JP2005214051A - Axial-flow turbine stage and axial-flow turbine - Google Patents

Axial-flow turbine stage and axial-flow turbine Download PDF

Info

Publication number
JP2005214051A
JP2005214051A JP2004020442A JP2004020442A JP2005214051A JP 2005214051 A JP2005214051 A JP 2005214051A JP 2004020442 A JP2004020442 A JP 2004020442A JP 2004020442 A JP2004020442 A JP 2004020442A JP 2005214051 A JP2005214051 A JP 2005214051A
Authority
JP
Japan
Prior art keywords
steam
blade
stationary blade
fin
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020442A
Other languages
Japanese (ja)
Inventor
Sakae Kawasaki
榮 川崎
Akihiro Onoda
昭博 小野田
Daisuke Nomura
大輔 野村
Kentaro Tani
研太郎 谷
Hisashi Matsuda
寿 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004020442A priority Critical patent/JP2005214051A/en
Publication of JP2005214051A publication Critical patent/JP2005214051A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance axial-flow turbine capable of reducing the loss of interference occurring when steam leaks through a clearance between a labyrinth packing and a rotating shaft and the steam is mixed, at the outlet of a stationary blade, with a steam in a passage part. <P>SOLUTION: The inside wall section inner diameter of a disk part 11 at the inlet part of the moving blade 5 is formed smaller than the outlet inner diameter of a stationary blade inner ring 2, the inside wall part inner diameter ϕx of the disk part 11 observed from a meridian plane is formed larger continuously toward the downstream side, and a disk section fin 10 for converting a rotating shaft radial speed component of steam leaked from a labyrinth fin 8 to a rotating shaft axial flow velocity component is fitted to the inlet part of the moving blade. Also, as required, the steam from the outlet part of the stationary blade 3 to the inlet part of the moving blade 5, and a stationary blade inner ring fin 9 for converting the rotating shaft radial velocity component to the rotating shaft axial velocity component of the steam leaked from the labyrinth fin 8 is fitted to the outlet part of the stationary blade 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、静翼及び動翼から構成された軸流タービン段落及び軸流タービンに関する。   The present invention relates to an axial-flow turbine stage and an axial-flow turbine composed of stationary blades and moving blades.

一般に、軸流タービンは静翼及び動翼からタービン段落が構成され、そのタービン段落内の流体は主として回転軸に平行して流れる。例えば、軸流タービンである蒸気タービンは、図7に示すように構成されている。静翼外輪1と静翼内輪2との間に複数枚の静翼3が固設され、回転軸4に複数枚の動翼5が固設されている。そして、動翼5の翼頂部にはシュラウド6が設置され、静翼3と動翼5とによりタービン段落が形成されている。   In general, an axial turbine has a turbine stage composed of stationary blades and moving blades, and fluid in the turbine stage mainly flows parallel to the rotation axis. For example, a steam turbine that is an axial turbine is configured as shown in FIG. A plurality of stationary blades 3 are fixed between the stationary blade outer ring 1 and the stationary blade inner ring 2, and a plurality of moving blades 5 are fixed to the rotating shaft 4. A shroud 6 is installed at the blade top of the moving blade 5, and a turbine stage is formed by the stationary blade 3 and the moving blade 5.

静翼外輪1には、シュラウド6と静翼外輪1との間隙から漏洩する蒸気を防ぐためにフィン7が植設されている。また、静翼内輪2には静翼内輪2と回転軸4との間隙を通る漏洩蒸気を減少させるためにラビリンスフィン8が植設されている。   Fins 7 are implanted in the stationary blade outer ring 1 in order to prevent steam leaking from the gap between the shroud 6 and the stationary blade outer ring 1. Further, a labyrinth fin 8 is implanted in the stator blade inner ring 2 in order to reduce the leaked steam passing through the gap between the stator blade inner ring 2 and the rotating shaft 4.

このようなタービン段落を回転軸4の軸方向に単段落または複数段落に組み合わせることにより蒸気タービンは構成されている。蒸気タービン通路部における蒸気は静翼3内にて膨張し増速され、増速された蒸気は動翼5にて転向し、動翼5に回転力を与える。   A steam turbine is configured by combining such turbine stages in a single stage or a plurality of stages in the axial direction of the rotating shaft 4. The steam in the steam turbine passage is expanded and accelerated in the stationary blade 3, and the accelerated steam is turned by the moving blade 5 to give a rotating force to the moving blade 5.

この場合、タービン通路部にて損失が発生する。通路部に発生する損失は大きく分けて、翼型損失、二次損失、漏洩損失とがある。すなわち、静翼3及び動翼5の翼形状に起因する翼型損失と、静翼3及び動翼5の内外端壁部分に発生する二次損失と、さらに、フィン7とシュラウド6との間隙より蒸気が漏洩するために発生するチップ漏洩損失と、静翼内輪2に植設されたラビリンスフィン8と回転軸4との間隙より蒸気が漏洩するために発生するラビリンス漏洩損失とがある。   In this case, loss occurs in the turbine passage. The loss generated in the passage is roughly divided into an airfoil loss, a secondary loss, and a leakage loss. That is, the airfoil loss due to the blade shapes of the stationary blade 3 and the moving blade 5, the secondary loss generated in the inner and outer end wall portions of the stationary blade 3 and the moving blade 5, and the gap between the fin 7 and the shroud 6 There are a tip leakage loss that occurs because more steam leaks, and a labyrinth leakage loss that occurs because steam leaks from the gap between the labyrinth fin 8 and the rotating shaft 4 implanted in the stator blade inner ring 2.

