JP6595808B2 - Magnesium metal fine particles and method for producing magnesium metal fine particles - Google Patents

Magnesium metal fine particles and method for producing magnesium metal fine particles Download PDF

Info

Publication number
JP6595808B2
JP6595808B2 JP2015114609A JP2015114609A JP6595808B2 JP 6595808 B2 JP6595808 B2 JP 6595808B2 JP 2015114609 A JP2015114609 A JP 2015114609A JP 2015114609 A JP2015114609 A JP 2015114609A JP 6595808 B2 JP6595808 B2 JP 6595808B2
Authority
JP
Japan
Prior art keywords
magnesium
metal
fine particles
metal fine
magnesium metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015114609A
Other languages
Japanese (ja)
Other versions
JP2017002339A (en
Inventor
久幸 末松
晧一 新原
健太 菅島
忠親 中山
常生 鈴木
健太 田中
Original Assignee
久幸 末松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久幸 末松 filed Critical 久幸 末松
Priority to JP2015114609A priority Critical patent/JP6595808B2/en
Publication of JP2017002339A publication Critical patent/JP2017002339A/en
Application granted granted Critical
Publication of JP6595808B2 publication Critical patent/JP6595808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、酸化耐性に優れたマグネシウム金属微粒子及びその製造方法に関するものである。   The present invention relates to magnesium metal fine particles having excellent oxidation resistance and a method for producing the same.

マグネシウムは、比強度が高く(軽くて丈夫)、また、優れた水素吸蔵特性を有することから、微粒子(超微粒子)化することで高い貯蔵性能を発揮する水素貯蔵体の実現化が期待され、また、粉末冶金による複雑形状製品の実現も期待されている。   Magnesium has high specific strength (light and strong), and has excellent hydrogen storage properties, so it is expected to realize a hydrogen storage body that exhibits high storage performance by making fine particles (ultrafine particles). The realization of complex shaped products by powder metallurgy is also expected.

このマグネシウムを含む金属は、一般的に微粒子化することで比表面積が大きくなり、この比表面積が大きくなることで酸化速度が増大することが知られている。本発明者等は、この微粒子化により酸化しやすくなった金属微粒子の酸化を抑制し、酸化しにくい金属微粒子の実現化に向け、多くの研究・開発を行ってきており、これまでに、例えば、霧状にした有機物雰囲気中で金属細線にパルス通電してプラズマを発生させ、このプラズマを冷却することで表面に有機物被膜を形成した微粒子を生成し、この有機物被膜により酸化を抑制した金属微粒子の製造方法(特許文献1)や、有機物を塗布した金属細線にパルス通電してこの金属細線を蒸気化し、この蒸気を不活性気体中で凝結させることで表面に有機物被膜を形成した微粒子を生成し、この有機物被膜により酸化を抑制した金属微粒子の製造方法(特許文献2)、更に、前記特許文献1の方法を基に金属細線を蒸発させる際のエネルギー投入条件等の検討により、酸化速度が速いチタンにおいても、酸化しにくい金属微粒子化を実現した金属微粒子の製造方法(特許文献3)も提案している。   It is known that the metal containing magnesium generally has a specific surface area that is increased by making the particles fine, and the oxidation rate increases by increasing the specific surface area. The present inventors have conducted a lot of research and development toward the realization of metal microparticles that are difficult to oxidize by suppressing the oxidation of the metal microparticles that are easily oxidized by the micronization. , Metal fine wire in a mist-like atmosphere is pulsed to generate plasma, and this plasma is cooled to produce fine particles with an organic film formed on the surface. The method (Patent Document 1) and the fine metal wire coated with organic matter are pulsed to vaporize the fine metal wire, and the vapor is condensed in an inert gas to produce fine particles with an organic coating on the surface. In addition, a method for producing metal fine particles in which oxidation is suppressed by the organic film (Patent Document 2), and further, energy input when evaporating the metal thin wire based on the method of Patent Document 1 The study of matter such, even in the titanium faster oxidation rate, the method of manufacturing metal fine particles which realized hardly oxidized metal fine particles (Patent Document 3) is also proposed.

しかしながら、マグネシウムは、これまで本発明者等が微粒子化を実現させてきた金属に比べて酸化速度が非常に速いため、前記のいずれの方法を用いても微粒子化した際の酸化を抑制することは困難であった。   However, since magnesium has a very high oxidation rate compared to metals that have been realized by the present inventors until now, any of the above methods can be used to suppress oxidation when microparticulated. Was difficult.

