JP3790898B2 - Method for producing metal ultrafine particles - Google Patents

Method for producing metal ultrafine particles Download PDF

Info

Publication number
JP3790898B2
JP3790898B2 JP2002275947A JP2002275947A JP3790898B2 JP 3790898 B2 JP3790898 B2 JP 3790898B2 JP 2002275947 A JP2002275947 A JP 2002275947A JP 2002275947 A JP2002275947 A JP 2002275947A JP 3790898 B2 JP3790898 B2 JP 3790898B2
Authority
JP
Japan
Prior art keywords
metal particles
plasma
ultrafine metal
particles
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002275947A
Other languages
Japanese (ja)
Other versions
JP2004107784A (en
Inventor
浄 八井
偉華 江
久幸 末松
Original Assignee
八井 浄
江 偉華
久幸 末松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八井 浄, 江 偉華, 久幸 末松 filed Critical 八井 浄
Priority to JP2002275947A priority Critical patent/JP3790898B2/en
Publication of JP2004107784A publication Critical patent/JP2004107784A/en
Application granted granted Critical
Publication of JP3790898B2 publication Critical patent/JP3790898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大気中でも酸化しにくい金属超微粒子の製造方法である。
【0002】
【従来の技術及び発明が解決しようとする課題】
現在多くの電子機器の導線として、導電性ペーストが使用されている。このペーストの中には金属粒子が分散されており、ペーストの揮発成分を蒸発させることにより、任意の形状の導線が作製できる。電子部品の小型化の要求により、このペースト厚も薄膜化が要求されているが、そのためにはペースト中の金属粒子の粒径を小さくすることが必要とされていた。
【0003】
一方、金属粒子を小さくすると、比表面積が大きくなり、酸化速度が増大する。このため、金属微粒子は高価な不活性ガス中で保存する必要があり、金属微粒子の作製とその保存は困難であった。このため、金属微粒子の作製、ひいては電子部品の小型化への大きな障害となっていた。
【0004】
本発明は、電子部品小型化のための導電ペースト中金属微粒子の粒径低下が求められていることに着目し、酸化しにくい金属微粒子を作製することが技術的課題である。
【0005】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0006】
ニッケル若しくは銅を含む金属細線にパルス大電流を通電し、この際に生じるプラズマを急冷することにより金属超微粒子を作製する金属超微粒子の製造方法であって、前記プラズマを急冷することによる金属超微粒子の作製若しくは前記プラズマを急冷して作製した金属超微粒子の回収を、油の霧の中で行うことで、油で表面が被覆された粒径が5〜100nmの金属超微粒子を製造することを特徴とする金属超微粒子の製造方法に係るものである。
【0007】
【発明の実施の形態】
好適と考える本発明の実施の形態(発明をどのように実施するか)を、図面に基づいてその作用効果を示して簡単に説明する。
【0008】
金属細線にパルス電流を通電することにより、金属プラズマを発生させ、これを油の霧の中で急冷することにより被膜を有する金属超微粒子を作製した。
【0009】
【実施例】
本発明の具体的な実施例について図面に基づいて説明する。
【0010】
直径0.25mm、長さ45mmの銅線を、圧力200Torrのアルゴンガスおよび鉱物油の霧を充填したチャンバーに設置した。これを6kVに充電した容量20μFのコンデンサーに接続し、パルス大電流放電によって銅線を加熱・プラズマ化させた。プラズマの冷却によって作製した微粒子は、フィルターを介して脱気することにより回収した。
【0011】
図1に作製した微粒子の透過型電子顕微鏡写真を示す。直径5〜100nmの微粒子が作製できた。
【0012】
図2にこの微粒子を室温大気中に3ヶ月保存し、その後測定した粉末X線回折図形を示す。すべてのピークは金属銅のそれに一致した。一方、酸化物は検出されなかった。
【0013】
図3にこの微粒子の電子回折図形と高分解能透過型電子顕微鏡写真を示す。回折図形中に回折ピークが観察され、図1と同様、すべての回折ピークは金属銅のそれと一致した。顕微鏡写真には黒い直径50nmの金属銅微粒子が写っており、その外側には、薄い色で厚さ約10nmの被覆が写っている。色が薄いことからこれは有機物からなっていることがわかる。この有機物(油)被覆によって酸化しやすい銅微粒子が、室温、大気中で3ヶ月間金属状態を保ったことがわかった。
【0014】
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。
【0015】
【発明の効果】
本発明は上述のように構成したから、高密度プラズマから高速で微粒子が製造でき、しかも、よりコストの安いニッケル、銅の使用を可能にして、表面が油で被覆され、室温、大気中で酸化しにくい金属微粒子を安価に作製できることとなった。
【図面の簡単な説明】
【図1】 本実施例における微粒子の透過型電子顕微鏡写真である。
【図2】 本実施例における微粒子の粉末X線回折図形である。
【図3】 本実施例における微粒子の電子回折図形と高分解能透過型電子顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for producing a hardly oxidized metal ultrafine fine particles in the atmosphere.
[0002]
[Prior art and problems to be solved by the invention]
Currently, conductive paste is used as a conductor of many electronic devices. Metal particles are dispersed in the paste, and a conductor having an arbitrary shape can be produced by evaporating the volatile components of the paste. Due to the demand for miniaturization of electronic parts, this paste thickness is also required to be thin. For this purpose, it is necessary to reduce the particle size of the metal particles in the paste.
[0003]
On the other hand, when the metal particles are made smaller, the specific surface area is increased and the oxidation rate is increased. For this reason, it is necessary to store the metal fine particles in an expensive inert gas, and it is difficult to produce and store the metal fine particles. For this reason, it has been a major obstacle to the production of metal fine particles and consequently to the miniaturization of electronic components.
