JP2012153583A - Apparatus for producing hydrogen selenide - Google Patents

Apparatus for producing hydrogen selenide Download PDF

Info

Publication number
JP2012153583A
JP2012153583A JP2011015229A JP2011015229A JP2012153583A JP 2012153583 A JP2012153583 A JP 2012153583A JP 2011015229 A JP2011015229 A JP 2011015229A JP 2011015229 A JP2011015229 A JP 2011015229A JP 2012153583 A JP2012153583 A JP 2012153583A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen selenide
metal selenium
heating
selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011015229A
Other languages
Japanese (ja)
Other versions
JP5086451B2 (en
Inventor
Toyohiko Abe
豊彦 阿部
Tomoaki Hoshi
友昭 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2011015229A priority Critical patent/JP5086451B2/en
Priority to TW100132593A priority patent/TWI474968B/en
Priority to KR1020110104095A priority patent/KR101821414B1/en
Priority to CN201110415533.2A priority patent/CN102616756B/en
Publication of JP2012153583A publication Critical patent/JP2012153583A/en
Application granted granted Critical
Publication of JP5086451B2 publication Critical patent/JP5086451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/002Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for producing hydrogen selenide which improves the yield of the hydrogen selenide, and can produce high-purity hydrogen selenide continuously.SOLUTION: The apparatus for producing the hydrogen selenide includes: a route 12 and a route 13 for charging hydrogen and metallic selenium, respectively, to a reactor 11 that generates the hydrogen selenide from the hydrogen and the metallic selenium; a route 14 for purging a reaction gas that is generated in the reactor and contains the hydrogen selenide; a hydrogen selenide collector 15 for collecting the hydrogen selenide in the reaction gas; heating and cooling devices 16a and 16b which can be switched between a cooling operation for cooling the reaction gas to collect the metal selenium and a heating operation for heating the hydrogen to evaporate the metallic selenium; a metal selenium charging vessel 29 that has purge routes 35a and 35b; and a gas circulation route 17 for purging the reaction gas from the hydrogen selenide collector and returning it to the hydrogen charging route.

Description

本発明は、セレン化水素製造装置に関し、詳しくは、金属セレンと水素とを加熱下で反応させてセレン化水素を製造するセレン化水素製造装置に関する。   The present invention relates to a hydrogen selenide production apparatus, and more particularly to a hydrogen selenide production apparatus that produces hydrogen selenide by reacting metal selenium with hydrogen under heating.

セレン化水素は、シリコン半導体のドーピングガスとして重要な材料であり、セレン化亜鉛などの化合物半導体、特に、近年ではCIS系やCZTS系といった太陽電池用の原料としても重要な材料である。このセレン化水素の製造は、一般的に、500〜700℃に加熱した反応炉内で、金属セレン、酸化セレンなどのセレン化合物に水素を接触させ、セレンを直接水素化してガス状のセレン化水素を発生させる方法が採用されている(例えば、特許文献1参照。)。   Hydrogen selenide is an important material as a doping gas for silicon semiconductors, and is also an important material for compound semiconductors such as zinc selenide, particularly as a raw material for solar cells such as CIS and CZTS in recent years. In general, hydrogen selenide is produced by bringing hydrogen into contact with a selenium compound such as metal selenium or selenium oxide in a reactor heated to 500 to 700 ° C., and directly hydrogenating selenium to form gaseous selenide. A method of generating hydrogen is employed (see, for example, Patent Document 1).

特開2007−246342号公報JP 2007-246342 A

しかし、従来の方法では、反応炉に投入した水素の多くが未反応のまま反応炉から排出されるため、セレン化水素の生成量に比べて水素の消費量が多いという問題があった。また、従来のセレン化水素製造装置は、バッチ方式であることから、1回の反応処理終了後に、新たなセレン化合物を反応炉内に投入する際には、反応炉の温度を下げるとともに反応炉内から毒性の強いセレン化水素や金属セレンの蒸気を排除した後、反応炉を開いて新たなセレン化合物を投入し、このセレン化合物の投入の際に侵入した大気成分を反応炉から排除した後、反応炉の温度を所定の温度まで加熱する必要があった。   However, in the conventional method, since most of the hydrogen charged into the reaction furnace is discharged from the reaction furnace without being reacted, there is a problem that the amount of hydrogen consumed is larger than the amount of hydrogen selenide produced. In addition, since the conventional hydrogen selenide production apparatus is a batch system, when a new selenium compound is introduced into the reaction furnace after completion of one reaction process, the temperature of the reaction furnace is lowered and the reaction furnace After removing the highly toxic hydrogen selenide and metal selenium vapor from inside, open the reactor and introduce new selenium compound, and then remove the atmospheric components that entered during the introduction of this selenium compound from the reactor It was necessary to heat the temperature of the reactor to a predetermined temperature.

このため、反応炉の加熱や冷却に多くのエネルギーを消費し、また、冷却時に反応炉内からセレン化水素や金属セレンが排除されるため、セレン化水素の収率も低いという問題もあった。さらに、生成系のガスに不純物として存在する未反応の金属セレンや生成したセレン化水素が再分解した金属セレンは、容易に凝集して固化するため、収率が低下するたけでなく、系内に析出して配管系を閉塞させることがあるなどの問題から、長時間、連続的にセレン化水素を製造することが困難であった。   For this reason, a lot of energy is consumed for heating and cooling the reactor, and since hydrogen selenide and metal selenium are excluded from the reactor during cooling, there is also a problem that the yield of hydrogen selenide is low. . Furthermore, unreacted metal selenium present as impurities in the gas of the production system and metal selenium produced by re-decomposition of hydrogen selenide easily agglomerate and solidify. It has been difficult to produce hydrogen selenide continuously for a long time due to problems such as precipitation in the pipe and blocking the piping system.

そこで本発明は、セレン化水素の収率を高めるとともに、連続して高純度のセレン化水素を製造することができるセレン化水素製造装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide a hydrogen selenide production apparatus capable of increasing the yield of hydrogen selenide and continuously producing high-purity hydrogen selenide.