特許第3790898号公報Japanese Patent No. 3790898 特開2007−254841号公報JP 2007-254841 A 特許第5408823号公報Japanese Patent No. 5408823

本発明者等は、上述のような現状の問題に鑑み、本発明者等が提案した前記特許文献1,2及び3の方法を基にして、作製条件や採用する有機物について更なる研究、実験を行ない、ようやく大気中でも酸化しにくいマグネシウム金属微粒子を得ることに成功した。   In view of the above-mentioned problems, the present inventors have conducted further research and experiments on production conditions and organic substances to be employed based on the methods of the Patent Documents 1, 2, and 3 proposed by the present inventors. Finally, we succeeded in obtaining magnesium metal fine particles that are difficult to oxidize in the atmosphere.

即ち、本発明は、前記特許文献1,2及び3の方法を応用し、これまで実現できなかった大気中で酸化しにくいマグネシウム金属微粒子及びその製造方法を提供することを目的とする。   That is, an object of the present invention is to provide magnesium metal fine particles that are difficult to oxidize in the air, which has not been realized so far, and a method for producing the same, by applying the methods of Patent Documents 1, 2, and 3.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

マグネシウム金属材料若しくはマグネシウム合金材料から成る金属微粒子であって、この金属微粒子のマグネシウム含有量は60〜100モル%であり、また、この金属微粒子は酸素量が0.1wt%以下の有機物で形成された厚さが1〜10nmの被膜で表面が覆われていることを特徴とするマグネシウム金属微粒子に係るものである。 Metal fine particles made of a magnesium metal material or a magnesium alloy material, wherein the metal fine particles have a magnesium content of 60 to 100 mol%, and the metal fine particles are formed of an organic substance having an oxygen content of 0.1 wt% or less. Further, the present invention relates to magnesium metal fine particles characterized in that the surface is covered with a coating having a thickness of 1 to 10 nm .

また、請求項1記載のマグネシウム金属微粒子において、前記マグネシウム合金材料はマグネシウムとニッケルの二成分系合金であることを特徴とするマグネシウム金属微粒子に係るものである。 Further, the magnesium metal particle of claim 1 Symbol placement, the magnesium alloy material are those according to the magnesium metal particles, which is a two-component system alloy of magnesium and nickel.

また、請求項1,2いずれか1項に記載のマグネシウム金属微粒子において、前記有機物は炭化水素系鉱物油であることを特徴とするマグネシウム金属微粒子に係るものである。 The magnesium metal fine particles according to any one of claims 1 and 2 , wherein the organic substance is a hydrocarbon mineral oil.

また、不活性ガスと、蒸気状若しくは霧状にした酸素量0.1wt%以下の有機物とを混合した有機物雰囲気中で、マグネシウム金属材料若しくはマグネシウム合金材料から成る金属細線1にパルス電流を通電し該金属細線1を加熱蒸発させて金属蒸気を発生させ、前記有機物雰囲気中において前記金属蒸気を凝結させた後、回収することを特徴とするマグネシウム金属微粒子の製造方法に係るものである。 Also, by energizing the inert gas, in vapor form or atomized oxygen content 0.1 wt% or less of organic and mixed organic matter atmosphere, the pulse current to the thin metal wires 1 made of a magnesium metal material or magnesium alloy material The thin metal wire 1 is heated to evaporate to generate a metal vapor, and the metal vapor is condensed in the organic atmosphere, and then collected, and then the magnesium metal fine particles are produced.

また、請求項記載のマグネシウム金属微粒子の製造方法において、前記金属細線1は直径0.05mm〜1.0mmのものであることを特徴とするマグネシウム金属微粒子の製造方法に係るものである。 5. The method for producing magnesium metal fine particles according to claim 4 , wherein the fine metal wire 1 has a diameter of 0.05 mm to 1.0 mm.

また、請求項4,5いずれか1項に記載のマグネシウム金属微粒子の製造方法において、前記金属細線1に該金属細線1が蒸気化するのに必要なエネルギーの1.5〜5.0倍のエネルギーを投入して前記金属細線1を加熱蒸発させることを特徴とするマグネシウム金属微粒子の製造方法に係るものである。 Moreover, in the manufacturing method of the magnesium metal fine particle of any one of Claims 4 and 5 , 1.5 to 5.0 times the energy required for the said metal fine wire 1 to vaporize to the said metal fine wire 1 The present invention relates to a method for producing magnesium metal fine particles, wherein energy is input to heat and evaporate the fine metal wires 1.

本発明は上述のように構成したから、大気中で保管しても酸化しにくいマグネシウム金属微粒子となり、よって、高い貯蔵性能を発揮する水素貯蔵体の実現、粉末冶金による複雑形状製品の実現が可能となる。   Since the present invention is configured as described above, it becomes magnesium metal fine particles that are difficult to oxidize even when stored in the atmosphere. Therefore, it is possible to realize a hydrogen storage body that exhibits high storage performance, and to realize complex shaped products by powder metallurgy. It becomes.

