JP2012153594A - 金属元素ドープシリカガラスおよびその製造方法 - Google Patents

金属元素ドープシリカガラスおよびその製造方法 Download PDF

Info

Publication number
JP2012153594A
JP2012153594A JP2011016831A JP2011016831A JP2012153594A JP 2012153594 A JP2012153594 A JP 2012153594A JP 2011016831 A JP2011016831 A JP 2011016831A JP 2011016831 A JP2011016831 A JP 2011016831A JP 2012153594 A JP2012153594 A JP 2012153594A
Authority
JP
Japan
Prior art keywords
metal element
silica glass
compound
phosphorus
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011016831A
Other languages
English (en)
Other versions
JP5896507B2 (ja
Inventor
Koichi Kajiwara
浩一 梶原
Shungo Kuwatani
俊伍 桑谷
Takeshi Kaneko
健 金子
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2011016831A priority Critical patent/JP5896507B2/ja
Publication of JP2012153594A publication Critical patent/JP2012153594A/ja
Application granted granted Critical
Publication of JP5896507B2 publication Critical patent/JP5896507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

【課題】液相合成法によって、合成中に原料化合物同士の不均一な沈澱を生じさせにくい、シリカガラスへの金属元素とリンとの共ドープの手段を見出して、金属元素が高濃度であっても均一に分散したシリカガラスを作製する方法の提供。
【解決手段】リン化合物と金属元素含有化合物と好ましくはフッ素化合物との存在下でゾル−ゲル法を行う金属元素ドープシリカガラスの製造方法であって、上記リン化合物は、P−C結合またはP−O−C結合を有し、かつ、P−OHなる部分構造を有さず、上記フッ素化合物においてフッ素原子は炭素原子またはホウ素原子と結合して存在している、上記製造方法。
【選択図】図1