[0004]
The present invention focuses on the need to reduce the particle size of metal fine particles in a conductive paste for downsizing electronic components, and it is a technical problem to produce metal particles that are difficult to oxidize.
[0005]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0006]
A method for producing ultrafine metal particles, in which a pulsed current is applied to a fine metal wire containing nickel or copper, and the plasma generated at this time is rapidly cooled, and the ultrafine metal particles are produced by rapidly cooling the plasma. Production of ultrafine metal particles having a particle diameter of 5 to 100 nm whose surface is coated with oil is performed by producing fine particles or collecting ultrafine metal particles produced by quenching the plasma in an oil mist. The present invention relates to a method for producing ultrafine metal particles .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention (how to carry out the invention) considered to be suitable will be briefly described with reference to the drawings, showing its effects.
[0008]
By applying a pulse current to the fine metal wire, a metal plasma was generated, and this was quenched in an oil mist to produce ultrafine metal particles having an oil coating.
[0009]
【Example】
Specific embodiments of the present invention will be described with reference to the drawings.
[0010]
A copper wire having a diameter of 0.25 mm and a length of 45 mm was placed in a chamber filled with argon gas at a pressure of 200 Torr and a mist of mineral oil. This was connected to a capacitor having a capacity of 20 μF charged to 6 kV, and the copper wire was heated and turned into plasma by pulsed high current discharge. Fine particles produced by cooling the plasma were recovered by deaeration through a filter.
[0011]
FIG. 1 shows a transmission electron micrograph of the produced fine particles. Fine particles having a diameter of 5 to 100 nm were prepared.
[0012]
FIG. 2 shows a powder X-ray diffraction pattern obtained by storing these fine particles in room temperature atmosphere for 3 months and then measuring them. All peaks matched that of metallic copper. On the other hand, no oxide was detected.
[0013]
FIG. 3 shows an electron diffraction pattern and a high-resolution transmission electron micrograph of the fine particles. Diffraction peaks were observed in the diffraction pattern, and all diffraction peaks coincided with those of metallic copper, as in FIG. The micrograph shows a metallic copper fine particle with a black diameter of 50 nm, and a thin coating with a thickness of about 10 nm is shown on the outside. The light color indicates that it is made of organic matter. It was found that the copper fine particles that are easily oxidized by the organic substance (oil) coating maintained a metal state for 3 months at room temperature in the atmosphere.
[0014]
Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.
[0015]
【The invention's effect】
Since the present invention is configured as described above , fine particles can be produced at high speed from high-density plasma, and nickel and copper can be used at a lower cost, and the surface is coated with oil, at room temperature and in the atmosphere. It became possible to produce metal microparticles that are difficult to oxidize at low cost.
[Brief description of the drawings]
FIG. 1 is a transmission electron micrograph of fine particles in the present example.
FIG. 2 is a powder X-ray diffraction pattern of fine particles in this example.
FIG. 3 is an electron diffraction pattern of a fine particle and a high-resolution transmission electron micrograph in this example.

