JP2012153551A - Metal-supporting boron nitride nanostructure, and method for producing the same - Google Patents

Metal-supporting boron nitride nanostructure, and method for producing the same Download PDF

Info

Publication number
JP2012153551A
JP2012153551A JP2011012911A JP2011012911A JP2012153551A JP 2012153551 A JP2012153551 A JP 2012153551A JP 2011012911 A JP2011012911 A JP 2011012911A JP 2011012911 A JP2011012911 A JP 2011012911A JP 2012153551 A JP2012153551 A JP 2012153551A
Authority
JP
Japan
Prior art keywords
boron nitride
metal
supported
nanostructure
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011012911A
Other languages
Japanese (ja)
Other versions
JP5704640B2 (en
Inventor
Lingfeng He
ヘー リーフェン
Tadachika Nakayama
忠親 中山
Kouichi Niihara
▲こう▼一 新原
Hisayuki Suematsu
久幸 末松
Tsuneo Suzuki
常生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2011012911A priority Critical patent/JP5704640B2/en
Publication of JP2012153551A publication Critical patent/JP2012153551A/en
Application granted granted Critical
Publication of JP5704640B2 publication Critical patent/JP5704640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a metal-supporting boron nitride nanostructure producible with high energy conversion efficiency, a metal-supporting boron nitride nanostructure supporting metal ultra-fine particles on a boron nitride nanostructure (nanotube, nanosheet, nanocone).SOLUTION: In the method for producing a metal-supporting boron nitride nanostructure, boron nitride 2 is provided on a thin metallic wire 1, and a pulse current is sent through the thin metallic wire 1 provided with the boron nitride 2, and thereby the thin metallic wire 1 is heated and changed to plasma, to thereby produce the boron nitride nanostructure.

Description

本発明は、金属超微粒子を担持させた金属担持窒化ホウ素ナノ構造体及びその製造方法に関するものである。   The present invention relates to a metal-supported boron nitride nanostructure supporting metal ultrafine particles and a method for producing the same.

六方晶窒化ホウ素(hBN)は、a軸方向600W/mKと高い熱伝導度を有し、且つこれが結晶方位によって100倍以上異なるという異方性の強い材料であり、また、負性電子親和力を有し、電界放射電子銃などに好適な材料である。このため、六方晶窒化ホウ素(hBN)をナノチューブ(窒化ホウ素ナノチューブ),ナノシート(窒化ホウ素ナノシート),ナノコーン(窒化ホウ素ナノコーン)にした後、機械的或いは電磁気的に配列させることにより、放熱部材や発光素子への応用が期待されている。   Hexagonal boron nitride (hBN) has a high thermal conductivity of 600 W / mK in the a-axis direction, and is a highly anisotropic material that differs by 100 times or more depending on the crystal orientation, and has a negative electron affinity. It is a material suitable for a field emission electron gun. For this reason, hexagonal boron nitride (hBN) is made into nanotubes (boron nitride nanotubes), nanosheets (boron nitride nanosheets), and nanocones (boron nitride nanocones), and then mechanically or electromagnetically arranged to dissipate heat and light. Application to devices is expected.

この六方晶窒化ホウ素(hBN)からなる窒化ホウ素ナノチューブ,窒化ホウ素ナノシート,窒化ホウ素ナノコーンを電界や磁界により規則的に配列させるためには、これらに伝導性若しくは磁性を有する超微粒子を付着させることが必要である。   In order to regularly arrange the boron nitride nanotubes, boron nitride nanosheets, and boron nitride nanocones made of hexagonal boron nitride (hBN) by an electric field or a magnetic field, it is necessary to attach conductive or magnetic ultrafine particles thereto. is necessary.

また、この伝導性若しくは磁性を有する超微粒子を六方晶窒化ホウ素(hBN)に付着させた金属担持窒化ホウ素ナノチューブ,金属担持窒化ホウ素ナノシート,金属担持窒化ホウ素ナノコーンは、触媒としての利用も可能であり用途の広い材料として注目されている。   Further, the metal-supported boron nitride nanotubes, metal-supported boron nitride nanosheets, and metal-supported boron nitride nanocones in which the ultrafine particles having conductivity or magnetism are attached to hexagonal boron nitride (hBN) can also be used as catalysts. It is attracting attention as a versatile material.

これら金属担持窒化ホウ素ナノチューブ,金属担持窒化ホウ素ナノシート,金属担持窒化ホウ素ナノコーンの実現のためにはFeやCoなどの金属微粒子を窒化ホウ素ナノチューブ,窒化ホウ素ナノシート,窒化ホウ素ナノコーン上で付着させる必要があり、そのためには、金属微粒子と窒化ホウ素とを同時に高温下に保持すればよい。具体的には、例えば水中で六方晶窒化ホウ素(hBN)にパルスレーザーを照射するレーザーアブレーション方法を用いた六方晶窒化ホウ素ナノシートが提案されている(非特許文献1)。しかし、このレーザーアブレーション方法に採用するパルスレーザーのエネルギー交換効率は1%〜2%と低く、よって、これまでは実施されていなかった。   In order to realize these metal-supported boron nitride nanotubes, metal-supported boron nitride nanosheets, and metal-supported boron nitride nanocones, it is necessary to deposit metal fine particles such as Fe and Co on the boron nitride nanotubes, boron nitride nanosheets, and boron nitride nanocones. For that purpose, the metal fine particles and the boron nitride may be simultaneously held at a high temperature. Specifically, for example, a hexagonal boron nitride nanosheet using a laser ablation method in which a pulsed laser is applied to hexagonal boron nitride (hBN) in water has been proposed (Non-patent Document 1). However, the energy exchange efficiency of the pulse laser employed in this laser ablation method is as low as 1% to 2%, and thus has not been implemented so far.

また、レーザーアブレーションを含む他の物理的蒸発法よりも1桁〜2桁高いエネルギー交換効率の超微粒子製造方法としてパルス細線放電法がある。このパルス細線放電法は、導電細線にパルス通電することにより、金属細線を蒸発させ超微粒子化する手法であり、例えば、雰囲気ガス中に有機物蒸気や霧を分散させ、その中で金属細線にパルス通電することにより金属超微粒子表面に有機物を付着させる方法や(特許文献1)、原料細線に有機物を塗布し有機物被覆金属超微粒子を製造する方法(特許文献2)などが提案されている。   Further, there is a pulsed wire discharge method as a method for producing ultrafine particles having an energy exchange efficiency that is one to two digits higher than other physical evaporation methods including laser ablation. This pulse thin wire discharge method is a technique for evaporating a metal thin wire by applying a pulse current to a conductive thin wire to form ultrafine particles. For example, organic vapor or mist is dispersed in an atmospheric gas, and a pulse is applied to the metal thin wire therein. There have been proposed a method of attaching an organic substance to the surface of metal ultrafine particles by applying electricity (Patent Document 1), a method of manufacturing organic substance-coated metal ultrafine particles by applying an organic substance to a raw material fine wire (Patent Document 2), and the like.

特許第3790898号公報Japanese Patent No. 3790898 特開2007−254841号公報JP 2007-254841 A

M.Shoji,T.Nakayama,H.Suematsu,T.Suzuki and K.Niihara,“Synthesis of boron nitride nanosheets by an under methanol laser ablation method”,J.Ceram.Process.Res.,10 (2009) s23−s25M. Shoji, T .; Nakayama, H. Suematsu, T. Suzuki and K. Niihara, “Synthesis of boron nitride nanosheets by an under methanol laser ablation method”, J. Am. Ceram. Process. Res. , 10 (2009) s23−s25 H.Suematsu,S.Nishimura,K.Murai,Y.Hayashi,T.Suzuki,T.Nakayama,W.Jiang,A.Yamazaki1,K.Seki1 and K.Niihara,“Pulsed Wire Discharge Apparatus for Mass Production of Copper Nanopowders”,Rev.Sci.Inst.,78 (2007) 056105.H. Suematsu, S. Nishimura, K .; Murai, Y. Hayashi, T. Suzuki, T. Nakayama, W. Jiang, A. Yamazaki1, K. Seki1 and K. Niihara, “Pulsed Wire Discharge Apparatus for Mass Production of Copper Nanopowders”, Rev. Sci. Inst. 78 (2007) 056105.

しかしながら、高い電気抵抗を有する六方晶窒化ホウ素(hBN)は通電加熱による蒸発が生じないため、前述したパルス細線放電の原料として単体で用いることはできず、更に、この六方晶窒化ホウ素(hBN)は沸点が高く、雰囲気ガス(例えば窒素ガスやアルゴンガスなど)中に蒸気や霧として分散させることは困難であったため、パルス細線放電法を用いて窒化ホウ素ナノ構造体を製造することはできず、また、金属担持も不可能であった。   However, since hexagonal boron nitride (hBN) having a high electrical resistance does not evaporate due to current heating, it cannot be used alone as a raw material for the above-described pulsed wire discharge. Further, this hexagonal boron nitride (hBN) Has a high boiling point, and it was difficult to disperse it as vapor or mist in an atmospheric gas (for example, nitrogen gas or argon gas), so it was not possible to manufacture boron nitride nanostructures using the pulsed wire discharge method Moreover, metal loading was impossible.

本発明は上記問題を解決し、従来技術では不可能であった窒化ホウ素ナノ構造体(窒化ホウ素ナノチューブ,窒化ホウ素ナノシート,窒化ホウ素ナノコーンなど)に金属超微粒子を担持させた金属担持窒化ホウ素ナノ構造体を高いエネルギー変換効率で製造することが可能な金属担持窒化ホウ素ナノ構造体の製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems, and a metal-supported boron nitride nanostructure in which ultrafine metal particles are supported on boron nitride nanostructures (boron nitride nanotubes, boron nitride nanosheets, boron nitride nanocones, etc.) that were impossible with the prior art An object of the present invention is to provide a method for producing a metal-supported boron nitride nanostructure capable of producing a body with high energy conversion efficiency.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

金属細線1に窒化ホウ素2を設け、この窒化ホウ素2を設けた前記金属細線1にパルス電流を通電し、この金属細線1を加熱しプラズマ化させて金属担持窒化ホウ素ナノ構造体を製造することを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   Boron nitride 2 is provided on the metal thin wire 1, a pulse current is applied to the metal thin wire 1 provided with the boron nitride 2, and the metal thin wire 1 is heated and turned into plasma to produce a metal-supported boron nitride nanostructure. The present invention relates to a method for producing a metal-supported boron nitride nanostructure.

また、請求項1記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線1は、前記パルス電流を通電した際の抵抗が放電回路の内部抵抗よりも大きく且つ前記放電回路の最大電圧で蒸発可能な材質及び直径であることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   2. The method of manufacturing a metal-supported boron nitride nanostructure according to claim 1, wherein the metal thin wire 1 has a resistance greater than an internal resistance of the discharge circuit when the pulse current is applied and a maximum voltage of the discharge circuit. It is related with the manufacturing method of the metal carrying | support boron nitride nanostructure characterized by being the material and diameter which can be evaporated in this.

また、請求項1,2いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線1は、Fe,Co若しくはNiの単体またはこれらのうち少なくとも二種類を含む合金からなることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   Moreover, in the manufacturing method of the metal carrying | support boron nitride nanostructure of any one of Claim 1, 2, the said metal fine wire 1 is from the alloy containing at least 2 types of these in the simple substance of Fe, Co, or Ni. The present invention relates to a method for producing a metal-supported boron nitride nanostructure.

また、請求項1〜3いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線1は、直径0.05mm〜0.5mmに設定されていることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   Moreover, in the manufacturing method of the metal carrying | support boron nitride nanostructure of any one of Claims 1-3, the said metal fine wire 1 is set to 0.05 mm-0.5 mm in diameter, It is characterized by the above-mentioned. The present invention relates to a method for producing a metal-supported boron nitride nanostructure.

また、請求項1〜4いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属配線1の加熱時間を0.1ms以下とすることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   5. The method for producing a metal-supported boron nitride nanostructure according to claim 1, wherein a heating time of the metal wiring 1 is 0.1 ms or less. The present invention relates to a method for manufacturing a structure.

また、請求項1〜5いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線1に前記窒化ホウ素2を0.01mm〜0.1mmの厚さで塗布することを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   Moreover, in the manufacturing method of the metal carrying | support boron nitride nanostructure of any one of Claims 1-5, the said boron nitride 2 is apply | coated to the said metal fine wire 1 by the thickness of 0.01 mm-0.1 mm. The present invention relates to a method for producing a metal-supported boron nitride nanostructure.

また、請求項1〜6いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記窒化ホウ素2は、六方晶窒化ホウ素2であることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   The metal-supported boron nitride nanostructure according to claim 1, wherein the boron nitride 2 is hexagonal boron nitride 2. This relates to a method for manufacturing a body.

また、請求項1〜7いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属担持窒化ホウ素ナノ構造体は、窒化ホウ素2からなる厚さ5nm〜500nmのナノチューブ,ナノシート若しくはナノコーンの少なくとも1つであることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法に係るものである。   The method for producing a metal-supported boron nitride nanostructure according to any one of claims 1 to 7, wherein the metal-supported boron nitride nanostructure is a nanotube or nanosheet made of boron nitride 2 and having a thickness of 5 nm to 500 nm. Alternatively, the present invention relates to a method for producing a metal-supported boron nitride nanostructure, which is at least one of nanocones.

また、金属粒子が担持された金属担持窒化ホウ素ナノ構造体であって、厚さ5nm〜500nmであり、また、前記金属粒子は、粒径10nm〜500nmのFe,Co若しくはNiの単体粒子または少なくとも前記Fe,Co若しくはNiのうち少なくとも二種を含む合金粒子であることを特徴とする金属担持窒化ホウ素ナノ構造体に係るものである。   Further, the metal-supported boron nitride nanostructure having metal particles supported thereon having a thickness of 5 nm to 500 nm, wherein the metal particles are Fe, Co or Ni single particles having a particle size of 10 nm to 500 nm or at least The metal-supported boron nitride nanostructure is an alloy particle containing at least two of Fe, Co, and Ni.

また、請求項9記載の金属担持窒化ホウ素ナノ構造体において、前記金属担持窒化ホウ素ナノ構造体は、窒化ホウ素2からなるナノチューブ,ナノシート若しくはナノコーンの少なくとも1つであることを特徴とする金属担持窒化ホウ素ナノ構造体に係るものである。   The metal-supported boron nitride nanostructure according to claim 9, wherein the metal-supported boron nitride nanostructure is at least one of a nanotube, a nanosheet, or a nanocone made of boron nitride 2. This relates to a boron nanostructure.

本発明は、エネルギー変換効率の高いパルス細線放電法を用いて、金属細線に絶縁体である窒化ホウ素を設け、この金属細線にパルス電流を通電して加熱するから、同時に窒化ホウ素も加熱され、従って、金属超微粒子を担持した金属担持窒化ホウ素ナノ構造体、例えば、金属担持窒化ホウ素ナノチューブ,金属担持窒化ホウ素ナノシート,金属担持窒化ホウ素ナノコーンなどを効率的に製造することができる。   The present invention uses a pulsed wire discharge method with high energy conversion efficiency, and boron nitride as an insulator is provided on a metal wire, and a pulse current is passed through the metal wire to heat it, so that boron nitride is also heated at the same time, Therefore, metal-supported boron nitride nanostructures supporting metal ultrafine particles, such as metal-supported boron nitride nanotubes, metal-supported boron nitride nanosheets, and metal-supported boron nitride nanocones can be efficiently produced.

本実施例に用いるパルス細線放電装置の模式図である。It is a schematic diagram of the pulse wire discharge device used for a present Example. 本実施例に示す製造方法で製造したFe−Ni合金微粒子を担持した金属担持窒化ホウ素ナノシートを示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the metal carrying | support boron nitride nanosheet which carry | supported the Fe-Ni alloy fine particle manufactured with the manufacturing method shown to a present Example. 本実施例に示す製造方法で製造したFe−Ni合金微粒子を担持した金属担持窒化ホウ素ナノシートの粉末X線回折図形である。It is a powder X-ray diffraction pattern of the metal carrying | support boron nitride nanosheet which carry | supported the Fe-Ni alloy fine particle manufactured with the manufacturing method shown to a present Example. 本実施例に示す製造方法で製造したFe微粒子を担持した金属担持窒化ホウ素ナノシート及び窒化ホウ素ナノチューブを示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the metal carrying | support boron nitride nanosheet and boron nitride nanotube which carry | supported Fe fine particle manufactured with the manufacturing method shown to a present Example.

本発明は、金属細線1、例えばFe,Co若しくはNiの単体またはこれらのうち少なくとも二種類を含む合金からなる金属細線1の表面に、窒化ホウ素2、例えば六方晶窒化ホウ素2(hBN)を設け、例えば雰囲気ガスを導入可能なチャンバー3内にセットし、この金属細線1にパルス大電流を通電すると、金属細線1が電気抵抗によって瞬間的に急加熱され、この加熱された金属細線1からの熱伝導により、表面に付着している窒化ホウ素2も同時に加熱され、金属細線1と窒化ホウ素2とが蒸発しプラズマ化する。   In the present invention, boron nitride 2, for example hexagonal boron nitride 2 (hBN), is provided on the surface of a metal thin wire 1, such as Fe, Co or Ni alone or an alloy containing at least two of these. When, for example, an atmosphere gas can be introduced into the chamber 3 and a pulsed large current is passed through the fine metal wire 1, the fine metal wire 1 is instantaneously rapidly heated by electric resistance. The boron nitride 2 adhering to the surface is also heated at the same time by heat conduction, and the fine metal wire 1 and the boron nitride 2 are evaporated and turned into plasma.

具体的には、金属細線1を、放電回路の内部抵抗よりも大きく且つ放電回路の最大電圧で蒸発しプラズマ化することが可能な材料及び直径とすることで、放電回路に蓄積された電気エネルギーを効率的に金属細線1と窒化ホウ素2とを蒸発プラズマ化するのに必要な内部エネルギーに変換している。   Specifically, the electrical energy stored in the discharge circuit is made by making the metal wire 1 a material and a diameter that are larger than the internal resistance of the discharge circuit and can be vaporized and plasmaized at the maximum voltage of the discharge circuit. Is converted into internal energy necessary for efficiently converting the fine metal wire 1 and the boron nitride 2 into evaporative plasma.

このプラズマ状態となった金属細線1及び窒化ホウ素2はチャンバー3内に導入した雰囲気ガスによって冷却され凝固することで、金属細線1は金属超微粒子となり、また、窒化ホウ素2は、例えば窒化ホウ素ナノチューブ、窒化ホウ素ナノシート、窒化ホウ素ナノコーンなどの窒化ホウ素ナノ構造体となる。   The metal thin wire 1 and boron nitride 2 in a plasma state are cooled and solidified by the atmospheric gas introduced into the chamber 3, so that the metal thin wire 1 becomes ultrafine metal particles, and the boron nitride 2 is, for example, a boron nitride nanotube. Boron nitride nanostructures such as boron nitride nanosheets and boron nitride nanocones.

このプラズマ状態から金属超微粒子、窒化ホウ素ナノ構造体が形成される際に、雰囲気ガス中で互いに付着して窒化ホウ素ナノ構造体と、金属細線1の材料となる単体金属粒子若しくは合金粒子とからなる複合材料、即ち、金属超微粒子を担持した金属担持窒化ホウ素ナノ構造体となる。   When metal ultrafine particles and boron nitride nanostructures are formed from this plasma state, the boron nitride nanostructures adhere to each other in an atmospheric gas and are composed of single metal particles or alloy particles that become the material of the metal thin wire 1. The resulting composite material, that is, a metal-supported boron nitride nanostructure supporting metal ultrafine particles.

即ち、絶縁体である窒化ホウ素2は、単体ではパルス細線放電法を用いての通電加熱ができないが、このように金属細線1に設けることで金属細線1からの熱伝導により窒化ホウ素2も同時に加熱することが可能となり、これらを同時にパルス通電によって急加熱し、蒸発させプラズマ化することで金属超微粒子と窒化ホウ素ナノ構造体とを同時に高温下で存在させることができ、従って、金属超微粒子が窒化ホウ素ナノ構造体に付着し担持され、金属超微粒子を担持した金属担持窒化ホウ素ナノ構造体を効率的に製造することができる。   In other words, the boron nitride 2 that is an insulator cannot be heated by current using the pulse thin wire discharge method alone, but by providing the metal thin wire 1 in this way, the boron nitride 2 is also simultaneously formed by heat conduction from the metal thin wire 1. It becomes possible to heat them, rapidly heating them by pulse energization at the same time, and evaporating them into plasma, so that the metal ultrafine particles and the boron nitride nanostructure can exist at a high temperature at the same time. Can be attached to and supported on the boron nitride nanostructure, and the metal-supported boron nitride nanostructure supporting the metal ultrafine particles can be efficiently produced.

従来、窒化ホウ素2はパルス細線放電法を用いて通電加熱することができなかったが、窒化ホウ素2を金属細線1に設け、この金属細線1を加熱することで同時に窒化ホウ素2も加熱、蒸発、プラズマ化させることが可能となった。   Conventionally, boron nitride 2 could not be energized and heated using a pulsed wire discharge method, but boron nitride 2 was provided on metal wire 1, and by heating this metal wire 1, boron nitride 2 was simultaneously heated and evaporated. It became possible to make it into plasma.

尚、金属超微粒子を窒化ホウ素ナノ構造体に付着させるには夫々の蒸発源が可能な限り近いことが望ましく、例えば、金属細線1に窒化ホウ素2を塗布すれば、夫々の蒸発源間隔を最も狭くでき、容易に金属超微粒子を窒化ホウ素ナノ構造体に付着させることができる。   In order to attach the metal ultrafine particles to the boron nitride nanostructure, it is desirable that the respective evaporation sources are as close as possible. For example, when boron nitride 2 is applied to the metal thin wire 1, the distance between the respective evaporation sources is the largest. The ultrafine metal particles can be easily attached to the boron nitride nanostructure.

本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

本実施例は、パルス細線放電法を用いて金属担持窒化ホウ素ナノ構造体を製造する金属担持窒化ホウ素ナノ構造体の製造方法であり、金属細線1に窒化ホウ素2を塗布し、この窒化ホウ素2を塗布した金属細線1にパルス大電流を通電し、この金属細線1を加熱することで同時に窒化ホウ素2も加熱して金属細線1と窒化ホウ素2の双方を蒸発させプラズマ化し、このプラズマ状態となった金属細線1と窒化ホウ素2とをガス雰囲気で冷却し凝固させることによって金属超微粒子と窒化ホウ素ナノ構造体とを形成するとともに、金属超微粒子が窒化ホウ素ナノ構造体に付着し担持されることで金属超微粒子を担持した金属担持窒化ホウ素ナノ構造体を効率的に製造することができる金属担持窒化ホウ素ナノ構造体の製造方法である。   The present embodiment is a method for manufacturing a metal-supported boron nitride nanostructure that manufactures a metal-supported boron nitride nanostructure using a pulsed wire discharge method. Boron nitride 2 is applied to the metal wire 1 and this boron nitride 2 is applied. By applying a large pulse current to the thin metal wire 1 coated with, and heating the fine metal wire 1, the boron nitride 2 is simultaneously heated to evaporate both the fine metal wire 1 and the boron nitride 2 to form plasma. The ultrafine metal wire 1 and boron nitride 2 are cooled in a gas atmosphere and solidified to form ultrafine metal particles and boron nitride nanostructures, and the ultrafine metal particles are attached to and supported on the boron nitride nanostructures. This is a method for producing a metal-supported boron nitride nanostructure capable of efficiently producing a metal-supported boron nitride nanostructure carrying metal ultrafine particles.