Description

本発明は金属元素ドープシリカガラスおよびその製造方法に関する。金属元素ドープシリカガラスは、例えば蛍光材料、レーザー材料、光磁気光学材料として好適に利用できる。
シリカガラスは、赤外域から深紫外域にわたる広い透明領域、レーザー光のような強い光や放射線に対する良好な照射耐性、高い機械的強度および化学的安定性を併せ持つ、優れた光学材料である。さらに、ガラスは優れた成形性をもつため、ファイバーレーザーをはじめとする、光ファイバー型のデバイスの作製に適した材料である。
透明材料であるシリカガラスに発光機能や光磁気光学機能などの光−磁気機能をもたせるためには、そのような機能を有する希土類元素や遷移金属元素をドープする必要がある。しかし、一般にシリカガラスは、金属元素、特に価数3価以上の金属元素イオンの溶解度が小さく、ドープした金属元素が凝集しやすい。金属元素の凝集は、例えば濃度消光という、発光性金属元素の発光効率が著しく低下する現象などを起こすため、好ましくない。金属元素の凝集を回避する方法として、金属元素とともにアルミニウムやリンを添加して、金属元素の溶解度を向上させる方法が公知である(特許文献1)。
アルミニウムとリンは、ともにシリカガラス中で金属元素の溶解度を向上させ、それらの凝集を防ぐ効果をもつが(特許文献1)、両者の機能は異なる(非特許文献1)。アルミニウムは、ガラスの混合エントロピーを増大させることによって、金属元素と強く相互作用することなく金属元素の溶解度を向上させる。一方で、リンは、多くの金属元素、特に希土類元素とともに、金属元素−リン複合体を形成し、金属元素を溶媒和することによって溶解度を向上させる。このため一般に、アルミニウムよりもリンの方が、溶解度の向上のために必要な添加量が少ない。また一般に、リンドープシリカガラスの方が、アルミニウムドープシリカガラスに比べて、放射線や強いレーザー光などにさらされた場合に色中心による着色を起こしにくく、より好ましい。
現在、光学用シリカガラスのほとんどは、気相合成法という、気化させたシラン系ガスを火炎中やプラズマ中で酸化させる手法で合成されている。気相合成によってシリカガラスへ金属元素のドープを行う方法のひとつとして、シラン系ガスとともに、例えば有機金属化合物のような揮発性の金属元素化合物のガスを導入して同時に反応させる方法が挙げられる。この方法では、金属元素をガラス中に均一にドープできることが期待できる。また、アルミニウムやリンの化合物のガスを用いて金属元素との共ドープを行うこともできる(特許文献1、2)。しかし、このような金属元素化合物は多くの場合高価であり、また蒸気圧が低く気化させにくいため、この方法は実際にはほとんど用いられていない。
もうひとつの方法は、シラン系ガスの燃焼酸化で得られた微粒子の堆積体である多孔質シリカ(スート)を金属イオンの溶液に浸漬し、これを乾燥・焼結することで金属元素のドープされたガラスを得る方法である(特許文献3、4)。簡便なため、現在最も一般的な金属元素のドープ法であるが、乾燥時に金属元素の塩が凝集しやすい、金属元素の高濃度ドープが難しい、などの問題がある。また、アルミニウムやリンを金属元素とともに添加し、ガラス中に均一に分散させることも容易ではない。
金属元素が均一ドープされたシリカガラスを得る他の方法として、イオン交換能を有するゼオライトに金属イオンを担持し、これを熱処理によってガラス化させる方法が開発されている(特許文献5、6、7)。しかし、この手法では、イオン交換能を有するアルミニウム含有型ゼオライトを用いる必要があるため、アルミニウムを含んだシリカガラスしか作製できない。また、ゼオライトへの金属元素イオンの導入およびゼオライトに当初含まれる交換イオンであるアルカリとアルカリ土類金属元素の除去に長時間を要する。
この他の方法に、ゾル−ゲル法をはじめとする液相合成法がある。ゾル−ゲル法は、液体原料である有機シラン化合物を水を含む溶液中で反応させてシリカゲルを作製したのち、これを乾燥・焼結してシリカガラスを得る手法である。この方法の出発原料は均一溶液であり、また熔融温度より数百度低温での焼結でシリカガラスが得られるため、ガラス作製時に金属元素の偏析が起こりにくく、金属元素の高濃度均一ドープが可能である。この手法は、ゲルの乾燥・焼結時に亀裂が入りやすく、これを避けるために乾燥・焼結に時間を要することが多い。しかしながら本発明者らは、最近、この問題を回避しうる方法を複数考案した(特許文献8、9)。
ゾル−ゲル法をはじめとする液相合成法では、例えば硝酸アルミニウムや酢酸アルミニウムなどのアルミニウム塩を原料溶液に添加・溶解させることで金属元素とアルミニウムが共ドープされたシリカガラスを作製することができる。しかし、例えばリン酸などの典型的なリン化合物は、一般に溶液中で金属元素と化合して不溶性の沈澱を生じてしまう。このため、液相合成法では、金属元素とリンが均一に共ドープされたシリカガラスはこれまで作製されていない。
シリカガラスを合成するうえでの他の大きな課題は、合成時にガラス中にSiOH基が残留しやすいことである。気相合成法の場合、酸化燃焼を酸水素炎中で行うと多量のSiOH基が生成する。また、液相合成法では、一般に前駆体溶液中に水が含まれているため、ガラス中にSiOH基が残留しやすい。SiOH基は、光通信波長域(波長〜1.5μm)の伝送損失の主因である。またSiOH基はシリカガラス中にドープされた発光元素の発光効率を大きく低下させるため、その除去は、レーザーのような高効率な発光材料を実現するうえで不可欠である。このような発光強度の低下が問題なくなるSiOH基濃度はおよそ20ppmw(1.6×1018cm−3)であるとされている(特許文献7)。
SiOH基を除去する方法として、前駆体であるスートまたは多孔質シリカゲルを、脱水剤を含む雰囲気中で熱処理する方法がある。フッ素、塩素などのハロゲン元素は高い脱水効果をもっており、これらを含む化合物を脱水剤として用いることができる。この方法はSiOH基の除去に極めて有効である。しかし、多量の脱水剤が必要であり、また脱水剤は高反応性、毒性のため扱いが難しいことが多い。また、脱水剤として最も使用されている塩素系ガスを用いる場合、脱水中にドープした金属元素が揮発性の塩化物となって失われる可能性がある。SiOH基は、シリカガラスを真空中で焼結することによっても除くことができるが、真空装置を備えた電気炉が必要である。また、SiOH基の除去速度が遅いため、一般に長時間の熱処理が必要である(特許文献7)。