Claims (1)

ニッケル若しくは銅を含む金属細線にパルス大電流を通電し、この際に生じるプラズマを急冷することにより金属超微粒子を作製する金属超微粒子の製造方法であって、前記プラズマを急冷することによる金属超微粒子の作製若しくは前記プラズマを急冷して作製した金属超微粒子の回収を、油の霧の中で行うことで、油で表面が被覆された粒径が5〜100nmの金属超微粒子を製造することを特徴とする金属超微粒子の製造方法。A method for producing ultrafine metal particles, in which a pulsed current is applied to a fine metal wire containing nickel or copper, and the plasma generated at this time is rapidly cooled, and the ultrafine metal particles are produced by rapidly cooling the plasma. Production of ultrafine metal particles having a particle diameter of 5 to 100 nm whose surface is coated with oil is performed by producing fine particles or collecting ultrafine metal particles produced by quenching the plasma in an oil mist. A process for producing ultrafine metal particles.
JP2002275947A 2002-09-20 2002-09-20 Method for producing metal ultrafine particles Expired - Fee Related JP3790898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275947A JP3790898B2 (en) 2002-09-20 2002-09-20 Method for producing metal ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275947A JP3790898B2 (en) 2002-09-20 2002-09-20 Method for producing metal ultrafine particles

Publications (2)

Publication Number Publication Date
JP2004107784A JP2004107784A (en) 2004-04-08
JP3790898B2 true JP3790898B2 (en) 2006-06-28

Family

ID=32271992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275947A Expired - Fee Related JP3790898B2 (en) 2002-09-20 2002-09-20 Method for producing metal ultrafine particles

Country Status (1)

Country Link
JP (1) JP3790898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153551A (en) * 2011-01-25 2012-08-16 Nagaoka Univ Of Technology Metal-supporting boron nitride nanostructure, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153551A (en) * 2011-01-25 2012-08-16 Nagaoka Univ Of Technology Metal-supporting boron nitride nanostructure, and method for producing the same

Also Published As

Publication number Publication date
JP2004107784A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4304279B2 (en) Method for producing ultrafine metal particles having an organic film formed on the surface
US20060070493A1 (en) Fine metal hydride particles, their production process, dispersion containing fine metal hydride particles and metallic material
JP5615401B1 (en) Copper fine particle dispersion, conductive film forming method, and circuit board
JP2016092404A (en) Chip electronic component and method of manufacturing the same
JP7090511B2 (en) Silver powder and its manufacturing method
WO2000006326A1 (en) Metal nickel powder
JP5408823B2 (en) Method for producing metal fine particles
JP5787902B2 (en) Ceramic structure with insulating layer, ceramic structure with metal body, charged particle beam emitting device, and method of manufacturing ceramic structure with insulating layer
JP3790898B2 (en) Method for producing metal ultrafine particles
US10878976B2 (en) Composites and methods of making composite materials
JPWO2011145378A1 (en) Copper powder for conductive paste and conductive paste
KR20090092167A (en) Method for manufacturing metal nano powders coated by carbon and metal nano powders coated by carbon using the same
JP2015144223A (en) Method for manufacturing core/shell type nanoparticles, method for manufacturing sintered compact by use thereof, and thermoelectric conversion material manufacture thereby
Ranjan et al. Synthesis, characterisation and formation mechanism of Sn-0.75 Cu solder nanoparticles by pulsed wire discharge
CA2524672A1 (en) Electrode for electric discharge surface treatment, electric discharge surface treating method, and electric discharge surface treating apparatus
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
JPH10308119A (en) Baking method of metal paste
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
KR20170019172A (en) Core-shell metal nano powder, method for producing a nano powder and conductive ink containing the same
JP5704640B2 (en) Metal-supported boron nitride nanostructure and manufacturing method thereof
JP2005272897A (en) Fine metal particle, and method for manufacturing fine metal particle
JP5252421B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2696603B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
US4160284A (en) Capacitors and process for making same
Gryaznova et al. Iron nanoparticle production by the method of electric explosion of wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees