JP2012154654A - Steam-water separator and boiling-water reactor - Google Patents

Steam-water separator and boiling-water reactor Download PDF

Info

Publication number
JP2012154654A
JP2012154654A JP2011011524A JP2011011524A JP2012154654A JP 2012154654 A JP2012154654 A JP 2012154654A JP 2011011524 A JP2011011524 A JP 2011011524A JP 2011011524 A JP2011011524 A JP 2011011524A JP 2012154654 A JP2012154654 A JP 2012154654A
Authority
JP
Japan
Prior art keywords
stage
steam
hub
inner cylinder
swirler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011011524A
Other languages
Japanese (ja)
Other versions
JP5663324B2 (en
Inventor
Takashi Sumikawa
隆 住川
Naoyuki Ishida
直行 石田
Kenichi Katono
健一 上遠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011011524A priority Critical patent/JP5663324B2/en
Publication of JP2012154654A publication Critical patent/JP2012154654A/en
Application granted granted Critical
Publication of JP5663324B2 publication Critical patent/JP5663324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce carry-over of a steam-water separator.SOLUTION: The steam-water separator includes a swirler including: a hub that is provided on an axial center of a cylindrical body forming a passage of a gas-liquid two-phase flow heading from a lower side to an upper side; and a plurality of turning vanes radially fixed toward the cylindrical body, with the hub defined as a center; the swirler of which inside edge is fixed to the hub in the radial direction of the turning vanes and of which outside edge is fixed to the inner wall of the cylindrical body in the radial direction of the turning vanes. The plurality of turning vanes are twisted in the same direction in the height direction and also twisted in the same direction in a horizontal cross section.

Description

本発明は、沸騰水型原子炉に用いられる気水分離器に関する。   The present invention relates to a steam separator used in a boiling water reactor.

一般的な沸騰水型原子炉には、水と炉心で発生させた蒸気を分離するために、炉心上部に気水分離器が設置されている。気水分離器内では、スワラ(旋回羽根)によって水と蒸気の気液二相流に旋回速度を与え、遠心力により気液密度差を利用して水と蒸気を分離する。分離した水は、気水分離器下方から排水されてダウンカマに戻り、再循環ポンプにより再び炉心へ送られる。分離した蒸気は、蒸気乾燥器を通してさらに湿分を取り除いた後、タービンへ送られる。炉心で発生させた蒸気から極力湿分を取り除くことにより発電効率を向上させている。   In a general boiling water reactor, a steam separator is installed at the upper part of the core in order to separate water and steam generated in the core. In the steam separator, a swirler (swirl blade) gives a swirl speed to the gas-liquid two-phase flow of water and steam, and the water and steam are separated by utilizing the gas-liquid density difference by centrifugal force. The separated water is drained from below the steam separator, returns to the downcomer, and is sent again to the core by the recirculation pump. The separated steam is further dehumidified through a steam dryer and then sent to the turbine. Power generation efficiency is improved by removing moisture as much as possible from the steam generated in the core.

気水分離器の性能は、蒸気中に含まれる水分を取り除く気水分離効率で表される。気水分離効率は、気水分離器を通過した後の蒸気中に含まれる水分の重量比で表されるキャリーオーバ、及び蒸気から分離した水分中に含まれる蒸気量の重量比として表されるキャリーアンダで評価される。   The performance of the steam separator is expressed by the steam separation efficiency that removes the moisture contained in the steam. The steam-water separation efficiency is expressed as a carry-over expressed by the weight ratio of moisture contained in the steam after passing through the steam-water separator, and a weight ratio of the amount of steam contained in the moisture separated from the steam. Evaluated by carry-under.

このうち気水分離器のキャリーオーバは、後段に構える蒸気乾燥器の入口条件により制限があり、10%以下に抑えなければならない。   Among these, the carry-over of the steam separator is limited by the inlet condition of the steam dryer provided in the subsequent stage and must be suppressed to 10% or less.

図2は、気水分離器の主要部であるスワラの周囲を拡大して示した図である。この図で、6は第一段内筒64の内壁面であり、この中に旋回羽根81が設置されて、スワラ63を構成している。炉心からの水と蒸気の気液二相流Wは、第一段内筒の下部から進入し、気液二相流Wの上昇流がスワラ63に到達すると、図2の旋回羽根81の曲面2に衝突する。すると水と蒸気の衝突分離が起き衝突した曲面2に液膜が形成されることが解析結果より確認されている。形成された液膜はもともと持っていた上方向の速度成分のため旋回羽根81の曲面2上を上昇しながら、旋回羽根のひねり構造より得られる遠心力により径方向に移動する。なお、この図で、5は気水分離器のスワラ63を含む部分を切断する水平面である。   FIG. 2 is an enlarged view of the periphery of the swirler, which is the main part of the steam separator. In this figure, 6 is an inner wall surface of the first-stage inner cylinder 64, in which a swirl vane 81 is installed to constitute a swirler 63. The gas-liquid two-phase flow W of water and steam from the core enters from the lower part of the first stage inner cylinder, and when the upward flow of the gas-liquid two-phase flow W reaches the swirler 63, the curved surface of the swirl blade 81 in FIG. Collide with 2. Then, it is confirmed from the analysis result that a collision between water and steam occurs and a liquid film is formed on the curved surface 2 where the collision occurs. The formed liquid film moves in the radial direction by the centrifugal force obtained from the twisted structure of the swirl vane while rising on the curved surface 2 of the swirl vane 81 because of the upward velocity component originally possessed. In this figure, 5 is a horizontal plane that cuts a portion including the swirler 63 of the steam separator.

図2に示す気水分離器のスワラ構造により、曲面2に形成された液膜は、その後、2つの経路に分かれて上昇する。第1の経路は、旋回羽根81の曲面2上を径方向に移動して、第一段内筒64の内壁面6又はディフューザの内壁面に至る経路(図3の8)である。この場合、液膜は図3に示したように第一段内筒64の内壁面6又はディフューザの内壁面上を液膜の状態のまま矢印8の軌跡を描き上昇していく。上昇した液膜は、第一段内筒64の内壁面6の頂部に到達し、分離した水として気水分離器下方から排水されてダウンカマに戻る。   Due to the swirler structure of the steam separator shown in FIG. 2, the liquid film formed on the curved surface 2 then rises in two paths. The first path is a path (8 in FIG. 3) that moves in the radial direction on the curved surface 2 of the swirl vane 81 and reaches the inner wall surface 6 of the first stage inner cylinder 64 or the inner wall surface of the diffuser. In this case, as shown in FIG. 3, the liquid film rises while drawing the locus of the arrow 8 in the state of the liquid film on the inner wall surface 6 of the first stage inner cylinder 64 or the inner wall surface of the diffuser. The rising liquid film reaches the top of the inner wall surface 6 of the first stage inner cylinder 64, is drained from the lower side of the steam separator as separated water, and returns to the downcomer.