本実施例のパルス細線放電装置を示す模式図である。It is a schematic diagram which shows the pulse fine wire discharge apparatus of a present Example. 本実施例のマグネシウム金属微粒子のSEM写真及び電子回析図形である。It is the SEM photograph and electron diffraction pattern of the magnesium metal fine particle of a present Example. 本実施例のマグネシウム金属微粒子の粉末X線回析図形である。It is a powder X-ray diffraction pattern of the magnesium metal fine particle of a present Example. 本実施例のマグネシウム−ニッケル合金微粒子のSEM写真である。It is a SEM photograph of the magnesium-nickel alloy fine particle of a present Example. 本実施例のマグネシウム−ニッケル合金微粒子の電子回析図形である。It is an electron diffraction pattern of the magnesium-nickel alloy fine particle of a present Example. 本実施例における比較例の粒子の粉末X線回析図形である。It is a powder X-ray diffraction pattern of the particle | grains of the comparative example in a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

本発明のマグネシウム金属微粒子は、蒸気状若しくは霧状にした酸素量0.1wt%以下の有機物から成る有機物雰囲気中で、マグネシウム金属材料若しくはマグネシウム合金材料から成る金属細線1にパルス電流を通電し、この金属細線1の金属蒸気を発生させ、この金属蒸気が前記有機物雰囲気により冷却され、凝結して微粒子化する際、前記有機物と反応して表面が有機物被膜で覆われたものである。   The magnesium metal fine particles of the present invention energize a pulse current to the metal thin wire 1 made of a magnesium metal material or a magnesium alloy material in an organic substance atmosphere made of an organic substance having an oxygen amount of 0.1 wt% or less in a vapor or mist form, When the metal vapor of this metal fine wire 1 is generated, and this metal vapor is cooled by the organic substance atmosphere and condensed to form fine particles, it reacts with the organic substance and the surface is covered with an organic film.

前記特許文献1,2及び3の方法では、有機物被膜を形成させるために用いる有機物として、アルコールやカルボン酸等の酸素を含む有機物を用いていた。   In the methods of Patent Documents 1, 2, and 3, organic substances containing oxygen, such as alcohol and carboxylic acid, are used as organic substances used for forming the organic film.

本発明者等は、マグネシウムは炭素よりも還元作用が大きいので、この有機物中の酸素と反応して酸化すると推測し、そこで、酸素量0.1wt%以下の有機物、例えば炭化水素系鉱物油等の酸素を含まない有機物を用いて有機物被膜を形成したところ、マグネシウムを酸化させることなく有機物被膜を形成することができ、大気中でも酸化しにくいマグネシウム及びマグネシウム合金の微粒子(超微粒子)が実現できた。   The present inventors presume that magnesium is oxidized by reacting with oxygen in the organic matter because magnesium has a reducing action larger than that of carbon, and therefore, an organic matter having an oxygen content of 0.1 wt% or less, such as a hydrocarbon mineral oil or the like. When an organic film was formed using an organic material that did not contain oxygen, it was possible to form an organic film without oxidizing magnesium, and magnesium and magnesium alloy fine particles (ultrafine particles) that were difficult to oxidize in the atmosphere could be realized. .

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、不活性ガスと、蒸気状若しくは霧状にした酸素量0.1wt%以下の有機物とを混合した有機物雰囲気中で、マグネシウム金属材料若しくはマグネシウム合金材料から成る金属細線1にパルス電流を通電して該金属細線1を加熱蒸発させて金属蒸気を発生させ、前記有機物雰囲気中において前記金属蒸気を凝結させた後、回収することで、表面が前記有機物から成る有機物被膜で覆われた大気中で酸化しにくいマグネシウム金属微粒子を得ることができるマグネシウム金属微粒子の製造方法である。   In the present embodiment, a pulse current is applied to a thin metal wire 1 made of a magnesium metal material or a magnesium alloy material in an organic substance atmosphere in which an inert gas and an organic substance having an oxygen amount of 0.1 wt% or less in a vapor or mist form are mixed. The metal thin wire 1 is heated and evaporated to generate metal vapor, and the metal vapor is condensed in the organic substance atmosphere, and then recovered to cover the surface with the organic film composed of the organic substance. This is a method for producing a magnesium metal fine particle capable of obtaining a magnesium metal fine particle that hardly oxidizes in the atmosphere.

具体的には、本実施例は、金属細線1は直径0.05mm〜1.0mmのものを採用し、また、この金属細線1を加熱蒸発させる際は、この金属細線1が蒸気化するのに必要なエネルギー(細線蒸発エネルギー)の1.5〜5.0倍のエネルギーを投入している。   Specifically, in this embodiment, the fine metal wire 1 has a diameter of 0.05 mm to 1.0 mm, and when the fine metal wire 1 is heated and evaporated, the fine metal wire 1 is vaporized. Energy of 1.5 to 5.0 times as much as that required for energy (thin wire evaporation energy).

また、本実施例では、図1に示すようなパルス細線放電装置2を用いており、このパルス細線放電装置2は、高圧充電電源4、コンデンサー5、スイッチ6を主構成部品とする放電回路部と、金属細線1にパルス電流を通電し加熱蒸発させて微粒子を形成するチャンバー3とで構成している。   Further, in this embodiment, a pulse thin wire discharge device 2 as shown in FIG. 1 is used, and this pulse thin wire discharge device 2 is a discharge circuit section having a high voltage charging power source 4, a capacitor 5 and a switch 6 as main components. And a chamber 3 for forming fine particles by applying a pulse current to the fine metal wire 1 and heating and evaporating it.

また、このチャンバー3は、雰囲気ガスを導入するガス導入口7と、真空排気口8とが設けられており、この真空排気口8に回収フィルター9を設けてチャンバー3内で形成したマグネシウム金属微粒子を回収する構成としている。   The chamber 3 is provided with a gas introduction port 7 for introducing atmospheric gas and a vacuum exhaust port 8, and a magnesium metal fine particle formed in the chamber 3 by providing a recovery filter 9 at the vacuum exhaust port 8. It is set as the structure which collects.

以下、本実施例のより具体的なマグネシウム金属微粒子の製造方法、及びこの製造方法により製造されたマグネシウム金属微粒子について詳述する。   Hereinafter, a more specific method for producing magnesium metal fine particles of this example and the magnesium metal fine particles produced by this production method will be described in detail.

[具体例1]
直径0.3mm、長さ32mmのマグネシウム金属細線1を、チャンバー3内に配置した放電回路の電極10間にセットした後、チャンバー3内に酸素量0.1wt%以下の鉱物油(本実施例では、村松石油社製 ネオバック MR−200:炭化水素系鉱物油、分子量400、硫黄0.17〜0.18%含有の酸素を含まない鉱物油を使用)を入れ、チャンバー3内を真空排気することにより、このチャンバー3内に酸素量0.1wt%以下の鉱物油の蒸気若しくは霧を発生させ、更に、ガス導入口7よりアルゴンガスを導入し、チャンバー内3の圧力を100kPaにして、このチャンバー3内を酸素量0.1wt%以下の鉱物油蒸気/霧とアルゴンガスとが均一に混合した有機物雰囲気にした。
[Specific Example 1]
A magnesium metal fine wire 1 having a diameter of 0.3 mm and a length of 32 mm is set between the electrodes 10 of the discharge circuit arranged in the chamber 3, and then the mineral oil having an oxygen content of 0.1 wt% or less (in this embodiment) Then, Muramatsu Petroleum Neoback MR-200: Hydrocarbon mineral oil, molecular weight 400, sulfur containing 0.17 to 0.18% oxygen-free mineral oil is used) and the chamber 3 is evacuated. As a result, vapor or mist of mineral oil having an oxygen amount of 0.1 wt% or less is generated in the chamber 3, and further, argon gas is introduced from the gas inlet 7, and the pressure in the chamber 3 is set to 100 kPa. The inside of the chamber 3 was made an organic atmosphere in which mineral oil vapor / mist having an oxygen amount of 0.1 wt% or less and argon gas were uniformly mixed.

尚、通常、鉱物油は0.1wt%以上の水分を含むと白濁して機能を失うことが知られており、水分子中の酸素量は16/18(0.89)であるため、白濁が無いことが確認されている本実施例の鉱物油は、酸素量が0.1wt%以下の鉱物油であると言える。   Normally, mineral oil is known to become cloudy and lose its function when it contains water of 0.1 wt% or more, and the amount of oxygen in the water molecule is 16/18 (0.89). It can be said that the mineral oil of this example, which has been confirmed to be free of oxygen, is a mineral oil having an oxygen content of 0.1 wt% or less.

その後、電極10を5kVに充電した容量10μFのコンデンサーに接続し、パルス大電流放電によって4μsec加熱し、マグネシウム金属細線1を蒸発させた。この際、マグネシウム金属細線1を蒸発(蒸気化)させるのに必要な細線蒸発エネルギーと、投入エネルギーとの比である投入エネルギー比(K)の値が1以下の場合、加熱が不均一となって蒸発しきれない粗大液滴が形成され、形成される微粒子形状が大径となってしまうことから、投入エネルギー比(K)が1.5〜5.0(本実施例では、K=4.4)となるエネルギーを投入した。   Thereafter, the electrode 10 was connected to a capacitor having a capacity of 10 μF charged to 5 kV, and heated for 4 μsec by pulsed high current discharge to evaporate the magnesium metal fine wire 1. At this time, when the value of the input energy ratio (K), which is the ratio of the fine wire evaporation energy required for evaporating (vaporizing) the magnesium metal fine wire 1 to the input energy, is 1 or less, the heating becomes non-uniform. Thus, coarse droplets that cannot be evaporated are formed, and the shape of the formed fine particles becomes large, so that the input energy ratio (K) is 1.5 to 5.0 (in this embodiment, K = 4). 4) was applied.

蒸発したマグネシウム金属細線1は、金属蒸気となり、チャンバー3内で有機物雰囲気により冷却され、凝結して微粒子化する。本実施例では、チャンバー3内の有機物雰囲気を、真空排気口8を通じて排気し、この排気の際に真空排気口8の途中に配設した回収フィルター9を介して脱気することで微粒子を回収した。   The evaporated magnesium metal fine wire 1 becomes a metal vapor, is cooled in the chamber 3 by the organic substance atmosphere, and is condensed and formed into fine particles. In the present embodiment, the organic substance atmosphere in the chamber 3 is exhausted through the vacuum exhaust port 8 and fine particles are recovered by deaeration through a recovery filter 9 disposed in the middle of the vacuum exhaust port 8 at the time of this exhaust. did.

図2は、上記の製造方法により得られた本実施例のマグネシウム金属微粒子のSEM写真と電子回析図形(左上)である。この図2のSEM写真から、マグネシウム金属微粒子の直径は20〜200nmであり、このマグネシウム金属微粒子が超微粒子であることが確認でき、また、微粒子表面が1〜10nmの有機物被膜で覆われていることも確認できた。   FIG. 2 is an SEM photograph and an electron diffraction pattern (upper left) of the magnesium metal fine particles of this example obtained by the above-described production method. From the SEM photograph of FIG. 2, the diameter of the magnesium metal fine particles is 20 to 200 nm, and it can be confirmed that the magnesium metal fine particles are ultrafine particles, and the surface of the fine particles is covered with an organic film of 1 to 10 nm. I was able to confirm that.

また、図3は、本実施例のマグネシウム金属微粒子の粉末X線回析図形である。この粉末X線回析図形と図2の電子回析図形には、マグネシウム(Mg)以外のピークは見られず、形成されたマグネシウム金属微粒子が酸化されていないことを示している。本発明者等は、本実施例のマグネシウム金属微粒子を大気中(室温)に1か月間放置保管したが、同様にマグネシウム以外のピークは見られず、酸化物は検出されなかった。   FIG. 3 is a powder X-ray diffraction pattern of the magnesium metal fine particles of this example. In the powder X-ray diffraction pattern and the electron diffraction pattern of FIG. 2, no peaks other than magnesium (Mg) are observed, indicating that the formed magnesium metal fine particles are not oxidized. The inventors of the present invention stored the magnesium metal fine particles of this example in the atmosphere (room temperature) for one month, but similarly no peaks other than magnesium were observed, and no oxide was detected.

以上より、本実施例のマグネシウム金属微粒子は、酸素量0.1wt%以下の有機物により表面を覆われることで酸化が抑制され、酸化物とならずマグネシウム金属状態を保持することが確認できた。   From the above, it was confirmed that the magnesium metal fine particles of this example were prevented from being oxidized by covering the surface with an organic substance having an oxygen amount of 0.1 wt% or less, and maintained the magnesium metal state without becoming an oxide.

尚、有機物は、本実施例に挙げたものに限らず、酸素量0.1wt%以下で窒素やアルゴン等の不活性ガス中で炭化せず蒸気状若しくは霧状になり得るものであれば適宜採用し得るものとする。   The organic substance is not limited to those described in the present embodiment, and may be appropriately selected as long as it can be vaporized or atomized without being carbonized in an inert gas such as nitrogen or argon with an oxygen amount of 0.1 wt% or less. It can be adopted.

[具体例2]
直径0.3mm、長さ32mmのマグネシウム細線と、直径0.3mm、長さ32mmのニッケル細線とをよじって形成したマグネシウム−ニッケル金属細線1をチャンバー3内に配置した放電回路の電極10間にセットした後、チャンバー3内に酸素量0.1wt%以下の鉱物油(本実施例では、村松石油社製 ネオバック MR−200:炭化水素系鉱物油、分子量400、硫黄0.17〜0.18%含有の酸素を含まない鉱物油を使用)を入れ、チャンバー3内を真空排気することにより、このチャンバー3内に酸素量0.1wt%以下の鉱物油の蒸気若しくは霧を発生させ、更に、ガス導入口7よりアルゴンガスを導入し、チャンバー内3の圧力を100kPaにして、このチャンバー3内を酸素量0.1wt%以下の鉱物油蒸気/霧とアルゴンガスとが均一に混合した有機物雰囲気にした。
[Specific Example 2]
A magnesium-nickel metal wire 1 formed by joining a magnesium wire having a diameter of 0.3 mm and a length of 32 mm and a nickel wire having a diameter of 0.3 mm and a length of 32 mm is disposed between the electrodes 10 of the discharge circuit disposed in the chamber 3. After setting, mineral oil having an oxygen amount of 0.1 wt% or less in the chamber 3 (in this example, Neoback MR-200 manufactured by Muramatsu Oil Co., Ltd., hydrocarbon mineral oil, molecular weight 400, sulfur 0.17 to 0.18 % Containing mineral oil containing no oxygen) and evacuating the chamber 3 to generate vapor or mist of mineral oil having an oxygen amount of 0.1 wt% or less in the chamber 3, Argon gas is introduced from the gas introduction port 7, the pressure in the chamber 3 is set to 100 kPa, and the inside of the chamber 3 is treated with mineral oil vapor / mist and oxygen with an oxygen content of 0.1 wt% or less. An organic substance atmosphere in which Lugon gas was uniformly mixed was used.

その後、電極10を5kVに充電した容量10μFのコンデンサーに接続し、パルス大電流放電によって6μsec加熱し、マグネシウム−ニッケル金属細線1を蒸発させた。   Thereafter, the electrode 10 was connected to a capacitor having a capacity of 10 μF charged to 5 kV and heated for 6 μsec by pulsed high-current discharge to evaporate the magnesium-nickel metal fine wire 1.

蒸発したマグネシウム−ニッケル金属細線1は、金属蒸気となり、チャンバー3内で有機物雰囲気により冷却され、凝結して微粒子化する。尚、回収方法は具体例1と同様である。   The evaporated magnesium-nickel metal fine wire 1 becomes a metal vapor, is cooled in the chamber 3 by an organic substance atmosphere, and is condensed and formed into fine particles. The recovery method is the same as that in Example 1.

図4は、上記の製造方法により得られた本実施例のマグネシウム−ニッケル合金微粒子のSEM写真であり、図5は、電子回析図形である。この図4のSEM写真から、マグネシウム−ニッケル合金微粒子の直径は20〜90nmであり、このマグネシウム−ニッケル合金微粒子が具体例1同様、超微粒子であることが確認でき、また、微粒子表面が1〜10nmの有機物被膜で覆われていることも確認できた。   FIG. 4 is an SEM photograph of the magnesium-nickel alloy fine particles of this example obtained by the above production method, and FIG. 5 is an electron diffraction pattern. From the SEM photograph of FIG. 4, the diameter of the magnesium-nickel alloy fine particles is 20 to 90 nm, and it can be confirmed that the magnesium-nickel alloy fine particles are ultrafine particles as in Example 1, and the surface of the fine particles is 1 to It was also confirmed that the film was covered with a 10 nm organic film.

また、図5に示す電子回析図形は、マグネシウム(Mg)とマグネシウム−ニッケル合金(Mg2Ni)以外のピークは見られず、形成されたマグネシウム−ニッケル合金微粒子が酸化されていないことを示している。本発明者等は、このマグネシウム−ニッケル合金微粒子を大気中(室温)に1か月間放置保管したが、具体例1同様にマグネシウム及びマグネシウム−ニッケル合金以外のピークは見られず、酸化物は検出されなかった。 Further, the electron diffraction pattern shown in FIG. 5 shows that no peaks other than magnesium (Mg) and magnesium-nickel alloy (Mg 2 Ni) are observed, and the formed magnesium-nickel alloy fine particles are not oxidized. ing. The inventors of the present invention stored the magnesium-nickel alloy fine particles in the atmosphere (room temperature) for one month, but no peaks other than magnesium and magnesium-nickel alloy were observed as in Example 1, and the oxide was detected. Was not.

以上より、本実施例のマグネシウム−ニッケル合金微粒子は、酸素量0.1wt%以下の有機物により表面を覆われることで酸化が抑制され、酸化物とならずマグネシウム−ニッケル合金状態を保持することが確認できた。   As described above, the magnesium-nickel alloy fine particles of this example are prevented from being oxidized by covering the surface with an organic substance having an oxygen content of 0.1 wt% or less, and can maintain a magnesium-nickel alloy state without becoming an oxide. It could be confirmed.

尚、マグネシウム合金に関しては、本実施例のマグネシウム−ニッケル合金に限らず、例えば安価で大量に生産されている鉄などの第三周期遷移金属を含むものとしても良い。   Note that the magnesium alloy is not limited to the magnesium-nickel alloy of the present embodiment, and may include a third-period transition metal such as iron that is inexpensively produced in large quantities.

