a device S1 may be a storage device that simply stores liquid, and typically uses a pair of electrolysis electrodes (not shown) to electrolyze molten zinc chloride, It may be an electrolysis device that generates Moreover, when apparatus S1 is an electrolysis apparatus, the storage tank 20 becomes an electrolytic reaction container.

具体的には、液面計10は、一対の電極30、40と、一対の電極30、40に給電線50a、50bを介して連絡して交流電圧を印加して交流電流を流す交流電源50と、給電線50a、50bの一方、例えば給電線50aに連絡された交流電流計60と、交流電源50及び交流電流計60に電気的に接続する制御器70と、を備える。なお、制御器70は、図示を省略する演算装置やメモり等を有する。   Specifically, the liquid level meter 10 includes a pair of electrodes 30 and 40 and an AC power supply 50 that communicates with the pair of electrodes 30 and 40 via power supply lines 50a and 50b and applies an AC voltage to flow an AC current. And an AC ammeter 60 connected to one of the power supply lines 50a and 50b, for example, the power supply line 50a, and a controller 70 electrically connected to the AC power supply 50 and the AC ammeter 60. The controller 70 includes an arithmetic device, a memory, etc., not shown.

また、かかる液面計10が適用される典型的にはグラファイト製の貯槽20は、図示を省略する加熱機構により450℃以上550℃以下程度の温度範囲に保持されており、その内部に、溶融塩化亜鉛22と、それから電解生成される溶融亜鉛24と、が溜められる。450℃以上550℃以下程度の温度範囲での塩化亜鉛の比重は約2.4であり、亜鉛の比重は約6.4であるから、溶融塩化亜鉛22及び溶融亜鉛24の両液は、上下に分離して、溶融塩化亜鉛22を上層とし溶融亜鉛24を下層とする2層構造の液体となる。ま
た、溶融亜鉛24の導電率は、溶融塩化亜鉛22の導電率よりも5桁程度高いものである。
In addition, typically, the graphite storage tank 20 to which the liquid level gauge 10 is applied is held in a temperature range of about 450 ° C. or more and 550 ° C. or less by a heating mechanism (not shown), and melted therein. Zinc chloride 22 and molten zinc 24 produced electrolytically therefrom are stored. Since the specific gravity of zinc chloride in the temperature range of 450 ° C. or higher and 550 ° C. or lower is about 2.4 and the specific gravity of zinc is about 6.4, both the molten zinc chloride 22 and the molten zinc 24 are Into a two-layered liquid with the molten zinc chloride 22 as the upper layer and the molten zinc 24 as the lower layer. Further, the conductivity of the molten zinc 24 is about five orders of magnitude higher than the conductivity of the molten zinc chloride 22.

ここで、かかる2層構造の液体としては、溶融塩化亜鉛22及び溶融亜鉛24に限定されるものではなく、上層液体が、金属に対して高い腐食性を呈すると共に電解液等の導電性が低い溶融塩等の液体で、下層液体が、金属に対して高い腐食性を呈すると共に、上層液体よりも比重が重く上層液体と不要に混合せず、かつ上層液体よりも導電性の高い溶融金属等の液体であれば足りる。また、溶融塩化亜鉛を電解質として用いながら電気分解をして、溶融塩化亜鉛22及び溶融亜鉛24から成る2層構造の液体を得る場合においては、塩化リチウムや塩化カリウム等の支持電解質を用いてもかまわず、かかる場合には、溶融塩化亜鉛22及び溶融亜鉛24には、塩化リチウムや塩化カリウム等が混入してもかまわない。   Here, the liquid having such a two-layer structure is not limited to the molten zinc chloride 22 and the molten zinc 24, and the upper layer liquid exhibits high corrosiveness to the metal and has low conductivity such as an electrolytic solution. Molten metal, etc., which is a liquid such as a molten salt, and the lower layer liquid is highly corrosive to metals, has a higher specific gravity than the upper layer liquid, is not unnecessarily mixed with the upper layer liquid, and has a higher conductivity than the upper layer liquid If it is a liquid, it is enough. In addition, when electrolysis is performed using molten zinc chloride as an electrolyte to obtain a liquid having a two-layer structure composed of molten zinc chloride 22 and molten zinc 24, a supporting electrolyte such as lithium chloride or potassium chloride may be used. In such a case, lithium chloride, potassium chloride, or the like may be mixed into the molten zinc chloride 22 and the molten zinc 24.

また、一対の電極30、40は、金属製で棒状の導電部材32a、42aを絶縁性の保護管32b、42bで囲んだ構造を有する電極部32、42と、導電部材から成る円柱状の探触子34、44と、を対応して備える。具体的には、かかる保護管32b、42bは、それぞれ、金属に対して高い腐食性を有する溶融塩化亜鉛22及び溶融亜鉛24の液滴やガスにより導電部材32a、42aが不要に腐食されないように、棒状の導電部材32a、42aの周囲を覆った典型的にはセラミック製で円筒状の絶縁部材である。また、探触子34、44は、それぞれ円柱状であり、それぞれの外面が、溶融塩化亜鉛22及び溶融亜鉛24に対する接触外面となる。また、探触子34、44においては、保護管32b、42bに対応して接続するそれらの上部の外面は、保護管32b、42bの外面と面一として形成され、かつそれらの下端の先端面は、それぞれ溶融塩化亜鉛22と溶融亜鉛24との界面26に平行に位置し得る平坦面として形成される。   In addition, the pair of electrodes 30 and 40 is made of a metal rod-shaped conductive member 32a and 42a surrounded by insulating protective tubes 32b and 42b, and a cylindrical probe made of a conductive member. Tactile elements 34 and 44 are provided correspondingly. Specifically, the protective tubes 32b and 42b are configured so that the conductive members 32a and 42a are not unnecessarily corroded by the droplets or gases of the molten zinc chloride 22 and the molten zinc 24, which have high corrosiveness to metals. A cylindrical insulating member typically made of ceramic and covering the periphery of the rod-like conductive members 32a and 42a. The probes 34 and 44 are each cylindrical, and the outer surfaces thereof are contact outer surfaces with respect to the molten zinc chloride 22 and the molten zinc 24. Further, in the probes 34 and 44, the upper outer surfaces connected to the protective tubes 32b and 42b are formed flush with the outer surfaces of the protective tubes 32b and 42b, and the tip surfaces of the lower ends thereof. Are formed as flat surfaces which can be located parallel to the interface 26 between the molten zinc chloride 22 and the molten zinc 24, respectively.

ここで、かかる探触子34、44が、それぞれ、溶融塩化亜鉛22及び溶融亜鉛24から成る2層構造の液体に侵入して浸漬される部分として設定される。 詳しくは、探触子34、44の上端が、それぞれ、溶融塩化亜鉛22の液面に対して面一になるか溶融塩化亜鉛22の液面よりも上方に突出するように設定されながら、探触子34、44が、溶融塩化亜鉛22及びそれから電解生成される溶融亜鉛24に浸漬自在であって、かつそれらの上昇する界面26を横断自在に、典型的には固定されて配置される。なお、溶融塩化亜鉛22と溶融亜鉛24との界面26の位置が一定である場合等には、探触子34、44、つまり一対の電極30、40の方をそれぞれ移動して、その界面26を横切らせてもかまわない。また、かかる探触子34、44が、界面26を相対的に横切る方向は、それぞれ、上下方向であって、界面26に直交する方向であるとする。   Here, the probes 34 and 44 are set as portions that enter and are immersed in a liquid having a two-layer structure composed of the molten zinc chloride 22 and the molten zinc 24, respectively. Specifically, the probes 34 and 44 are set so that the upper ends of the probes 34 and 44 are flush with the liquid surface of the molten zinc chloride 22 or protrude above the liquid surface of the molten zinc chloride 22. The contacts 34, 44 are immersible in the molten zinc chloride 22 and the molten zinc 24 electrolyzed therefrom and are disposed so as to be able to traverse their rising interface 26, typically fixed. In addition, when the position of the interface 26 between the molten zinc chloride 22 and the molten zinc 24 is constant, the probes 34 and 44, that is, the pair of electrodes 30 and 40 are moved to the interface 26, respectively. Can be crossed. Further, it is assumed that the direction in which the probes 34 and 44 relatively cross the interface 26 is a vertical direction and is a direction orthogonal to the interface 26.