また、本実施例では図1に示すようなパルス細線放電装置を用いており、このパルス細線放電装置は、高圧充電電源4、コンデンサー5、スイッチ6を主構成部品とする放電回路部と、金属細線1にパルス電流を通電しプラズマ化させて超微粒子を形成するチャンバー3とで構成している。   Further, in this embodiment, a pulse thin wire discharge device as shown in FIG. 1 is used. This pulse thin wire discharge device includes a discharge circuit section including a high voltage charging power source 4, a capacitor 5 and a switch 6 as main components, a metal The thin wire 1 is made up of a chamber 3 in which ultrafine particles are formed by energizing a pulse current to generate plasma.

また、このチャンバー3には、雰囲気ガスを導入するガス導入口7と、真空排気口8とが設けられており、この真空排気口8に回収フィルター9を設けてチャンバー3内で形成した金属超微粒子を担持した金属担持窒化ホウ素ナノ構造体を回収する構成としている。   The chamber 3 is provided with a gas inlet 7 for introducing atmospheric gas and a vacuum exhaust port 8. A recovery filter 9 is provided at the vacuum exhaust port 8 to form a metal superstructure formed in the chamber 3. The metal-supported boron nitride nanostructure supporting fine particles is collected.

このパルス細線放電装置を用いて金属超微粒子を担持した金属担持窒化ホウ素ナノ構造体を製造するには、直径0.05mm〜0.5mmのFe,Co若しくはNiの単体またはこれらのうち少なくとも二種類を含む合金からなる金属細線1の表面に、厚さ0.01mm〜0.1mmの六方晶窒化ホウ素2(hBN)を塗布し付着させて、チャンバー3内に設置した放電回路部の電極10間にセットする。   In order to produce a metal-supported boron nitride nanostructure carrying ultrafine metal particles using this pulsed wire discharge device, a simple substance of Fe, Co or Ni having a diameter of 0.05 mm to 0.5 mm or at least two of them A hexagonal boron nitride 2 (hBN) having a thickness of 0.01 mm to 0.1 mm is applied and adhered to the surface of the fine metal wire 1 made of an alloy containing a material between the electrodes 10 of the discharge circuit unit installed in the chamber 3. Set to.

この六方晶窒化ホウ素2(hBN)を塗布した金属細線1を配設したチャンバー3内を真空排気した後、窒素、アルゴン、ヘリウムなどの不活性ガスをガス導入口7から導入しチャンバー3内の圧力を10kPa〜200kPaにする。   After evacuating the chamber 3 in which the fine metal wire 1 coated with the hexagonal boron nitride 2 (hBN) is disposed, an inert gas such as nitrogen, argon, or helium is introduced from the gas inlet 7 to enter the chamber 3. The pressure is 10 kPa to 200 kPa.

次いで、高圧充電電源4によりコンデンサー5を1kV〜10kVの電圧で充電し、スイッチ6を閉じることで六方晶窒化ホウ素2(hBN)を塗布した金属細線1にパルス大電流を通電させて急激に加熱し、蒸発させプラズマ化させる。   Next, the capacitor 5 is charged with a voltage of 1 kV to 10 kV by the high-voltage charging power source 4, and the switch 6 is closed to apply a large pulse current to the metal thin wire 1 coated with hexagonal boron nitride 2 (hBN) to rapidly heat it. And evaporate to plasma.

このプラズマ状態となった金属細線1と六方晶窒化ホウ素2(hBN)は、夫々不活性ガス中で冷却され凝固し六方晶窒化ホウ素ナノ構造体及びFe,Co若しくはNi超微粒子を形成しながら互いに付着し、厚さ5nm〜500nmの六方晶窒化ホウ素ナノチューブ(hBNナノチューブ)、六方晶窒化ホウ素ナノシート(hBNナノシート)、六方晶窒化ホウ素ナノコーン(hBNナノコーン)のいずれかと、粒径10nm〜30nmのFe,Co若しくはNiの単体粒子またはこれらのうち少なくとも二種類を含む合金粒子とからなる複合材料、即ち、金属超微粒子を担持した金属担持六方晶窒化ホウ素ナノ構造体が製造され、この金属超微粒子を担持した金属担持六方晶窒化ホウ素ナノ構造体を、チャンバー3内の不活性ガスを真空排気口8から排気する際に、この真空排気口8の途中に設けた回収フィルター9でトラップして回収する。   The metal thin wire 1 and the hexagonal boron nitride 2 (hBN) in the plasma state are cooled and solidified in an inert gas, respectively, while forming hexagonal boron nitride nanostructures and Fe, Co or Ni ultrafine particles. Any one of hexagonal boron nitride nanotubes (hBN nanotubes), hexagonal boron nitride nanosheets (hBN nanosheets), hexagonal boron nitride nanocones (hBN nanocones) having a thickness of 5 nm to 500 nm, Fe having a particle size of 10 nm to 30 nm, A composite material composed of single particles of Co or Ni or alloy particles including at least two of them, that is, a metal-supported hexagonal boron nitride nanostructure supporting metal ultrafine particles is manufactured, and the metal ultrafine particles are supported. The metal-supported hexagonal boron nitride nanostructure was vacuumed with the inert gas in the chamber 3 When you exhaust from the gas port 8, it is recovered by trapping in the recovery filter 9 provided in the middle of the vacuum exhaust port 8.

また、本実施例では、金属細線1に採用する材質をFe,Co,Niの単体若しくはこれらのうち少なくとも二種類を含む合金とし、その直径を0.05mm〜0.5mmに設定する。これは、パルス通電によって放電回路に蓄積された電気エネルギーを金属細線1や六方晶窒化ホウ素2(hBN)が蒸発に必要な内部エネルギーに変換可能とするためであり、直径が0.5mmより大きいと、金属細線1の抵抗値が放電回路の内部抵抗よりも小さくなって短絡が生じ、また、直径が0.05mmより小さいと、放電回路の最大電圧で蒸発可能な電流を通電させることができなくなる。   In the present embodiment, the material used for the fine metal wire 1 is made of Fe, Co, Ni alone or an alloy containing at least two of them, and the diameter is set to 0.05 mm to 0.5 mm. This is because the electric energy accumulated in the discharge circuit by pulse energization can be converted into internal energy necessary for the metal fine wire 1 and hexagonal boron nitride 2 (hBN) to evaporate, and the diameter is larger than 0.5 mm. When the resistance value of the thin metal wire 1 is smaller than the internal resistance of the discharge circuit, a short circuit occurs, and when the diameter is smaller than 0.05 mm, a current that can be evaporated at the maximum voltage of the discharge circuit can be applied. Disappear.

また、本実施例では、六方晶窒化ホウ素ナノ構造体に付着させた粒子は、粒径10nm〜500nmになるようにしている。これは、六方晶窒化ホウ素ナノ構造体への付着力及び、酸化などの変質防止の為である。   In the present example, the particles attached to the hexagonal boron nitride nanostructure have a particle size of 10 nm to 500 nm. This is to prevent adhesion to the hexagonal boron nitride nanostructure and alteration such as oxidation.