[比較例1]
直径0.3mm、長さ20mmのマグネシウム金属細線を、酸素を含む有機物としてオレイン酸液中の電極にセットし、その後、電極を4kVに充電した容量10μFのコンデンサーに接続し、パルス大電流放電によって加熱し、マグネシウム金属細線を蒸発させた。プラズマの冷却により凝結して微粒子化したものをフィルターごと回収した。
[Comparative Example 1]
A magnesium metal wire having a diameter of 0.3 mm and a length of 20 mm is set on an electrode in an oleic acid solution as an organic substance containing oxygen, and then the electrode is connected to a capacitor having a capacity of 10 μF charged to 4 kV, and pulsed high current discharge is performed. Heated to evaporate the magnesium metal wires. What was condensed and formed into fine particles by cooling the plasma was collected together with the filter.

図6は、この回収した粒子の粉末X線回析図形である。この粉末X線回析図形では、マグネシウムのピークの他に、43(deg.)と62(deg.)等で酸化マグネシウム(MgO)の幅広いピークがかなりの高さで現れており、形成された粒子のほとんどが酸化されていることを示している。   FIG. 6 is a powder X-ray diffraction pattern of the collected particles. In this powder X-ray diffraction pattern, in addition to the magnesium peak, a wide peak of magnesium oxide (MgO) appeared at a considerable height at 43 (deg.), 62 (deg.), Etc., and was formed. It shows that most of the particles are oxidized.

オレイン酸分子(C18H34O2)の酸素量は11wt%あり、このような酸素量の多い有機物では酸化を抑制することができず、マグネシウム金属微粒子を得ることができないことが確認できた。 Oleic acid molecules (C 18 H 34 O 2 ) have an oxygen content of 11 wt%, and it was confirmed that organic substances having such a large amount of oxygen cannot suppress oxidation and magnesium metal fine particles cannot be obtained. .

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

1 金属細線   1 Metal thin wire

Claims (6)

マグネシウム金属材料若しくはマグネシウム合金材料から成る金属微粒子であって、この金属微粒子のマグネシウム含有量は60〜100モル%であり、また、この金属微粒子は酸素量が0.1wt%以下の有機物で形成された厚さが1〜10nmの被膜で表面が覆われていることを特徴とするマグネシウム金属微粒子。 Metal fine particles made of a magnesium metal material or a magnesium alloy material, wherein the metal fine particles have a magnesium content of 60 to 100 mol%, and the metal fine particles are formed of an organic substance having an oxygen content of 0.1 wt% or less. Magnesium metal fine particles, whose surface is covered with a coating having a thickness of 1 to 10 nm . 請求項1記載のマグネシウム金属微粒子において、前記マグネシウム合金材料はマグネシウムとニッケルの二成分系合金であることを特徴とするマグネシウム金属微粒子。 In the magnesium metal particles of claim 1 Symbol placement, magnesium metal particles, wherein the magnesium alloy material is a two-component alloy of magnesium and nickel. 請求項1,2いずれか1項に記載のマグネシウム金属微粒子において、前記有機物は炭化水素系鉱物油であることを特徴とするマグネシウム金属微粒子。 The magnesium metal fine particles according to any one of claims 1 and 2 , wherein the organic substance is a hydrocarbon-based mineral oil. 不活性ガスと、蒸気状若しくは霧状にした酸素量0.1wt%以下の有機物とを混合した有機物雰囲気中で、マグネシウム金属材料若しくはマグネシウム合金材料から成る金属細線にパルス電流を通電し該金属細線を加熱蒸発させて金属蒸気を発生させ、前記有機物雰囲気中において前記金属蒸気を凝結させた後、回収することを特徴とするマグネシウム金属微粒子の製造方法。 In an organic substance atmosphere in which an inert gas is mixed with vapor or mist of an organic substance having an oxygen content of 0.1 wt% or less, a pulse current is passed through a metal thin wire made of a magnesium metal material or a magnesium alloy material, and the metal thin wire A method for producing magnesium metal fine particles, wherein metal vapor is generated by heating and evaporating, and the metal vapor is condensed in the organic atmosphere and then collected. 請求項記載のマグネシウム金属微粒子の製造方法において、前記金属細線は直径0.05mm〜1.0mmのものであることを特徴とするマグネシウム金属微粒子の製造方法。 5. The method for producing magnesium metal fine particles according to claim 4 , wherein the fine metal wire has a diameter of 0.05 mm to 1.0 mm. 請求項4,5いずれか1項に記載のマグネシウム金属微粒子の製造方法において、前記金属細線に該金属細線が蒸気化するのに必要なエネルギーの1.5〜5.0倍のエネルギーを投入して前記金属細線を加熱蒸発させることを特徴とするマグネシウム金属微粒子の製造方法。 In the manufacturing method of the magnesium metal fine particles of any one of Claims 4 and 5, energy 1.5 to 5.0 times the energy required for the metal wire to evaporate is thrown into the metal wire. A method for producing magnesium metal fine particles, wherein the fine metal wires are heated and evaporated.
JP2015114609A 2015-06-05 2015-06-05 Magnesium metal fine particles and method for producing magnesium metal fine particles Active JP6595808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114609A JP6595808B2 (en) 2015-06-05 2015-06-05 Magnesium metal fine particles and method for producing magnesium metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114609A JP6595808B2 (en) 2015-06-05 2015-06-05 Magnesium metal fine particles and method for producing magnesium metal fine particles

Publications (2)

Publication Number Publication Date
JP2017002339A JP2017002339A (en) 2017-01-05
JP6595808B2 true JP6595808B2 (en) 2019-10-23

Family

ID=57753524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114609A Active JP6595808B2 (en) 2015-06-05 2015-06-05 Magnesium metal fine particles and method for producing magnesium metal fine particles

Country Status (1)

Country Link
JP (1) JP6595808B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8915539U1 (en) * 1989-03-17 1990-10-04 Skw Trostberg Ag, 8223 Trostberg Passivated pyrophoric metal
JPH05163501A (en) * 1991-03-25 1993-06-29 Kazuyuki Hayashi Magnesium-titanium alloy
JP3755841B2 (en) * 1996-05-13 2006-03-15 株式会社水素エネルギー研究所 Magnesium-based hydrogen storage material and method for producing the same
EP1117500B8 (en) * 1998-09-30 2002-10-30 Hydro-Quebec Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
JP2005272897A (en) * 2004-03-23 2005-10-06 Kiyoshi Yatsui Fine metal particle, and method for manufacturing fine metal particle
JP2009066547A (en) * 2007-09-14 2009-04-02 Ritsumeikan Manufacturing method for inorganic fine particle
JP5693249B2 (en) * 2011-01-13 2015-04-01 国立大学法人長岡技術科学大学 Method for producing alloy fine particles

Also Published As

Publication number Publication date
JP2017002339A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP2005505695A (en) Multilayer ceramic capacitor electrode internal powder
JP4304279B2 (en) Method for producing ultrafine metal particles having an organic film formed on the surface
JP5626217B2 (en) Nickel fine powder and method for producing the same
KR101143890B1 (en) Preparation method of copper nano powder using transfeered arc or non-transferred arc plasma system
KR100984414B1 (en) Method for preparing carbon coated metal nanopowder and carbon coated metal nanopowder manufactured using same
Ermoline et al. Production of carbon-coated aluminium nanopowders in pulsed microarc discharge
RU2009109161A (en) SEMI-FINISHED PRODUCTS WITH A STRUCTURED ACTIVE SURFACE AND A METHOD OF PRODUCING THEREOF
JP5408823B2 (en) Method for producing metal fine particles
JP6559118B2 (en) Nickel powder
JP4731347B2 (en) Method for producing composite copper fine powder
KR101689491B1 (en) Nickel powder, conductive paste, and laminated ceramic electronic component
TWI599659B (en) Nickel alloy powder and method for producing the same
JP6595808B2 (en) Magnesium metal fine particles and method for producing magnesium metal fine particles
KR20130069190A (en) Synthetic method for tungsten metal nanopowder using rf plasma
Beketov et al. In-situ formation of carbon shells on the surface of Ni nanoparticles synthesized by the electric explosion of wire
Zaikovskii et al. Tin–carbon nanomaterial formation in a helium atmosphere during arc-discharge
KR101310949B1 (en) Synthetic method for molybdenum metal nanopowder using rf plasma
JP5243510B2 (en) Wiring material, wiring manufacturing method, and nanoparticle dispersion
Ishihara et al. Nano-sized particles formed by pulsed discharge of powders
JP2012153551A (en) Metal-supporting boron nitride nanostructure, and method for producing the same
Lee et al. Effect of powder synthesis atmosphere on the characteristics of iron nanopowder in a plasma arc discharge process
JP5274603B2 (en) Composite copper fine powder
JP4993730B2 (en) Method for producing aluminum foil material for vapor deposition
Lee et al. Self‐Consolidation Mechanism of Nanostructured Ti5Si3 Compact Induced by Electrical Discharge
Beketov et al. Synthesis of carbon-encapsulated copper nanoparticles by the electrical explosion of wire method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190927

R150 Certificate of patent or registration of utility model

Ref document number: 6595808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250