静翼3及び動翼5の内外端壁部分に発生する二次損失の低減を目的としたものとしては3次元設計翼がある(例えば、特許文献1、2参照)。これらは、通路部内外壁に発生する二次流れ渦を抑制するために内外端壁面へ翼を傾斜させて構成し、二次流れ渦の駆動力である翼面の圧力差(マッハ数差)を低減することにより二次流れ渦の発達を押さえ、二次流れ損失を低減し性能を向上させるものである。また、チップ漏洩損失やラビリンス漏洩損失等の漏洩損失の低減を目的とした種々のシール構造も提案されている。
特開平6−212902号公報 特公昭4−78803号公報
As a thing aiming at the reduction of the secondary loss which generate | occur | produces in the inner and outer end wall part of the stationary blade 3 and the moving blade 5, there exists a three-dimensional design blade (for example, refer patent document 1, 2). In order to suppress the secondary flow vortex generated on the inner and outer walls of the passage part, the blades are inclined to the inner and outer end wall surfaces, and the pressure difference (Mach number difference) on the blade surface, which is the driving force of the secondary flow vortex. By reducing this, the development of the secondary flow vortex is suppressed, the secondary flow loss is reduced, and the performance is improved. Various seal structures have also been proposed for the purpose of reducing leakage loss such as chip leakage loss and labyrinth leakage loss.
JP-A-6-212902 Japanese Patent Publication No. 4-78803

しかし、ラビンリンス漏洩蒸気が静翼3より流出する蒸気と混合し、静翼3の蒸気流出角度が設計角度とずれて、動翼5への流入角度が変化し動翼5での損失が増加し、さらに、静翼3より流出する蒸気と直角に混合するために漏洩蒸気の半径速度成分が失われミキシング損失が発生する。   However, the labyrinth leaking steam mixes with the steam flowing out from the stationary blade 3, the steam outflow angle of the stationary blade 3 deviates from the design angle, the inflow angle to the moving blade 5 changes, and the loss in the moving blade 5 increases. Furthermore, since the mixing is performed at right angles to the steam flowing out from the stationary blade 3, the radial velocity component of the leaked steam is lost, and mixing loss occurs.

すなわち、漏洩損失のひとつであるラビリンス漏洩損失は、図8に示すようにラビリンスフィン8と回転軸4との間隙より蒸気が漏洩し、動翼5に対して有効な仕事(回転力)を与えないために発生する。ラビリンス漏洩損失は通路部にて有効な仕事を行う蒸気流量Gと漏洩蒸気流量GLとの比GL/Gにて表せる。このラビリンスフィン8を通過する漏洩蒸気は静翼内輪2と回転軸4との間隙を通り動翼5に流入し下流側へと流出して行く。   That is, the labyrinth leakage loss, which is one of the leakage losses, causes steam to leak from the gap between the labyrinth fin 8 and the rotating shaft 4 as shown in FIG. Occurs for not. The labyrinth leakage loss can be expressed by a ratio GL / G of the steam flow rate G that performs effective work in the passage portion and the leakage steam flow rate GL. The leaked steam passing through the labyrinth fin 8 flows through the gap between the stationary blade inner ring 2 and the rotating shaft 4 into the moving blade 5 and flows out downstream.

この漏洩蒸気は動翼5に流入する際に静翼3より流出する蒸気と混合する。静翼3より流出する蒸気は所定の流速と流出角度になるよう静翼3にてコントロールされているが、ラビリンスフィン8より流出する漏洩蒸気(図中 矢印A)は半径方向速度成分を持って静翼3より流出する蒸気(図中 矢印B)と直角に混合するために漏洩蒸気の半径速度成分が失われミキシング損失が発生する。さらに、漏洩蒸気が静翼3より流出する蒸気と混合することにより蒸気流出角度が設計角度とずれるために、動翼5への流入角度が変化し動翼5での損失が増加する。   The leaked steam is mixed with the steam flowing out from the stationary blade 3 when flowing into the moving blade 5. The steam flowing out from the stationary blade 3 is controlled by the stationary blade 3 so as to have a predetermined flow velocity and flow angle, but the leaked steam flowing out from the labyrinth fin 8 (arrow A in the figure) has a radial velocity component. The mixing is caused by the loss of the radial velocity component of the leaked steam due to mixing at right angles with the steam flowing out from the stationary blade 3 (arrow B in the figure). Furthermore, since the steam outflow angle deviates from the design angle by mixing the leaked steam with the steam flowing out from the stationary blade 3, the inflow angle to the moving blade 5 changes and the loss in the moving blade 5 increases.

試験タービンにて計測した漏洩蒸気流量と段落性能との関係を図9に示す。縦軸に段落効率を示し、横軸に漏洩蒸気流量GLと通路部流量Gとの比(GL/G)を示す。図中に示す斜線部は前述にて定義した漏洩損失(GL/G)分を示す。漏洩蒸気によるミキシング損失および動翼5での損失増加分(以下、干渉損失と呼ぶ)は斜線部と段落効率を示す実線で囲まれた部分である。   FIG. 9 shows the relationship between the leakage steam flow rate measured by the test turbine and the paragraph performance. The vertical axis represents the paragraph efficiency, and the horizontal axis represents the ratio (GL / G) between the leakage steam flow rate GL and the passage portion flow rate G. The hatched portion in the figure indicates the leakage loss (GL / G) defined above. The mixing loss due to the leaked steam and the loss increase in the moving blade 5 (hereinafter referred to as interference loss) are the part surrounded by the hatched part and the solid line indicating the paragraph efficiency.