即ち、この金属超微粒子の粒径が500nmより大きいと窒化ホウ素ナノ構造体への付着力が低下し、窒化ホウ素ナノ構造体に付着しても担持されず剥がれ落ちてしまう可能性があり、また、粒径が10nmより小さいと酸化などによる変質の可能性が高くなるのである。   That is, if the particle size of the ultrafine metal particles is larger than 500 nm, the adhesion force to the boron nitride nanostructure is reduced, and even if it adheres to the boron nitride nanostructure, it may not be supported and peeled off. If the particle size is smaller than 10 nm, the possibility of alteration due to oxidation or the like increases.

また、本実施例では、金属細線1に塗布する六方晶窒化ホウ素2(hBN)の厚さを0.01mm〜0.1mmに設定している。これは、六方晶窒化ホウ素2(hBN)の蒸発に必要な熱をコンデンサー5に充電したエネルギーから熱伝導により変換し、六方晶窒化ホウ素2(hBN)の蒸発を可能とするためである。   In this embodiment, the thickness of the hexagonal boron nitride 2 (hBN) applied to the thin metal wire 1 is set to 0.01 mm to 0.1 mm. This is because the heat necessary for the evaporation of hexagonal boron nitride 2 (hBN) is converted from the energy charged in the capacitor 5 by heat conduction to enable the evaporation of hexagonal boron nitride 2 (hBN).

厚さが0.01mmより薄いと放電時に金属細線1から飛散して蒸発出来なくなり、0.1mmより厚いとコンデンサー5に高圧充電電源4で充電したエネルギーで六方晶窒化ホウ素2(hBN)の蒸発に必要な内部エネルギーが得られなくなる。   If the thickness is less than 0.01 mm, it will not be able to evaporate due to scattering from the fine metal wire 1 at the time of discharge. The internal energy required for the process cannot be obtained.

また、本実施例では、窒化ホウ素ナノチューブなどの窒化ホウ素ナノ構造体の厚さを5nm〜500nmとなるようにしている。これは、窒化ホウ素ナノチューブなどの窒化ホウ素ナノ構造体はある程度以上の厚さがないと湾曲など変形してしまい、厚くなりすぎるとバルク体と同様な物性を示すようになり、ナノ構造体としての利点が失われるためである。   In this embodiment, the thickness of the boron nitride nanostructure such as boron nitride nanotube is set to 5 nm to 500 nm. This is because boron nitride nanostructures such as boron nitride nanotubes are deformed if they are not thicker than a certain level, and if they are too thick, they will exhibit the same physical properties as bulk bodies, This is because the advantage is lost.

また、本実施例は、金属細線1の加熱時間を0.1ms以下としている。これは、加熱時間が長くなると熱伝導による損失が大きくなり放電回路に蓄積された電気エネルギーを金属細線1及び六方晶窒化ホウ素2(hBN)を蒸発させるために必要な内部エネルギーに変換する変換効率が低下し、金属細線1及び六方晶窒化ホウ素2(hBN)が蒸発、プラズマ化しなくなる可能性があるためである。   In the present embodiment, the heating time of the fine metal wire 1 is set to 0.1 ms or less. This is because the loss due to heat conduction increases as the heating time increases, and the conversion efficiency converts the electrical energy accumulated in the discharge circuit into internal energy necessary for evaporating the metal fine wire 1 and hexagonal boron nitride 2 (hBN). This is because the metal wire 1 and the hexagonal boron nitride 2 (hBN) may not evaporate and become plasma.

尚、本実施例に用いるパルス細線放電装置のチャンバー3の体積は、1リットル〜30リットル程度とすることが望ましく、また、コンデンサー5は単一若しくは複数を接続した構成としても良い。更に、スイッチ6は、球ギャップスイッチ、トリガトロン、半導体スイッチなど本実施例と同等の効果を発揮するものであれば適宜採用し得るものである。   The volume of the chamber 3 of the pulsed wire discharge device used in this embodiment is preferably about 1 to 30 liters, and the capacitor 5 may be a single or a plurality connected. Further, the switch 6 can be appropriately employed as long as it exhibits an effect equivalent to that of the present embodiment, such as a ball gap switch, a triggertron, and a semiconductor switch.

本実施例は上述のようにしたから、Fe,Co若しくはNiの単体またはこれらのうち少なくとも二種類を含む合金からなる金属細線1の表面に六方晶窒化ホウ素2(hBN)を設け、これを雰囲気ガスを導入可能なチャンバー3内にセットし、このセットした金属細線1にパルス大電流を通電すると、金属細線1が電気抵抗によって瞬間的に急加熱され、この加熱された金属細線1からの熱伝導により、表面に付着している六方晶窒化ホウ素2(hBN)も同時に加熱され、金属細線1と六方晶窒化ホウ素2(hBN)とが蒸発プラズマ化し、このプラズマ状態となった金属細線1及び六方晶窒化ホウ素2(hBN)はチャンバー3内に導入した雰囲気ガス(不活性ガス)によって冷却され凝固し、金属細線1は金属超微粒子となり、また、六方晶窒化ホウ素2(hBN)は、六方晶窒化ホウ素ナノチューブ、六方晶窒化ホウ素ナノシート、六方晶窒化ホウ素ナノコーンなどの六方晶窒化ホウ素ナノ構造体となる。   Since the present embodiment is as described above, the hexagonal boron nitride 2 (hBN) is provided on the surface of the fine metal wire 1 made of Fe, Co or Ni alone or an alloy containing at least two of them, and this is used as an atmosphere. When a gas pulse is set in the chamber 3 into which gas can be introduced and a pulsed high current is passed through the set thin metal wire 1, the fine metal wire 1 is instantaneously rapidly heated by electric resistance, and the heat from the heated thin metal wire 1. By conduction, the hexagonal boron nitride 2 (hBN) adhering to the surface is also heated at the same time, and the metal fine wire 1 and the hexagonal boron nitride 2 (hBN) are converted into evaporative plasma. Hexagonal boron nitride 2 (hBN) is cooled and solidified by the atmospheric gas (inert gas) introduced into the chamber 3, and the fine metal wire 1 becomes ultrafine metal particles. Hexagonal boron nitride 2 (hBN) becomes hexagonal boron nitride nanotube, hexagonal boron nitride nanosheet, and hexagonal boron nitride nanostructures such as hexagonal boron nitride nanocones.

即ち、絶縁体である六方晶窒化ホウ素2(hBN)は、パルス細線放電法を用いての通電加熱ができなかったが、このように金属細線1に設けることで金属細線1からの熱伝導により六方晶窒化ホウ素2(hBN)も同時に加熱することが可能となり、これらを同時にパルス通電によって急加熱し蒸発プラズマ化することで金属超微粒子と六方晶窒化ホウ素ナノ構造体とを同時に高温下で存在させることができ、従って、金属超微粒子が六方晶窒化ホウ素ナノ構造体に付着し担持され、金属超微粒子を担持した金属担持六方晶窒化ホウ素ナノ構造体を効率的に製造することができる。   In other words, the hexagonal boron nitride 2 (hBN), which is an insulator, could not be energized and heated using the pulse thin wire discharge method. However, by providing the metal thin wire 1 in this way, heat conduction from the metal thin wire 1 is caused. Hexagonal boron nitride 2 (hBN) can also be heated at the same time, and at the same time, ultrafine metal particles and hexagonal boron nitride nanostructures are present at high temperatures by rapid heating by pulse conduction and evaporative plasma. Accordingly, the ultrafine metal particles are attached to and supported on the hexagonal boron nitride nanostructure, and the metal-supported hexagonal boron nitride nanostructure carrying the ultrafine metal particles can be efficiently produced.