また、かかる探触子34、44間に溶融塩化亜鉛22のみが位置した状態では、溶融塩化亜鉛22は電解質であるから、これらから成る電気回路は、探触子34、44間にいずれも溶融塩化亜鉛22に起因する抵抗と静電容量とが並列に接続された等価回路として評価される。かかる場合における等価回路では、溶融塩化亜鉛22に対する探触子34、44の浸漬長さが変化すると、探触子34、44間の距離が一定に維持された状態で、探触子34、44間に位置する溶融塩化亜鉛22から成る領域の上下方向の長さが変化するから、探触子34、44は、それらの間に溶融塩化亜鉛22を介在させながら対向する一種の可変抵抗及び可変コンデンサーとして機能する。よって、このような抵抗成分及び静電容量成分から成る電気的特性値、典型的にはアドミッタンス値は、溶融塩化亜鉛22に対する探触子34、44の浸漬長さに応じて連続的に変化することになる。なお、溶融塩化亜鉛22のインダクタンス値は、実質的に無視し得る大きさである。   Further, in the state where only the molten zinc chloride 22 is located between the probes 34 and 44, the molten zinc chloride 22 is an electrolyte. Therefore, the electric circuit composed of these is fused between the probes 34 and 44. It is evaluated as an equivalent circuit in which the resistance caused by the zinc chloride 22 and the capacitance are connected in parallel. In the equivalent circuit in such a case, when the immersion length of the probes 34 and 44 in the molten zinc chloride 22 changes, the probes 34 and 44 are maintained in a state where the distance between the probes 34 and 44 is kept constant. Since the length in the vertical direction of the region composed of the molten zinc chloride 22 located therebetween changes, the probes 34 and 44 are a kind of variable resistance and variable that face each other with the molten zinc chloride 22 interposed therebetween. Functions as a condenser. Therefore, the electrical characteristic value composed of such a resistance component and a capacitance component, typically the admittance value, changes continuously according to the immersion length of the probes 34 and 44 in the molten zinc chloride 22. It will be. The inductance value of the molten zinc chloride 22 is substantially negligible.

また、探触子34、44間において溶融塩化亜鉛22に加えてその上方に空気が介在する場合には、探触子34、44間に溶融塩化亜鉛22のみが位置した状態の等価回路に対
して、探触子34、44間の溶融塩化亜鉛22の抵抗成分や静電容量成分に加えてその上方の探触子34、44間の空気の静電容量成分を考慮する必要がある。つまり、かかる場合における等価回路では、溶融塩化亜鉛22に対する探触子34、44の浸漬長さが変化すると、探触子34、44間の距離が一定に維持された状態で、探触子34、44間に位置する溶融塩化亜鉛22から成る領域の上下方向の長さとその上方の空気から成る領域の上下方向の長さとの比が変化するから、探触子34、44は、それらの間に溶融塩化亜鉛22と空気が介在しながら対向する一種の可変抵抗及び可変コンデンサーとして機能する。よって、このような抵抗成分及び静電容量成分から成る電気的特性値、典型的にはアドミッタンス値は、溶融塩化亜鉛22に対する探触子34、44の浸漬長さに応じて連続的に変化することになる。
Further, when air is interposed between the probes 34 and 44 in addition to the molten zinc chloride 22, the equivalent circuit in which only the molten zinc chloride 22 is positioned between the probes 34 and 44 is used. Thus, in addition to the resistance component and capacitance component of the molten zinc chloride 22 between the probes 34 and 44, it is necessary to consider the capacitance component of air between the probes 34 and 44 thereabove. That is, in the equivalent circuit in such a case, when the immersion length of the probes 34 and 44 in the molten zinc chloride 22 changes, the probe 34 is maintained in a state where the distance between the probes 34 and 44 is kept constant. , 44, the ratio of the vertical length of the region composed of molten zinc chloride 22 and the vertical length of the region composed of air above it changes, so that the probes 34, 44 It functions as a kind of variable resistor and variable capacitor that are opposed to each other with molten zinc chloride 22 and air interposed therebetween. Therefore, the electrical characteristic value composed of such a resistance component and a capacitance component, typically the admittance value, changes continuously according to the immersion length of the probes 34 and 44 in the molten zinc chloride 22. It will be.

また、探触子34、44間に溶融亜鉛24のみが位置した状態では、溶融亜鉛24は金属であるから、これらから成る電気回路は、探触子34、44間に溶融亜鉛24に起因した抵抗が接続された等価回路として評価される。つまり、かかる状態における等価回路では、探触子34、44間の距離は一定であるから、その抵抗値は、一定である。なお、溶融亜鉛24の静電容量値やインダクタンス値は、実質的に無視し得る大きさである。   Further, in the state where only the molten zinc 24 is located between the probes 34 and 44, the molten zinc 24 is a metal. Therefore, the electric circuit composed of these is caused by the molten zinc 24 between the probes 34 and 44. It is evaluated as an equivalent circuit with a resistor connected. That is, in the equivalent circuit in such a state, the distance between the probes 34 and 44 is constant, so that the resistance value is constant. Note that the capacitance value and the inductance value of the molten zinc 24 are substantially negligible.

また、探触子34、44が、溶融塩化亜鉛22と溶融亜鉛24との界面26を、溶融塩化亜鉛22から溶融亜鉛24に向かって横切る際には、これらから成る電気回路は、探触子34、44間に共に溶融塩化亜鉛22に起因する抵抗と溶融塩化亜鉛22やその上方の空気に起因する静電容量とが並列に接続された等価回路から、それに加えて、更に探触子34、44間に溶融亜鉛24に起因する抵抗が接続された等価回路が並列に接続された等価回路に変化する。ここで、探触子34、44間の溶融亜鉛24に起因する抵抗値は、実質一定であると共に相対的に小さな値であるから、その全体的な等価回路は、探触子34、44間に溶融亜鉛24に起因する抵抗が接続された等価回路として評価できるものである。   Further, when the probes 34 and 44 cross the interface 26 between the molten zinc chloride 22 and the molten zinc 24 from the molten zinc chloride 22 toward the molten zinc 24, the electric circuit composed of these probes is connected to the probe. In addition to the equivalent circuit in which the resistance caused by the molten zinc chloride 22 and the electrostatic capacitance caused by the molten zinc chloride 22 and the air above it are connected in parallel between the electrodes 34 and 44, in addition to this, the probe 34 is further added. 44, the equivalent circuit in which the resistance caused by the molten zinc 24 is connected is changed to an equivalent circuit connected in parallel. Here, since the resistance value caused by the molten zinc 24 between the probes 34 and 44 is substantially constant and is a relatively small value, the entire equivalent circuit thereof is between the probes 34 and 44. It can be evaluated as an equivalent circuit in which the resistance caused by the molten zinc 24 is connected.

つまり、探触子34、44が、溶融塩化亜鉛22と溶融亜鉛24との界面26を、溶融塩化亜鉛22から溶融亜鉛24に向かって横切る際には、これらから成る電気回路は、探触子34、44間に共に溶融塩化亜鉛22に起因する抵抗と溶融塩化亜鉛22やその上方の空気に起因する静電容量とが並列に接続された等価回路から、探触子34、44間に溶融亜鉛24に起因する抵抗が接続された等価回路に急激に変化するものとして評価できる。なお、同様な議論から、探触子34、44が、溶融塩化亜鉛22と溶融亜鉛24との界面26を、溶融亜鉛24から溶融塩化亜鉛22に向かって横切る際には、探触子34、44間に溶融亜鉛24に起因する抵抗が接続された等価回路から、探触子34、44間に共に溶融塩化亜鉛22に起因する抵抗と溶融塩化亜鉛22やその上方の空気に起因する静電容量とが並列に接続された等価回路に急激に変化するものとして評価できる   That is, when the probes 34 and 44 cross the interface 26 between the molten zinc chloride 22 and the molten zinc 24 from the molten zinc chloride 22 toward the molten zinc 24, the electric circuit composed of them is From the equivalent circuit in which the resistance caused by the molten zinc chloride 22 and the electrostatic capacitance caused by the molten zinc chloride 22 and the air above it are connected in parallel between the probes 34 and 44, the fusion between the probes 34 and 44 is achieved. It can be evaluated that the resistance caused by the zinc 24 changes rapidly to an equivalent circuit to which the resistance is connected. From the same discussion, when the probes 34, 44 cross the interface 26 between the molten zinc chloride 22 and the molten zinc 24 from the molten zinc 24 toward the molten zinc chloride 22, the probes 34, From an equivalent circuit in which a resistance caused by molten zinc 24 is connected between 44, a resistance caused by molten zinc chloride 22 between the probes 34 and 44 and an electrostatic charge caused by molten zinc chloride 22 and the air above it. It can be evaluated as an abrupt change to an equivalent circuit in which the capacitance is connected in parallel