上記目的を達成するため、本発明のセレン化水素製造装置は、あらかじめ設定された加熱温度で原料の金属セレンと水素とを接触させてガス状のセレン化水素を生成させる反応炉と、該反応炉に前記水素を投入する水素投入経路と、前記反応炉に前記金属セレンを投入する金属セレン投入経路と、前記反応炉で生成したガス状のセレン化水素を含む反応ガスを反応炉から抜き出す反応ガス抜出経路と、該反応ガス抜出経路に抜き出した反応ガス中の前記セレン化水素をあらかじめ設定された冷却温度で捕集するセレン化水素捕集器とを備えるとともに、前記反応炉から前記セレン化水素捕集器に抜き出される前記反応ガスを冷却して反応ガス中に含まれる未反応の金属セレン及び生成したセレン化水素が再分解した金属セレンを凝縮させて捕集する冷却操作と前記水素投入経路から前記反応炉に導入する水素を加熱して前記冷却操作で捕集した金属セレンを気化させることにより水素に同伴させて前記反応炉に投入する加熱操作とに交互に切り替えられる複数の加熱冷却器を備え、前記金属セレン投入経路は、金属セレン投入容器と、該金属セレン投入容器と前記反応炉との間に設けられた投入経路開閉手段と、前記金属セレン投入容器内のガスを置換するためのパージ経路とを備え、前記セレン化水素捕集器は、前記セレン化水素捕集器でセレン化水素を捕集した後の前記反応ガスをセレン化水素捕集器から抜き出して前記水素投入経路に戻すガス循環経路を備えていることを特徴としている。   In order to achieve the above object, the hydrogen selenide production apparatus of the present invention comprises a reaction furnace for producing gaseous hydrogen selenide by bringing metal selenium and hydrogen as raw materials into contact with each other at a preset heating temperature, and the reaction A hydrogen charging path for charging the hydrogen into the furnace, a metal selenium charging path for charging the metal selenium into the reaction furnace, and a reaction for extracting a reaction gas containing gaseous hydrogen selenide generated in the reaction furnace from the reaction furnace A gas extraction path, and a hydrogen selenide collector that collects the hydrogen selenide in the reaction gas extracted in the reaction gas extraction path at a preset cooling temperature, and from the reaction furnace, the The reaction gas withdrawn to the hydrogen selenide collector is cooled to condense and collect unreacted metal selenium contained in the reaction gas and metal selenium that has been decomposed by the generated hydrogen selenide. And a heating operation in which hydrogen introduced into the reaction furnace is heated from the hydrogen charging path and the metal selenium collected in the cooling operation is vaporized to be entrained in hydrogen and charged into the reaction furnace. The metal selenium charging path includes a metal selenium charging container, charging path opening / closing means provided between the metal selenium charging container and the reactor, and the metal selenium charging path. A purge path for replacing the gas in the container, and the hydrogen selenide collector collects the reaction gas after collecting the hydrogen selenide by the hydrogen selenide collector. A gas circulation path is provided which is extracted from the vessel and returned to the hydrogen input path.

さらに、本発明のセレン化水素製造装置は、前記セレン化水素捕集器が複数設けられ、反応ガス中のセレン化水素を補修する操作と、補修したセレン化水素を採取する操作とを交互に行うこと、前記金属セレン投入経路は、前記金属セレン投入容器と前記反応炉との間に中継容器を備え、前記金属セレン投入容器と前記中継容器と前記反応炉との間に投入経路開閉手段をそれぞれ備えていること、前記中継容器に、あらかじめ設定された精製温度に加熱しながら精製用ガスを流通させて前記金属セレン中に含まれている不純物を除去して金属セレンを精製する金属セレン精製手段が設けられいることを特徴としている。   Furthermore, in the hydrogen selenide production apparatus of the present invention, a plurality of the hydrogen selenide collectors are provided, and an operation for repairing the hydrogen selenide in the reaction gas and an operation for collecting the repaired hydrogen selenide are alternately performed. The metal selenium charging path includes a relay container between the metal selenium charging container and the reaction furnace, and a charging path opening / closing means is provided between the metal selenium charging container, the relay container, and the reaction furnace. Metal selenium refining that is provided with each of them, purifies the metal selenium by removing the impurities contained in the metal selenium by circulating a purifying gas while heating to the relay container at a preset purification temperature Means is provided.

本発明のセレン化水素製造装置によれば、反応炉を開放することなく金属セレン投入経路から原料の金属セレンを反応炉内に投入できるので、反応炉を加熱冷却するためのエネルギーを低減することができる。また、反応炉から抜き出した反応ガス中の未反応の金属セレン及び生成したセレン化水素が再分解した金属セレンは、冷却操作中の加熱冷却器で捕集し、加熱操作中に水素に同伴させて反応炉に再導入するので、金属セレンを原料として有効に利用できるとともに、反応ガス抜出経路内で金属セレンが析出して経路を閉塞することがなくなる。さらに、セレン化水素捕集器でセレン化水素を捕集した後の反応ガスを水素投入経路に戻すことにより、反応ガス中の水素を原料として有効に利用することができる。したがって、連続的にセレン化水素を製造できるとともに、金属セレンや水素の有効利用が図れるので、セレン化水素の収率を向上させることができる。   According to the hydrogen selenide production apparatus of the present invention, since the raw metal selenium can be fed into the reaction furnace from the metal selenium charging path without opening the reaction furnace, the energy for heating and cooling the reaction furnace can be reduced. Can do. In addition, unreacted metal selenium in the reaction gas withdrawn from the reactor and metal selenium produced by re-decomposition of hydrogen selenide are collected by a heating / cooling device during the cooling operation and entrained with hydrogen during the heating operation. Therefore, the metal selenium can be effectively used as a raw material, and the metal selenium does not precipitate in the reaction gas extraction path to block the path. Furthermore, the hydrogen in the reaction gas can be effectively used as a raw material by returning the reaction gas after the hydrogen selenide is collected by the hydrogen selenide collector to the hydrogen input path. Accordingly, hydrogen selenide can be continuously produced, and metal selenium and hydrogen can be effectively used, so that the yield of hydrogen selenide can be improved.

本発明のセレン化水素製造装置の一形態例を示す系統図である。It is a systematic diagram which shows one example of a hydrogen selenide manufacturing apparatus of this invention. 運転状態の一例を示す説明図である。It is explanatory drawing which shows an example of a driving | running state. 運転状態の他の例を示す説明図である。It is explanatory drawing which shows the other example of a driving | running state.

本形態例に示すセレン化水素製造装置は、原料の金属セレンと水素とからセレン化水素を生成させる反応炉11と、反応炉11に水素を投入する水素投入経路12と、反応炉11に金属セレンを投入する金属セレン投入経路13と、反応炉11で反応して生成したセレン化水素を含む反応ガスを反応炉11から抜き出す反応ガス抜出経路14と、反応ガス抜出経路14に抜き出した反応ガス中のセレン化水素を捕集するセレン化水素捕集器15と、水素投入経路12及び反応ガス抜出経路14の途中に設けられた一対の加熱冷却器16a,16bと、セレン化水素捕集器15でセレン化水素を捕集して後の反応ガスをセレン化水素捕集器15から抜き出して前記水素投入経路12に戻す水素ガス循環経路17とを備えている。   The hydrogen selenide production apparatus shown in this embodiment includes a reaction furnace 11 for generating hydrogen selenide from raw metal selenium and hydrogen, a hydrogen input path 12 for supplying hydrogen to the reaction furnace 11, and a metal for the reaction furnace 11. Metal selenium input path 13 for supplying selenium, reaction gas extraction path 14 for extracting reaction gas containing hydrogen selenide produced by reaction in the reaction furnace 11, and reaction gas extraction path 14 were extracted. A hydrogen selenide collector 15 for collecting hydrogen selenide in the reaction gas, a pair of heating and cooling devices 16a, 16b provided in the middle of the hydrogen input path 12 and the reaction gas extraction path 14, and hydrogen selenide A hydrogen gas circulation path 17 is provided which collects hydrogen selenide by the collector 15 and extracts the reaction gas after the hydrogen selenide collector 15 and returns it to the hydrogen input path 12.