第2の経路は、旋回羽根81の曲面2上を上昇して旋回羽根81の上端部3に至る経路である。図2の矢印7の軌跡のように、旋回羽根81の上端部3まで上昇した時点で径方向に第一段内筒64の内壁面6又はディフューザの内壁面まで達することができなかった液膜は、旋回羽根81の上端部3で接触する壁面を失い、液滴4となってしまう。この液滴4により蒸気中の水分は増加し、上記のキャリーオーバを悪化させる結果となる。   The second path is a path that rises on the curved surface 2 of the swirl vane 81 and reaches the upper end portion 3 of the swirl vane 81. The liquid film that could not reach the inner wall surface 6 of the first stage inner cylinder 64 or the inner wall surface of the diffuser in the radial direction when it reached the upper end 3 of the swirl vane 81 as shown by the locus of the arrow 7 in FIG. Loses the wall surface in contact with the upper end 3 of the swirl vane 81 and becomes a droplet 4. This droplet 4 increases the moisture in the vapor, resulting in a worse carry-over.

したがってキャリーオーバを改善させるためには、旋回羽根81の曲面2の上に形成された液膜がスワラの旋回羽根81の上端部3に到達する前に、同じ液膜を第一段内筒64の内壁面6又はディフューザの内壁面まで径方向に移動させればよい。   Therefore, in order to improve carry-over, the same liquid film is applied to the first inner cylinder 64 before the liquid film formed on the curved surface 2 of the swirl vane 81 reaches the upper end 3 of the swirl swirl 81 of the swirler. What is necessary is just to move to radial direction to the inner wall surface 6 of this or the inner wall surface of a diffuser.

特許文献1は、圧力損失の低減により増加するキャリーオーバを、ハブの内側に新たにスワラを設け気液二相流の旋回速度を上げ、気液分離効率を向上させることにより相殺している。   Patent Document 1 offsets carry-over, which increases due to reduction of pressure loss, by newly providing a swirler inside the hub to increase the swirling speed of the gas-liquid two-phase flow and improve the gas-liquid separation efficiency.

特開2010−43969号公報JP 2010-43969 A

特許文献1が提案する気水分離器のスワラを含む部分の水平断面(例えば、図2の水平断面5)を、図4に示す。図4において、26はスワラ63の中心に位置するハブであり、ハブ26から周方向の第一段内筒64の内壁6又はディフューザの内壁側に向かって複数の旋回羽根81(図の例では8枚)が設けられている。   FIG. 4 shows a horizontal cross section (for example, horizontal cross section 5 in FIG. 2) of the portion including the swirler of the steam separator proposed in Patent Document 1. In FIG. In FIG. 4, reference numeral 26 denotes a hub located at the center of the swirler 63, and a plurality of swirl vanes 81 (in the example shown in the figure) from the hub 26 toward the inner wall 6 of the first-stage inner cylinder 64 in the circumferential direction or the inner wall side of the diffuser. 8).

係る水平断面において、旋回羽根81の曲面2に形成された液膜21は、ハブ26側から第一段内筒64の内壁6又はディフューザの内壁側へ移動(矢印A)するが、旋回羽根81の曲面2の水平断面の輪郭は直線であり、第一段内筒64の内壁6面又はディフューザの内壁面との角度が小さく、液膜21が滑らかに流れず旋回羽根81の曲面2上に滞留する。   In such a horizontal section, the liquid film 21 formed on the curved surface 2 of the swirl vane 81 moves (arrow A) from the hub 26 side to the inner wall 6 of the first stage inner cylinder 64 or the inner wall side of the diffuser. The contour of the horizontal section of the curved surface 2 is a straight line, the angle with the inner wall 6 surface of the first stage inner cylinder 64 or the inner wall surface of the diffuser is small, and the liquid film 21 does not flow smoothly on the curved surface 2 of the swirl blade 81. Stay.

これにより、特許文献1の構造では、旋回羽根81の上端部3で液滴4が多く発生していた。   Thereby, in the structure of Patent Document 1, many droplets 4 are generated at the upper end portion 3 of the swirl blade 81.

そこで、本発明は旋回羽根81の上端部3で発生する液滴4の量を抑制することによりキャリーオーバを低減させ気水分離効率を向上させることができる気水分離器及びこれを用いた沸騰水型原子炉を得ることを目的とする。   Therefore, the present invention suppresses the amount of droplets 4 generated at the upper end 3 of the swirl vane 81, thereby reducing carryover and improving the steam-water separation efficiency, and boiling using the steam-water separator. The purpose is to obtain a water reactor.

上記目的を達成するため、本発明においては、気液二相流を下方から上方に向かって導くスタンドパイプと、このスタンドパイプの上側端面に連通して流路を形成し、上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、このディフューザの上側端面に連通して流路を形成する第1段内筒と、この第1段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第1段外筒と、この第1段外筒の上側端面の内周縁を塞ぐと共に第1段内筒よりも小径の円形孔を形成した第1段環状板と、この第1段環状板の円形孔を形成している内周縁から下方に向けて円筒状に起立させて円形孔を第2段内筒への流路として形成する第1段ピックオフリングと、気液二相流の流路の軸中心を通るハブ及びハブを中心にして放射状に取り付ける複数の旋回羽根を含み、旋回羽根の径方向に内側縁が前記ハブに固定されており、ディフューザの内壁又は第1段内筒の内壁に旋回羽根の径方向に外側縁が固定されているスワラを備え、気水分離器のスワラを含む部分の水平面による断面において、ハブからディフューザまで又は、ハブから第一段内筒の内壁までの輪郭の一部又は全てが曲線である。   In order to achieve the above object, in the present invention, a stand pipe that guides a gas-liquid two-phase flow from below to above, a flow path that communicates with the upper end face of the stand pipe, and a flow path on the upper end face is formed. A diffuser that expands the cross-sectional area of the flow path upward from the cross-sectional area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and a concentric spacing between the first stage inner cylinders A first-stage outer cylinder that surrounds and forms an annular flow path, and a first hole that closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder and that has a circular hole with a smaller diameter than the first-stage inner cylinder A first stage in which a circular hole is formed as a flow path to a second stage inner cylinder by standing up in a cylindrical shape downward from an inner peripheral edge forming a circular hole of the first stage annular plate and a circular hole of the first stage annular plate Radiation around the hub and the hub passing through the axial center of the pick-off ring and the gas-liquid two-phase flow path The inner edge of the swirl vane is fixed to the hub, and the outer edge is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction. In the section of the horizontal plane of the portion including the swirler of the steam separator, a part or all of the contour from the hub to the diffuser or from the hub to the inner wall of the first stage inner cylinder is a curve.