また、交流電源50は、一対の電極30、40間、つまり探触子34、44間に交流電圧を印加して交流電流を流すものである。かかる交流電源50を測定電源として用いる理由としては、溶融塩化亜鉛22は電解質であるため、直流電圧を印加して直流電流を流すと、探触子34、44間を流れる電流値は安定しないのに対して、交流電圧を印加して交流電圧を流すと、安定した電流値を得ることができることが挙げられる。また、かかる交流電圧の最大電圧は、溶融塩化亜鉛22に不要な電気分解を生じさせないように、溶融塩化亜鉛22の電気分解電圧よりも小さい範囲、例えば1V以下の範囲に設定されている。   The AC power supply 50 applies an AC voltage by applying an AC voltage between the pair of electrodes 30 and 40, that is, between the probes 34 and 44. The reason why the AC power supply 50 is used as a measurement power supply is that the molten zinc chloride 22 is an electrolyte, and therefore, when a DC voltage is applied and a DC current is applied, the current value flowing between the probes 34 and 44 is not stable. On the other hand, when an AC voltage is applied and an AC voltage is applied, a stable current value can be obtained. Further, the maximum voltage of the AC voltage is set to a range smaller than the electrolysis voltage of the molten zinc chloride 22, for example, a range of 1 V or less so as not to cause unnecessary electrolysis of the molten zinc chloride 22.

このように交流電源50から印加する交流電流の周波数としては、5Hz以上1000Hz以下の範囲が好適である。具体的には、印加する交流電流の周波数の下限については、印加する交流電流の周波数が低いほど、溶融塩化亜鉛22に起因して検出される電気的特性、典型的にはアドミッタンス値が大きくなって、溶融塩化亜鉛22の液面の位置の測
定精度を向上し得るという観点からは好ましいのであるが、5Hz未満の低周波数になると安定した検出値が現実的に得られないため、5Hz以上であることが好ましい。
As described above, the frequency of the alternating current applied from the alternating current power supply 50 is preferably in the range of 5 Hz to 1000 Hz. Specifically, regarding the lower limit of the frequency of the applied alternating current, the lower the frequency of the applied alternating current, the greater the electrical characteristics detected due to the molten zinc chloride 22, typically the admittance value. Thus, it is preferable from the viewpoint that the measurement accuracy of the position of the liquid surface of the molten zinc chloride 22 can be improved. However, since a stable detection value cannot be practically obtained at a low frequency of less than 5 Hz, the measurement is performed at 5 Hz or more. Preferably there is.

一方で、このように印加する交流電流の周波数の上限については、印加する交流電流の周波数が高いほど、安定した検出値を得ることができるからは好ましいのであるが、1000Hzを超える周波数になると、溶融塩化亜鉛22に起因して検出される電気的特性、典型的にはアドミッタンス値が顕著に小さくなって、溶融塩化亜鉛22の液面の位置の変化を実質測定し得なくなるし、加えて、制御器70等に対して電磁シールドを設ける必要が生じたり、交流電源50や交流電流計60等が特殊なものとなって高価となる傾向が生じるので、1000Hz以下であることが好ましい。更に、より商用の電源周波数に近く、安価で信頼性の高い交流電源50や交流電流計60等が使用できるという観点からは、印加する交流電流の周波数としては、50Hz以上100Hz以下の範囲が現実的により好適である。   On the other hand, as for the upper limit of the frequency of the alternating current applied in this way, the higher the frequency of the alternating current applied, the better because it is possible to obtain a stable detection value, but when the frequency exceeds 1000 Hz, The electrical characteristics detected due to the molten zinc chloride 22, typically the admittance value, are significantly reduced, making it impossible to substantially measure the change in the position of the liquid level of the molten zinc chloride 22, Since it is necessary to provide an electromagnetic shield for the controller 70 or the like, or the AC power supply 50 or the AC ammeter 60 is special and tends to be expensive, the frequency is preferably 1000 Hz or less. Furthermore, from the viewpoint that the AC power supply 50, the AC ammeter 60, etc., which are closer to the commercial power supply frequency and are inexpensive and highly reliable, can be used, the frequency of the applied AC current is in the range of 50 Hz to 100 Hz. More preferred.

また、交流電流計60は、一対の電極30、40、並びに電解槽20内の溶融塩化亜鉛22及び溶融亜鉛24から成る回路系を流れる交流電流を測定する。   The AC ammeter 60 measures an AC current flowing through a circuit system including the pair of electrodes 30 and 40 and the molten zinc chloride 22 and the molten zinc 24 in the electrolytic cell 20.

また、制御器70は、交流電源50及び交流電流計60を制御すると共に、図2に示すアドミッタンス出力Aを得る制御部70aと、図2に示すアドミッタンス出力Aから、溶融塩化亜鉛22の液面の位置や溶融塩化亜鉛22と溶融亜鉛24との界面26の位置を検出する検出部70bと、を有する。図2中、横軸は、一対の電極30、40の探触子34、44が溶融塩化亜鉛22の液面から下方に侵入した長さである浸漬長さL(m)を示し、縦軸は、制御器70が出力する電圧値を示すアドミッタンス出力A(V)である。   Further, the controller 70 controls the AC power supply 50 and the AC ammeter 60, and obtains the liquid level of the molten zinc chloride 22 from the control unit 70a that obtains the admittance output A shown in FIG. 2 and the admittance output A shown in FIG. And a detecting unit 70b for detecting the position of the interface 26 between the molten zinc chloride 22 and the molten zinc 24. In FIG. 2, the horizontal axis indicates the immersion length L (m) that is the length of the probes 34 and 44 of the pair of electrodes 30 and 40 penetrating downward from the liquid surface of the molten zinc chloride 22. Is an admittance output A (V) indicating the voltage value output by the controller 70.

具体的には、制御部70aは、交流電源50の動作を制御して、前述した交流電流を探触子34、44間に供給すると共に、交流電流計60の動作を制御して、その測定電流値を担持する電気信号を受信する。更に、制御部70aは、交流電流計60から受信した電気信号が担持する電気的特性値、つまり探触子34、44間を流れる交流電流値を簡便な回路構成でデータ処理してアドミッタンス値、を算出し、アドミッタンス出力Aを得て、かかるアドミッタンス出力Aを検出部70bに出力する。また、検出部70bは、制御部70aから出力されたアドミッタンス出力Aから、貯槽20内に貯留される溶融塩化亜鉛22の液面の位置を検出すると共に、溶融塩化亜鉛22と溶融亜鉛24との界面26の位置を検出する。   Specifically, the control unit 70a controls the operation of the AC power supply 50 to supply the above-described AC current between the probes 34 and 44, and also controls the operation of the AC ammeter 60 to measure the AC current. An electrical signal carrying a current value is received. Further, the control unit 70a performs data processing on the electrical characteristic value carried by the electrical signal received from the AC ammeter 60, that is, the AC current value flowing between the probes 34 and 44, with a simple circuit configuration, and the admittance value, , Admittance output A is obtained, and the admittance output A is output to the detection unit 70b. Further, the detection unit 70b detects the position of the liquid level of the molten zinc chloride 22 stored in the storage tank 20 from the admittance output A output from the control unit 70a, and at the same time, between the molten zinc chloride 22 and the molten zinc 24. The position of the interface 26 is detected.

より詳しくは、交流電源50から交流電流を供給された状態の一対の電極30、40の探触子34、44が、溶融塩化亜鉛22の液面から相対的に下方に侵入していくと、それらの浸漬長さLが増大することに対応して、制御器70が出力するアドミッタンス出力Aが増大するような図2に示すプロフィールC1が得られる。これは、探触子34、44間に溶融塩化亜鉛22やその上方の空気が位置した状態では、これらは溶融塩化亜鉛22に起因する抵抗と溶融塩化亜鉛22やその上方の空気に起因する静電容量とが並列に接続された等価回路を成しているため、その静電容量値が、浸漬長さLが増大することに対応して増大したことに起因する。なお、理想的な系では、かかるプロフィールC1は、線形となる。   More specifically, when the probes 34 and 44 of the pair of electrodes 30 and 40 in a state where an alternating current is supplied from the alternating current power supply 50 penetrates relatively downward from the liquid surface of the molten zinc chloride 22, The profile C1 shown in FIG. 2 is obtained in which the admittance output A output from the controller 70 increases in response to the increase in the immersion length L. This is because, when the molten zinc chloride 22 and the air above it are located between the probes 34 and 44, these are the resistance caused by the molten zinc chloride 22 and the static caused by the molten zinc chloride 22 and the air above it. Since an equivalent circuit is formed in which the capacitance is connected in parallel, the capacitance value is increased in response to the increase in the immersion length L. In an ideal system, the profile C1 is linear.

よって、探触子34、44、溶融塩化亜鉛22やその上方の空気から成る系で、かかるプロフィールC1を含むアドミッタンス出力Aの変化曲線を予め測定しデータベース化して検出部70bの図示を省略するメモリに記憶しておけば、その後に同様の物理的特性を有する探触子34、44、溶融塩化亜鉛22やその上方の空気から成る系で、探触子34、44と溶融塩化亜鉛22の液面との位置関係が相対的に変化した場合に、プロフィールC1を参照しながら、典型的には、それらの位置が固定された探触子34、44の下端の
位置を基準として、溶融塩化亜鉛22の液面の位置を検出することができる。更に、このように探触子34、44、つまり一対の電極30、40の位置が固定されている構成で、溶融塩化亜鉛22が貯槽20に供給されている場合には、装置S1の操作者等に対して、制御器70が出力するアドミッタンス出力Aが増大していることを提示できれば、かかる操作者等は、対応して溶融塩化亜鉛22の液面の位置も上昇していることが直感的に理解しやすくなる。つまり、このように溶融塩化亜鉛22の液面が上昇している場合には、操作者等が、検出された溶融塩化亜鉛22の液面の位置情報に加えて、図示を省略するディスプレィ等に表示されるアドミッタンス出力Aの変化曲線を参照することにより、溶融塩化亜鉛22の液面の所望位置に応じて溶融塩化亜鉛22の供給を停止して、溶融塩化亜鉛22の液面の不要な上昇を確実に停止することができる。
Therefore, in the system composed of the probes 34 and 44, the molten zinc chloride 22 and the air above the memory, the change curve of the admittance output A including the profile C1 is measured in advance and converted into a database, and the illustration of the detection unit 70b is omitted. In the system consisting of the probes 34 and 44 having the same physical characteristics, the molten zinc chloride 22 and the air above it, the liquid of the probes 34 and 44 and the molten zinc chloride 22 is stored. When the positional relationship with the surface changes relatively, referring to the profile C1, typically, the molten zinc chloride is based on the position of the lower end of the probes 34 and 44 to which those positions are fixed. The position of the liquid level of 22 can be detected. Furthermore, when the positions of the probes 34 and 44, that is, the pair of electrodes 30 and 40 are fixed as described above, and the molten zinc chloride 22 is supplied to the storage tank 20, the operator of the apparatus S1 If it can be shown that the admittance output A output from the controller 70 is increased, the operator intuitively understands that the position of the liquid level of the molten zinc chloride 22 is correspondingly increased. Easy to understand. That is, when the liquid level of the molten zinc chloride 22 is rising as described above, the operator or the like can display the display of the liquid level of the molten zinc chloride 22 in addition to the detected position information of the liquid level of the molten zinc chloride 22. By referring to the displayed change curve of the admittance output A, the supply of the molten zinc chloride 22 is stopped according to the desired position of the liquid level of the molten zinc chloride 22, and the liquid level of the molten zinc chloride 22 is unnecessarily increased. Can be stopped reliably.

一方で、交流電源50から交流電流を供給された状態の一対の電極30、40の探触子34、44が、更に相対的に下方に位置して、探触子34、44の下端が、溶融塩化亜鉛22と溶融亜鉛24との界面26を横切って溶融亜鉛24に侵入していくと、制御器70が出力するアドミッタンス出力Aは一定値を呈するような図2に示すプロフィールC2が得られる。これは、探触子34、44間に溶融塩化亜鉛22及び溶融亜鉛24が位置した状態では、これらが探触子34、44間に対して溶融亜鉛24に起因して一定値を呈する抵抗が接続された等価回路を実質的に成していることによる。   On the other hand, the probes 34 and 44 of the pair of electrodes 30 and 40 in a state where an alternating current is supplied from the AC power supply 50 are positioned relatively lower, and the lower ends of the probes 34 and 44 are When entering the molten zinc 24 across the interface 26 between the molten zinc chloride 22 and the molten zinc 24, the profile C2 shown in FIG. 2 is obtained such that the admittance output A output by the controller 70 exhibits a constant value. . This is because when the molten zinc chloride 22 and the molten zinc 24 are located between the probes 34 and 44, the resistance of the molten zinc 24 to be constant between the probes 34 and 44 due to the molten zinc 24. This is because the connected equivalent circuit is substantially formed.

ここで、交流電源50から交流電流を供給された状態の一対の電極30、40の探触子34、44の下端が、溶融塩化亜鉛22と溶融亜鉛24との界面26に到達する際には、制御器70が出力するアドミッタンス出力Aは、浸漬長さLがL1の辺りでA1からA2に急激に変化して、プロフィールC1がプロフィールC2へと急激に変化するような図2に示すアドミッタンス段差プロフィールC3が得られる。これは、かかる場合に、探触子34、44間に対して溶融塩化亜鉛22に起因して可変値を呈する抵抗と溶融塩化亜鉛22やその上方の空気に起因して可変値を呈する静電容量とが並列に接続された等価回路から、探触子34、44間に対して溶融亜鉛24に起因して一定値を呈する抵抗が接続された等価回路に、急激に切り替わるためである。また、溶融亜鉛24の導電率が相対的に顕著に小さいために、溶融亜鉛24に起因するかかる抵抗値は、相対的に顕著に小さくなり、アドミッタンス出力AにおけるプロフィールC3の出力電圧段差であるアドミッタンス段差は、相対的に顕著に大きくなる。   Here, when the lower ends of the probes 34 and 44 of the pair of electrodes 30 and 40 in a state where an alternating current is supplied from the AC power supply 50 reaches the interface 26 between the molten zinc chloride 22 and the molten zinc 24. The admittance output A output from the controller 70 is an admittance step shown in FIG. 2 in which the immersion length L changes suddenly from A1 to A2 around L1, and the profile C1 changes rapidly to the profile C2. Profile C3 is obtained. In such a case, the resistance between the probes 34 and 44 that exhibits a variable value due to the molten zinc chloride 22 and the electrostatic property that exhibits a variable value due to the molten zinc chloride 22 and the air above it. This is because the equivalent circuit in which the capacitance is connected in parallel is rapidly switched to the equivalent circuit in which a resistor having a constant value is connected between the probes 34 and 44 due to the molten zinc 24. Further, since the conductivity of the molten zinc 24 is relatively remarkably small, the resistance value resulting from the molten zinc 24 is relatively remarkably small, and the admittance that is the output voltage step of the profile C3 in the admittance output A is obtained. The step is relatively significantly increased.

よって、探触子34、44、つまり一対の電極30、40の位置が固定されている構成で、溶融塩化亜鉛22を貯槽20に供給した後に溶融塩化亜鉛22の電気分解により溶融亜鉛24が生成されて溶融塩化亜鉛22の液面が低下している場合には、プロフィールC1に加えてかかるプロフィールC2、C3を含むアドミッタンス出力Aの変化曲線を予め測定しデータベース化しておけば、その後に同様の物理的特性を有する探触子34、44、溶融塩化亜鉛22、その上方の空気や溶融亜鉛24から成る系で、探触子34、44と溶融塩化亜鉛22及び溶融亜鉛24の界面との位置関係が相対的に変化した場合に、特にプロフィールC1からアドミッタンス段差プロフィールC3への切り替わりを参照しながら、典型的には、それらの位置が固定された探触子34、44の下端の位置を基準として、溶融塩化亜鉛22と溶融亜鉛24との界面26の位置を検出することができる。また、装置S1の操作者等は、かかるアドミッタンス出力Aの変化曲線におけるアドミッタンス段差の発生に応じて、つまり溶融塩化亜鉛22の液面の下限位置に応じて、電気分解を停止するか、又は塩化亜鉛22を貯槽20に追加して供給することにより、溶融塩化亜鉛22の液面の不要な低下や溶融塩化亜鉛22と溶融亜鉛との界面の不要な上昇をより確実に停止することができる。   Therefore, in the configuration in which the positions of the probes 34 and 44, that is, the pair of electrodes 30 and 40 are fixed, the molten zinc chloride 22 is generated by the electrolysis of the molten zinc chloride 22 after the molten zinc chloride 22 is supplied to the storage tank 20. When the liquid level of the molten zinc chloride 22 is lowered, if the change curve of the admittance output A including the profiles C2 and C3 in addition to the profile C1 is measured in advance and made into a database, then the same Position of the probes 34, 44 and the interface between the molten zinc chloride 22 and the molten zinc 24 in a system comprising the probes 34, 44 having physical characteristics, the molten zinc chloride 22, the air above the molten zinc 24 and the molten zinc 24. When the relationship changes relatively, typically referring to the switching from profile C1 to admittance step profile C3, typically their position With reference to the position of the lower end of the fixed probe 34 and 44, it is possible to detect the position of the interface 26 between the molten zinc chloride 22 with the molten zinc 24. Further, the operator of the apparatus S1 stops the electrolysis according to the occurrence of the admittance step in the change curve of the admittance output A, that is, according to the lower limit position of the liquid level of the molten zinc chloride 22, or the chloride By additionally supplying the zinc 22 to the storage tank 20, an unnecessary decrease in the liquid level of the molten zinc chloride 22 and an unnecessary increase in the interface between the molten zinc chloride 22 and the molten zinc can be more reliably stopped.

また、この際、探触子34、44の下端の先端面は、それぞれ溶融塩化亜鉛22と溶融亜鉛24との界面26に平行に位置し得るように設定される平坦面であるから、探触子3
4、44の下端の先端面は、溶融塩化亜鉛22と溶融亜鉛24との界面26を瞬時に横切るため、かかるアドミッタンス段差プロフィールC3は、アドミッタンス出力Aにおいて直立した態様となり、急峻な傾きを呈すようになるため、アドミッタンス段差が発生したこと、つまり溶融塩化亜鉛22と溶融亜鉛24との界面26の位置の検出精度が向上し得る。
At this time, the tip surfaces of the lower ends of the probes 34 and 44 are flat surfaces set so as to be parallel to the interface 26 between the molten zinc chloride 22 and the molten zinc 24, respectively. Child 3
The tip surfaces of the lower ends of 4, 4 and 44 instantaneously cross the interface 26 between the molten zinc chloride 22 and the molten zinc 24, so that the admittance step profile C3 becomes an upright mode in the admittance output A and exhibits a steep inclination. Therefore, the detection accuracy of the occurrence of the admittance step, that is, the position of the interface 26 between the molten zinc chloride 22 and the molten zinc 24 can be improved.

なお、以上のような溶融塩化亜鉛22の液面の不要な上昇や低下、更には溶融塩化亜鉛22と溶融亜鉛との界面の不要な上昇を停止するための操作は、装置S1の操作者等の手動により行ってもよいし、制御器70にリミッタ機能を持たせて自動的に行ってもよい。   The operation for stopping the unnecessary increase or decrease of the liquid level of the molten zinc chloride 22 and the unnecessary increase of the interface between the molten zinc chloride 22 and the molten zinc is performed by the operator of the apparatus S1 or the like. This may be performed manually or automatically by providing the controller 70 with a limiter function.

以上の本実施形態の構成によれば、容器内に溜められて金属に対して腐食性を有する電解質である第1の液体及び容器内で第1の液体よりも下方に溜められて金属に対して腐食性を有する導電性の第2の液体の中に同一の浸漬長さでもって浸漬自在であって、第1の液体及び第2の液体に対して耐腐食性を呈する材料から成る接触外面を伴う探触子をそれぞれ有する一対の電極を用いて、かかる探触子の間に交流電流を供給しながら第1の液体内に位置させて、探触子間を流れる交流電流に基づくアドミッタンス値の変化に応じて、第1の液体の液面の位置を検出することにより、上層液体が電解液等の導電性が低い液体で、下層液体が上層液体よりも比重が重く上層液体と不要に混合せず、かつ上層液体よりも導電性の高い液体である2層構造の液体が貯留されている貯槽や反応槽において、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても、簡便な構成で、上層液体の液面の位置を高精度に検出することができ、必要に応じて、所望のタイミングで上層液体の液面の不要な変化を確実に停止することができる。   According to the configuration of the present embodiment described above, the first liquid that is an electrolyte corrosive to the metal stored in the container and the metal stored below the first liquid in the container. A contact outer surface made of a material that is immersable in a conductive second liquid having corrosive properties with the same immersion length and that is resistant to corrosion with respect to the first liquid and the second liquid. An admittance value based on an alternating current flowing between the probes using a pair of electrodes each having a probe and being positioned in the first liquid while supplying an alternating current between the probes By detecting the position of the liquid surface of the first liquid according to the change in the upper liquid, the upper liquid is a liquid having a low conductivity such as an electrolyte, and the lower liquid has a higher specific gravity than the upper liquid and is unnecessary with the upper liquid. Two layers that are liquids that do not mix and are more conductive than the upper liquid In the storage tank or reaction tank in which the liquid is stored, even if the upper layer liquid and the lower layer liquid are both maintained at a high temperature and highly corrosive to metals, the liquid level of the upper layer liquid can be reduced with a simple configuration. This position can be detected with high accuracy, and if necessary, an unnecessary change in the liquid level of the upper liquid can be surely stopped at a desired timing.

また、更に、一対の電極のそれぞれの探触子の先端が、第1の液体と第2の液体と界面を横切る際に、探触子間を流れる交流電流に基づくアドミッタンス出力の変化、特にアドミッタンス出力の段差に応じて、かかる界面の位置を検出自在であることにより、簡便な構成で、上層液体の液面の位置を高精度に検出することができると共に、上層液体と下層液体との界面の位置を高精度に検出することができ、必要に応じて、所望のタイミングで上層液体の液面の不要な変化や上層液体と下層液体との界面の不要な変化をより確実に停止することができる。   Further, when the tip of each probe of the pair of electrodes crosses the interface between the first liquid and the second liquid, a change in admittance output based on an alternating current flowing between the probes, in particular, admittance. Since the position of the interface can be detected according to the level difference of the output, the position of the liquid surface of the upper liquid layer can be detected with high accuracy with a simple configuration, and the interface between the upper liquid layer and the lower liquid layer can be detected. The position of the upper layer liquid can be detected with high accuracy, and if necessary, unnecessary changes in the liquid level of the upper liquid layer and unnecessary changes in the interface between the upper liquid layer and the lower liquid layer can be stopped more reliably. Can do.

また、一対の電極のそれぞれの探触子が、その先端部に界面と平行に設定自在な平坦面を有する円柱状部材であることにより、特に、上層液体と下層液体との界面を瞬時に横切ることができ、上層液体と下層液体との界面の位置をより高精度に検出することができる。   Further, each probe of the pair of electrodes is a cylindrical member having a flat surface which can be set parallel to the interface at the tip thereof, and in particular, instantaneously crosses the interface between the upper layer liquid and the lower layer liquid. And the position of the interface between the upper liquid and the lower liquid can be detected with higher accuracy.

また、一対の電極のそれぞれの探触子が、グラファイト製であることにより、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置や、上層液体と下層液体との界面の位置を高精度に検出することができる。   In addition, since the probe of each of the pair of electrodes is made of graphite, both the upper layer liquid and the lower layer liquid are maintained at a high temperature and corrode unnecessarily even if they are highly corrosive to metals. The position of the liquid surface of the upper layer liquid and the position of the interface between the upper layer liquid and the lower layer liquid can be detected with high accuracy with a simple configuration.

また、一対の電極のそれぞれの探触子が、電極の導電部材に対応して連絡し、導電部材は、第1の液体及び第2の液体に対して耐腐食性を呈する絶縁部材で覆われることにより、かかる電極の探触子以外の部分が上層液体等の液滴やガスに接触した場合でも、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置や、上層液体と下層液体との界面の位置を高精度に検出することができる。   In addition, each probe of the pair of electrodes communicates with the conductive member of the electrode, and the conductive member is covered with an insulating member that exhibits corrosion resistance to the first liquid and the second liquid. Therefore, even when a portion other than the probe of the electrode comes into contact with a droplet or gas such as an upper layer liquid, both the upper layer liquid and the lower layer liquid are maintained at a high temperature and are highly corrosive to the metal. However, it does not corrode unnecessarily, and with a simple configuration, the position of the liquid surface of the upper liquid and the position of the interface between the upper liquid and the lower liquid can be detected with high accuracy.

(第2の実施形態)
次に、本発明の第2の実施形態における液面計につき、更に図3をも参照して、詳細に
説明する。
(Second Embodiment)
Next, a liquid level gauge according to the second embodiment of the present invention will be described in detail with reference to FIG.

図3は、本実施形態における液面計の構成を示す模式的な断面図であり、液体を貯留する貯槽をも示す。   FIG. 3 is a schematic cross-sectional view showing the configuration of the liquid level gauge in the present embodiment, and also shows a storage tank for storing liquid.

本実施形態においては、液面計100の一対の電極130、140の構成が、第1の実施形態で説明した液面計10の一対の電極30、40のものとは異なっていることが主たる相違点であるため、以下、かかる相違点に着目して説明することとし、同様の構成については同一の符号を付しながら、適宜説明を簡略化又は省略する。   In the present embodiment, the configuration of the pair of electrodes 130 and 140 of the liquid level gauge 100 is mainly different from that of the pair of electrodes 30 and 40 of the liquid level gauge 10 described in the first embodiment. Since this is a difference, the following description will be made by paying attention to such a difference, and the same components are denoted by the same reference numerals, and the description will be simplified or omitted as appropriate.

図3示すように、本実施形態における装置S2に適用される液面計100は、一対の電極130、140を備えるものであり、かかる一対の電極130、140は、シース型熱電対132、142と、シース型熱電対132、142を囲んで収容する絶縁性の保護管134、144と、を対応して備える。   As shown in FIG. 3, the level gauge 100 applied to the device S <b> 2 in the present embodiment includes a pair of electrodes 130 and 140, and the pair of electrodes 130 and 140 includes the sheath-type thermocouples 132 and 142. And insulating protective tubes 134 and 144 that surround and accommodate the sheathed thermocouples 132 and 142, respectively.

具体的には、シース型熱電対132、142は、図示を省略する温度検知器にそれぞれ電気的に接続されて探触子として機能する2種類の金属部材から成る熱電対132a、142aと、熱電対132a、142aを収容してステンレス鋼等の金属製であるシース132b、142bと、熱電対132a、142a及びシース132b、142bの間に充填されて電気的に絶縁性で熱的に伝導性である充填材132c、142cと、を対応して備える。かかるシース132b、142bは、制御器70にそれぞれ電気的に接続されており、第1の実施形態における探触子34、44と同様の機能を発揮する。   Specifically, the sheath-type thermocouples 132 and 142 are thermocouples 132a and 142a composed of two types of metal members that are electrically connected to a temperature detector (not shown) and function as a probe. The sheaths 132b and 142b, which are made of metal such as stainless steel and accommodate the pairs 132a and 142a, and are filled between the thermocouples 132a and 142a and the sheaths 132b and 142b so as to be electrically insulating and thermally conductive. Certain fillers 132c, 142c are provided correspondingly. The sheaths 132b and 142b are electrically connected to the controller 70, respectively, and exhibit the same functions as the probes 34 and 44 in the first embodiment.

また、保護管134、144は、それぞれ、金属に対して高い腐食性を有する高温の溶融塩化亜鉛22及び溶融亜鉛24により、シース型熱電対132、142が不要に腐食されないように、シース型熱電対132、142の周囲を、空気を介在して離間して覆った典型的にはセラミック製で閉底円筒状の絶縁部材である。ここで、保護管134、144の外面は、シース132b、142bに関し溶融塩化亜鉛22及び溶融亜鉛24に対する接触外面を構成する。このように保護管134、144が閉底円筒部材であるため、シース型熱電対132、142自体は、それぞれ露出型であっても埋め込み型であってもかまわない。   The protective tubes 134 and 144 are sheathed thermocouples so that the sheathed thermocouples 132 and 142 are not undesirably corroded by the high-temperature molten zinc chloride 22 and the molten zinc 24, which are highly corrosive to metals. The pair 132, 142 is a closed-bottom cylindrical insulating member that is typically made of ceramic and covers the space with air interposed therebetween. Here, the outer surfaces of the protective tubes 134 and 144 constitute contact outer surfaces for the molten zinc chloride 22 and the molten zinc 24 with respect to the sheaths 132b and 142b. As described above, since the protective tubes 134 and 144 are closed bottom cylindrical members, the sheathed thermocouples 132 and 142 themselves may be either an exposed type or an embedded type.

ここで、かかる一対の電極130、140においては、探触子として機能する部分であるシース132b、142bが、絶縁性の保護管134、144やシース132b、142bと保護管134、144との間の空気によって対応して覆われているため、一対の電極130、140間に、溶融塩化亜鉛22やその上方の空気、更には溶融亜鉛24が位置した状態では、これらをも含めた電気回路が、シース132b、142b間に静電容量や抵抗が接続された等価回路として評価されることになる。   Here, in the pair of electrodes 130 and 140, the sheaths 132 b and 142 b that function as probes are provided between the insulating protective tubes 134 and 144 and the sheaths 132 b and 142 b and the protective tubes 134 and 144. Therefore, when the molten zinc chloride 22 and the air above and further the molten zinc 24 are located between the pair of electrodes 130 and 140, an electric circuit including these is provided. Thus, the circuit is evaluated as an equivalent circuit in which a capacitance and a resistance are connected between the sheaths 132b and 142b.

より詳しくは、交流電源50から交流電流を供給された状態の一対の電極130、140が、溶融塩化亜鉛22の液面から相対的に下方に侵入していくと、シース132b、142bの浸漬長さLが増大することに対応して、制御器70が出力するアドミッタンス出力Aが増大するような図2に示すプロフィールC1に類似するプロフィールが得られる。一方で、交流電源50から交流電流を供給された状態の一対の電極130、140が、更に相対的に下方に位置して、シース132b、142bの下端が、溶融塩化亜鉛22と溶融亜鉛24との界面26を横切って溶融亜鉛24に侵入していっても、第1の実施形態で見られたアドミッタンス段差プロフィールC3が明確には出現することはなく、プロフィールC1に類似するプロフィールから、シース132b、142b間における溶融塩化亜鉛22から成る領域の上下方向の長さに応じて適宜変化して維持されるような図2に示すプロフィールC2’に変化する。   More specifically, when the pair of electrodes 130 and 140 in a state where an alternating current is supplied from the alternating current power supply 50 penetrates relatively downward from the liquid surface of the molten zinc chloride 22, the immersion length of the sheaths 132b and 142b is increased. Corresponding to the increase in the length L, a profile similar to the profile C1 shown in FIG. 2 is obtained in which the admittance output A output from the controller 70 increases. On the other hand, the pair of electrodes 130 and 140 in a state in which an alternating current is supplied from the alternating current power supply 50 is positioned relatively lower, and the lower ends of the sheaths 132b and 142b are the molten zinc chloride 22 and the molten zinc 24. The admittance step profile C3 seen in the first embodiment does not appear clearly even when the molten zinc 24 has entered the interface 26 across the interface 26. From the profile similar to the profile C1, the sheath 132b 2, the profile C2 ′ shown in FIG. 2 is changed so as to be appropriately changed according to the length in the vertical direction of the region composed of the molten zinc chloride 22 between 142b.

よって、かかる構成では、第1の実施形態と同様にプロフィールC1に類似するプロフィールを用いながら、典型的にはそれらの位置が固定されたシース132b、142bの下端の位置、便宜的には目視できる保護管134、144の下端の位置を基準として、溶融塩化亜鉛22の液面の位置を検出することができる。また、第1の実施形態の構成に対しては検出精度が下がるが、原理的には、アドミッタンス出力AがプロフィールC1に類似するプロフィールからプロフィールC2’へと変化することを利用して、その変曲点等を用いながら、溶融塩化亜鉛22と溶融亜鉛24との界面26の位置を検出し得る。   Therefore, in this configuration, while using a profile similar to the profile C1 as in the first embodiment, the positions of the lower ends of the sheaths 132b and 142b whose positions are fixed are typically visible for convenience. The position of the liquid level of the molten zinc chloride 22 can be detected using the position of the lower end of the protective tubes 134 and 144 as a reference. Further, although the detection accuracy is lowered for the configuration of the first embodiment, in principle, the change is made by utilizing the fact that the admittance output A changes from a profile similar to the profile C1 to the profile C2 ′. The position of the interface 26 between the molten zinc chloride 22 and the molten zinc 24 can be detected using the bending point or the like.

また、一対の電極130、140は、シース型熱電対132、142を内蔵するものであるため、溶融塩化亜鉛22や溶融亜鉛24の液温も精度よく検出できることに加え、貯槽20に挿通される電極の総数を低減できる。特に、貯槽20が電解反応容器である場合には、断熱構造を採用すると共に、その開放上端部を蓋体で塞いで気密構造を実現する必要があるから、電極や種々の配管が気密を維持可能な相対的に大きな占有領域を必要とする構成でもって貫通孔を介して挿通される傾向があるが、このように貯槽20に挿通される電極の総数を低減し得る構成は、複雑な周辺構造を有する貫通孔の総数を低減して装置S2の全体構成を簡素化する観点から有意性がある。なお、一方のシース型熱電対として、他方のシース型熱電対に対してシースの長さが同じで熱電対の下端位置が相対的に上方にあるものを用いれば、貯槽20の底からの高さが異なる場所における溶融塩化亜鉛22や溶融亜鉛24の液温を測定することも可能である。   In addition, since the pair of electrodes 130 and 140 incorporate the sheath type thermocouples 132 and 142, the liquid temperature of the molten zinc chloride 22 and the molten zinc 24 can be detected with high accuracy, and the electrode is inserted into the storage tank 20. The total number of electrodes can be reduced. In particular, when the storage tank 20 is an electrolytic reaction vessel, it is necessary to adopt a heat insulating structure and to close the open upper end portion with a lid to realize an airtight structure, so that electrodes and various pipes maintain airtightness. Although there is a tendency to be inserted through the through-hole with a configuration that requires a relatively large occupied area, a configuration that can reduce the total number of electrodes that are inserted into the storage tank 20 in this way is a complicated peripheral. This is significant from the viewpoint of reducing the total number of through-holes having a structure and simplifying the overall configuration of the device S2. If one sheath-type thermocouple has the same sheath length as the other sheath-type thermocouple and the lower end position of the thermocouple is relatively upward, the height from the bottom of the storage tank 20 is increased. It is also possible to measure the liquid temperature of the molten zinc chloride 22 and the molten zinc 24 at different locations.

なお、本実施形態におけるシース型熱電対132、142を内蔵する一対の電極130、140については、その一方のみを適用して、他方には、第1の実施形態における探触子34、44を有する一対の電極30、40の一方を適用してもよく、かかる場合には、一対の電極130、140を全て用いた場合に比べて、溶融塩化亜鉛22と溶融亜鉛24との界面26の位置を精度よく検出し得る。   Note that only one of the pair of electrodes 130 and 140 having the sheath type thermocouples 132 and 142 in the present embodiment is applied, and the probes 34 and 44 in the first embodiment are applied to the other. One of the pair of electrodes 30 and 40 may be applied. In such a case, the position of the interface 26 between the molten zinc chloride 22 and the molten zinc 24 is compared to the case where all of the pair of electrodes 130 and 140 are used. Can be detected with high accuracy.

以上の本実施形態の構成によれば、一対の電極のそれぞれの探触子が、シース型熱電対を構成し、第1の液体及び第2の液体の温度を検出自在であることにより、上層液体の液面の位置等を検出することに加えて液温も検出するという付加的な機能をも実現し得て、使用する電極等の総数を減らしながら、上層液体の液面の位置や液温等を高精度に検出することができる。   According to the configuration of the present embodiment described above, each probe of the pair of electrodes constitutes a sheath type thermocouple, and the temperatures of the first liquid and the second liquid can be detected. In addition to detecting the position of the liquid surface, it can also realize an additional function of detecting the liquid temperature, reducing the total number of electrodes, etc. Temperature etc. can be detected with high accuracy.

また、シース型熱電対が、絶縁性セラミック製の保護管に収容されることにより、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置や液温等を高精度に検出することができる。   In addition, since the sheath type thermocouple is housed in a protective tube made of insulating ceramic, both the upper layer liquid and the lower layer liquid are maintained at a high temperature, and even if they are highly corrosive to metals, they are undesirably corroded. Therefore, the position of the upper liquid, the liquid temperature, and the like can be detected with high accuracy with a simple configuration.

なお、本発明においては、部材の種類、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。   In the present invention, the type, arrangement, number, and the like of the members are not limited to the above-described embodiments, and the components depart from the gist of the invention, such as appropriately replacing the constituent elements with those having the same operational effects. Of course, it can be appropriately changed within the range not to be.

以上のように、本発明においては、上層液体が電解液等の導電性が低い液体で、下層液体が上層液体よりも比重が重く上層液体と不要に混合せず、かつ上層液体よりも導電性の高い液体である2層構造の液体が貯留されている貯槽や反応槽において、上層液体及び下層液体が共に高温に維持されて金属に対して腐食性が高いものであっても不要に腐食することがなく、簡便な構成で、上層液体の液面の位置等を高精度に検出可能な液面計を提供することができ、その汎用普遍的な性格からこのような2層構造の液体を対象とする液面計に広範に適用され得るものと期待される。   As described above, in the present invention, the upper layer liquid is a liquid having low conductivity such as an electrolyte, the lower layer liquid has a higher specific gravity than the upper layer liquid, and is not unnecessarily mixed with the upper layer liquid, and is more conductive than the upper layer liquid. In a storage tank or reaction tank in which a two-layer structure liquid, which is a highly liquid, is stored, both the upper layer liquid and the lower layer liquid are kept at a high temperature and corrode unnecessarily even if they are highly corrosive to metals. Therefore, it is possible to provide a liquid level gauge that can detect the position of the liquid level of the upper layer liquid with high accuracy with a simple configuration. It is expected to be widely applicable to the target level gauge.

10……液面計
20……貯槽
22……上層液体
24……下層液体
26……界面
30、40…電極
32、42…電極部
32a、42a…保護管
32b、42b……導電部材
34、44…探触子
50……交流電源
50a…給電線
50b…給電線
60……交流電流計
70……検出部
70a…制御部
70b…検出部
100……液面計
130、140…電極
132、142…シース型熱電対、
132a、142a…熱電対、
132b、142b…シース、
132c、142c…充填材、
134、144…保護管、
DESCRIPTION OF SYMBOLS 10 ... Liquid level meter 20 ... Storage tank 22 ... Upper layer liquid 24 ... Lower layer liquid 26 ... Interface 30, 40 ... Electrode 32, 42 ... Electrode part 32a, 42a ... Protective tube 32b, 42b ... Conductive member 34, 44 ... Probe 50 ... AC power supply 50a ... Feed line 50b ... Feed line 60 ... AC ammeter 70 ... Detection unit 70a ... Control unit 70b ... Detection unit 100 ... Level gauge 130, 140 ... Electrode 132, 142 ... sheath type thermocouple,
132a, 142a ... thermocouple,
132b, 142b ... sheath,
132c, 142c ... fillers,
134, 144 ... protective tube,

Claims (8)

容器内に溜められて金属に対して腐食性を有する電解質である第1の液体と、前記容器内に前記第1の液体よりも下方に溜められて金属に対して腐食性を有する導電性の第2の液体と、の成す界面を横断自在に、前記第1の液体及び前記第2の液体に対して同一の浸漬長さでもって浸漬自在であって、前記第1の液体及び前記第2の液体に対する接触外面が耐腐食性を呈する材料から成る探触子を、それぞれ有する一対の電極と、
前記一対の電極のそれぞれの前記探触子の間に交流電流を供給自在な交流電源と、
前記一対の電極のそれぞれの前記探触子の先端が、前記第1の液体内に位置する場合に、前記探触子間を流れる前記交流電流に基づくアドミッタンス出力の変化に応じて、前記第1の液体の液面の位置を検出自在である検出部と、
を備える液面計。
A first liquid which is an electrolyte which is stored in a container and corrosive to metal; and a conductive liquid which is stored below the first liquid in the container and corrosive to metal. The first liquid and the second liquid can be immersed in the first liquid and the second liquid with the same immersion length so that they can traverse the interface formed with the second liquid. A pair of electrodes each having a probe made of a material whose outer surface in contact with the liquid exhibits corrosion resistance;
An alternating current power source capable of supplying an alternating current between the probes of each of the pair of electrodes;
When the tip of each probe of the pair of electrodes is located in the first liquid, the first responsive to a change in admittance output based on the alternating current flowing between the probes. A detection unit capable of detecting the position of the liquid level of the liquid,
A liquid level gauge.
前記検出部は、更に、前記一対の電極のそれぞれの前記探触子の前記先端が、前記第1の液体と前記第2の液体と界面を横切る際に、前記探触子間を流れる前記交流電流に基づくアドミッタンス出力の変化に応じて、前記界面の位置を検出自在である請求項1に記載の液面計。   The detector further includes the alternating current flowing between the probes when the tips of the probes of the pair of electrodes cross the interface between the first liquid and the second liquid. The liquid level gauge according to claim 1, wherein the position of the interface can be detected in accordance with a change in admittance output based on a current. 前記一対の電極のそれぞれの前記探触子は、その先端部に前記界面と平行に設定自在な平坦面を有する円柱状部材である請求項1又は2に記載の液面計。   3. The liquid level gauge according to claim 1, wherein each of the probes of the pair of electrodes is a columnar member having a flat surface that can be set in parallel with the interface at a tip portion thereof. 前記一対の電極のそれぞれの前記探触子は、グラファイト製である請求項1から3のいずれかに記載の液面計。   The liquid level gauge according to claim 1, wherein each of the probes of the pair of electrodes is made of graphite. 前記一対の電極のそれぞれの前記探触子は、前記第一対の電極の導電部材に対応して連絡し、前記導電部材は、前記第1の液体及び前記第2の液体に対して耐腐食性を呈する絶縁部材で覆われる請求項1から4のいずれかに記載の液面計。   Each of the probes of the pair of electrodes communicates with the conductive member of the first pair of electrodes, and the conductive member is resistant to corrosion with respect to the first liquid and the second liquid. The liquid level gauge according to claim 1, wherein the liquid level gauge is covered with an insulating member exhibiting properties. 前記一対の電極のそれぞれの前記探触子は、シース型熱電対を構成し、前記検出部は、更に、前記第1の液体及び前記第2の液体の温度を検出自在である請求項1に記載の液面計。   2. The probe according to claim 1, wherein each of the probes of the pair of electrodes constitutes a sheath-type thermocouple, and the detection unit is further capable of detecting temperatures of the first liquid and the second liquid. Liquid level gauge as described. 前記シース型熱電対は、絶縁性セラミック製の保護管に収容される請求項6に記載の液面計。   The liquid level meter according to claim 6, wherein the sheath type thermocouple is accommodated in a protective tube made of an insulating ceramic. 前記第1の液体が溶融塩化亜鉛を含有する溶融塩であり、前記第2の液体が溶融亜鉛を含有する溶融金属である請求項1から7のいずれかに記載の液面計。   The liquid level gauge according to any one of claims 1 to 7, wherein the first liquid is a molten salt containing molten zinc chloride and the second liquid is a molten metal containing molten zinc.
JP2011015236A 2011-01-27 2011-01-27 Liquid level gauge Withdrawn JP2012154840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015236A JP2012154840A (en) 2011-01-27 2011-01-27 Liquid level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015236A JP2012154840A (en) 2011-01-27 2011-01-27 Liquid level gauge

Publications (1)

Publication Number Publication Date
JP2012154840A true JP2012154840A (en) 2012-08-16

Family

ID=46836707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015236A Withdrawn JP2012154840A (en) 2011-01-27 2011-01-27 Liquid level gauge

Country Status (1)

Country Link
JP (1) JP2012154840A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728349A (en) * 2014-01-16 2014-04-16 河南理工大学 Entire automatic testing method and device for gas desorption speed of resistance-type coal sample
KR101428294B1 (en) 2012-12-18 2014-08-07 현대자동차주식회사 Integrated sensor for vehicles
CN104949729A (en) * 2015-07-17 2015-09-30 滁州职业技术学院 Water level detection device for high-temperature water
CN107504985A (en) * 2017-03-07 2017-12-22 宿州中矿三杰科技有限公司 A kind of material safety detection mechanism
CN108981850A (en) * 2018-06-29 2018-12-11 宝沃汽车(中国)有限公司 Detect method, apparatus, probe, liquid level sensor and the vehicle of coolant liquid liquid level
CN109580722A (en) * 2018-12-25 2019-04-05 国网陕西省电力公司电力科学研究院 A kind of ground net corrosion monitoring method and device based on AC admittance method
TWI657232B (en) * 2016-12-27 2019-04-21 日商富士金股份有限公司 Liquid level meter, gasifier with the same and liquid level detection method
CN110133056A (en) * 2019-05-30 2019-08-16 浙江大学 A kind of conductivity measurement system of highly conductive liquid
CN112650320A (en) * 2020-11-30 2021-04-13 太极集团重庆涪陵制药厂有限公司 Alcohol precipitation control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428294B1 (en) 2012-12-18 2014-08-07 현대자동차주식회사 Integrated sensor for vehicles
CN103728349A (en) * 2014-01-16 2014-04-16 河南理工大学 Entire automatic testing method and device for gas desorption speed of resistance-type coal sample
CN104949729A (en) * 2015-07-17 2015-09-30 滁州职业技术学院 Water level detection device for high-temperature water
TWI657232B (en) * 2016-12-27 2019-04-21 日商富士金股份有限公司 Liquid level meter, gasifier with the same and liquid level detection method
CN107504985A (en) * 2017-03-07 2017-12-22 宿州中矿三杰科技有限公司 A kind of material safety detection mechanism
CN107504985B (en) * 2017-03-07 2019-10-08 宿州中矿三杰科技有限公司 A kind of material safety detection mechanism
CN108981850A (en) * 2018-06-29 2018-12-11 宝沃汽车(中国)有限公司 Detect method, apparatus, probe, liquid level sensor and the vehicle of coolant liquid liquid level
CN109580722A (en) * 2018-12-25 2019-04-05 国网陕西省电力公司电力科学研究院 A kind of ground net corrosion monitoring method and device based on AC admittance method
CN109580722B (en) * 2018-12-25 2021-07-06 国网陕西省电力公司电力科学研究院 Grounding grid corrosion monitoring method and device based on alternating current admittance method
CN110133056A (en) * 2019-05-30 2019-08-16 浙江大学 A kind of conductivity measurement system of highly conductive liquid
CN112650320A (en) * 2020-11-30 2021-04-13 太极集团重庆涪陵制药厂有限公司 Alcohol precipitation control method
CN112650320B (en) * 2020-11-30 2022-05-31 太极集团重庆涪陵制药厂有限公司 Alcohol precipitation control method

Similar Documents

Publication Publication Date Title
JP2012154840A (en) Liquid level gauge
EP2626675B1 (en) Liquid level sensing system
US9003876B2 (en) Thermal mass flowmeter with a metal-encapsulated sensor system
JP2013076699A (en) Gas sensor and method for determining concentration of gas in two-component mixture
KR20190085987A (en) A liquid level meter, a vaporizer equipped with the liquid level meter, and a liquid level detecting method
US7062965B2 (en) Resistive level sensor for cryo-liquid gas tanks
RU2487323C2 (en) Electric heating element
TW201140004A (en) Interface-level meter
WO2015083298A1 (en) Water level sensor
JP6257915B2 (en) Water level / temperature measurement device and water level / temperature measurement system
US9091583B2 (en) Fluid level sensor system and method
US11035893B2 (en) Sensor device
KR20230044932A (en) Apparatus for sensing water level and electrical conductivity, apparatus for sensing electrical conductivity, apparatus for generating hydrogen, method for sensing water level and electrical conductivity, and method for sensing electrical conductivity
JP5274515B2 (en) Moisture concentration detector
JP2013221751A (en) Liquid concentration detection device
EP4130694A1 (en) A temperature sensor assembly
JP2005049354A (en) Method for measuring fluctuations of dead volume
RU2046361C1 (en) Device for measuring specific electric conduction of liquids
CN104568053B (en) A kind of self-heating difference thermal resistance liquid level sensor and its method for measuring liquid level
JP6663799B2 (en) Liquid level sensor
CN207964945U (en) A kind of thermal battery electrolyte diaphragm electric conductivity test device
JP2013221752A (en) Liquid concentration detection apparatus
KR20140080623A (en) Apparatus and method for measuring level of liquid gas using superconductor and metal
RU85641U1 (en) CAPACITIVE LIQUID METER
CN110411937A (en) A kind of corrosion monitoring system monitoring corrosiveness of the environment and material corrosion rate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401