反応炉11は、金属セレン投入経路13から投入された金属セレンを保持する金属セレン保持部18と、反応炉11内をあらかじめ設定された温度に加熱するための反応炉加熱手段19と、反応炉11内の圧力を監視するための炉内圧力検出器20とを備えている。反応炉11内の温度は、反応炉11内で金属セレンと水素とが反応可能な400〜700℃の温度、例えば、反応速度や加熱エネルギーを考慮して500℃に設定されている。この反応炉11には、反応に必要な量より過剰の水素が投入されており、金属セレンと水素との反応で生成したガス状のセレン化水素は、未反応の水素に同伴され、反応ガスとして反応ガス抜出経路14に抜き出される。   The reaction furnace 11 includes a metal selenium holding part 18 for holding metal selenium charged from the metal selenium charging path 13, a reaction furnace heating means 19 for heating the inside of the reaction furnace 11 to a preset temperature, a reaction furnace 11 and an in-furnace pressure detector 20 for monitoring the pressure in the reactor 11. The temperature in the reaction furnace 11 is set to 400 to 700 ° C. at which metal selenium and hydrogen can react in the reaction furnace 11, for example, 500 ° C. in consideration of reaction rate and heating energy. This reactor 11 is charged with an excess of hydrogen than is necessary for the reaction, and gaseous hydrogen selenide produced by the reaction of metal selenium with hydrogen is entrained by unreacted hydrogen and the reaction gas. As shown in FIG.

水素投入経路12は、図示しない水素供給源からの水素を流量調節器21で流量調節して反応炉11に供給する経路であって、前記加熱冷却器16a,16bへの流入部に設けられた水素流路切替弁22a,22bによって加熱冷却器16a,16bのいずれか一方に水素を導入するように形成されている。また、反応ガス抜出経路14は、加熱冷却器16a,16bからの流出部に設けられた反応ガス流路切替弁23a,23bによって加熱冷却器16a,16bのいずれか一方から反応ガスを抜き出すように形成されている。   The hydrogen input path 12 is a path for supplying hydrogen from a hydrogen supply source (not shown) to the reaction furnace 11 with the flow rate adjusted by the flow rate regulator 21 and provided at the inflow portion to the heating and cooling units 16a and 16b. The hydrogen channel switching valves 22a and 22b are configured to introduce hydrogen into one of the heating and cooling devices 16a and 16b. In addition, the reaction gas extraction path 14 is configured to extract the reaction gas from one of the heating and cooling devices 16a and 16b by the reaction gas flow path switching valves 23a and 23b provided at the outflow portions from the heating and cooling devices 16a and 16b. Is formed.

加熱冷却器16a,16bは、水素投入経路12から供給される水素をあらかじめ設定された加熱温度に加熱する加熱操作と、反応炉11から反応ガス抜出経路14に抜き出される反応ガスをあらかじめ設定された冷却温度に冷却する冷却操作とを交互に行うものであって、水素又は反応ガスが流れる一つの加熱冷却流路24a,24bと、該加熱冷却流路24a,24b内を流れる水素を加熱するための加熱手段25a,25b及び反応ガスを冷却するための冷却手段(図示せず)とを備えている。加熱冷却器16a,16bにおける加熱操作と冷却操作との切り替えは、水素流路切替弁22a,22b及び反応ガス流路切替弁23a,23bをあらかじめ設定された順序で開閉するとともに、加熱手段25a,25b及び冷却手段をあらかじめ設定された順序で作動させることによって行うようにしている。   The heating / cooling devices 16a and 16b set in advance a heating operation for heating the hydrogen supplied from the hydrogen input passage 12 to a preset heating temperature and a reaction gas extracted from the reaction furnace 11 to the reaction gas extraction passage 14. The cooling operation for cooling to the cooled temperature is alternately performed, and one heating / cooling channel 24a, 24b in which hydrogen or a reactive gas flows and hydrogen flowing in the heating / cooling channel 24a, 24b are heated. Heating means 25a, 25b for cooling and cooling means (not shown) for cooling the reaction gas. Switching between the heating operation and the cooling operation in the heating / cooling devices 16a and 16b is performed by opening and closing the hydrogen flow path switching valves 22a and 22b and the reaction gas flow path switching valves 23a and 23b in a preset order, and heating means 25a, 25b and the cooling means are operated in a preset order.

加熱冷却器16a,16bにおける冷却操作は、反応炉11内から抜き出された高温の反応ガス中に含まれる未反応の金属セレン及び生成したセレン化水素が再分解した金属セレンを凝縮させて加熱冷却流路24a,24b内に捕集するための操作であって、加熱冷却流路24a,24bの冷却温度は、金属セレンを捕集可能な温度、通常は0〜100℃の温度範囲、例えば、冷却エネルギーを考慮して100℃に設定されている。これにより、反応ガス抜出経路14を経てセレン化水素捕集器15に流入する反応ガス中から金属セレンをあらかじめ分離除去しておくことができる。   The cooling operation in the heating / cooling devices 16a and 16b is performed by condensing unreacted metal selenium contained in the high-temperature reaction gas extracted from the reaction furnace 11 and metal selenium that has been decomposed by the generated hydrogen selenide. It is an operation for collecting in the cooling channels 24a and 24b, and the cooling temperature of the heating and cooling channels 24a and 24b is a temperature at which metal selenium can be collected, usually in a temperature range of 0 to 100 ° C., for example, The temperature is set to 100 ° C. in consideration of cooling energy. Thereby, metal selenium can be separated and removed in advance from the reaction gas flowing into the hydrogen selenide collector 15 via the reaction gas extraction path 14.

一方、加熱冷却器16a,16bにおける加熱操作は、反応炉11に投入する水素を予熱するとともに、該加熱操作の前に行われた冷却操作で凝縮して加熱冷却流路24a,24b内に捕集された液状の金属セレンを加熱して気化し、気化した金属セレンを水素に同伴させて反応炉11に再投入する操作であって、加熱冷却流路24a,24bの加熱温度は、金属セレンを気化可能な温度で、かつ、反応炉11内の温度に悪影響を与えない温度、通常は200〜500℃、例えば金属セレンの確実な気化、反応炉11内の温度低下、かつ、加熱エネルギーを考慮して300℃に設定する。   On the other hand, the heating operation in the heating / cooling devices 16a and 16b preheats the hydrogen charged into the reactor 11, and condenses it in the heating and cooling flow paths 24a and 24b by condensing in the cooling operation performed before the heating operation. The collected liquid metal selenium is heated and vaporized, and the vaporized metal selenium is entrained with hydrogen and re-introduced into the reaction furnace 11. The heating temperature of the heating and cooling flow paths 24 a and 24 b is set to be metal selenium. At a temperature that does not adversely affect the temperature in the reaction furnace 11, usually 200 to 500 ° C., for example, reliable vaporization of metal selenium, temperature decrease in the reaction furnace 11, and heating energy Considering this, the temperature is set to 300 ° C.

セレン化水素捕集器15は、冷却ジャケットなどの冷却手段26を有するものであって、反応ガス抜出経路14からセレン化水素捕集器15内に導入される、セレン化水素を同伴した水素からなる反応ガスを冷却することにより、反応ガス中のセレン化水素を液化又は固化させて反応ガス中から分離捕集する。セレン化水素捕集器15のセレン化水素捕集中の温度は、−50℃以下、好ましくは、液体窒素などによって−100℃以下の低温に設定されている。セレン化水素捕集器15の冷却温度で液化したり固化したりしない水素は、セレン化水素捕集器15から水素ガス循環経路17に抜き出され、送風機27及び流量調節器28を介して前記水素投入経路12を流れる水素に合流する。   The hydrogen selenide collector 15 has a cooling means 26 such as a cooling jacket, and is introduced into the hydrogen selenide collector 15 from the reaction gas extraction path 14 and is accompanied by hydrogen selenide. By cooling the reaction gas comprising, hydrogen selenide in the reaction gas is liquefied or solidified and separated and collected from the reaction gas. The hydrogen selenide trapping temperature of the hydrogen selenide collector 15 is set to a low temperature of −50 ° C. or lower, preferably −100 ° C. or lower with liquid nitrogen or the like. Hydrogen that is not liquefied or solidified at the cooling temperature of the hydrogen selenide collector 15 is extracted from the hydrogen selenide collector 15 to the hydrogen gas circulation path 17 and is passed through the blower 27 and the flow rate controller 28. It merges with the hydrogen flowing through the hydrogen input path 12.

金属セレン投入経路13には、金属セレン投入容器29及び中継容器30が直列に設けられている。金属セレン投入容器29及び中継容器30における金属セレン投入容器29の投入側、金属セレン投入容器29と中継容器30との間、中継容器30と反応炉11との間には、投入経路開閉手段31,32,33がそれぞれ設けられるとともに、金属セレン投入容器29には、パージ弁34a,34bを有するパージ経路35a,35bが設けられ、中継容器30には、パージ弁36a,36bを有するパージ経路37a,37bと加熱手段30aとが設けられている。   In the metal selenium charging path 13, a metal selenium charging container 29 and a relay container 30 are provided in series. A charging path opening / closing means 31 is provided between the metal selenium charging container 29 and the relay container 30, between the metal selenium charging container 29 and the relay container 30, and between the relay container 30 and the reactor 11. , 32, and 33, the metal selenium input container 29 is provided with purge paths 35a and 35b having purge valves 34a and 34b, and the relay container 30 is provided with a purge path 37a having purge valves 36a and 36b. , 37b and a heating means 30a.

さらに、図1に想像線で示すように、第2のセレン化水素捕集器15aを設けるとともに、第2の反応ガス抜出経路14a及び第2の水素ガス循環経路17aと、各反応ガス抜出経路14,14a及び各水素ガス循環経路17,17aを切り替えるための切替弁38a,38b,39a,39bを設けることにより、二つのセレン化水素捕集器15,15aをセレン化水素捕集操作と、捕集したセレン化水素の採取操作とに交互に切替使用することができる。   Further, as shown by an imaginary line in FIG. 1, a second hydrogen selenide collector 15a is provided, a second reaction gas extraction path 14a, a second hydrogen gas circulation path 17a, and each reaction gas extraction By providing switching valves 38a, 38b, 39a, 39b for switching the outlet paths 14, 14a and the respective hydrogen gas circulation paths 17, 17a, the two hydrogen selenide collectors 15, 15a are operated to collect hydrogen selenide. And the collected hydrogen selenide collecting operation can be used alternately.

次に、図2及び図3も参照してセレン化水素を連続的に製造する手順を説明する。なお、図2及び図3においては、図1に示したセレン化水素製造装置における主要な構成要素のみに符号を付して説明する。   Next, the procedure for continuously producing hydrogen selenide will be described with reference to FIGS. 2 and 3, only the main components in the hydrogen selenide production apparatus shown in FIG.

まず、図2の実線に示すように、一方の加熱冷却器16aが加熱操作、他方の加熱冷却器16bが冷却操作を行っている場合、水素投入経路12から供給される水素は、開状態となっている一方の水素流路切替弁22aを通って所定温度に加熱されている加熱冷却器16aで予熱されるとともに、前回の冷却操作で凝縮して捕集された金属セレンを気化させ、金属セレンを同伴して所定温度に加熱された反応炉11内に流入する。反応炉11内に流入した水素の一部は、金属セレン保持部18に保持された金属セレン及び加熱冷却器16aから同伴した金属セレンと反応してセレン化水素を生成する。   First, as shown by the solid line in FIG. 2, when one heating / cooling device 16a performs a heating operation and the other heating / cooling device 16b performs a cooling operation, the hydrogen supplied from the hydrogen charging path 12 is in an open state. The metal selenium condensed and collected in the previous cooling operation is vaporized while being preheated by the heating / cooling device 16a heated to a predetermined temperature through the one hydrogen flow path switching valve 22a. It flows into the reaction furnace 11 heated to a predetermined temperature with selenium. Part of the hydrogen flowing into the reaction furnace 11 reacts with the metal selenium held in the metal selenium holding unit 18 and the metal selenium entrained from the heating / cooling device 16a to generate hydrogen selenide.

生成したセレン化水素は、未反応の水素に同伴されて所定温度に冷却された他方の加熱冷却器16bに流入し、未反応の金属セレン及び生成したセレン化水素が再分解した金属セレンが凝縮して反応ガス中から分離する。金属セレンを分離した反応ガスは、加熱冷却器16bから開状態となっている反応ガス流路切替弁23bを通って反応ガス抜出経路14に抜き出され、所定温度に冷却されたセレン化水素捕集器15内に流入する。   The generated hydrogen selenide flows into the other heating / cooling device 16b which is entrained by the unreacted hydrogen and cooled to a predetermined temperature, and the unreacted metal selenium and the metal selenium obtained by re-decomposing the hydrogen selenide are condensed. To separate from the reaction gas. The reaction gas separated from the metal selenium is extracted from the heating / cooling device 16b through the reaction gas flow path switching valve 23b to the reaction gas extraction path 14 and cooled to a predetermined temperature. It flows into the collector 15.

低温のセレン化水素捕集器15内に流入した反応ガス中に含まれているセレン化水素は、液化又は固化して捕集され、反応ガス中から分離される。セレン化水素を分離した反応ガス(水素)は、水素ガス循環経路17に抜き出され、送風機27で水素投入経路12に流入可能な圧力に昇圧された後、流量調節器28で流量調整されて水素投入経路12に導入され、水素供給源から流量調節器21を介して供給される水素と合流して加熱冷却器16aを通り、反応炉11内に循環供給される。   The hydrogen selenide contained in the reaction gas flowing into the low-temperature hydrogen selenide collector 15 is collected by being liquefied or solidified and separated from the reaction gas. The reaction gas (hydrogen) from which hydrogen selenide has been separated is extracted into the hydrogen gas circulation path 17, boosted to a pressure that can flow into the hydrogen input path 12 by the blower 27, and then the flow rate is adjusted by the flow rate regulator 28. The hydrogen is introduced into the hydrogen input path 12, joined with hydrogen supplied from the hydrogen supply source via the flow rate regulator 21, passes through the heating / cooling device 16 a, and is circulated and supplied into the reaction furnace 11.

また、原料の金属セレンは、金属セレン投入容器29の投入側の投入経路開閉手段31のみを開いた状態で、金属セレン投入容器29内に所定量が投入される。金属セレンを金属セレン投入容器29に投入した後、投入経路開閉手段31を閉じてパージ弁34a,34bを開き、パージ経路35aからパージ用のガス、例えば不活性ガスである窒素ガスを金属セレン投入容器29内に導入し、金属セレン投入容器29内のガスをパージ経路35bに排出することにより、金属セレン投入時に金属セレン投入容器29内に侵入した空気成分をパージする。   In addition, a predetermined amount of the raw metal selenium is charged into the metal selenium input container 29 with only the input path opening / closing means 31 on the input side of the metal selenium input container 29 being opened. After the metal selenium is charged into the metal selenium charging container 29, the charging path opening / closing means 31 is closed and the purge valves 34a and 34b are opened, and a purge gas such as nitrogen gas as an inert gas is charged into the metal selenium from the purge path 35a. By introducing into the container 29 and discharging the gas in the metal selenium input container 29 to the purge path 35b, the air component that has entered the metal selenium input container 29 when the metal selenium is supplied is purged.

金属セレン投入容器29内の空気成分を不活性ガスに置換した後、金属セレン投入容器29と中継容器30との間の投入経路開閉手段32のみを開き、金属セレンを金属セレン投入容器29から中継容器30に移動させる。そして、中継容器30の両側の投入経路開閉手段32,33を遮断した状態で、パージ弁36a,36bを開き、パージ経路37aからパージ用のガスを中継容器30内に導入し、中継容器30内のガスをパージ経路37bに排出することにより、金属セレン投入容器29から中継容器30に金属セレンを移動させたときに中継容器30内に侵入したガス成分をパージする。中継容器30内のガス置換を終了した後、投入経路開閉手段33のみを開くことにより、中継容器30内の金属セレンを反応炉11内に投入することができる。金属セレンを反応炉11内に投入した後は、中継容器30内を前記同様にして窒素ガスなどの不活性ガスでパージすることにより、反応炉11内で発生した毒性ガスが中継容器30から金属セレン投入容器29を介して外部に拡散することを防止できる。   After replacing the air component in the metal selenium input container 29 with an inert gas, only the input path opening / closing means 32 between the metal selenium input container 29 and the relay container 30 is opened, and the metal selenium is relayed from the metal selenium input container 29. Move to container 30. The purge valves 36a and 36b are opened in a state where the input path opening / closing means 32 and 33 on both sides of the relay container 30 are shut off, and a purge gas is introduced into the relay container 30 from the purge path 37a. The gas component that has entered the relay container 30 when the metal selenium is moved from the metal selenium charging container 29 to the relay container 30 is purged. After the gas replacement in the relay container 30 is completed, the metal selenium in the relay container 30 can be charged into the reaction furnace 11 by opening only the charging path opening / closing means 33. After the metal selenium is charged into the reaction furnace 11, the inside of the relay container 30 is purged with an inert gas such as nitrogen gas in the same manner as described above, so that the toxic gas generated in the reaction furnace 11 is transferred from the relay container 30 to the metal. It can be prevented from diffusing outside through the selenium charging container 29.

このように、直列に配置した金属セレン投入容器29と中継容器30とを使用して原料の金属セレンを反応炉11に投入することにより、反応炉11での反応に悪影響を与えたりする不純物となる大気成分が反応炉11内に侵入することを確実に防止できるとともに、反応炉11内で発生した毒性ガスが外部に拡散することも確実に防止することができる。さらに、中継容器30に加熱手段30aを設けて金属セレンを加熱できるようにしたことにより、金属セレンを加熱して金属セレンの精製処理を行うことができ、金属セレンを水素と反応しない400℃未満の適当な温度、例えば300℃に加熱するとともに、パージガスとして水素を使用することにより、金属セレンの精製処理を効果的に行うことができる。同時に、金属セレンを予熱して反応炉11に投入できるので、反応炉11内の温度低下も抑えることができる。   Thus, by introducing the metal selenium as a raw material into the reaction furnace 11 using the metal selenium input container 29 and the relay container 30 arranged in series, impurities that adversely affect the reaction in the reaction furnace 11 and It is possible to reliably prevent the atmospheric components from entering the reaction furnace 11 and to reliably prevent the toxic gas generated in the reaction furnace 11 from diffusing to the outside. Further, the heating means 30a is provided in the relay container 30 so that the metal selenium can be heated, so that the metal selenium can be heated to perform the purification process of the metal selenium, and the metal selenium does not react with hydrogen. The metal selenium can be effectively purified by heating to an appropriate temperature of, for example, 300 ° C. and using hydrogen as the purge gas. At the same time, since metallic selenium can be preheated and charged into the reaction furnace 11, a temperature drop in the reaction furnace 11 can also be suppressed.

なお、中継容器30を設けずに金属セレン投入容器29のみを設けても、投入経路開閉手段を開く前に金属セレン投入容器29内のパージを十分に行うことにより、大気成分が反応炉11内に侵入したり、毒性ガスが外部に拡散したりすることを防止することができる。   Even if only the metal selenium input container 29 is provided without providing the relay container 30, the atmospheric components can be converted into the reactor 11 by sufficiently purging the metal selenium input container 29 before opening the input path opening / closing means. It is possible to prevent the toxic gas from entering the gas and diffusing the toxic gas to the outside.

加熱冷却器16aの加熱操作及び加熱冷却器16bの冷却操作は、あらかじめ設定された時間、あるいは、あらかじめ設定されたセレン化水素捕集量などの条件に応じて切り替えられ、図3の実線に示すように、一方の加熱冷却器16aが反応ガスを冷却する冷却操作を行い、他方の加熱冷却器16bが水素を予熱する加熱操作を行う状態となる。したがって、一方の加熱冷却器16aでは、反応炉11から抜き出した反応ガスを冷却することにより、反応ガス中の金属セレンを凝縮させて捕集する操作が行われ、他方の加熱冷却器16bでは、反応炉11に投入する原料の水素を予熱するとともに、前回の冷却操作で凝縮させた金属セレンを気化させ、気化した金属セレンを水素に同伴させて反応炉11に導入する操作が行われる。このとき、加熱冷却器を3基以上設けて所定の順序で加熱及び冷却を切り替えることにより、操作切替時の加熱や冷却を円滑かつ確実に行うことができる。   The heating operation of the heating / cooling device 16a and the cooling operation of the heating / cooling device 16b are switched in accordance with conditions such as a preset time or a preset hydrogen selenide collection amount, and are shown by a solid line in FIG. As described above, one heating / cooling device 16a performs a cooling operation for cooling the reaction gas, and the other heating / cooling device 16b performs a heating operation for preheating hydrogen. Accordingly, in one heating / cooling device 16a, an operation of condensing and collecting metal selenium in the reaction gas is performed by cooling the reaction gas extracted from the reaction furnace 11, and in the other heating / cooling device 16b, The raw material hydrogen to be charged into the reaction furnace 11 is preheated, the metal selenium condensed in the previous cooling operation is vaporized, and the vaporized metal selenium is entrained with hydrogen and introduced into the reaction furnace 11. At this time, by providing three or more heating / cooling devices and switching between heating and cooling in a predetermined order, heating and cooling during operation switching can be performed smoothly and reliably.

また、セレン化水素捕集器15内にあらかじめ設定された量のセレン化水素を捕集したときには、該セレン化水素捕集器15をセレン化水素の気化温度以上に加熱し、セレン化水素捕集器15に捕集したセレン化水素を製品ガスとして採取する。このときも、セレン化水素捕集器を複数設けておくことにより、セレン化水素捕集器におけるセレン化水素の捕集操作とセレン化水素の採取操作とを交互に行うことで連続してセレン化水素の捕集を行うことが可能となる。   When a predetermined amount of hydrogen selenide is collected in the hydrogen selenide collector 15, the hydrogen selenide collector 15 is heated to a temperature higher than the vaporization temperature of hydrogen selenide to capture the hydrogen selenide. The hydrogen selenide collected in the collector 15 is collected as product gas. Also at this time, by providing a plurality of hydrogen selenide collectors, the hydrogen selenide collector and the hydrogen selenide collecting operation are alternately performed in the hydrogen selenide collector, thereby continuously performing selenide. It becomes possible to collect hydrogen fluoride.

このように構成したセレン化水素製造装置でセレン化水素を製造することにより、反応ガス中の金属セレンを原料として再利用できるとともに、セレン化水素捕集器15から抜き出した水素も原料として再利用することができるので、原料となる金属セレン及び水素の利用効率を大幅に向上させることができ、セレン化水素の収率も大幅に向上させることができる。   By producing hydrogen selenide with the hydrogen selenide production apparatus configured as described above, the metal selenium in the reaction gas can be reused as a raw material, and the hydrogen extracted from the hydrogen selenide collector 15 can also be reused as a raw material. Therefore, the utilization efficiency of metal selenium and hydrogen as raw materials can be greatly improved, and the yield of hydrogen selenide can be greatly improved.

図1に示す構成のセレン化水素製造装置を使用し、5kgの金属セレンを反応炉に投入し、反応炉を500℃に加熱しつつ、水素ガス源からの水素と循環する水素とを合流させて規定流量で反応炉に投入した。加熱操作を行う水素投入側の加熱冷却器の温度は300℃に設定し、冷却操作を行う反応ガス側の加熱冷却器の温度は100℃に設定した。また、セレン化水素捕集器の温度は−196℃に設定した。セレン化水素捕集器におけるセレン化水素の捕集量が1kgになった時点で、加熱冷却器の加熱操作と冷却操作とを切り替え、この加熱冷却操作の切り替えをセレン化水素捕集量が1kg毎に繰り返し、反応炉からセレン化水素が発生しなくなるまで水素を流通させた。その結果、セレン化水素の捕集量は5.1kg、金属セレンの投入量は5.0kgで収率は99.5%、水素の投入量は1415NL(NLは標準状態における体積[リットル]、以下同じ。)、収率は99.6%であった。   Using the hydrogen selenide production apparatus having the configuration shown in FIG. 1, 5 kg of metal selenium is charged into the reactor, and the hydrogen from the hydrogen gas source and the circulating hydrogen are combined while heating the reactor to 500 ° C. The reactor was charged at the specified flow rate. The temperature of the heating / cooling device on the hydrogen input side for performing the heating operation was set to 300 ° C., and the temperature of the heating / cooling device on the reaction gas side for performing the cooling operation was set to 100 ° C. The temperature of the hydrogen selenide collector was set to -196 ° C. When the amount of hydrogen selenide collected in the hydrogen selenide collector becomes 1 kg, the heating operation and the cooling operation of the heating / cooling device are switched, and the switching of the heating / cooling operation is switched to 1 kg of the hydrogen selenide collection amount. Repeatedly, hydrogen was circulated until no hydrogen selenide was generated from the reactor. As a result, the collected amount of hydrogen selenide was 5.1 kg, the input amount of metal selenium was 5.0 kg, the yield was 99.5%, the input amount of hydrogen was 1415 NL (NL is the volume [liter] in the standard state, The same applies hereinafter), and the yield was 99.6%.

反応炉に投入した金属セレンの量を25kg、加熱冷却器における加熱冷却操作の切り替えをセレン化水素捕集量が5kg毎に繰り返した以外は実施例1と同じ操作を行った。その結果、セレン化水素の捕集量は25.4kg、金属セレンの投入量は25.0kgで収率は99.1%、水素の投入量は7050NLで収率は99.6%であった。   The same operation as in Example 1 was performed except that the amount of metal selenium charged into the reactor was 25 kg, and the heating / cooling operation switching in the heating / cooling device was repeated every 5 kg of hydrogen selenide. As a result, the collected amount of hydrogen selenide was 25.4 kg, the input amount of metal selenium was 25.0 kg, the yield was 99.1%, the input amount of hydrogen was 7050 NL, and the yield was 99.6%. .

図1に想像線で示すように、セレン化水素捕集器を切替可能に2器設置したセレン化水素製造装置を使用した。まず、25kgの金属セレンを反応炉に投入し、反応炉を500℃に加熱しつつ水素を規定流量で投入した。加熱操作を行う水素投入側の加熱冷却器の温度は300℃に設定し、冷却操作を行う反応ガス側の加熱冷却器の温度は100℃に設定した。また、セレン化水素捕集器の温度は−196℃に設定した。セレン化水素捕集器におけるセレン化水素捕集量5kg毎に加熱冷却器における加熱冷却操作を切り替えた。   As shown by an imaginary line in FIG. 1, a hydrogen selenide production apparatus in which two hydrogen selenide collectors were installed so as to be switchable was used. First, 25 kg of metal selenium was charged into the reactor, and hydrogen was charged at a specified flow rate while the reactor was heated to 500 ° C. The temperature of the heating / cooling device on the hydrogen input side for performing the heating operation was set to 300 ° C., and the temperature of the heating / cooling device on the reaction gas side for performing the cooling operation was set to 100 ° C. The temperature of the hydrogen selenide collector was set to -196 ° C. The heating / cooling operation in the heating / cooling device was switched every 5 kg of hydrogen selenide collecting in the hydrogen selenide collector.

また、セレン化水素の捕集量が15kgになったとき、金属セレン投入容器に金属セレン25kgを投入し、窒素ガスによるガス置換を実施後、金属セレン25kgを中継容器30に移動させ、中継容器30内をパージして水素ガスに置換してから反応炉11に金属セレンを投入した。一方のセレン化水素捕集器に30kgのセレン化水素を捕集した時点で、セレン化水素を捕集するセレン化水素捕集器を他方のセレン化水素捕集器に切り替えた。その後、加熱冷却器の加熱冷却操作を切り替えながら、反応炉からセレン化水素が発生しなくなるまで水素を流通させた。その結果、セレン化水素の捕集量は50.8kg、金属セレンの投入量は50.0kgで収率は99.1%、水素の投入量は14100NLで収率は99.6%であった。   Further, when the amount of hydrogen selenide collected reaches 15 kg, 25 kg of metal selenium is charged into the metal selenium charging container, gas replacement with nitrogen gas is performed, and then 25 kg of metal selenium is moved to the relay container 30, The interior of the reactor 30 was purged and replaced with hydrogen gas, and then metal selenium was charged into the reactor 11. When 30 kg of hydrogen selenide was collected in one hydrogen selenide collector, the hydrogen selenide collector for collecting hydrogen selenide was switched to the other hydrogen selenide collector. Thereafter, while switching the heating / cooling operation of the heating / cooling device, hydrogen was circulated until no hydrogen selenide was generated from the reaction furnace. As a result, the collected amount of hydrogen selenide was 50.8 kg, the input amount of metal selenium was 50.0 kg, the yield was 99.1%, the input amount of hydrogen was 14100 NL, and the yield was 99.6%. .

比較例1
図1に示す構成のセレン化水素製造装置において、加熱冷却器の加熱冷却操作の切り替えを行わず、水素ガス循環経路による水素の循環を停止した状態で、10kgの金属セレンを反応炉に投入し、反応炉を500℃に加熱しつつ、水素ガス源からの水素を規定流量で投入した。加熱冷却器の温度は、冷却操作に相当する100℃に設定して未反応の金属セレン及び再分解した金属セレンを凝縮させて捕集した。また、セレン化水素捕集器の温度は−196℃に設定し、セレン化水素捕集器でセレン化水素分離後のガス(水素)は循環させることなく系外に排出した。その結果、セレン化水素の捕集量は9.6kg、金属セレンの投入量は10.0kgで収率は93.6%、水素の投入量は6660NLで収率は39.9%であった。
Comparative Example 1
In the hydrogen selenide production apparatus having the configuration shown in FIG. 1, 10 kg of metal selenium is charged into the reactor in a state in which the heating / cooling operation of the heating / cooling device is not switched and hydrogen circulation through the hydrogen gas circulation path is stopped. While the reactor was heated to 500 ° C., hydrogen from a hydrogen gas source was charged at a specified flow rate. The temperature of the heating / cooling device was set to 100 ° C. corresponding to the cooling operation, and unreacted metal selenium and re-decomposed metal selenium were condensed and collected. The temperature of the hydrogen selenide collector was set to -196 ° C, and the gas (hydrogen) after hydrogen selenide separation was discharged from the system without being circulated by the hydrogen selenide collector. As a result, the collected amount of hydrogen selenide was 9.6 kg, the input amount of metal selenium was 10.0 kg, the yield was 93.6%, the input amount of hydrogen was 6660 NL, and the yield was 39.9%. .

比較例2
反応炉に投入した金属セレンの量を25kgとした以外は、比較例1と同様の操作を行った。セレン化水素捕集器に約20kgのセレン化水素が捕集されたときに反応炉内の圧力が徐々に上昇する現象が出始めたため、約21kgのセレン化水素を捕集した時点で、水素の投入を止めて反応を停止させた。その結果、セレン化水素の捕集量は20.8kg、金属セレンの投入量は25.0kgで収率は81.1%、水素の投入量は16100NLで収率は35.7%であった。
Comparative Example 2
The same operation as in Comparative Example 1 was performed except that the amount of metal selenium charged into the reactor was 25 kg. When about 20 kg of hydrogen selenide was collected in the hydrogen selenide collector, a phenomenon in which the pressure in the reactor gradually increased began to appear. When about 21 kg of hydrogen selenide was collected, Was stopped to stop the reaction. As a result, the collected amount of hydrogen selenide was 20.8 kg, the input amount of metal selenium was 25.0 kg, the yield was 81.1%, the input amount of hydrogen was 16,100 NL, and the yield was 35.7%. .

11…反応炉、12…水素投入経路、13…金属セレン投入経路、14,14a…反応ガス抜出経路、15,15a…セレン化水素捕集器、16a,16b…加熱冷却器、17,17a…水素ガス循環経路、18…金属セレン保持部、19…反応炉加熱手段、20…炉内圧力検出器、21…流量調節器、22a,22b…水素流路切替弁、23a,23b…反応ガス流路切替弁、24a,24b…加熱冷却流路、25a,25b…加熱手段、26…冷却手段、27…送風機、28…流量調節器、29…金属セレン投入容器、30…中継容器、30a…加熱手段、31,32,33…投入経路開閉手段、34a,34b…パージ弁、35a,35b…パージ経路、36a,36b…パージ弁、37a,37b…パージ経路、38a,38b,39a,39b…切替弁   DESCRIPTION OF SYMBOLS 11 ... Reaction furnace, 12 ... Hydrogen input path, 13 ... Metal selenium input path, 14, 14a ... Reaction gas extraction path, 15, 15a ... Hydrogen selenide collector, 16a, 16b ... Heating / cooling device, 17, 17a DESCRIPTION OF SYMBOLS ... Hydrogen gas circulation path, 18 ... Metal selenium holding part, 19 ... Reactor heating means, 20 ... In-furnace pressure detector, 21 ... Flow controller, 22a, 22b ... Hydrogen flow path switching valve, 23a, 23b ... Reaction gas Flow path switching valve, 24a, 24b ... Heating / cooling flow path, 25a, 25b ... Heating means, 26 ... Cooling means, 27 ... Blower, 28 ... Flow rate regulator, 29 ... Metal selenium charging container, 30 ... Relay container, 30a ... Heating means, 31, 32, 33 ... charging path opening / closing means, 34a, 34b ... purge valve, 35a, 35b ... purge path, 36a, 36b ... purge valve, 37a, 37b ... purge path, 38a, 38b, 3 a, 39b ... switching valve

Claims (4)

あらかじめ設定された加熱温度で原料の金属セレンと水素とを接触させてガス状のセレン化水素を生成させる反応炉と、該反応炉に前記水素を投入する水素投入経路と、前記反応炉に前記金属セレンを投入する金属セレン投入経路と、前記反応炉で生成したガス状のセレン化水素を含む反応ガスを反応炉から抜き出す反応ガス抜出経路と、該反応ガス抜出経路に抜き出した反応ガス中の前記セレン化水素をあらかじめ設定された冷却温度で捕集するセレン化水素捕集器とを備えるとともに、前記反応炉から前記セレン化水素捕集器に抜き出される前記反応ガスを冷却して反応ガス中に含まれる未反応の金属セレン及び生成したセレン化水素が再分解した金属セレンを凝縮させて捕集する冷却操作と前記水素投入経路から前記反応炉に導入する水素を加熱して前記冷却操作で捕集した金属セレンを気化させることにより水素に同伴させて前記反応炉に投入する加熱操作とに交互に切り替えられる複数の加熱冷却器を備え、前記金属セレン投入経路は、金属セレン投入容器と、該金属セレン投入容器と前記反応炉との間に設けられた投入経路開閉手段と、前記金属セレン投入容器内のガスを置換するためのパージ経路とを備え、前記セレン化水素捕集器は、前記セレン化水素捕集器でセレン化水素を捕集した後の前記反応ガスをセレン化水素捕集器から抜き出して前記水素投入経路に戻すガス循環経路を備えていることを特徴とするセレン化水素製造装置。   A reaction furnace for contacting gaseous metal selenium and hydrogen at a preset heating temperature to produce gaseous hydrogen selenide, a hydrogen input path for supplying the hydrogen to the reaction furnace, and the reaction furnace Metal selenium input path for supplying metal selenium, reaction gas extraction path for extracting reaction gas containing gaseous hydrogen selenide generated in the reaction furnace from the reaction furnace, and reaction gas extracted to the reaction gas extraction path A hydrogen selenide collector that collects the hydrogen selenide therein at a preset cooling temperature, and cools the reaction gas withdrawn from the reactor into the hydrogen selenide collector. Cooling operation for condensing and collecting unreacted metal selenium contained in the reaction gas and metal selenium produced by re-decomposition of hydrogen selenide and introducing the hydrogen into the reactor through the hydrogen input path A plurality of heating and cooling units that are alternately switched to a heating operation that is entrained in hydrogen and charged into the reactor by vaporizing the metal selenium collected by the cooling operation by heating the element, and charging the metal selenium The path comprises a metal selenium input container, an input path opening / closing means provided between the metal selenium input container and the reactor, and a purge path for replacing the gas in the metal selenium input container, The hydrogen selenide collector is provided with a gas circulation path for extracting the reaction gas after collecting the hydrogen selenide by the hydrogen selenide collector from the hydrogen selenide collector and returning it to the hydrogen input path. An apparatus for producing hydrogen selenide, wherein 前記セレン化水素捕集器が複数設けられ、反応ガス中のセレン化水素を補修する操作と、補修したセレン化水素を採取する操作とを交互に行うことを特徴とする請求項1記載のセレン化水素製造装置。   2. The selenium according to claim 1, wherein a plurality of the hydrogen selenide collectors are provided, and an operation of repairing hydrogen selenide in the reaction gas and an operation of collecting the repaired hydrogen selenide are alternately performed. Hydrogen fluoride production equipment. 前記金属セレン投入経路は、前記金属セレン投入容器と前記反応炉との間に中継容器を備え、前記金属セレン投入容器と前記中継容器と前記反応炉との間に投入経路開閉手段をそれぞれ備えていることを特徴とする請求項1又は2記載のセレン化水素製造装置。   The metal selenium charging path includes a relay container between the metal selenium charging container and the reaction furnace, and includes a charging path opening / closing means between the metal selenium charging container, the relay container, and the reaction furnace. The hydrogen selenide production apparatus according to claim 1 or 2, wherein 前記中継容器に、あらかじめ設定された精製温度に加熱しながら精製用ガスを流通させて前記金属セレン中に含まれている不純物を除去して金属セレンを精製する金属セレン精製手段が設けられいることを特徴とする請求項3記載のセレン化水素製造装置。   The relay container is provided with metal selenium refining means for purifying metal selenium by removing the impurities contained in the metal selenium by circulating a purifying gas while heating to a preset refining temperature. The hydrogen selenide production apparatus according to claim 3.
JP2011015229A 2011-01-27 2011-01-27 Hydrogen selenide production equipment Active JP5086451B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011015229A JP5086451B2 (en) 2011-01-27 2011-01-27 Hydrogen selenide production equipment
TW100132593A TWI474968B (en) 2011-01-27 2011-09-09 Hydrogen selenium production plant
KR1020110104095A KR101821414B1 (en) 2011-01-27 2011-10-12 Apparatus for producing hydrogen selenide
CN201110415533.2A CN102616756B (en) 2011-01-27 2011-12-09 Hydrogen selenide manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015229A JP5086451B2 (en) 2011-01-27 2011-01-27 Hydrogen selenide production equipment

Publications (2)

Publication Number Publication Date
JP2012153583A true JP2012153583A (en) 2012-08-16
JP5086451B2 JP5086451B2 (en) 2012-11-28

Family

ID=46557042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015229A Active JP5086451B2 (en) 2011-01-27 2011-01-27 Hydrogen selenide production equipment

Country Status (4)

Country Link
JP (1) JP5086451B2 (en)
KR (1) KR101821414B1 (en)
CN (1) CN102616756B (en)
TW (1) TWI474968B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084241A (en) * 2012-10-22 2014-05-12 Taiyo Nippon Sanso Corp Method for feeding a hydrogen selenide mixed gas for a solar cell
JP2014176828A (en) * 2013-03-15 2014-09-25 Showa Denko Kk Reaction method and reaction apparatus
JP2014176827A (en) * 2013-03-15 2014-09-25 Showa Denko Kk Reaction method and reaction apparatus
JP2016528372A (en) * 2013-05-16 2016-09-15 スミット サーマル ソリューションズ ベー.フェー. Apparatus and method for applying a material to a substrate
US10124272B2 (en) 2015-05-14 2018-11-13 Chugai Ro Co., Ltd. Vapor circulation regeneration system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050607A (en) 2018-11-02 2020-05-12 알엠아이텍(주) Method for producing hydrogen selenide based on zinc selenide
JPWO2021095608A1 (en) * 2019-11-12 2021-05-20
CN112844264B (en) * 2020-12-28 2023-04-28 王成 Petrochemical reaction equipment of safety seal
CN114538389A (en) * 2022-03-23 2022-05-27 沧州华宇特种气体科技有限公司 Efficient hydrogen selenide production equipment and production process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246342A (en) * 2006-03-16 2007-09-27 Taiyo Nippon Sanso Corp Method for producing hydrogen selenide
JP2008013414A (en) * 2006-07-07 2008-01-24 Sumitomo Electric Ind Ltd Zinc selenide polycrystal and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552797B (en) * 2005-06-22 2016-10-11 恩特葛瑞斯股份有限公司 Apparatus and process for integrated gas blending
CN100567140C (en) * 2007-04-26 2009-12-09 大连立方化学技术有限公司 The preparation purification process of Selenium hydride
US20100159135A1 (en) * 2008-12-19 2010-06-24 The Board Of Trustees Of The Leland Stanford Junior University Process for in situ generation of hydrogen sulfide or hydrogen selenide gas using a solid precursor
CN101811676B (en) * 2010-05-21 2012-11-14 中昊光明化工研究设计院有限公司 Preparation method of hydrogen selenide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246342A (en) * 2006-03-16 2007-09-27 Taiyo Nippon Sanso Corp Method for producing hydrogen selenide
JP2008013414A (en) * 2006-07-07 2008-01-24 Sumitomo Electric Ind Ltd Zinc selenide polycrystal and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084241A (en) * 2012-10-22 2014-05-12 Taiyo Nippon Sanso Corp Method for feeding a hydrogen selenide mixed gas for a solar cell
JP2014176828A (en) * 2013-03-15 2014-09-25 Showa Denko Kk Reaction method and reaction apparatus
JP2014176827A (en) * 2013-03-15 2014-09-25 Showa Denko Kk Reaction method and reaction apparatus
JP2016528372A (en) * 2013-05-16 2016-09-15 スミット サーマル ソリューションズ ベー.フェー. Apparatus and method for applying a material to a substrate
US10124272B2 (en) 2015-05-14 2018-11-13 Chugai Ro Co., Ltd. Vapor circulation regeneration system

Also Published As

Publication number Publication date
TWI474968B (en) 2015-03-01
CN102616756B (en) 2014-11-05
CN102616756A (en) 2012-08-01
KR101821414B1 (en) 2018-01-23
JP5086451B2 (en) 2012-11-28
TW201231383A (en) 2012-08-01
KR20120087065A (en) 2012-08-06

Similar Documents

Publication Publication Date Title
JP5086451B2 (en) Hydrogen selenide production equipment
KR20120125334A (en) Inert gas recovery system and method
CN101269814B (en) Production process for high purity silicon
WO2009111425A2 (en) Water recovery assembly for transferring water from fuel cell cathode exhaust
Zhang et al. Application of multi-stage vacuum distillation for secondary resource recovery: potential recovery method of cadmium telluride photovoltaic waste
US20110097253A1 (en) Fluorine purification
TWI275413B (en) A method for separating hydrogen sulphide from coke oven gas with subsequent extraction of elemental sulphur in a Claus-plant
CN106924989B (en) Natural hex gas phase transfer method
KR101254977B1 (en) Apparatus and Method for Treating Coke Oven Gas
CN110510636B (en) Industrial ammonia water and high-purity ammonia co-production system and process
KR20200065567A (en) Method for refining coke oven exhaust gas and apparatus for the same
CN115340095A (en) Cold hydrogenation heat energy recovery system and method
KR101351318B1 (en) Apparatus for Recovering Sensible Heat and Method Thereof
JP2015078081A (en) Apparatus for producing hydrogen selenide and method for producing hydrogen selenide
KR101155100B1 (en) Equipment for residual salt recovery from uranium metal reduced
CN113023696B (en) Method and device for recovering discharged argon in monocrystalline silicon preparation
US9480956B2 (en) Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas
JP6871571B2 (en) Hydrogen production system and iodine recovery method using IS process
CN107586970A (en) A kind of method for purifying magnesium
JP2012132607A (en) Heat treatment furnace and method of operating the same
CN102807199B (en) Purifying method and purifying device for argon gas
CN212770282U (en) Salt water concentration device of salt cooling system in acetylene dimerization production
KR101800031B1 (en) Purifying method and purifying apparatus for argon gas
CN218174677U (en) Cold hydrogenation heat energy recovery system
KR102283198B1 (en) Hydrogen gas manufacturing apparatus and method thereof

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5086451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250