液相合成法では、上記のような脱水処理を行わずに、反応溶液中にフッ素化合物を添加することで、乾燥ゲルの焼結時に自発的にSiOH基の除去を行うことができる。しかし、反応溶液中にフッ化物イオン(F)が存在すると、これらは多くの場合金属元素イオンと化合して沈澱を生じるため、例えばフッ酸やフッ化アンモニウムなどの溶液中でFを生じる塩は、一般に金属元素ドープシリカガラスの液相合成に用いることができない。
特開昭60−11245号公報 特開平5−279050号公報 特開平6−305761号公報 特開2006−44995号公報 特開平9−86952号公報 特開2006−44995号公報 特開2007−230815号公報 特開2008−222527号公報 特開2010−189229号公報
A. Saitoh, S. Matsuishi, C. Se-Woon, J. Nishii, M. Oto, M. Hirano,H. Hosono, J. Phys. Chem. B 110, 7617(2006)
したがって、本発明の目的は、液相合成法によって、合成中に原料化合物同士の不均一な沈澱を生じさせにくい、シリカガラスへの金属元素とリンとの共ドープの手段を見出して、金属元素が高濃度であっても均一分散したシリカガラスを作製する方法を提供すること、およびこのガラスへのフッ素ドープを実現し、熱処理中に脱水処理を行うことなくSiOH基濃度が低く、好ましくは1×1018cm−3以下であり、かつ金属元素が高濃度均一分散したシリカガラスを作製する方法を提供することである。
本発明者らが鋭意検討した結果、以下のような本発明を完成した。
[1]リン化合物と金属元素含有化合物との存在下でゾル−ゲル法を行う金属元素ドープシリカガラスの製造方法であって、上記リン化合物は、P−C結合またはP−O−C結合を有し、かつ、P−OHなる部分構造を有さない、上記製造方法。
[2]上記リン化合物が下記一般式(1)
Figure 2012153594
(但し、X〜Xは各々独立に−R、−ORまたは−COを表し、R〜Rは各々独立に炭化水素基を表す。)で表される[1]の製造方法。
[3]ゾル−ゲル法を行う際にさらにフッ素化合物が存在し、前記フッ素化合物においてフッ素原子は炭素原子またはホウ素原子と結合して存在している、[1]または[2]の製造方法。
[4]金属元素が希土類元素である[1]〜[3]のいずれかの製造方法。
[5][1]〜[4]のいずれかの製造方法により製造され、1モルのSiに対して0.001〜0.1モルの金属元素がドープされる金属元素ドープシリカガラス。
[6][1]〜[4]のいずれかの製造方法により製造され、SiOH基濃度が1×1018cm−3以下である金属元素ドープシリカガラス。
本発明によれば、金属元素が高濃度であっても均一に分散したシリカガラスが得られる。また、リンと金属元素とが共にドープされたシリカガラスも得られる。リンをドープする際に典型的なリン化合物であるリン酸などを用いると、溶液中で金属元素と反応し、不溶性の沈澱を生じてしまう。これまで、液相合成法では、金属元素とリンとが共ドープされたシリカガラスは合成されていなかった。本発明者らの知見によれば、沈澱生成の素反応は、リン化合物のPOH基と金属元素Mとの縮合反応によるP−O−M結合の形成である。本発明においてそのような沈澱が生成しないのは、縮合反応のサイトとならないP−CまたはP−O−C結合をリン化合物に導入し、P−O−M結合が三次元的に発達する反応が抑制されたためであると考察される。気相合成法とは異なり、ゾル−ゲル法では比較的に多量の金属元素をドープすることができ、さらに、本発明により、リンを共にドープできるようになったことで、シリカガラス中での多量の金属元素を高分散状態にすることができ、蛍光材料、レーザー材料、光磁気光学材料の高性能化、高効率化といった、光学的及び/又は磁気的な物性の向上が期待される。
本発明によれば、金属元素の分散能力の大きいリンを用いることで、分散剤の濃度を抑えることができるため、金属元素の高濃度化や、分散剤の過剰添加による母材ガラスの機械的・化学的特性低下の抑制が期待できる。
本発明の好適態様によれば、フッ素化合物の存在によりリンおよび金属元素が高濃度で均一に分散しかつSiOH基濃度の低いシリカガラスを簡便かつ容易に得ることができる。このとき、前記フッ素化合物におけるフッ素はC−F結合またはB−F結合を形成しているから、溶液反応中で遊離のフッ化物イオンFを生成せず、それ故、金属フッ化物の不所望な凝集が生じにくい。この好適態様では、焼結中に特殊な脱水処理を行わずにSiOH基濃度の小さいガラスが得られるため、焼結装置を簡略化でき、かつ焼結中の脱水処理による金属元素の揮発を抑えることができる。基礎技術的観点からは、原料溶液がほとんどの場合に水を含んでいるためSiOH基濃度を低下させることが難しいという液相合成法に対する固定観念を覆す点で有意義である。
本発明により得られた金属元素ドープシリカガラスの赤外吸収スペクトルである。 本発明により得られた金属元素ドープシリカガラスの可視〜近赤外吸収スペクトルである。
本発明によれば、特定のリン化合物と金属元素含有化合物との存在下でゾル−ゲル法を行うことにより、金属元素ドープシリカガラスを得る。ゾル−ゲル法は、液体原料である有機シラン化合物を水を含む溶液中で反応させてシリカゲルを作製したのち、これを乾燥・焼結してシリカガラスを得る手法である。有機シラン化合物としては、ケイ素アルコキシドが典型的に挙げられる。ケイ素アルコキシドにおけるアルコキシドとしては、好ましくは炭素数1〜6、より好ましくは炭素数1〜4、さらに好ましくは炭素数1〜2の、直鎖または分枝状のアルコキシドが挙げられる。具体的なケイ素アルコキシドとしては、好ましくは、テトラエトキシシランやテトラメトキシシランであり、安全性、反応性、価格の点からテトラエトキシシランがより好ましい。また、例えばフュームドシリカのようなシリカ微粒子を溶媒中に懸濁させて反応溶液とすることもできる。ゾル−ゲル法における溶媒としては、水や、例えばアルコールなどの有機溶媒を用いることができ、安全性、環境負荷の点から水が好ましい。
本発明の製造方法において用いるリン化合物は、P−C結合またはP−O−C結合を有し、かつ、P−OHなる部分構造を有さない。リン化合物がP−OHなる部分構造を有さないことにより、リン化合物と金属元素Mとの縮合反応によるP−O−M結合が形成せず、沈澱が生じにくい。また、液相合成反応は一般に溶液のpHに強く依存するが、P−OHなる部分構造は一般に酸性を示すため、この部分構造を含まないリン化合物は、それらの添加による反応挙動の変化が小さいという点においても優れている。