また、金属超微粒子を六方晶窒化ホウ素ナノ構造体に付着させるには夫々の蒸発源が可能な限り近いことが望ましく、本実施例では、金属細線1に六方晶窒化ホウ素2(hBN)を塗布しているので、夫々の蒸発源間隔を最も狭くでき、容易に金属超微粒子を六方晶窒化ホウ素ナノ構造体に付着させることができる。   Further, in order to attach the ultrafine metal particles to the hexagonal boron nitride nanostructure, it is desirable that the respective evaporation sources are as close as possible. In this embodiment, hexagonal boron nitride 2 (hBN) is applied to the metal thin wire 1. Therefore, the interval between the respective evaporation sources can be narrowed, and the ultrafine metal particles can be easily attached to the hexagonal boron nitride nanostructure.

<実施例1>
以下に金属細線1としてFe、Niを用いて、Fe−Ni合金超微粒子を担持した金属担持六方晶窒化ホウ素ナノ構造体を製造した際の詳細な条件を示すと共に、回収した微粒子の観察及び分析結果を示す。
<Example 1>
In the following, detailed conditions for producing a metal-supported hexagonal boron nitride nanostructure carrying Fe-Ni alloy ultrafine particles using Fe and Ni as the fine metal wires 1 are shown, and the collected fine particles are observed and analyzed. Results are shown.

長さ20mm、直径0.2mmのFeと、長さ20mm、直径0.2mmのNiとからなる金属細線1に、直径10μmの六方晶窒化ホウ素2(hBN)を厚さ0.1mmで塗布し、チャンバー3内に配置した放電回路の電極10間にセットし、チャンバー3内を真空引きした後、ガス導入口7より窒素ガスを導入しチャンバー内3の圧力を100kPaにし、充電電圧5kVで放電した後、チャンバー3内の窒素ガスを、真空排気口8を通じて排気し、この排気の際に真空排気口8の途中に配設した回収フィルター9に付着した粒子を回収した。尚、放電時間、即ち、加熱時間が長くなると熱伝導による損失が大きくなり放電回路に蓄積された電気エネルギーを金属細線1及び六方晶窒化ホウ素2(hBN)を蒸発させるために必要な内部エネルギーに変換する変換効率が低下し、金属細線1及び六方晶窒化ホウ素2(hBN)が蒸発、プラズマ化しなくなる可能性があるため、本実施例における放電時間は、0.1ms以下とした。   Hexagonal boron nitride 2 (hBN) having a diameter of 10 μm is applied to a metal thin wire 1 made of Fe having a length of 20 mm and a diameter of 0.2 mm and Ni having a length of 20 mm and a diameter of 0.2 mm to a thickness of 0.1 mm. , Set between the electrodes 10 of the discharge circuit arranged in the chamber 3, evacuated the chamber 3, introduced nitrogen gas from the gas inlet 7, brought the pressure in the chamber 3 to 100 kPa, and discharged at a charging voltage of 5 kV After that, the nitrogen gas in the chamber 3 was exhausted through the vacuum exhaust port 8, and particles adhering to the recovery filter 9 disposed in the middle of the vacuum exhaust port 8 during the exhaust were recovered. As the discharge time, that is, the heating time becomes longer, the loss due to heat conduction increases, and the electric energy accumulated in the discharge circuit is converted into internal energy necessary for evaporating the fine metal wire 1 and hexagonal boron nitride 2 (hBN). Since the conversion efficiency for conversion decreases and the metal fine wire 1 and hexagonal boron nitride 2 (hBN) may not evaporate and become plasma, the discharge time in this example was set to 0.1 ms or less.

この回収した粒子を走査型電子顕微鏡(SEM)で観察した結果を図2に示す。このSEM観察写真では、厚さ100nm〜300nmの六方晶窒化ホウ素ナノシートの表面に直径20nm〜300nmの球形の金属超微粒子が付着していることが確認できた。   The results of observing the collected particles with a scanning electron microscope (SEM) are shown in FIG. In this SEM observation photograph, it was confirmed that spherical metal ultrafine particles having a diameter of 20 nm to 300 nm were attached to the surface of a hexagonal boron nitride nanosheet having a thickness of 100 nm to 300 nm.

また、回収した粒子を粉末X線回折測定したところ、図3の上段に示すX線回折図形が得られた。この図形ではB(ホウ素)とN(窒素)の原子散乱因子が小さいため、六方晶窒化ホウ素2(hBN)の回折は観察することができなかった。   Further, when the collected particles were measured by powder X-ray diffraction, the X-ray diffraction pattern shown in the upper part of FIG. 3 was obtained. In this figure, since the atomic scattering factors of B (boron) and N (nitrogen) are small, diffraction of hexagonal boron nitride 2 (hBN) could not be observed.

しかし、図3の中段及び下段に示すX線回折図形に示されるFe,Ni単体金属の回折ピーク位置と比較した際に、図3の上段に示される図形の回収粒子のピーク値が、中段及び下段に示されるFeのピーク値とNiのピーク値との略中間位置にあることより、六方晶窒化ホウ素ナノシートの表面に付着している球形の粒子はFe−Ni合金であることが確認できた。   However, when compared with the diffraction peak positions of the Fe and Ni simple metals shown in the X-ray diffraction patterns shown in the middle and lower parts of FIG. 3, the peak values of the recovered particles in the figure shown in the upper part of FIG. It was confirmed that the spherical particles adhering to the surface of the hexagonal boron nitride nanosheet were Fe-Ni alloys, because they were at approximately the intermediate position between the peak value of Fe and the peak value of Ni shown in the lower stage. .

従って、回収した粒子は、六方晶窒化ホウ素ナノシート上にFe−Ni合金超微粒子が付着した複合材料、即ち、Fe−Ni合金超微粒子を担持した金属担持六方晶窒化ホウ素ナノシートであることが確認できた。   Therefore, the recovered particles can be confirmed to be a composite material in which Fe—Ni alloy ultrafine particles are adhered on a hexagonal boron nitride nanosheet, that is, a metal-supported hexagonal boron nitride nanosheet carrying Fe—Ni alloy ultrafine particles. It was.

尚、上記Fe及びNiを用いた金属細線1の代わりに、直径3mm、長さ20mmの六方晶窒化ホウ素焼結体を用いて、同様の条件で放電を試みたが、スイッチ6を閉じてもパルス電流は流れなかった。   Although a hexagonal boron nitride sintered body having a diameter of 3 mm and a length of 20 mm was used in place of the fine metal wire 1 using Fe and Ni, discharge was attempted under the same conditions. The pulse current did not flow.

<実施例2>
以下に金属細線1としてFeを用いて、Fe単体金属超微粒子を担持した金属担持六方晶窒化ホウ素ナノ構造体を製造した際の詳細な条件を示すと共に、回収した微粒子のSEM観察結果を示す。
<Example 2>
In the following, detailed conditions for producing a metal-supported hexagonal boron nitride nanostructure carrying Fe single metal ultrafine particles using Fe as the fine metal wire 1 are shown, and SEM observation results of the collected fine particles are shown.

長さ20mm、直径0.2mmのFeからなる金属細線1に、直径10μmの六方晶窒化ホウ素2(hBN)を厚さ0.05mmに塗布し、チャンバー3内に配置した放電回路の電極10間にセットし、チャンバー3内を真空引きした後、ガス導入口7より窒素ガスを導入しチャンバー3内の圧力を100kPaにし、充電電圧5kVで放電した後、チャンバー3内の窒素ガスを、真空排気口8を通じて排気し、この排気の際に真空排気口8の途中に配設した回収フィルター9に付着した粒子を回収した。更に、この回収した粒子を圧力100kPaに設定した窒素雰囲気中で、1200℃で熱処理した。   A thin metal wire 1 made of Fe having a length of 20 mm and a diameter of 0.2 mm is coated with a hexagonal boron nitride 2 (hBN) having a diameter of 10 μm to a thickness of 0.05 mm. After evacuating the chamber 3, nitrogen gas is introduced from the gas introduction port 7, the pressure in the chamber 3 is set to 100 kPa, discharge is performed at a charging voltage of 5 kV, and then the nitrogen gas in the chamber 3 is evacuated. The exhaust gas was exhausted through the port 8, and particles adhering to the recovery filter 9 disposed in the middle of the vacuum exhaust port 8 during the exhaustion were recovered. Further, the collected particles were heat-treated at 1200 ° C. in a nitrogen atmosphere set at a pressure of 100 kPa.

この回収し熱処理を施した粒子を走査型電子顕微鏡(SEM)で観察した結果を図4に示す。このSEM観察写真では、大きさ10μmの六方晶窒化ホウ素ナノシートの表面に直径20nm〜300nmの球形のFe超微粒子が付着していることが確認できた。   FIG. 4 shows the results of observation of the recovered and heat-treated particles with a scanning electron microscope (SEM). In this SEM observation photograph, it was confirmed that spherical Fe ultrafine particles having a diameter of 20 nm to 300 nm were adhered to the surface of a hexagonal boron nitride nanosheet having a size of 10 μm.

更に、直径10nm〜20nm、長さ1μm〜3μmの六方晶窒化ホウ素ナノチューブ、若しくは六方晶窒化ホウ素ナノコーンが付着していることも確認できた。   Furthermore, it was confirmed that hexagonal boron nitride nanotubes or hexagonal boron nitride nanocones having a diameter of 10 nm to 20 nm and a length of 1 μm to 3 μm were adhered.

従って、回収した粒子は、六方晶窒化ホウ素ナノシート上に六方晶窒化ホウ素ナノチューブ、若しくは六方晶窒化ホウ素ナノコーンとFe超微粒子とが付着した複合材料、即ち、Fe単体金属超微粒子と六方晶窒化ホウ素ナノチューブ、若しくは六方晶窒化ホウ素ナノコーンを担持した金属担持六方晶窒化ホウ素ナノシートであることが確認できた。   Therefore, the recovered particles are hexagonal boron nitride nanotubes or a composite material in which hexagonal boron nitride nanocones and Fe ultrafine particles are adhered on a hexagonal boron nitride nanosheet, that is, Fe single metal ultrafine particles and hexagonal boron nitride nanotubes. Or a metal-supported hexagonal boron nitride nanosheet supporting hexagonal boron nitride nanocones.

尚、本実施例では、回収した粒子の付着力、相、形態を最適化するために上記のような熱処理を行ったが、本実施例に限らず、酸化、還元など様々な雰囲気ガス中で熱処理を行っても良い。   In this example, the heat treatment as described above was performed to optimize the adhesion, phase, and morphology of the collected particles. However, the present invention is not limited to this example, and in various atmospheric gases such as oxidation and reduction. Heat treatment may be performed.

<実施例3>
以下に金属細線1としてCoを用いて、Co単体金属超微粒子を担持した金属担持六方晶窒化ホウ素ナノ構造体を製造した際の詳細な条件を示す。
<Example 3>
The detailed conditions for producing a metal-supported hexagonal boron nitride nanostructure supporting Co ultrafine metal particles using Co as the fine metal wire 1 will be described below.

長さ20mm、直径0.2mmのCoからなる金属細線1に、直径10μmの六方晶窒化ホウ素2(hBN)を厚さ0.03mmに塗布し、チャンバー3内に配置した放電回路の電極10間にセットし、チャンバー3内を真空引きした後、ガス導入口7より窒素ガスを導入しチャンバー内3の圧力を10kPaにし、充電電圧5kVで放電した後、チャンバー3内の窒素ガスを、真空排気口8を通じて排気し、この排気の際に真空排気口8の途中に配設した回収フィルター9に付着した粒子を回収した。   A thin metal wire 1 made of Co having a length of 20 mm and a diameter of 0.2 mm is coated with a hexagonal boron nitride 2 (hBN) having a diameter of 10 μm to a thickness of 0.03 mm, and between the electrodes 10 of the discharge circuit disposed in the chamber 3. After evacuating the chamber 3, nitrogen gas is introduced from the gas introduction port 7, the pressure in the chamber 3 is set to 10 kPa, discharge is performed at a charging voltage of 5 kV, and then the nitrogen gas in the chamber 3 is evacuated. The exhaust gas was exhausted through the port 8, and particles adhering to the recovery filter 9 disposed in the middle of the vacuum exhaust port 8 during the exhaustion were recovered.

この回収した粒子は、六方晶窒化ホウ素ナノシート上にCo超微粒子が付着した複合材料、即ち、Co単体金属超微粒子を担持した金属担持六方晶窒化ホウ素ナノシートであることが確認できた。   It was confirmed that the collected particles were a composite material in which Co ultrafine particles were adhered on a hexagonal boron nitride nanosheet, that is, a metal-supported hexagonal boron nitride nanosheet in which Co simple metal ultrafine particles were supported.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

1 金属細線
2 窒化ホウ素
1 Metal wire 2 Boron nitride

Claims (10)

金属細線に窒化ホウ素を設け、この窒化ホウ素を設けた前記金属細線にパルス電流を通電し、この金属細線を加熱しプラズマ化させて金属担持窒化ホウ素ナノ構造体を製造することを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   A metal characterized in that boron nitride is provided on a metal thin wire, a pulse current is applied to the metal thin wire provided with the boron nitride, and the metal fine wire is heated and turned into plasma to produce a metal-supported boron nitride nanostructure. A method for producing a supported boron nitride nanostructure. 請求項1記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線は、前記パルス電流を通電した際の抵抗が放電回路の内部抵抗よりも大きく且つ前記放電回路の最大電圧で蒸発可能な材質及び直径であることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   2. The method of manufacturing a metal-supported boron nitride nanostructure according to claim 1, wherein the metal thin wire has a resistance greater than an internal resistance of the discharge circuit when the pulse current is applied and can be evaporated at a maximum voltage of the discharge circuit. A method for producing a metal-supported boron nitride nanostructure, wherein the material and diameter are various. 請求項1,2いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線は、Fe,Co若しくはNiの単体またはこれらのうち少なくとも二種類を含む合金からなることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   The method for producing a metal-supported boron nitride nanostructure according to any one of claims 1 and 2, wherein the thin metal wire is made of a simple substance of Fe, Co or Ni or an alloy containing at least two of them. A method for producing a metal-supported boron nitride nanostructure. 請求項1〜3いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線は、直径0.05mm〜0.5mmに設定されていることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   4. The method for producing a metal-supported boron nitride nanostructure according to any one of claims 1 to 3, wherein the thin metal wire is set to have a diameter of 0.05 mm to 0.5 mm. Method for producing boron nanostructure. 請求項1〜4いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属配線の加熱時間を0.1ms以下とすることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   5. The method for producing a metal-supported boron nitride nanostructure according to claim 1, wherein a heating time of the metal wiring is 0.1 ms or less. Production method. 請求項1〜5いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属細線に前記窒化ホウ素を0.01mm〜0.1mmの厚さで塗布することを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   The method for producing a metal-supported boron nitride nanostructure according to any one of claims 1 to 5, wherein the boron nitride is applied to the metal thin wire with a thickness of 0.01 mm to 0.1 mm. A method for producing a metal-supported boron nitride nanostructure. 請求項1〜6いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記窒化ホウ素は、六方晶窒化ホウ素であることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   The method for manufacturing a metal-supported boron nitride nanostructure according to any one of claims 1 to 6, wherein the boron nitride is hexagonal boron nitride. . 請求項1〜7いずれか1項に記載の金属担持窒化ホウ素ナノ構造体の製造方法において、前記金属担持窒化ホウ素ナノ構造体は、窒化ホウ素からなる厚さ5nm〜500nmのナノチューブ,ナノシート若しくはナノコーンの少なくとも1つであることを特徴とする金属担持窒化ホウ素ナノ構造体の製造方法。   The method for producing a metal-supported boron nitride nanostructure according to any one of claims 1 to 7, wherein the metal-supported boron nitride nanostructure is a nanotube, nanosheet, or nanocone made of boron nitride and having a thickness of 5 nm to 500 nm. A method for producing a metal-supported boron nitride nanostructure, comprising at least one. 金属粒子が担持された金属担持窒化ホウ素ナノ構造体であって、厚さ5nm〜500nmであり、また、前記金属粒子は、粒径10nm〜500nmのFe,Co若しくはNiの単体粒子または少なくとも前記Fe,Co若しくはNiのうち少なくとも二種を含む合金粒子であることを特徴とする金属担持窒化ホウ素ナノ構造体。   A metal-supported boron nitride nanostructure having metal particles supported thereon, having a thickness of 5 nm to 500 nm, and the metal particles are Fe, Co or Ni single particles having a particle diameter of 10 nm to 500 nm or at least the Fe A metal-supported boron nitride nanostructure comprising alloy particles containing at least two of Co, Ni and Co. 請求項9記載の金属担持窒化ホウ素ナノ構造体において、前記金属担持窒化ホウ素ナノ構造体は、窒化ホウ素からなるナノチューブ,ナノシート若しくはナノコーンの少なくとも1つであることを特徴とする金属担持窒化ホウ素ナノ構造体。   10. The metal-supported boron nitride nanostructure according to claim 9, wherein the metal-supported boron nitride nanostructure is at least one of a nanotube, a nanosheet, or a nanocone made of boron nitride. body.
JP2011012911A 2011-01-25 2011-01-25 Metal-supported boron nitride nanostructure and manufacturing method thereof Expired - Fee Related JP5704640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012911A JP5704640B2 (en) 2011-01-25 2011-01-25 Metal-supported boron nitride nanostructure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012911A JP5704640B2 (en) 2011-01-25 2011-01-25 Metal-supported boron nitride nanostructure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012153551A true JP2012153551A (en) 2012-08-16
JP5704640B2 JP5704640B2 (en) 2015-04-22