また、旋回羽根の表側と裏側の両方の曲面の輪郭の反り方向が同一である。   Further, the curved directions of the curved surfaces on both the front side and the back side of the swirl vane are the same.

また、原子炉圧力容器の内部の下部側に備える炉心の上方に複数を並列に配列して備える。   A plurality of the reactor pressure vessels are arranged in parallel above the core provided on the lower side inside the reactor pressure vessel.

上記目的を達成するため、本発明においては、下方から上方に向かう気液二相流の流路を形成する筒状体の軸中心に設けられたハブ、及びハブを中心にして筒状体に向けて放射状に取り付けられた複数の旋回羽根を含み、旋回羽根の径方向に内側縁がハブに固定されており、筒状体の内壁に旋回羽根の径方向に外側縁が固定されているスワラを備える気水分離器において、複数の旋回羽根は、高さ方向に同一方向の捻りが与えられていると共に、水平断面にも同一方向の捻りが与えられている。   In order to achieve the above object, in the present invention, a hub provided at the axial center of a cylindrical body that forms a gas-liquid two-phase flow path from below to above, and a cylindrical body centered on the hub. A swirler including a plurality of swirling blades radially attached toward the inner surface, the inner edge of the swirling blade being fixed to the hub in the radial direction, and the outer edge being fixed to the inner wall of the cylindrical body in the radial direction In the steam-water separator, the plurality of swirl vanes are given the same direction twist in the height direction, and the horizontal section is also given the same direction twist.

かかる構成によると、旋回羽根の曲面上に形成され遠心力により径方向を移動する液膜は旋回羽根と第一段内筒の内壁面又はディフューザの内壁面との接合部において滞留することなく滑らかに第一段内筒の内壁面又はディフューザの内壁面へ移動することが可能になる。   According to this configuration, the liquid film that is formed on the curved surface of the swirl vane and moves in the radial direction due to centrifugal force is smooth without staying at the junction between the swirl vane and the inner wall surface of the first stage inner cylinder or the inner wall surface of the diffuser. It becomes possible to move to the inner wall surface of the first stage inner cylinder or the inner wall surface of the diffuser.

上記のようにすることによって、旋回羽根の曲面上に形成された液膜のうちより多くが第一段内筒の内壁面又はディフューザの内壁面へ移動し、旋回羽根上端部において液滴となってしまう液膜の量が減少することになるので、キャリーオーバが低減され気水分離効率を改善することができる。   By doing so, more of the liquid film formed on the curved surface of the swirl vane moves to the inner wall surface of the first stage inner cylinder or the inner wall surface of the diffuser, and becomes droplets at the upper end of the swirl vane. Therefore, the carryover is reduced and the steam-water separation efficiency can be improved.

本発明によれば、キャリーオーバを低減させ気水分離効率を向上させることができる。   According to the present invention, carry-over can be reduced and the steam-water separation efficiency can be improved.

気水分離器の縦断面図。The longitudinal cross-sectional view of a steam-water separator. 気水分離器のスワラ拡大図。The swirler enlarged view of a steam separator. 旋回羽根81の水平断面図。FIG. 3 is a horizontal sectional view of a swirl blade 81. 気水分離器の主要部であるスワラの周囲を拡大して示した図。The figure which expanded and showed the circumference | surroundings of the swirler which is the principal part of a steam-water separator. 第一段内筒の内壁面の液膜の軌跡を示した図。The figure which showed the locus | trajectory of the liquid film of the inner wall face of a 1st step | paragraph inner cylinder. 気水分離器のスワラを含む部分での水平断面図。The horizontal sectional view in the part containing the swirler of the steam separator. 沸騰水型原子炉の縦断面図。The longitudinal cross-sectional view of a boiling water reactor. 気水分離器の縦断面図。The longitudinal cross-sectional view of a steam-water separator. 本発明による気水分離器の旋回羽根の反り方向を示した図。The figure which showed the curvature direction of the swirl | wing blade of the steam-water separator by this invention. 従来の気水分離器の旋回羽根の反り方向を示した図。The figure which showed the curvature direction of the swirl | wing blade of the conventional steam-water separator. 気水分離器の縦断面図。The longitudinal cross-sectional view of a steam-water separator. 気水分離器のスワラ拡大図。The swirler enlarged view of a steam separator. 旋回羽根81の水平断面図。FIG. 3 is a horizontal sectional view of a swirl blade 81. ベジエ曲線の作成方法を示した図。The figure which showed the creation method of a Bezier curve.

以下、本発明の実施例について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例の気水分離器の構造を説明する前に、この気水分離器が適用される沸騰水型原子炉の概略の構造について図5および図6を用いて説明する。   Before describing the structure of the steam separator of the present embodiment, the schematic structure of a boiling water reactor to which the steam separator is applied will be described with reference to FIGS. 5 and 6.

図5は、改良型沸騰水型原子炉(以下ABWRと略記する)の縦断面図である。ABWRは、原子炉圧力容器32を有し、原子炉圧力容器32の内部に炉心シュラウド31を設置している。複数の燃料集合体(図示せず)が装荷された炉心34は、炉心シュラウド31内に配置される。気水分離器35及び蒸気乾燥器36は、原子炉圧力容器32内で炉心34の上方に配置される。   FIG. 5 is a longitudinal sectional view of an improved boiling water reactor (hereinafter abbreviated as ABWR). The ABWR has a reactor pressure vessel 32, and a core shroud 31 is installed inside the reactor pressure vessel 32. The core 34 loaded with a plurality of fuel assemblies (not shown) is disposed in the core shroud 31. The steam separator 35 and the steam dryer 36 are disposed above the core 34 in the reactor pressure vessel 32.

原子炉圧力容器32と炉心シュラウド31の間に形成される環状のダウンカマ33の下方に炉心に水を供給するためのインターナルポンプ38(再循環ポンプ)が配置される。インターナルポンプ38を運転することにより、ダウンカマ33にある冷却水が炉心へ供給される。炉心では核分裂により発生した熱で冷却水が沸騰し、蒸気と水の二相流状態となる。   An internal pump 38 (recirculation pump) for supplying water to the core is disposed below an annular downcomer 33 formed between the reactor pressure vessel 32 and the core shroud 31. By operating the internal pump 38, the cooling water in the downcomer 33 is supplied to the core. In the core, the cooling water boils with the heat generated by the fission, resulting in a two-phase state of steam and water.

炉心34で発生した気液二相流は気水分離器35に流入し、気水分離器35内にあるスワラにより旋回速度が与えられる。旋回速度により二相流に遠心力が作用し、水と蒸気の密度差により水と蒸気が分離される。   The gas-liquid two-phase flow generated in the core 34 flows into the steam separator 35, and a swirl speed is given by the swirler in the steam separator 35. Centrifugal force acts on the two-phase flow due to the swirling speed, and water and steam are separated by the difference in density between water and steam.

気水分離器35を通過した二相流は、蒸気乾燥器36に流入し、さらに湿分が取り除かれる。このようにして、湿分0.1重量パーセント以下に抑えた蒸気を、主蒸気配管37を通してタービン(図示せず)に送り発電を行っている。   The two-phase flow that has passed through the steam-water separator 35 flows into the steam dryer 36, and moisture is further removed. In this way, steam with a moisture content reduced to 0.1 weight percent or less is sent to a turbine (not shown) through the main steam pipe 37 to generate electricity.

図6を用いて気水分離器の構造をさらに詳しく説明する。図6はABWRに用いられている気水分離器の縦断面図である。図6の気水分離器35において、炉心34で発生した気液二相流Wは、スタンドパイプ61から進入し、ディフューザ62部分に設置されたスワラ63に至る。スワラ63において、図2、図3で説明したようにして気液二相流Wは気液分離される。   The structure of the steam separator will be described in more detail with reference to FIG. FIG. 6 is a longitudinal sectional view of a steam separator used in ABWR. In the steam-water separator 35 of FIG. 6, the gas-liquid two-phase flow W generated in the core 34 enters from the stand pipe 61 and reaches the swirler 63 installed in the diffuser 62 portion. In the swirler 63, the gas-liquid two-phase flow W is gas-liquid separated as described with reference to FIGS.

さらに気水分離器35では、スワラ63で気液分離された水分をダウンカマ33に戻し、また蒸気をタービンに導くための経路を、3段の内外筒により形成する。   Further, in the steam separator 35, the water and gas separated by the swirler 63 are returned to the downcomer 33, and a path for guiding the steam to the turbine is formed by three stages of inner and outer cylinders.

第1段は、第一段内筒64、第一段ピックオフリング65、第一段外筒66、第一段環状板67により形成される。第一段内筒64の頂部と、第一段環状板67の間には空隙が形成されており、また第一段内筒64と第一段外筒66の間の空間が排水路を形成する。このため、図3で説明した第1の経路(旋回羽根1の曲面2上を径方向に移動して、第一段内筒の内壁面6又はディフューザの内壁面に至る経路)8を辿り上昇した液膜は、第一段内筒64の頂部に至り、第一段環状板67との間の空隙、第一段内筒64と第一段外筒66の間の排水路を経由してダウンカマ33に戻される。   The first stage is formed by a first stage inner cylinder 64, a first stage pick-off ring 65, a first stage outer cylinder 66, and a first stage annular plate 67. A gap is formed between the top of the first stage inner cylinder 64 and the first stage annular plate 67, and the space between the first stage inner cylinder 64 and the first stage outer cylinder 66 forms a drainage channel. To do. For this reason, the first path described in FIG. 3 (the path that travels radially on the curved surface 2 of the swirl vane 1 and reaches the inner wall surface 6 of the first stage inner cylinder or the inner wall surface of the diffuser) 8 is raised. The liquid film reaches the top of the first stage inner cylinder 64 and passes through the gap between the first stage annular plate 67 and the drainage channel between the first stage inner cylinder 64 and the first stage outer cylinder 66. Returned to downcomer 33.

他方、図2の第2の経路(旋回羽根1の曲面2上を上昇して旋回羽根1の上端部3に至る経路)7を辿った液滴4は、旋回しながらさらに上昇する。そして、その一部は、第1段の頂部に至るまでの間に第一段内筒の内壁面6の内壁面に到達し捕捉されて、上記の排水路に導かれる。また、第一段内筒の内壁面6の内壁面に到達せず、捕捉されなかった液滴4は、第1段の頂部に設けられた第一段ピックオフリング65を通過し、第2段の内外筒に進入する。   On the other hand, the droplet 4 that has followed the second path 7 (path that rises on the curved surface 2 of the swirl vane 1 and reaches the upper end 3 of the swirl vane 1) 7 in FIG. And a part of them reaches the inner wall surface of the inner wall surface 6 of the first stage inner cylinder before reaching the top of the first stage, is captured, and is guided to the drainage channel. Further, the droplet 4 that has not reached the inner wall surface of the inner wall surface 6 of the first-stage inner cylinder and has not been captured passes through the first-stage pick-off ring 65 provided at the top of the first stage, and the second stage. Enter the inner and outer cylinders.

第2段と、第3段は、スワラが設置されていないだけで、基本的には第1段の内外筒と同様に構成されている。因みに、第2段は、第二段内筒68、第二段ピックオフリング69、第二段外筒70、第二段環状板71で構成され、第3段は、第三段内筒72、第三段ピックオフリング73、第三段外筒74、第三段環状板75で構成されている。   The second stage and the third stage are basically configured similarly to the inner and outer cylinders of the first stage, with no swirler installed. Incidentally, the second stage includes a second stage inner cylinder 68, a second stage pick-off ring 69, a second stage outer cylinder 70, and a second stage annular plate 71, and the third stage includes a third stage inner cylinder 72, A third-stage pick-off ring 73, a third-stage outer cylinder 74, and a third-stage annular plate 75 are included.

なお、スワラ63はハブ26と呼ばれる円柱状の構造物に二相流に旋回速度を与えるための旋回羽根81が複数取り付けられており、旋回羽根81の外側縁は第一段内筒又はディフューザ62に固定されている。このため、スワラ63自身は回転することなく、スワラ63を通過した流体が回転するようになっている。   The swirler 63 is provided with a plurality of swirling blades 81 for giving a swirling speed to the two-phase flow in a cylindrical structure called the hub 26, and the outer edge of the swirling blade 81 is a first stage inner cylinder or a diffuser 62. It is fixed to. For this reason, the swirler 63 itself does not rotate, but the fluid that has passed through the swirler 63 rotates.

気水分離器35は、図6に図示したように構成されている。この気水分離器35に導入される炉心34からの気液二相流Wは、クオリティが約14%である。スタンドパイプ61に流入した二相流Wは、スタンドパイプ61の内壁面に液膜を形成し、中心部を蒸気が流れ、その蒸気中に液滴が浮遊している環状噴霧流になっている。スワラ63により気液二相流Wに旋回速度を与えると、気液密度差による遠心力の違いにより、壁面の液膜内に混在していた蒸気が中心部の蒸気側へ移動するとともに、蒸気中に浮遊していた液滴が壁面へ移動し液膜に取り込まれる。   The steam separator 35 is configured as shown in FIG. The gas-liquid two-phase flow W from the core 34 introduced into the steam separator 35 has a quality of about 14%. The two-phase flow W that has flowed into the stand pipe 61 forms a liquid film on the inner wall surface of the stand pipe 61 and is an annular spray flow in which steam flows in the center and droplets float in the steam. . When swirling speed is given to the gas-liquid two-phase flow W by the swirler 63, the steam mixed in the liquid film on the wall moves to the steam side in the center due to the difference in centrifugal force due to the gas-liquid density difference. The liquid droplet floating inside moves to the wall surface and is taken into the liquid film.

第一段内筒64の壁面に形成された液膜は、第一段ピックオフリング65により、第一段内筒64と第一段外筒66で形成された第一段排水路50を通って気水分離器35の外に排出される。第一段排水路50から排出された水は、再びダウンカマ33に流入しインターナルポンプ38により炉心34に送られる。   The liquid film formed on the wall surface of the first stage inner cylinder 64 passes through the first stage drainage channel 50 formed by the first stage inner cylinder 64 and the first stage outer cylinder 66 by the first stage pick-off ring 65. It is discharged out of the steam separator 35. The water discharged from the first stage drainage channel 50 flows into the downcomer 33 again and is sent to the core 34 by the internal pump 38.

第一段内筒64で壁面に到達しなった蒸気中の液滴は、第二段内筒68または第三段内筒72で内筒壁面に到達し、第二段ピックオフリング69または第三段ピックオフリング73から第二段排水路51または第三段排水路52を通って気水分離器35の外へ排出される。第三段ピックオフリング73を通過するまでに内筒壁面に到達しなった液滴はそのまま蒸気とともに気水分離器出口55から流出する。   The droplets in the vapor that have not reached the wall surface by the first stage inner cylinder 64 reach the inner cylinder wall surface by the second stage inner cylinder 68 or the third stage inner cylinder 72, and the second stage pick-off ring 69 or the third stage. The water is discharged from the stage pick-off ring 73 through the second stage drainage channel 51 or the third stage drainage channel 52 to the outside of the steam / water separator 35. The liquid droplets that have not reached the wall surface of the inner cylinder before passing through the third stage pick-off ring 73 flow out from the steam-water separator outlet 55 together with the steam.

気水分離器の分離効率の指標の一つに、キャリーオーバがあり、気水分離器から流出した流体中に含まれる液の重量率として定義される。蒸気質量流量をWg(kg/s)、液質量流量をWl(kg/s)とすると、キャリーオーバCOは次式で表される。
[数1]
CO=Wl/(Wg+Wl)×100(%) (1)

気水分離器は、概略以上のように構成されて気水分離機能を達成しているが、本発明の第一実施例では、気水分離器35を図1のように構成する。図1aは気水分離器35の構成、図1bはスワラ63の拡大図、図1cは旋回羽根81の水平断面図を示している。
One of the indicators of the separation efficiency of the steam separator is carryover, which is defined as the weight ratio of the liquid contained in the fluid flowing out of the steam separator. When the vapor mass flow rate is Wg (kg / s) and the liquid mass flow rate is Wl (kg / s), the carry-over CO is expressed by the following equation.
[Equation 1]
CO = Wl / (Wg + Wl) × 100 (%) (1)

The steam / water separator is configured as described above to achieve the steam / water separation function. In the first embodiment of the present invention, the steam / water separator 35 is configured as shown in FIG. FIG. 1 a shows the configuration of the steam separator 35, FIG. 1 b shows an enlarged view of the swirler 63, and FIG. 1 c shows a horizontal sectional view of the swirl vane 81.

図1aは図6に、図1bは図2に、また図1cは図4に対応する部分の本発明の実施例である。これらの図で幾つかの相違(例えばスワラの設置場所)はあるが、本発明はこの相違点に関わらず成立する。本発明の特徴は、図1cによく現れている。つまり、スワラ63の水平断面(図1c)において、旋回羽根81の輪郭91を直線2から曲線にし、旋回羽根81の表面91と第一段内筒64の内壁面6又はディフューザ62の内壁面を滑らかにつないでいる。   FIG. 1a is an embodiment of the present invention corresponding to FIG. 6, FIG. 1b is FIG. 2, and FIG. 1c is a portion corresponding to FIG. Although there are some differences in these figures (for example, where the swirler is installed), the present invention is valid regardless of this difference. The features of the present invention appear well in FIG. 1c. That is, in the horizontal cross section of the swirler 63 (FIG. 1c), the contour 91 of the swirl vane 81 is changed from the straight line 2 to the curve 91, and the surface 91 of the swirl vane 81 and the inner wall surface 6 of the first stage inner cylinder 64 or the inner wall surface of the diffuser 62 are. It is connected smoothly.

この結果、旋回羽根81の曲面91上に形成され遠心力により径方向を移動する液膜93は旋回羽根81と第一段内筒64の内壁面6又はディフューザ62の内壁面との接合部において滞留することなく滑らかに第一段内筒64の内壁面6又はディフューザ62の内壁面へ移動することが可能になる。   As a result, the liquid film 93 that is formed on the curved surface 91 of the swirl vane 81 and moves in the radial direction due to centrifugal force is at the joint between the swirl vane 81 and the inner wall surface 6 of the first stage inner cylinder 64 or the inner wall surface of the diffuser 62. It is possible to smoothly move to the inner wall surface 6 of the first stage inner cylinder 64 or the inner wall surface of the diffuser 62 without staying.

上記のようにすることによって、旋回羽根81の曲面91上に形成された液膜93のうちより多くが第一段内筒64の内壁面6又はディフューザ62の内壁面へ移動し、図3の矢印8の軌跡に示すようにスワラ部分を通過後も液膜のまま上昇することができる。また同時に図2の矢印7の軌跡のように、旋回羽根上端部3において液滴4となってしまう液膜の量が減少することになるので、キャリーオーバが低減され気水分離効率が改善される。   By doing so, more of the liquid film 93 formed on the curved surface 91 of the swirl vane 81 moves to the inner wall surface 6 of the first stage inner cylinder 64 or the inner wall surface of the diffuser 62, as shown in FIG. As shown by the locus of the arrow 8, the liquid film can be lifted even after passing through the swirler portion. At the same time, as shown by the locus of the arrow 7 in FIG. 2, the amount of liquid film that becomes droplets 4 at the upper end 3 of the swirling blade is reduced, so carry-over is reduced and steam-water separation efficiency is improved. The

なお、図1cにおいて、旋回羽根81の輪郭91の丸みとほぼ同じ程度の丸みを裏側の輪郭92にも持たせている。図7は、本発明による気水分離器のスワラを含む部分の水平断面である。本発明によるスワラは、旋回羽根81の2つの曲面のうち液膜が形成される側の曲面91と、その裏側の曲面92の反り方向94、95は同一であるという特徴を持つ。このため、上記の反り94、95を大きくしても二相流の通過部分96の断面積を一定に保つことができ、上記断面積の縮小による圧力損失の増加を防ぐことができる。   In FIG. 1 c, the back side contour 92 has a roundness that is approximately the same as the roundness of the contour 91 of the swirl vane 81. FIG. 7 is a horizontal cross section of a portion including a swirler of the steam separator according to the present invention. The swirler according to the present invention is characterized in that the curved surface 91 on the side where the liquid film is formed and the warp directions 94 and 95 of the curved surface 92 on the back side of the two curved surfaces of the swirl blade 81 are the same. For this reason, even if the warps 94 and 95 are increased, the cross-sectional area of the two-phase flow passage portion 96 can be kept constant, and an increase in pressure loss due to the reduction of the cross-sectional area can be prevented.

一方、図8は従来の気水分離器のスワラを含む部分の水平断面である。スワラは鋳造により製作されるため、旋回羽根81と第一段内筒64の内壁6又はディフューザ62の内壁の接合部には鋳造品特有の曲線部28、29ができる。しかしながら、この曲線部28、29は反り方向が旋回羽根81の両面で異なるため、反りの大きさが増大すると二相流の通過部分30の断面積は縮小し気水分離器の圧力損失増加の原因になってしまう。   On the other hand, FIG. 8 is a horizontal cross section of a portion including a swirler of a conventional steam separator. Since the swirler is manufactured by casting, curved portions 28 and 29 peculiar to the cast product are formed at the joint between the swirl blade 81 and the inner wall 6 of the first stage inner cylinder 64 or the inner wall of the diffuser 62. However, since the curved portions 28 and 29 have different warping directions on both sides of the swirl vane 81, the cross-sectional area of the passage portion 30 of the two-phase flow is reduced and the pressure loss of the steam / water separator is increased when the warpage increases. It becomes a cause.

図1のスワラは、右方向の旋回流を与えているが、これは図9のように左方向の旋回流を与えるものであっても同様に実現することができる。この場合には、旋回羽根81の2つの曲面のうち液膜が形成される側の曲面91の向きが図1cと図9cでは相違している。   The swirler in FIG. 1 provides a rightward swirling flow, but this can be realized in the same manner even if it provides a leftward swirling flow as shown in FIG. In this case, of the two curved surfaces of the swirl blade 81, the direction of the curved surface 91 on the side where the liquid film is formed is different between FIG. 1c and FIG. 9c.

図1、図9の実施例から明らかなように、本発明は下方から上方に向かう気液二相流の流路を形成する筒状体(ディフューザ又は第1段内筒)の軸中心に設けられたハブ、及びハブを中心にして筒状体に向けて放射状に取り付けられた複数の旋回羽根を含み、旋回羽根の径方向に内側縁が前記ハブに固定されており、筒状体の内壁に旋回羽根の径方向に外側縁が固定されているスワラを備える気水分離器において、複数の旋回羽根は、図1b、図9bのように高さ方向に同一方向の捻りが与えられていると共に、図1c、図9cのように水平断面にも同一方向の捻りが与えられている構造の気水分離器ということができる。   As is apparent from the embodiment of FIGS. 1 and 9, the present invention is provided at the axial center of a cylindrical body (diffuser or first stage inner cylinder) that forms a gas-liquid two-phase flow path from below to above. And a plurality of swirling blades radially attached to the cylindrical body around the hub, and the inner edge of the swirling blade is fixed to the hub in the radial direction, and the inner wall of the tubular body In the steam-water separator including a swirler whose outer edge is fixed in the radial direction of the swirl vanes, the swirl vanes are twisted in the same direction in the height direction as shown in FIGS. 1b and 9b. In addition, it can be said that the steam-water separator has a structure in which the horizontal cross-section is also twisted in the same direction as shown in FIGS. 1c and 9c.

図10は旋回羽根81の曲面91と第一段内筒64の内壁6の輪郭をベジエ曲線107で結んだスワラの水平断面である。曲線にベジエ曲線107を使用することによる利点は、旋回羽根81の曲面91と第一段内筒64の内壁面6を連続させることができる点である。   FIG. 10 is a horizontal cross section of a swirler in which the curved surface 91 of the swirl vane 81 and the contour of the inner wall 6 of the first stage inner cylinder 64 are connected by a Bezier curve 107. An advantage of using the Bezier curve 107 as a curve is that the curved surface 91 of the swirl vane 81 and the inner wall surface 6 of the first stage inner cylinder 64 can be made continuous.

ベジエ曲線107の具体的な決定方法を以下に説明する。まず図10の水平断面においてハブ26の中心103を通り、旋回羽根81の輪郭91を通る補助線105と、同じくハブ中心103を通り反時計回りに例えば30°回転させた補助線106を引く。補助線105とハブ26の輪郭の交点101を始点、補助線106と第一段内筒の内壁面6の交点102を終点とし、補助線105と、交点102における第一段内筒64の内壁面6の接線108の両方に接する、例えば2次のベジエ曲線を決定する。   A specific method for determining the Bezier curve 107 will be described below. First, in the horizontal section of FIG. 10, an auxiliary line 105 passing through the center 103 of the hub 26 and passing through the contour 91 of the swirl vane 81 and an auxiliary line 106 that passes through the hub center 103 and rotated counterclockwise, for example, 30 ° are drawn. The intersection 101 of the contour of the auxiliary line 105 and the hub 26 is the starting point, the intersection 102 of the auxiliary line 106 and the inner wall surface 6 of the first-stage inner cylinder is the end point, and the inside of the first-stage inner cylinder 64 at the intersection 102 and the intersection 102. For example, a quadratic Bezier curve that touches both tangents 108 of the wall surface 6 is determined.

上記の補助線105と106の間の角度やベジエ曲線の次数を調節することにより使用するベジエ曲線を最適化することができる。   The Bezier curve to be used can be optimized by adjusting the angle between the auxiliary lines 105 and 106 and the order of the Bezier curve.

本発明は、沸騰水型原子炉に適用可能である。   The present invention is applicable to a boiling water reactor.

2:旋回羽根の曲面
3:旋回羽根の上端
4:液滴
5:気水分離器のスワラを含む部分を切断する水平面
6:第一段内筒の内壁面
7:旋回羽根上の液膜の移動軌跡
8:第一段内筒上の液膜の移動軌跡
21:液膜
25:旋回羽根の液膜が形成される側の曲面
26:ハブ
27:旋回羽根の液膜が形成されない側の曲面
28:旋回羽根の液膜が形成される側の曲面の反り方向
29:旋回羽根の液膜が形成されない側の曲面の反り方向
30:二相流の通過部分の断面積
31:炉心シュラウド
32:原子炉圧力容器
33:ダウンカマ
34:炉心
35:気水分離器
36:蒸気乾燥器
37:主蒸気配管
38:インターナルポンプ
50:第一段排水流路
51:第二段排水流路
52:第三段排水流路
55:気水分離器出口
61:スタンドパイプ
62:ディフューザ
63:スワラ
64:第一段内筒
65:第一段ピックオフリング
66:第一段外筒
67:第一段環状板
68:第一段内筒
69:第二段ピックオフリング
70:第二段外筒
71:第二段環状板
72:第三段内筒
73:第三段ピックオフリング
74:第三段外筒
75:第三段環状板
80:ハブ
81:旋回羽根
91:旋回羽根の液膜が形成される側の曲面
92:旋回羽根の液膜が形成されない側の曲面
93:液膜
94:旋回羽根の液膜が形成される側の曲面の反り方向
95:旋回羽根の液膜が形成されない側の曲面の反り方向
96:二相流の通過部分の断面積
2: Curved surface of swirl vane 3: Upper end of swirl vane 4: Droplet 5: Horizontal plane cutting the portion including the swirler of the steam separator 6: Inner wall surface of the first stage inner cylinder 7: Liquid film on the swirl vane Movement locus 8: Movement locus of liquid film on the first stage inner cylinder 21: Liquid film 25: Curved surface on the side where the liquid film of the swirl vane is formed 26: Hub 27: Curved surface on the side where the liquid film of the swirl vane is not formed 28: Curvature direction of curved surface on the side where the liquid film of the swirl vane is formed 29: Warp direction of curved surface on the side where the liquid film of the swirl vane is not formed 30: Cross-sectional area of the passage part of the two-phase flow 31: Core shroud 32: Reactor pressure vessel 33: Downcomer 34: Core 35: Steam / water separator 36: Steam dryer 37: Main steam pipe 38: Internal pump 50: First stage drainage channel 51: Second stage drainage channel 52: First Three-stage drainage channel 55: Steam / water separator outlet 61: Stand pipe 62: Diffuser 3: Swirler 64: First stage inner cylinder 65: First stage pickoff ring 66: First stage outer cylinder 67: First stage annular plate 68: First stage inner cylinder 69: Second stage pickoff ring 70: Second stage Outer cylinder 71: Second stage annular plate 72: Third stage inner cylinder 73: Third stage pick-off ring 74: Third stage outer cylinder 75: Third stage annular plate 80: Hub 81: Swirling blade 91: Liquid of swirling blade Curved surface 92 on the side where the film is formed: Curved surface 93 on the side where the liquid film of the swirl vane is not formed 93: Liquid film 94: Warpage direction of the curved surface on the side where the liquid film of the swirl vane is formed 95: Liquid film on the swirl vane Curvature direction 96 of the curved surface on the non-formed side: sectional area of the passage part of the two-phase flow

Claims (4)

気液二相流を下方から上方に向かって導くスタンドパイプと、このスタンドパイプの上側端面に連通して流路を形成し、前記上側端面の流路断面積よりも上方に向けて流路断面積を拡大するディフューザと、このディフューザの上側端面に連通して流路を形成する第1段内筒と、この第1段内筒を同心円状に間隔を空けて囲んで環状の流路を形成する第1段外筒と、この第1段外筒の上側端面の内周縁を塞ぐと共に前記第1段内筒よりも小径の円形孔を形成した第1段環状板と、この第1段環状板の前記円形孔を形成している内周縁から下方に向けて円筒状に起立させて前記円形孔を第2段内筒への流路として形成する第1段ピックオフリングと、気液二相流の流路の軸中心を通るハブ及び前記ハブを中心にして放射状に取り付ける複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記ディフューザの内壁又は前記第1段内筒の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備え、
前記気水分離器の前記スワラを含む部分の水平面による断面において、前記ハブから前記ディフューザまで又は、前記ハブから前記第一段内筒の内壁までの輪郭の一部又は全てが曲線であることを特徴とする気水分離器。
A stand pipe that guides the gas-liquid two-phase flow from below to above, and a flow path that communicates with the upper end surface of the stand pipe to form a flow path, and the flow path is cut upward from the cross-sectional area of the upper end face. A diffuser that expands the area, a first stage inner cylinder that communicates with the upper end surface of the diffuser to form a flow path, and an annular flow path is formed by concentrically surrounding the first stage inner cylinder at intervals. A first-stage outer cylinder, a first-stage annular plate that closes the inner peripheral edge of the upper end surface of the first-stage outer cylinder, and that has a circular hole having a smaller diameter than the first-stage inner cylinder, and the first-stage annular plate A first-stage pick-off ring in which the circular hole is formed as a flow path to the second-stage inner cylinder by standing downward in a cylindrical shape from the inner peripheral edge forming the circular hole of the plate, and a gas-liquid two-phase A hub passing through the axial center of the flow channel and a plurality of rotations mounted radially about the hub. The inner edge of the swirl vane is fixed to the hub, and the outer edge is fixed to the inner wall of the diffuser or the inner wall of the first stage inner cylinder in the radial direction. With a swirler,
In a cross section of the portion including the swirler of the steam separator, the contour from the hub to the diffuser or from the hub to the inner wall of the first stage inner cylinder is a curve. Features a steam separator.
請求項1記載の気水分離器において、
前記旋回羽根の表側と裏側の両方の曲面の輪郭の反り方向が同一であることを特徴とする気水分離器。
The steam separator according to claim 1,
The steam-water separator, wherein the curved directions of the curved surfaces on both the front side and the back side of the swirl vanes are the same.
請求項1または請求項2に記載の気水分離器を、
原子炉圧力容器の内部の下部側に備える炉心の上方に複数を並列に配列して備えることを特徴とする沸騰水型原子炉。
The steam-water separator according to claim 1 or 2,
A boiling water reactor comprising a plurality of cores arranged in parallel above a core provided on a lower side inside a reactor pressure vessel.
下方から上方に向かう気液二相流の流路を形成する筒状体の軸中心に設けられたハブ、及びハブを中心にして前記筒状体に向けて放射状に取り付けられた複数の旋回羽根を含み、前記旋回羽根の径方向に内側縁が前記ハブに固定されており、前記筒状体の内壁に前記旋回羽根の径方向に外側縁が固定されているスワラを備える気水分離器において、
前記複数の旋回羽根は、高さ方向に同一方向の捻りが与えられていると共に、水平断面にも同一方向の捻りが与えられていることを特徴とする気水分離器。
A hub provided at the axial center of a cylindrical body that forms a gas-liquid two-phase flow path from the lower side to the upper side, and a plurality of swirl vanes attached radially to the cylindrical body about the hub A steam-water separator comprising a swirler having an inner edge fixed to the hub in the radial direction of the swirl vane and an outer edge fixed to the inner wall of the tubular body in the radial direction of the swirl vane. ,
The plurality of swirl vanes are provided with a twist in the same direction in the height direction and a twist in the same direction in a horizontal section.
JP2011011524A 2011-01-24 2011-01-24 Steam separator and boiling water reactor using the same Active JP5663324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011524A JP5663324B2 (en) 2011-01-24 2011-01-24 Steam separator and boiling water reactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011524A JP5663324B2 (en) 2011-01-24 2011-01-24 Steam separator and boiling water reactor using the same

Publications (2)

Publication Number Publication Date
JP2012154654A true JP2012154654A (en) 2012-08-16
JP5663324B2 JP5663324B2 (en) 2015-02-04

Family

ID=46836547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011524A Active JP5663324B2 (en) 2011-01-24 2011-01-24 Steam separator and boiling water reactor using the same

Country Status (1)

Country Link
JP (1) JP5663324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573420B2 (en) 2017-04-20 2020-02-25 Ge-Hitachi Nuclear Energy Americas Llc Apparatuses for steam separation, and nuclear boiling water reactors including the same
US10847273B2 (en) 2014-01-17 2020-11-24 Ge-Hitachi Nuclear Energy Americas Llc Steam separator and nuclear boiling water reactor including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100894A (en) * 1982-12-02 1984-06-11 株式会社東芝 Bwr type reactor
JPH0395496A (en) * 1989-07-24 1991-04-19 General Electric Co <Ge> Method for applying natural circulation type boiling water reactor of free surface vapor separation system with load following faculty
JPH10186079A (en) * 1996-12-25 1998-07-14 Toshiba Corp Steam separator and steam separating device
JP2007232532A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Steam separator, boiling water reactor and swirler assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100894A (en) * 1982-12-02 1984-06-11 株式会社東芝 Bwr type reactor
JPH0395496A (en) * 1989-07-24 1991-04-19 General Electric Co <Ge> Method for applying natural circulation type boiling water reactor of free surface vapor separation system with load following faculty
JPH10186079A (en) * 1996-12-25 1998-07-14 Toshiba Corp Steam separator and steam separating device
JP2007232532A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Steam separator, boiling water reactor and swirler assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847273B2 (en) 2014-01-17 2020-11-24 Ge-Hitachi Nuclear Energy Americas Llc Steam separator and nuclear boiling water reactor including the same
US10573420B2 (en) 2017-04-20 2020-02-25 Ge-Hitachi Nuclear Energy Americas Llc Apparatuses for steam separation, and nuclear boiling water reactors including the same
US11398317B2 (en) 2017-04-20 2022-07-26 Ge-Hitachi Nuclear Energy Americas Llc Apparatuses for steam separation, and nuclear boiling water reactors including the same

Also Published As

Publication number Publication date
JP5663324B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5606473B2 (en) Steam turbine
EP2476868B1 (en) Exhaust system for steam turbine
KR20120051689A (en) Multi-stage gas-water separation device and gas-water separator
FI127060B (en) A steam separator and a boiling water reactor with steam separator
JPWO2011129063A1 (en) Steam separator and nuclear reactor system using the same
JP2018071445A (en) Exhaust chamber of steam turbine, flow guide for steam turbine exhaust chamber, and steam turbine
JP5663324B2 (en) Steam separator and boiling water reactor using the same
KR20190116451A (en) Steam turbine exhaust chamber and steam turbine
JP2004150357A (en) Steam turbine
JP5687641B2 (en) Axial exhaust turbine
SE541242C2 (en) Steam separator including a swirler and nuclear boiling water reactor including the same
JP3971146B2 (en) Steam separator and boiling water reactor
JP2005233154A (en) Steam turbine
JP2012117917A (en) Steam separation facility for nuclear reactor
JP2013003083A (en) Steam separator and boiling-water reactor with the same
JP2012117857A (en) Steam separator
JP2012058113A (en) Steam separation facility for nuclear reactor
JP6139083B2 (en) Axial exhaust condenser
JP3762598B2 (en) Steam separator and boiling water reactor
US11398317B2 (en) Apparatuses for steam separation, and nuclear boiling water reactors including the same
JP5089485B2 (en) Jet pump and reactor
JP2005214051A (en) Axial-flow turbine stage and axial-flow turbine
EP2237282A2 (en) Steam flow vortex straightener
JP2003307584A (en) Steam separation device
JP5415701B2 (en) Reactor jet pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150