このようなリン化合物は、いわゆる、有機リン化合物、リン酸エステルやホスホノ酢酸エステルなどが挙げられる。好適には、リン化合物は下記一般式(1)で表される。
Figure 2012153594
この一般式(1)における、X〜Xは各々独立に−R、−ORまたは−COを表す。ここで、R〜Rは各々独立に炭化水素基を表す。X〜Xは互いに同じであってもよいし、相違していてもよい。
で表される炭化水素基は、直鎖状であっても分枝状であってもよいし、あるいは芳香環を有していてもよく、好ましくは炭素数が1〜20の炭化水素基であり、より好ましくは炭素数1〜10の炭化水素基である。Rは特に好ましくは炭素数1〜6のアルキル基でありさらに好ましくは炭素数1〜4のアルキル基である。また別途、特に好ましくはRは炭素数6〜10のアリール基であり、さらに好ましくは炭素数6〜8のアリール基である。Rのより具体的な例としては、エチル基、ブチル基、オクチル基、フェニル基などが挙げられる。X〜Xの2つ以上が−Rである場合には、当該2つ以上の−Rは互いに同一であってもよいし異なっていてもよい。
で表される炭化水素基は、直鎖状であっても分枝状であってもよいし、あるいは芳香環を有していてもよく、好ましくは炭素数が1〜20の炭化水素基であり、より好ましくは炭素数1〜10の炭化水素基である。Rは特に好ましくは炭素数1〜6のアルキル基でありさらに好ましくは炭素数1〜4のアルキル基である。また別途、特に好ましくはRは炭素数6〜10のアリール基であり、さらに好ましくは炭素数6〜8のアリール基である。Rのより具体的な例としては、エチル基、ブチル基、フェニル基などが挙げられる。X〜Xの2つ以上が−ORである場合には、当該2つ以上の−ORは互いに同一であってもよいし異なっていてもよい。
で表される炭化水素基は、直鎖状であっても分枝状であってもよいし、あるいは芳香環を有していてもよく、好ましくは炭素数が1〜10の炭化水素基であり、より好ましくは炭素数1〜6の炭化水素基である。Rは特に好ましくは炭素数1〜6のアルキル基でありさらに好ましくは炭素数1〜4のアルキル基である。Rのより具体的な例としては、エチル基、ブチル基などが挙げられる。X〜Xの2つ以上が−COである場合には、当該2つ以上の−COは互いに同一であってもよいし異なっていてもよい。
一般式(1)における、X〜Xが−R、−ORまたは−COのいずれであるかは特に限定はなく、好ましくは、X〜Xが全て−Rであるか、X〜Xのうちの2つが−ORであり残り一つが−Rまたは−COである。
好ましいリン化合物の具体的な例としては、トリフェニルホスフィンオキシド、トリブチルホスフィンオキシド、トリオクチルホスフィンオキシド、リン酸トリエチル、リン酸トリブチル、リン酸トリフェニル、エチルホスホン酸ジエチル、ホスホノ酢酸トリエチルなどを挙げることができる。なお、熱分解しやすいリン化合物を使用すると、シリカゲルの乾燥および焼成時のリンの揮発を抑えることができより好ましい。
このようなリン化合物の多くは市販されており、また、種々の公知の合成法によって容易に入手することができる。
ゾル−ゲル反応におけるリン化合物の存在量は、ドープしようとする金属原子とリン原子とが等モルに近いことが好ましい。金属原子1モルに対してリン原子が好ましくは0.2〜5モル、より好ましくは0.5〜2モル、さらに好ましくは0.7〜1.5モルとなるようにリン化合物の量が調節される。ただし、得られる金属元素ドープシリカガラスの用途に応じて、前記好適範囲にこだわらずに、リン化合物の量を適宜調節することもできる。
本発明によれば、ドープする金属元素は特に限定はなく、得られるシリカガラスの用途に応じて適宜選択することができる。好適には、金属元素としては希土類元素が挙げられ、他に、クロム、鉄、マンガンなどの遷移金属元素を挙げることもできる。ゾル−ゲル反応において用いる、金属元素の原料となる金属元素含有化合物は、特に限定はなく、各種の塩、例えば、酢酸塩、硝酸塩などを用いることができる。なお、後述するフッ素を含む化合物の金属塩として金属元素を導入することもできる。そのような金属塩としてはトリフルオロ酢酸金属塩などが挙げられる
このようにして、液相合成法(ゾル−ゲル法)によるシリカガラス中に、金属元素とリンとを共にドープすることができる。気相合成法との比較において、ゾル−ゲル法は多量の金属をドープさせるのに適した方法である。リンは金属元素に配位しやすいため、シリカガラス中で金属元素を分散させる能力が大きい。したがって、本発明により多くの金属元素をドープでき、さらに、リンもドープできることにより、気相合成法では到底導入できないような大量の金属元素を均一にドープしたシリカガラスを得ることができる。例えば、1モルのSi元素あたり、好ましくは0.001モル以上(つまり0.1mol%)、より好ましくは0.005モル以上、さらに好ましくは0.008モル以上、特に好ましくは0.015モル以上の金属元素をドープしたシリカガラスを得ることができる。1モルのSi元素あたりの金属のドープ量の上限値は特に限定はないが、例えば、0.1モル(つまり10mol%)、好ましくは0.05モルである。ドープした金属元素の量は、ゾルの作製の際に用いた金属元素含有化合物の金属元素が全てドープしているものとして算出することができる。ゾル−ゲル法において金属元素が遺漏する工程が無いためである。
本発明において、シリカガラスは好ましくはバルクガラス、モノリス状ガラスであり、例えば光ファイバー等のプリフォーム等として用いることができる点や、亀裂が入りにくく作製の容易な薄膜と異なり、乾燥時の亀裂を抑制するためにゲルの細孔構造を制御する必要がある点、自立体であり基板等の支持体を必要としない点などにおいて、薄膜ガラスなどとは明確に区別される。
本発明の好適態様によれば、ゾル−ゲル法を行う反応溶液中には、さらに、フッ素を含む化合物が存在する。これにより、ゲル化時または焼成時にシリカゲルをフッ素化することができる。フッ素はシリカゲル中でSiF基を形成し、これがSiOH基を置換するため、最終的に得られるシリカガラス中のSiOH基濃度を下げることができる。このとき、反応溶液中にフッ化物イオンFが存在すると、多くの金属元素イオンはFと化合して不溶性の沈澱を生じてしまうため好ましくない。沈澱生成の抑制には、フッ素原子が化合物の中において、C−F結合を形成しているかあるいはB−F結合を形成する形で存在していることが重要である。このように化合物分子中に強くフッ素原子が束縛されていることによって、反応溶液中でFを放出しない。そのような化合物の具体例として、例えばC−F結合を含むトリフルオロ酢酸、パーフルオロオクタン酸、B−F結合を含むフルオロホウ酸塩が挙げられる。フッ素を含む陰イオンの金属塩を用いることもでき、これにより、ドープすべき金属とフッ素とを1つの塩で一挙に導入することが可能になる。そのような金属塩としてトリフルオロ酢酸塩、より具体的にはトリフルオロ酢酸ネオジムなどといった、フッ素を含む有機酸の金属塩を挙げることができる。なお、熱分解しやすいフッ素化合物を用いると、シリカゲルの乾燥および焼成時のフッ素の揮発を抑えることができより好ましい。
ゾル−ゲル反応におけるフッ素化合物の存在量は、置換しようとするSiOH基の量を考慮して適宜調整することができる。例えば、フッ素源としてトリフルオロ酢酸イオンを用いる場合、Si原子1モルに対して溶液中に含まれるフッ素の量が好ましくは0.001〜0.3モル、より好ましくは0.01〜0.2モル、さらに好ましくは0.02〜0.1モルとなるようにフッ素化合物の量が調節される。他のフッ素化合物についても前記に準じて好適量を調節することができる。
ゾル−ゲル法の具体的な手法については公知のものを適宜取り入れることができる。例えば、反応溶液(ゾル)を、ゲル化やキャストによって成形して湿潤シリカゲルとした後、乾燥させることによって、乾燥シリカゲルとすることができる。湿潤シリカゲルの形態や乾燥方法に特に制限はないが、湿潤シリカゲルが100nm程度以上の細孔を有していると、溶媒除去に伴う収縮応力が弱まり、乾燥時に亀裂が入りにくくなるのでより好ましい。乾燥シリカゲルを電気炉中で焼成・焼結することによってシリカガラスを得ることができる。焼成・焼結雰囲気に特に制限はなく、乾燥シリカゲル中に含まれる有機物の燃焼が起こる数百℃付近程度までは、有機物の燃焼除去を促進する空気または酸素雰囲気が望ましい。また乾燥シリカゲルが軟化し細孔がつぶれはじめる800℃程度以上では、シリカガラス中での拡散速度が速いため細孔の消滅を促進するヘリウム雰囲気に置換することが好ましい。
以上の方法によって、金属元素が高濃度であっても均一ドープされ、好適態様ではSiOH基濃度の小さいシリカガラスを作製することができる。このようなガラスは、金属元素のホストがシリカガラスであるため透明性、機械的強度、化学的安定性、レーザー光のような強い光に対する照射耐性に優れ、金属元素が高濃度ドープされているため発光強度の増大や素子の小型化が期待でき、さらに金属元素の凝集および金属元素がSiOH基と相互作用することによる発光効率の低下が小さいため、蛍光材料、レーザー材料、光磁気光学材料としての応用が期待できる。本発明の好適態様では、SiOH基濃度が1×1018cm−3以下である金属元素ドープシリカガラスが提供され、発光効率が特に良好である。SiOH基濃度は少ないほど好ましく、その下限値は特に制限されないが、例えば、1×1015cm−3程度を挙げることができる。金属元素ドープシリカガラスのSiOH基濃度の測定は、基本的には3400〜3800cm−1にあらわれるSiOH基のO−H伸縮振動に由来するピークの吸収スペクトル強度をもとに算出し、前記ピークが大きすぎる場合には、1380nm付近にあらわれるSiOH基のO−H伸縮振動の倍音振動に由来するピークの吸収スペクトル強度をもとに算出する。
以下、実施例により本発明をより具体的に説明する。ただし、本発明はこれらの実施例に記載された態様に限定されるわけではない。
テトラエトキシシラン25mmolに硝酸0.05mmolを含む水46.5mmolを添加し、20℃で55分間攪拌して均一透明な反応溶液を得た。この溶液にトリフェニルホスフィンオキシド0.25mmolを添加して5分間攪拌した。さらに酢酸アンモニウム0.25mmolと酢酸ネオジム1水和物0.25mmolを溶解させた水を添加して水の総量を250mmolとし、これを1分間攪拌した後、密封して20℃で保持したところ反応溶液は約50分で白濁しながら固化した。
固化した試料を密封したまま60℃で24時間熟成させた。開封して湿潤ゲルから浸み出た溶媒を捨てた後、60℃で8日間乾燥させたところ、亀裂のない白色の多孔質乾燥ゲルが得られた。該乾燥ゲルを大気中で毎時200℃の昇温速度で600℃まで加熱して残留有機成分を除去した。続いて、雰囲気をヘリウムガスに置換し、毎時200℃の昇温速度で1300℃まで加熱した後、1300℃で1時間保持して焼結した。その結果、ネオジムイオンをSi比で1mol%含み、かつ亀裂及び気泡を含まない透明なガラスが得られた。SiOH基濃度は3×1019cm−3であった。
テトラエトキシシラン25mmolとリン酸トリエチル0.25mmolとの混合物に硝酸0.05mmolを含む水47.5mmolを添加し、20℃で60分間攪拌して均一透明な反応溶液を得た。この溶液に酢酸アンモニウム0.25mmolと酢酸ネオジム1水和物0.25mmolを溶解させた水を添加して水の総量を250mmolとし、これを1分間攪拌した後、密封して20℃で保持したところ反応溶液は約60分で固化した。
固化した試料を密封したまま60℃で24時間熟成させた。開封して湿潤ゲルから浸み出た溶媒を捨てた後、60℃で8日間乾燥させたところ、亀裂のない半透明の乾燥ゲルが得られた。該乾燥ゲルを大気中で毎時200℃の昇温速度で600℃まで加熱して残留有機成分を除去した。続いて、雰囲気をヘリウムガスに置換し、毎時200℃の昇温速度で1200℃まで加熱した後、1200℃で0.5時間保持して焼結したところ、ネオジムイオンをSi比で1mol%含み、かつ亀裂及び気泡を含まない透明なガラスが得られた。SiOH基濃度は4×1020cm−3であった。
テトラエトキシシラン25mmolとホスホノ酢酸トリエチル0.25mmolとの混合物に硝酸0.005mmolを含む水46.25mmolを添加し、20℃で60分間攪拌して均一透明な反応溶液を得た。この溶液に酢酸アンモニウム0.25mmolと酢酸ネオジム1水和物0.25mmolを溶解させた水を添加して水の総量を250mmolとし、これを1分間攪拌した後、密封して20℃で保持したところ反応溶液は約60分で白濁しながら固化した。
固化した試料を密封したまま60℃で24時間熟成させた。開封して湿潤ゲルから浸み出た溶媒を捨てた後、60℃で8日間乾燥させたところ、亀裂のない白色の多孔質乾燥ゲルが得られた。該乾燥ゲルを大気中で毎時200℃の昇温速度で600℃まで加熱して残留有機成分を除去した。続いて、雰囲気をヘリウムガスに置換し、毎時200℃の昇温速度で1300℃まで加熱した後、1300℃で1時間保持して焼結したところ、ネオジムイオンをSi比で1mol%含み、かつ亀裂及び気泡を含まない透明なガラスが得られた。SiOH基濃度は4×1019cm−3であった。
[比較例1]
テトラエトキシシラン25mmolに硝酸0.05mmolを含む水47.5mmolを添加し、20℃で60分攪拌して均一透明な反応溶液を得た。この溶液に酢酸アンモニウム0.25mmolと酢酸ネオジム1水和物0.25mmolを溶解させた水を添加して水の総量を250mmolとし、これを1分間攪拌した後、密封して20℃で保持したところ反応溶液は約50分で固化した。
得られた湿潤ゲルを密封したまま60℃で24時間熟成させた。開封して湿潤ゲルから浸み出た溶媒を捨てた後、60℃で8日間乾燥させたところ、亀裂のない半透明の乾燥ゲルが得られた。該乾燥ゲルを大気中で毎時200℃の昇温速度で600℃まで加熱して残留有機成分を除去した。続いて、雰囲気をヘリウムガスに置換し、毎時200℃の昇温速度で1200℃まで加熱した後1200℃で1時間保持して焼結したところ、白色不透明な固体になり、全体として均一なガラス相はできなかった。
テトラエトキシシラン25mmolにトリフルオロ酢酸0.25mmolを含む水45mmolを添加し、20℃で115分間攪拌して均一透明な反応溶液を得た。この溶液にトリフェニルホスフィンオキシド0.25mmolを添加して5分間攪拌した。さらに、酢酸アンモニウム0.50mmolと酢酸ネオジム1水和物0.25mmolを溶解させた水を添加して水の総量を250mmolとし、これを1分間攪拌した後、密封して20℃で保持したところ反応溶液は約60分で白濁しながら固化した。
固化した試料を密封したまま60℃で24時間熟成させた。開封して湿潤ゲルから浸み出た溶媒を捨てた後、60℃で8日間乾燥させたところ、亀裂のない白色の多孔質乾燥ゲルが得られた。該乾燥ゲルを大気中で毎時200℃の昇温速度で600℃まで加熱して残留有機成分を除去した。続いて、雰囲気をヘリウムガスに置換し、毎時200℃の昇温速度で1200℃まで加熱した。その後、毎時100℃の昇温速度で1300℃まで加熱した後、1300℃で30分間保持して焼結したところ、ネオジムイオンをSi比で1mol%含み、かつ亀裂及び気泡を含まない透明なガラスが得られた。SiOH基濃度は6×1017cm−3であった。
テトラエトキシシラン25mmolに硝酸0.05mmolを含む水47.5mmolを添加し、20℃で115分間攪拌して均一透明な反応溶液を得た。この溶液にトリフェニルホスフィンオキシド0.25mmolを添加して5分間攪拌した。さらに酢酸アンモニウム1.0mmolとトリフルオロ酢酸ネオジム3水和物0.25mmolを溶解させた水を添加して水の総量を250mmolとし、これを1分間攪拌し反応溶液を中和した後、密封して20℃で保持したところ反応溶液は約40分で白濁しながら固化した。
固化した試料を密封したまま60℃で24時間熟成させた。開封して湿潤ゲルから浸み出た溶媒を捨てた後、60℃で10日間乾燥させたところ、亀裂のない白色の多孔質乾燥ゲルが得られた。該乾燥ゲルを大気中で毎時200℃の昇温速度で600℃まで加熱して残留有機成分を除去した。続いて、雰囲気をヘリウムガスに置換し、毎時200℃の昇温速度で1200℃まで加熱した。その後、毎時100℃の昇温速度で1250℃まで加熱した後1250℃で3時間保持して焼結したところ、ネオジムイオンをSi比で1mol%含み、かつ亀裂及び気泡を含まない透明なガラスが得られた。SiOH基濃度は6×1017cm−3であった。
図1は実施例1(符号1)、実施例4(符号2)および実施例5(符号3)で得られたガラスの赤外吸収スペクトルである。3400〜3800cm−1のSiOH基のO−H伸縮振動に由来するピークが、実施例1では顕著に存在しているのに対して、実施例4および5では該ピークの強度は極めて小さい。
図2は実施例1(符号10)、実施例4(符号20)および実施例5(符号30)で得られたガラスの可視〜近赤外領域の吸収スペクトルである。1380nm付近のSiOH基のO−H伸縮振動の倍音振動に由来するピークが、実施例1では存在しているのに対して、実施例4および5では該ピークは目視では認められない。各実施例におけるSiOH基濃度は図1および図2の近赤外領域の吸収スペクトルのピーク強度をもとに算出したものである。すなわち、基本的には図1において3400〜3800cm−1にあらわれるSiOH基のO−H伸縮振動に由来するピークの吸収スペクトル強度をもとに算出し、前記ピークが大きすぎる場合には、図2において1380nm付近にあらわれるSiOH基のO−H伸縮振動の倍音振動に由来するピークの吸収スペクトル強度をもとに算出した。
[実施例6〜11]
テトラエトキシシラン25mmolに、硝酸0.05mmolを含む水を添加して酸性下で20℃で55分間攪拌し部分加水分解させ、均一透明な反応溶液を得た。さらに、リン源としてトリフェニルホスフィンオキシドを添加して5分間攪拌した。さらに、酢酸アンモニウムと希土類源を溶解させた水を添加して水の総量を250mmolとし、これを1分間攪拌し反応溶液を中和した後、密封して20℃で保持し、ゲル化に至る時間を計測した。
固化した試料を密封したまま60℃で24時間熟成させた。開封して湿潤ゲルから浸み出た溶媒を捨てた後、60℃で8日間乾燥させたところ、亀裂のない半透明な乾燥ゲルが得られた。該乾燥ゲルを大気中で毎時200℃の昇温速度で600℃まで加熱して残留有機成分を除去した。続いて、雰囲気をヘリウムガスに置換し、毎時200℃の昇温速度で加熱した後、その温度で所定時間保持して焼結したところ、各金属元素を所定量含み、かつ亀裂及び気泡を含まない透明なガラスが得られた。
実施例6〜11における調製条件を下記表1にまとめる。
Figure 2012153594
本発明で得られた金属元素ドープシリカガラスは、発光材料や光磁気光学材料として有用である。特に、シリカガラスの高い透明性と機械的強度、化学的安定性および光に対する照射耐性、ファイバーへの成形性を生かして、レーザー媒体およびファイバーレーザー材料として好適に利用でき、かつ金属元素の高濃度ドープとSiOH基の低濃度化によってその高効率化を図ることができる。

Claims (6)

  1. リン化合物と金属元素含有化合物との存在下でゾル−ゲル法を行う金属元素ドープシリカガラスの製造方法であって、
    上記リン化合物は、P−C結合またはP−O−C結合を有し、かつ、P−OHなる部分構造を有さない、上記製造方法。
  2. 上記リン化合物が下記一般式(1)
    Figure 2012153594
    (但し、X〜Xは各々独立に−R、−ORまたは−COを表し、R〜Rは各々独立に炭化水素基を表す。)で表される請求項1記載の製造方法。
  3. ゾル−ゲル法を行う際にさらにフッ素化合物が存在し、前記フッ素化合物においてフッ素原子は炭素原子またはホウ素原子と結合して存在している、請求項1または2記載の製造方法。
  4. 金属元素が希土類元素である請求項1〜3のいずれかに記載の製造方法。
  5. 請求項1〜4のいずれかに記載の製造方法により製造され、1モルのSiに対して0.001〜0.1モルの金属元素がドープされる金属元素ドープシリカガラス。
  6. 請求項1〜4のいずれかに記載の製造方法により製造され、SiOH基濃度が1×1018cm−3以下である金属元素ドープシリカガラス。
JP2011016831A 2011-01-28 2011-01-28 金属元素ドープシリカガラスおよびその製造方法 Active JP5896507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016831A JP5896507B2 (ja) 2011-01-28 2011-01-28 金属元素ドープシリカガラスおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016831A JP5896507B2 (ja) 2011-01-28 2011-01-28 金属元素ドープシリカガラスおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2012153594A true JP2012153594A (ja) 2012-08-16
JP5896507B2 JP5896507B2 (ja) 2016-03-30

Family

ID=46835740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016831A Active JP5896507B2 (ja) 2011-01-28 2011-01-28 金属元素ドープシリカガラスおよびその製造方法

Country Status (1)

Country Link
JP (1) JP5896507B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001896A (ja) * 2015-06-04 2017-01-05 公立大学法人首都大学東京 蛍光ガラス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208823A (ja) * 1990-01-08 1991-09-12 Hitachi Cable Ltd 屈折率分布を有するガラス体の製造方法
JPH0455327A (ja) * 1990-06-22 1992-02-24 Hoya Corp ドーパント含有シリカガラスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208823A (ja) * 1990-01-08 1991-09-12 Hitachi Cable Ltd 屈折率分布を有するガラス体の製造方法
JPH0455327A (ja) * 1990-06-22 1992-02-24 Hoya Corp ドーパント含有シリカガラスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001896A (ja) * 2015-06-04 2017-01-05 公立大学法人首都大学東京 蛍光ガラス

Also Published As

Publication number Publication date
JP5896507B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
Zhou et al. Multifunctional bismuth‐doped nanoporous silica glass: from blue‐green, orange, red, and white light sources to ultra‐broadband infrared amplifiers
Kajihara Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses
CN105481246A (zh) 稀土与镧铝共掺的石英玻璃及其制备方法
Bubnov et al. Fabrication and optical properties of fibers with an Al 2 O 3-P 2 O 5-SiO 2 glass core
CN1944297A (zh) 钕镱共掺高硅氧激光玻璃的制造方法
US6360564B1 (en) Sol-gel method of preparing powder for use in forming glass
Eslami et al. Synthesis and spectral properties of Nd-doped glass-ceramics in SiO2-CaO-MgO system prepared by sol-gel method
JP5896507B2 (ja) 金属元素ドープシリカガラスおよびその製造方法
US9593034B2 (en) Method for producing iron-doped silica glass
EP0433643B1 (en) Method for producing rare earth element-doped glass by sol-gel process
CN100378020C (zh) 高硅氧发兰光玻璃的制造方法
KR100979119B1 (ko) Grin 렌즈 제조 방법
Fan et al. Enhancement of the 1.5 µm emission in Y2O3: Er3+ nanocrystals by codoping with Li+ ions
JP4912190B2 (ja) 多孔質シリカゲル及びシリカガラスの製造方法
Fujihara Sol-gel route to inorganic fluoride nanomaterials with optical properties
CN1617001A (zh) 掺杂以还原的金属离子和/或稀土离子的光学纤维或光学设备的制造方法
CN104692656A (zh) 2μm石英光纤芯棒玻璃及其制备方法
CN113087387B (zh) 一种Yb:YAG掺杂石英玻璃复合材料及其制备方法
KR100588401B1 (ko) 환원된 금속 이온 및/또는 희토류 이온이 도핑된 광섬유또는 광소자 제조방법
Gracie et al. Structural and optical investigations of RE3+: Yb, Er, Sm, Nd, Ce-doped multi-functional silica glasses for photonic applications
Suresh et al. Incorporation of europium (II) nanostructures into the channels of mesoporous silicon oxy-nitride for enhanced photoluminescence
Erdoğmuş Enhanced Emission from Li 2 CaSiO 4: Dy 3+ Phosphors by Doping with Al 3+ and B 3+
ITMI20012555A1 (it) Vetri luminescenti ad alta efficienza, particolarmente per l'impiego come materiali scintillatori per la rivelazione di radiazioni ionizzant
Lindstrom-James Spectral engineering of optical fiber through active nanoparticle doping
CN1583620A (zh) 掺钕高硅氧激光玻璃的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160226

R150 Certificate of patent or registration of utility model

Ref document number: 5896507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250