図10に干渉損失と漏洩蒸気流量GLと通路部流量Gとの比(GL/G)の関係を示す。干渉損失は漏洩蒸気の増加に従い大きくなる。これは、漏洩蒸気の増加により静翼3より流出する蒸気とのミキシング損失が増加することと、その影響による流速や流出角度の変化度合いが大きくなるために動翼5での損失が増加するためである。   FIG. 10 shows the relationship between the interference loss, the ratio (GL / G) of the leakage steam flow rate GL and the passage portion flow rate G. Interference loss increases with increasing leaked steam. This is because the loss in the moving blade 5 increases because the mixing loss with the steam flowing out from the stationary blade 3 increases due to an increase in the leaked steam, and the change in flow velocity and outflow angle due to the influence increases. It is.

近年、発電プラントに用いられる軸流タービンは、環境問題や省エネルギの観点より信頼性の確保および高効率化が重要な課題となっており、この干渉損失を低減することが要請されるようになっている。   In recent years, axial turbines used in power plants have become important issues in terms of ensuring reliability and increasing efficiency from the viewpoint of environmental problems and energy saving, and it is required to reduce this interference loss. It has become.

本発明の目的は、ラビリンスパッキンと回転軸との間隙より蒸気が漏洩し、静翼出口にて通路部の蒸気と混合する際に発生する干渉損失を低減することができる高性能の軸流タービン段落及び軸流タービンを提供することである。   An object of the present invention is to provide a high-performance axial turbine capable of reducing interference loss that occurs when steam leaks from a gap between a labyrinth packing and a rotating shaft and mixes with steam in a passage at a stationary blade outlet. It is to provide a paragraph and axial turbine.

本発明の軸流タービン段落は、動翼の入口部におけるディスク部の内壁部入口内径を静翼内輪の出口内径より小さく形成するとともに、子午面より観察される前記ディスク部の内壁部入口内径を下流側に向けて連続的に大きく形成し、ラビリンスフィンからの漏洩蒸気が持つ回転軸の半径速度成分を軸流速度成分へ変換するためのディスク部フィンを動翼の入口部に設ける。また、必要に応じて、静翼の出口部からの蒸気を動翼の入口部に導くとともにラビリンスフィンからの漏洩蒸気が持つ回転軸の半径速度成分を軸流速度成分へ変換するための静翼内輪フィンを静翼の出口部に設け、動翼の入口部には、ディスク部の内壁部と連続して繋がるフィレットを設ける。これにより、ラビリンスパッキンと回転軸との間隙より蒸気が漏洩し、静翼出口部にて通路部の蒸気と混合する際に発生する干渉損失を低減する。   In the axial turbine stage of the present invention, the inner wall inlet diameter of the disk portion at the inlet portion of the moving blade is formed smaller than the outlet inner diameter of the stationary blade inner ring, and the inner wall inlet diameter of the disk portion observed from the meridian plane is set. A disk fin that is formed continuously large toward the downstream side and converts the radial velocity component of the rotating shaft of the leaked steam from the labyrinth fin into the axial velocity component is provided at the inlet portion of the moving blade. Further, if necessary, the vane for guiding the steam from the outlet of the stationary blade to the inlet of the moving blade and converting the radial velocity component of the rotating shaft of the leaked vapor from the labyrinth fin into the axial velocity component An inner ring fin is provided at the outlet portion of the stationary blade, and a fillet continuously connected to the inner wall portion of the disk portion is provided at the inlet portion of the moving blade. As a result, the steam leaks from the gap between the labyrinth packing and the rotating shaft, and the interference loss that occurs when mixing with the steam in the passage at the stationary blade outlet is reduced.

本発明によれば、ラビリンスフィンからの漏洩蒸気は、ディスク部フィンや静翼内輪フィンにより漏洩蒸気が持つ回転軸の半径速度成分が軸流速度成分へ変換されて動翼へ流入し、動翼にて最小圧力となる動翼出口部へ動翼の内壁部に沿って流れる。そのために静翼出口部より流出した蒸気と混合する際に発生する半径方向速度成分の喪失によるミキシング損失が低減され、静翼出口部にて通路部の蒸気と混合する際に発生する干渉損失を低減できる。   According to the present invention, the leaked steam from the labyrinth fin flows into the moving blade by converting the radial velocity component of the rotating shaft of the leaking steam into the axial flow velocity component by the disk portion fin or the stationary blade inner ring fin, Flows along the inner wall of the blade to the blade outlet where the minimum pressure is reached. Therefore, mixing loss due to loss of radial velocity component generated when mixing with steam flowing out from the stator blade outlet is reduced, and interference loss generated when mixing with steam in the passage at the stator blade outlet is reduced. Can be reduced.

図1は本発明の第1の実施の形態に係わる軸流タービン段落を子午面より見た側断面図である。静翼外輪1と静翼内輪2とにより複数枚の静翼3が固設され、回転軸4に複数枚の動翼5がディスク部12を介して固設されている。図1では1枚の静翼3及び1枚の動翼5を示している。そして、動翼5の翼頂部にはシュラウド6が設置され、静翼3と動翼5とによりタービン段落が形成されている。また、静翼外輪1には、シュラウド6と静翼外輪1との間隙から漏洩する蒸気を防ぐためにフィン7が植設されており、静翼内輪2には静翼内輪2と回転軸4との間隙を通る漏洩蒸気を減少させるためにラビリンスフィン8が植設されている。   FIG. 1 is a side sectional view of an axial turbine stage according to the first embodiment of the present invention as seen from the meridian plane. A plurality of stationary blades 3 are fixedly provided by the stationary blade outer ring 1 and the stationary blade inner ring 2, and a plurality of moving blades 5 are fixedly provided on the rotating shaft 4 via the disk portion 12. FIG. 1 shows one stationary blade 3 and one moving blade 5. A shroud 6 is installed at the blade top of the moving blade 5, and a turbine stage is formed by the stationary blade 3 and the moving blade 5. Further, fins 7 are implanted in the stationary blade outer ring 1 in order to prevent steam leaking from the gap between the shroud 6 and the stationary blade outer ring 1, and the stationary blade inner ring 2 includes the stationary blade inner ring 2, the rotating shaft 4, and the like. Labyrinth fins 8 are implanted in order to reduce the leaked steam passing through the gap.

ディスク部12の入口内径φ1は静翼内輪2の出口内径φ2より小さく構成されている。また、ディスク部12の内壁部13の径φxは動翼5の入口部より下流側へ向けて連続的に大きくなるように構成されている。すなわち、子午面より観察されるディスク部12の内壁部13の径φxを下流側(図1の右側)に向けて連続的に大きく形成している。   The disk portion 12 has an inlet inner diameter φ1 smaller than an outlet inner diameter φ2 of the stationary blade inner ring 2. Further, the diameter φx of the inner wall portion 13 of the disk portion 12 is configured to continuously increase from the inlet portion of the rotor blade 5 toward the downstream side. That is, the diameter φx of the inner wall portion 13 of the disk portion 12 observed from the meridian plane is continuously increased toward the downstream side (right side in FIG. 1).

さらに、静翼2の出口部には動翼5の入口部に向かって軸方向に静翼内輪フィン9が設けられ、動翼5の入口部よりは静翼3の出口部に向かってディスク部フィン10が設けられている。すなわち、静翼内輪フィン9は、静翼3の出口部の静翼内輪2に設けられ、静翼3の出口部からの蒸気を動翼5の入口部に導くとともに、ラビリンスフィン8からの漏洩蒸気が持つ回転軸の半径速度成分を軸流速度成分へ変換する。また、ディスク部フィン10は動翼5の入口部のディスク部12に設けられ、ラビリンスフィン8からの漏洩蒸気が持つ回転軸の半径速度成分を軸流速度成分へ変換する。   Further, a stationary blade inner ring fin 9 is provided in the axial direction toward the inlet portion of the moving blade 5 at the outlet portion of the stationary blade 2, and the disk portion is directed toward the outlet portion of the stationary blade 3 from the inlet portion of the moving blade 5. Fins 10 are provided. That is, the stator blade inner ring fin 9 is provided in the stator blade inner ring 2 at the outlet portion of the stator blade 3, guides the steam from the outlet portion of the stator blade 3 to the inlet portion of the moving blade 5, and leaks from the labyrinth fin 8. The radial velocity component of the rotating shaft of steam is converted into the axial velocity component. The disk fin 10 is provided in the disk 12 at the inlet of the rotor blade 5 and converts the radial velocity component of the rotating shaft of the leaked steam from the labyrinth fin 8 into an axial flow velocity component.

ラビリンスフィン8より漏洩する蒸気は、静翼内輪フィン9及びディスク部フィン10により形成された流路に沿って、図1中の矢印Aに示すように下流側へ流出する。一方、静翼3より流出する通路部からの蒸気は矢印Bに示すように動翼5へ流入する。蒸気はより低い圧力場に向かって流出するため、漏洩蒸気は動翼5にて最小圧力となる動翼5の出口部へディスク部12の内壁部13に沿って流入し、静翼3の出口部より流出した蒸気も動翼5の出口部へ向かって流出する。   The steam leaking from the labyrinth fin 8 flows downstream as indicated by an arrow A in FIG. 1 along the flow path formed by the stator blade inner ring fin 9 and the disk portion fin 10. On the other hand, steam from the passage portion flowing out from the stationary blade 3 flows into the moving blade 5 as indicated by an arrow B. Since the steam flows out toward a lower pressure field, the leaked steam flows along the inner wall portion 13 of the disk portion 12 to the outlet portion of the moving blade 5 where the minimum pressure is generated in the moving blade 5, and the outlet of the stationary blade 3. The steam that has flowed out from the section also flows out toward the outlet of the moving blade 5.

この際に、漏洩蒸気は静翼3より流出した蒸気と動翼5の通路部内で混合し流出するが、漏洩蒸気がディスク部12の内壁部13に沿って流れるので、漏洩蒸気が持つ半径速度成分は軸流速度成分へ変換される。そのため、静翼3より流出した蒸気と混合する際に発生する半径方向速度成分の喪失によるミキシング損失は低減されるので、干渉損失も低減される。   At this time, the leaked steam is mixed with the steam flowing out from the stationary blade 3 in the passage portion of the moving blade 5 and flows out. However, since the leaked steam flows along the inner wall portion 13 of the disk portion 12, the radial velocity of the leaked steam has. The component is converted into an axial velocity component. Therefore, since the mixing loss due to the loss of the radial velocity component generated when mixing with the steam flowing out from the stationary blade 3 is reduced, the interference loss is also reduced.

図2は、本発明の第1の実施の形態による干渉損失と、漏洩蒸気流量GLと通路部流量Gとの比(GL/G)との関係を示すグラフである。図2中の実線は従来例による損失を示し、破線が本発明の第1の実施の形態による損失を示す。図中、実線及び破線で示す範囲は軸流タービン段落において発生する漏洩蒸気の範囲を記載しており、一般的にその範囲は0.005より0.04程度となる。図2に示すように、本発明の第1の実施の形態によれば、GL/Gが0.005より0.04の範囲内において干渉損失は低減されており、軸流タービン段落の性能が向上していることが分かる。   FIG. 2 is a graph showing the relationship between the interference loss according to the first embodiment of the present invention and the ratio (GL / G) between the leakage steam flow rate GL and the passage portion flow rate G. The solid line in FIG. 2 shows the loss due to the conventional example, and the broken line shows the loss according to the first embodiment of the present invention. In the figure, the range indicated by the solid line and the broken line describes the range of the leaked steam generated in the axial turbine stage, and generally the range is about 0.004 to 0.04. As shown in FIG. 2, according to the first embodiment of the present invention, the interference loss is reduced when GL / G is in the range of 0.005 to 0.04, and the performance of the axial turbine stage is reduced. It can be seen that it has improved.

第1の実施の形態によれば、ラビリンスフィン8からの漏洩蒸気は、静翼内輪フィン9及びディスク部フィン10によりディスク部12の内壁部に沿って流れるように動翼5の入口部に導かれるので、静翼3の出口部より流出した蒸気と混合する際には半径方向速度成分が喪失している。従って、ミキシング損失が低減され、静翼3の出口部にて通路部の蒸気と混合する際に発生する干渉損失を低減できる。   According to the first embodiment, the leaked steam from the labyrinth fin 8 is guided to the inlet portion of the moving blade 5 so as to flow along the inner wall portion of the disk portion 12 by the stationary blade inner ring fin 9 and the disk portion fin 10. Therefore, the radial velocity component is lost when mixing with the steam flowing out from the outlet of the stationary blade 3. Accordingly, the mixing loss is reduced, and the interference loss that occurs when mixing with the steam in the passage portion at the exit portion of the stationary blade 3 can be reduced.

図3は、本発明の第2の実施の形態に係わる軸流タービン段落を子午面より見た側断面図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、動翼5の入口部に、ディスク部12の内壁部13と連続して繋がるフィレット11を設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 3 is a side sectional view of the axial turbine stage according to the second embodiment of the present invention as seen from the meridian plane. This second embodiment is different from the first embodiment shown in FIG. 1 in that a fillet 11 continuously connected to the inner wall portion 13 of the disk portion 12 is provided at the inlet portion of the rotor blade 5. is there. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図3において、ディスク部12の入口内径φ1は静翼内輪2の出口内径φ2より小さく構成され、ディスク部12の内壁部内径φxは動翼5の入口部より下流側へ向けて連続的に大きくなるように構成されている。さらに、静翼内輪2の出口部には動翼5の入口部に向かって軸方向に静翼内輪フィン9が設けられ、動翼5の入口部のディスク部12には静翼3の出口部に向かってディスク部フィン10が設けられている。   In FIG. 3, the inner diameter φ1 of the disk portion 12 is smaller than the inner diameter φ2 of the stator blade inner ring 2, and the inner wall diameter φx of the disk portion 12 is continuously larger from the inlet portion of the moving blade 5 toward the downstream side. It is comprised so that it may become. Further, a stationary blade inner ring fin 9 is provided in the axial direction toward the inlet portion of the moving blade 5 at the outlet portion of the stationary blade inner ring 2, and the outlet portion of the stationary blade 3 is provided in the disk portion 12 of the inlet portion of the moving blade 5. The disk part fin 10 is provided toward the direction.

さらに動翼5の入口部のディスク部12の内壁部13には、内壁部13より動翼面にフィレット11が形成されている。図4に動翼5の入口部よりみたフィレット11部分の拡大図を示す。フィレット11は動翼5とディスク部12の内壁部13とを滑らかな連続した曲率で形成されている。   Further, a fillet 11 is formed on the inner wall portion 13 of the disk portion 12 at the inlet portion of the moving blade 5 on the moving blade surface from the inner wall portion 13. FIG. 4 shows an enlarged view of the fillet 11 portion viewed from the inlet portion of the moving blade 5. The fillet 11 is formed with a smooth continuous curvature between the moving blade 5 and the inner wall portion 13 of the disk portion 12.

第2の実施の形態によれば、第1の実施の形態の効果に加え、動翼5の入口部にフィレット11を設けたので、動翼5内の通路部面積が減少し、第1の実施の形態よりも動翼5の通路部内圧力が低下し漏洩蒸気をより導きやすくなる。   According to the second embodiment, in addition to the effects of the first embodiment, since the fillet 11 is provided at the inlet of the moving blade 5, the area of the passage portion in the moving blade 5 is reduced, and the first Compared with the embodiment, the pressure in the passage portion of the moving blade 5 is lowered, and the leakage steam is more easily guided.

図5は、本発明の第3の実施の形態に係わる軸流タービン段落を子午面より見た側断面図である。この第3の実施の形態は、図1に示した第1の実施の形態に対し、静翼内輪フィン9を省略したものである。   FIG. 5 is a side sectional view of an axial turbine stage according to the third embodiment of the present invention as seen from the meridian plane. In the third embodiment, the stator blade inner ring fin 9 is omitted from the first embodiment shown in FIG.

図5において、ディスク部12の入口内径φ1は静翼内輪2の出口内径φ2より小さく構成され、ディスク部12の内壁部内径φxは動翼5の入口部より下流側へ向けて連続的に大きくなるように構成されている。さらに、動翼5の入口部のディスク部12には静翼3の出口部に向かってディスク部フィン10が設けられている。そして、静翼内輪2の出口部の静翼内輪フィン9は省略されている。   In FIG. 5, the inner diameter φ1 of the disk portion 12 is smaller than the outlet inner diameter φ2 of the inner ring 2 of the stationary blade, and the inner wall diameter φx of the disk portion 12 is continuously larger from the inlet portion of the moving blade 5 toward the downstream side. It is comprised so that it may become. Further, the disk part 12 at the inlet part of the moving blade 5 is provided with a disk part fin 10 toward the outlet part of the stationary blade 3. The vane inner ring fin 9 at the outlet of the vane inner ring 2 is omitted.

第3の実施の形態によれば、ラビリンスフィン8からの漏洩蒸気は、動翼5の入口部のディスク部11に設けられたディスク部フィン10により漏洩蒸気が持つ回転軸の半径速度成分が喪失されて動翼5へ流入し、ディスク部11の内壁部13の傾斜面に沿って流れるので、漏洩蒸気が少ない場合には、特に静翼内輪フィン9を設けなくても、静翼3の出口部にて通路部の蒸気と混合する際に発生する干渉損失を低減できる。   According to the third embodiment, the leaked steam from the labyrinth fin 8 loses the radial velocity component of the rotating shaft of the leaked steam by the disk part fin 10 provided in the disk part 11 of the inlet part of the rotor blade 5. Since it flows into the moving blade 5 and flows along the inclined surface of the inner wall portion 13 of the disk portion 11, when there is little leakage steam, the exit of the stationary blade 3 is not required even if the stationary blade inner ring fin 9 is not provided. It is possible to reduce the interference loss that occurs when mixing with the vapor of the passage part at the part.

図6は、本発明の第4の実施の形態に係わる軸流タービン段落を子午面より見た側断面図である。この第4の実施の形態は、図5に示した第3の実施の形態に対し、動翼5の入口部に、ディスク部12の内壁部13と連続して繋がるフィレット11を設けたものである。   FIG. 6 is a side sectional view of an axial turbine stage according to the fourth embodiment of the present invention as seen from the meridian plane. This fourth embodiment is different from the third embodiment shown in FIG. 5 in that the inlet 11 of the rotor blade 5 is provided with a fillet 11 continuously connected to the inner wall 13 of the disk portion 12. is there.

図6において、ディスク部12の入口内径φ1は静翼内輪2の出口内径φ2より小さく構成され、ディスク部12の内壁部内径φxは動翼5の入口部より下流側へ向けて連続的に大きくなるように構成されている。動翼5の入口部のディスク部12には静翼3の出口部に向かってディスク部フィン10が設けられている。そして、静翼内輪2の出口部の静翼内輪フィン9は省略されている。   In FIG. 6, the inner diameter φ1 of the disk portion 12 is smaller than the inner diameter φ2 of the stator blade inner ring 2, and the inner diameter φx of the disk portion 12 is continuously larger from the inlet portion of the moving blade 5 toward the downstream side. It is comprised so that it may become. A disk part fin 10 is provided on the disk part 12 at the inlet of the rotor blade 5 toward the outlet of the stationary blade 3. The vane inner ring fin 9 at the outlet of the vane inner ring 2 is omitted.

さらに、動翼5の入口部のディスク部12の内壁部13には、内壁部13より動翼面にフィレット11が形成されている。フィレット11は動翼5とディスク部12の内壁部13とを滑らかな連続した曲率で形成されている。   Further, a fillet 11 is formed on the inner wall portion 13 of the disk portion 12 at the inlet portion of the moving blade 5 on the moving blade surface from the inner wall portion 13. The fillet 11 is formed with a smooth continuous curvature between the moving blade 5 and the inner wall portion 13 of the disk portion 12.

第4の実施の形態によれば、第3の実施の形態の効果に加え、動翼5の入口部にフィレット11を設けたので、動翼5内の通路部面積が減少し、第3の実施の形態よりも動翼5の通路部内圧力が低下し漏洩蒸気をより導きやすくなる。   According to the fourth embodiment, in addition to the effects of the third embodiment, since the fillet 11 is provided at the inlet portion of the moving blade 5, the area of the passage portion in the moving blade 5 decreases, and the third embodiment Compared with the embodiment, the pressure in the passage portion of the moving blade 5 is lowered, and the leakage steam is more easily guided.

本発明の第1の実施の形態に係わる軸流タービン段落を子午面より見た側断面図。The side sectional view which looked at the axial flow turbine paragraph concerning a 1st embodiment of the present invention from the meridian plane. 本発明の第1の実施の形態による干渉損失と、漏洩蒸気流量GLと通路部流量Gとの比(GL/G)との関係を示すグラフ。The graph which shows the relationship between the interference loss by the 1st Embodiment of this invention, and ratio (GL / G) of the leakage steam flow volume GL and the channel | path part flow volume G. 本発明の第2の実施の形態に係わる軸流タービン段落を子午面より見た側断面図。The sectional side view which looked at the axial-flow turbine stage concerning the 2nd Embodiment of this invention from the meridian surface. 本発明の第2の実施の形態に係る軸流タービン段落におけるフィレット部分の拡大図。The enlarged view of the fillet part in the axial turbine stage which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる軸流タービン段落を子午面より見た側断面図。The sectional side view which looked at the axial-flow turbine stage concerning the 3rd Embodiment of this invention from the meridian surface. 本発明の第4の実施の形態に係わる軸流タービン段落を子午面より見た側断面図。The sectional side view which looked at the axial-flow turbine stage concerning the 4th Embodiment of this invention from the meridian surface. 従来の軸流タービン段落を子午面より見た側断面図。The side sectional view which looked at the conventional axial flow turbine paragraph from the meridian surface. 従来の軸流タービン段落の損失形態を説明するための子午面より見た側断面図。The sectional side view seen from the meridian surface for demonstrating the loss form of the conventional axial flow turbine stage. 漏洩蒸気流量と段落効率との関係を示す説明図。Explanatory drawing which shows the relationship between leakage steam flow rate and paragraph efficiency. 漏洩蒸気流量と干渉損失との関係を示すグラフ。The graph which shows the relationship between leakage steam flow and interference loss.

符号の説明Explanation of symbols

1…静翼外輪、2…静翼内輪、3…静翼、4…回転軸、5…動翼、6…シュラウド、7…フィン、8…ラビリンスフィン、9…静翼内輪フィン、10…ディスク部フィン、11…フィレット、12…ディスク部、13…内壁部
DESCRIPTION OF SYMBOLS 1 ... Stator blade outer ring, 2 ... Stator blade inner ring, 3 ... Stator blade, 4 ... Rotating shaft, 5 ... Rotor blade, 6 ... Shroud, 7 ... Fin, 8 ... Labyrinth fin, 9 ... Stator blade inner ring fin, 10 ... Disc Part fin, 11 ... fillet, 12 ... disk part, 13 ... inner wall part

Claims (5)

静翼外輪と静翼内輪との間に固設された静翼と、回転軸のディスク部に固設され翼頂部にシュラウドが形成された動翼と、前記静翼外輪と前記シュラウドとの間に設けられ蒸気の漏洩を防止するフィンと、前記静翼内輪と前記回転軸との間に設けられ蒸気の漏洩を防止するラビリンスフィンとにより形成される軸流タービン段落おいて、前記動翼の入口部における前記ディスク部の内壁部入口内径を前記静翼内輪の出口内径より小さく形成するとともに子午面より観察される前記ディスク部の内壁部入口内径を下流側に向けて連続的に大きく形成し、前記静翼の出口部からの蒸気を前記動翼の入口部に導くとともに前記ラビリンスフィンからの漏洩蒸気が持つ回転軸の半径速度成分を軸流速度成分へ変換するための静翼内輪フィンを前記静翼の出口部に設け、前記ラビリンスフィンからの漏洩蒸気が持つ回転軸の半径速度成分を軸流速度成分へ変換するためのディスク部フィンを前記動翼の入口部に設けたことを特徴とする軸流タービン段落。   A stationary blade fixed between a stationary blade outer ring and a stationary blade inner ring, a moving blade fixed on a disk portion of a rotating shaft and having a shroud formed on the top of the blade, and between the stationary blade outer ring and the shroud In the axial turbine stage formed by a fin provided on the inner surface of the rotating blade to prevent steam leakage and a labyrinth fin provided between the inner ring of the stationary blade and the rotary shaft to prevent leakage of steam. An inner diameter of the inner wall portion of the disk portion at the inlet portion is formed smaller than an inner diameter of the outlet of the inner ring of the stationary blade, and an inner diameter of the inner wall portion of the disk portion observed from the meridian surface is continuously increased toward the downstream side. A vane inner ring fin for guiding the steam from the outlet part of the stationary blade to the inlet part of the moving blade and converting the radial velocity component of the rotating shaft of the leaked steam from the labyrinth fin into the axial velocity component Said stationary blade An axial flow characterized in that a disc fin is provided at the inlet portion of the moving blade for converting the radial velocity component of the rotating shaft of the leaked steam from the labyrinth fin into an axial flow velocity component provided at the outlet portion. Turbine paragraph. 前記動翼の入口部には、前記ディスク部の内壁部と連続して繋がるフィレットを設けたことを特徴とする請求項1記載の軸流タービン段落。   2. The axial turbine stage according to claim 1, wherein a fillet that is continuously connected to an inner wall portion of the disk portion is provided at an inlet portion of the moving blade. 静翼外輪と静翼内輪との間に固設された静翼と、回転軸のディスク部に固設され翼頂部にシュラウドが形成された動翼と、前記静翼外輪と前記シュラウドとの間に設けられ蒸気の漏洩を防止するフィンと、前記静翼内輪と前記回転軸との間に設けられ蒸気の漏洩を防止するラビリンスフィンとにより形成される軸流タービン段落おいて、前記動翼の入口部における前記ディスク部の内壁部入口内径を前記静翼内輪の出口内径より小さく形成するとともに子午面より観察される前記ディスク部の内壁部入口内径を下流側に向けて連続的に大きく形成し、前記ラビリンスフィンからの漏洩蒸気が持つ回転軸の半径速度成分を軸流速度成分へ変換するためのディスク部フィンを前記動翼の入口部に設けたことを特徴とする軸流タービン段落。   A stationary blade fixed between a stationary blade outer ring and a stationary blade inner ring, a moving blade fixed on a disk portion of a rotating shaft and having a shroud formed on the top of the blade, and between the stationary blade outer ring and the shroud In the axial turbine stage formed by a fin for preventing leakage of steam and a labyrinth fin provided between the inner ring of the stationary blade and the rotating shaft for preventing leakage of steam. An inner diameter of the inner wall portion of the disk portion at the inlet portion is formed smaller than an inner diameter of the outlet of the inner ring of the stationary blade, and an inner diameter of the inner wall portion of the disk portion observed from the meridian surface is continuously increased toward the downstream side. An axial flow turbine stage characterized in that a disk portion fin for converting a radial velocity component of a rotating shaft of a leaked steam from the labyrinth fin into an axial flow velocity component is provided at an inlet portion of the moving blade. 前記動翼の入口部には、前記ディスク部の内壁部と連続して繋がるフィレットを設けたことを特徴とする請求項3記載の軸流タービン段落。   The axial turbine stage according to claim 3, wherein a fillet that is continuously connected to an inner wall portion of the disk portion is provided at an inlet portion of the moving blade. 請求項1ないし請求項4のいずれか一の軸流タービン段落を備えたことを特徴とする軸流タービン。
An axial-flow turbine comprising the axial-flow turbine stage according to any one of claims 1 to 4.
JP2004020442A 2004-01-28 2004-01-28 Axial-flow turbine stage and axial-flow turbine Pending JP2005214051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020442A JP2005214051A (en) 2004-01-28 2004-01-28 Axial-flow turbine stage and axial-flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020442A JP2005214051A (en) 2004-01-28 2004-01-28 Axial-flow turbine stage and axial-flow turbine

Publications (1)

Publication Number Publication Date
JP2005214051A true JP2005214051A (en) 2005-08-11

Family

ID=34904358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020442A Pending JP2005214051A (en) 2004-01-28 2004-01-28 Axial-flow turbine stage and axial-flow turbine

Country Status (1)

Country Link
JP (1) JP2005214051A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100557197C (en) * 2006-04-07 2009-11-04 孙敏超 A kind of mixed flow type turbine vane
WO2011148899A1 (en) 2010-05-26 2011-12-01 三菱重工業株式会社 Seal structure, turbine machine equipped with same, and power plant equipped with said turbine machine
CN108779676A (en) * 2016-03-25 2018-11-09 三菱日立电力系统株式会社 Rotating machinery
US11053807B2 (en) 2017-06-12 2021-07-06 Mitsubishi Power, Ltd. Axial flow rotating machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100557197C (en) * 2006-04-07 2009-11-04 孙敏超 A kind of mixed flow type turbine vane
WO2011148899A1 (en) 2010-05-26 2011-12-01 三菱重工業株式会社 Seal structure, turbine machine equipped with same, and power plant equipped with said turbine machine
JP2011247158A (en) * 2010-05-26 2011-12-08 Mitsubishi Heavy Ind Ltd Seal structure, turbine machine equipped with the same, and power plant equipped the turbine machine
CN102822450A (en) * 2010-05-26 2012-12-12 三菱重工业株式会社 Seal structure, turbine machine equipped with same, and power plant equipped with said turbine machine
CN102822450B (en) * 2010-05-26 2015-03-11 三菱重工业株式会社 Seal structure, turbine machine equipped with same, and power plant equipped with said turbine machine
KR101506379B1 (en) 2010-05-26 2015-03-27 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Seal structure, turbine machine equipped with same, and power plant equipped with said turbine machine
CN108779676A (en) * 2016-03-25 2018-11-09 三菱日立电力系统株式会社 Rotating machinery
US20190071991A1 (en) * 2016-03-25 2019-03-07 Mitsubishi Hitachi Power Systems, Ltd. Rotary machine
CN108779676B (en) * 2016-03-25 2020-10-13 三菱日立电力系统株式会社 Rotary machine
US11092026B2 (en) 2016-03-25 2021-08-17 Mitsubishi Power, Ltd. Rotary machine
US11053807B2 (en) 2017-06-12 2021-07-06 Mitsubishi Power, Ltd. Axial flow rotating machine

Similar Documents

Publication Publication Date Title
US10316679B2 (en) Seal structure and rotating machine
US9429022B2 (en) Steam turbine
US9476315B2 (en) Axial flow turbine
JP6131177B2 (en) Seal structure and rotating machine
JP2008057416A (en) Axial flow turbine
JP2007321721A (en) Axial flow turbine stage and axial flow turbine
US9410432B2 (en) Turbine
JP5972374B2 (en) Axial fluid machine
JP2011080452A (en) Turbine
JP2009085185A (en) Axial flow turbine and axial flow turbine stage structure
WO2015133313A1 (en) Seal structure and rotary machine
JP2006104952A (en) Swirling flow preventive device of fluid machine
US10227885B2 (en) Turbine
JP2012137006A (en) Turbine
JP5911151B2 (en) Turbine
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
JP5172424B2 (en) Axial flow turbine
JP6518526B2 (en) Axial flow turbine
JP2005214051A (en) Axial-flow turbine stage and axial-flow turbine
JP2018040282A (en) Axial flow turbine and diaphragm outer ring thereof
JP2015001180A (en) Axis flow turbine
JP2019203398A (en) Steam turbine
JP2020020465A (en) Seal device and turbomachine
JP2005240727A (en) Impulse axial flow turbine
JP2011122472A (en) Seal structure of fluid machine, and fluid machine