Family

ID=46835705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012911A Expired - Fee Related JP5704640B2 (en) 2011-01-25 2011-01-25 Metal-supported boron nitride nanostructure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5704640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521240A (en) * 2013-04-18 2016-07-21 ナショナル リサーチ カウンシル オブ カナダ Boron nitride nanotube and method for producing the same
JP2019532353A (en) * 2016-09-06 2019-11-07 ビイエヌエヌティ・エルエルシイ Transition radiation source
CN115417386A (en) * 2022-11-05 2022-12-02 四川大学 Method and device for preparing boron nitride nanosheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122908A (en) * 1987-11-06 1989-05-16 Showa Denko Kk Method for coating surface of cubic boron nitride with metallic titanium
JP2004231457A (en) * 2003-01-29 2004-08-19 National Institute For Materials Science Boron nitride nanotube containing metallic molybdenum nanoparticle and its manufacturing method
JP2006045032A (en) * 2004-08-09 2006-02-16 National Institute For Materials Science Aluminum nitride nanotube covered with boron nitride film and method for producing the same
JP3790898B2 (en) * 2002-09-20 2006-06-28 八井 浄 Method for producing metal ultrafine particles
JP2007254841A (en) * 2006-03-24 2007-10-04 Nagaoka Univ Of Technology Method for producing metal hyperfine particle in which organic matter film is formed on the surface and production device used for the production method
US20090305043A1 (en) * 2008-06-06 2009-12-10 E. I. Du Point De Nemours And Company Boron nitride encapsulated in turbostratic carbon and process for making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122908A (en) * 1987-11-06 1989-05-16 Showa Denko Kk Method for coating surface of cubic boron nitride with metallic titanium
JP3790898B2 (en) * 2002-09-20 2006-06-28 八井 浄 Method for producing metal ultrafine particles
JP2004231457A (en) * 2003-01-29 2004-08-19 National Institute For Materials Science Boron nitride nanotube containing metallic molybdenum nanoparticle and its manufacturing method
JP2006045032A (en) * 2004-08-09 2006-02-16 National Institute For Materials Science Aluminum nitride nanotube covered with boron nitride film and method for producing the same
JP2007254841A (en) * 2006-03-24 2007-10-04 Nagaoka Univ Of Technology Method for producing metal hyperfine particle in which organic matter film is formed on the surface and production device used for the production method
US20090305043A1 (en) * 2008-06-06 2009-12-10 E. I. Du Point De Nemours And Company Boron nitride encapsulated in turbostratic carbon and process for making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521240A (en) * 2013-04-18 2016-07-21 ナショナル リサーチ カウンシル オブ カナダ Boron nitride nanotube and method for producing the same
JP2019532353A (en) * 2016-09-06 2019-11-07 ビイエヌエヌティ・エルエルシイ Transition radiation source
JP7010954B2 (en) 2016-09-06 2022-01-26 ビイエヌエヌティ・エルエルシイ Transition radiation source
CN115417386A (en) * 2022-11-05 2022-12-02 四川大学 Method and device for preparing boron nitride nanosheet

Also Published As

Publication number Publication date
JP5704640B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5737405B2 (en) Method for producing graphene nanomesh and method for producing semiconductor device
JP5704640B2 (en) Metal-supported boron nitride nanostructure and manufacturing method thereof
CN103266306B (en) A kind of PVD technology prepares the method for Graphene or ultrathin carbon films
Khan et al. Carbon-and crack-free growth of hexagonal boron nitride nanosheets and their uncommon stacking order
JP2004284921A (en) Method of manufacturing carbon nanotube, carbon nanotube device and electrical double layer capacitor
KR100984414B1 (en) Method for preparing carbon coated metal nanopowder and carbon coated metal nanopowder manufactured using same
Chen et al. Improved field emission stability of thin multiwalled carbon nanotube emitters
JP2005145743A (en) Carbon nanotube, its manufacturing method, carbon nanotube device and electrical double layer capacitor
JP3763078B2 (en) Electron emitting material and manufacturing method thereof
KR100836260B1 (en) Method for synthesis of graphitic carbon nanoparticle under atmospheric pressure
KR101573241B1 (en) Three-dimensional Grapheene Structure and Manufacturing method of Thereof and Elctrode using thereof
KR100593265B1 (en) A Fabrication Process of Nano-Powder using Plasma Arc Discharge
JP6875990B2 (en) Carbon nanotubes placed on a metal substrate with one or more cavities
RU2504858C2 (en) Field-emission cathode
JP2016126993A (en) Carbon nanotube paste for high-output field-emission emitter, and manufacturing method thereof
JP2018142519A (en) Composite body of platinum nanoparticle and carbonaceous carrier and manufacturing method of the same
KR20130121373A (en) Metal-carbon composite and manufacturing method thereof, and paste made with the same
Zhao et al. Enhanced field emission from UV-illuminated CuO nanowires fabricated by thermal oxidation of Cu film
JP4965373B2 (en) Method for producing carbon nanotube
Lee et al. Formation of hollow copper oxide by oxidation of Cu nanoparticles
CN111468716B (en) Method for preparing carbon-coated aluminum nanoparticles by using metal wire electric explosion method
Chen et al. Boosting field electron emission of carbon nanotubes through small-hole-patterning design of the substrate
CN110098382B (en) Metal-carbon nanocomposite material in which metal particles are encapsulated, and method for producing same
JP6595808B2 (en) Magnesium metal fine particles and method for producing magnesium metal fine particles
Krishna et al. Low temperature synthesis of coiled carbon nanotubes and their magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150219

R150 Certificate of patent or registration of utility model

Ref document number: 5704640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees