JP2012151296A - Component mounted with electronic component - Google Patents

Component mounted with electronic component Download PDF

Info

Publication number
JP2012151296A
JP2012151296A JP2011009135A JP2011009135A JP2012151296A JP 2012151296 A JP2012151296 A JP 2012151296A JP 2011009135 A JP2011009135 A JP 2011009135A JP 2011009135 A JP2011009135 A JP 2011009135A JP 2012151296 A JP2012151296 A JP 2012151296A
Authority
JP
Japan
Prior art keywords
electronic component
resin
sealing resin
substrate
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011009135A
Other languages
Japanese (ja)
Inventor
Akihiro Mochizuki
章弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2011009135A priority Critical patent/JP2012151296A/en
Priority to CN2012100165927A priority patent/CN102610581A/en
Publication of JP2012151296A publication Critical patent/JP2012151296A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Molding Of Porous Articles (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a problem that is caused by solidification shrinkage of a sealing resin, caused by using a thermoplastic resin, while using the thermoplastic resin to enhance productivity of a resin-sealed electronic component.SOLUTION: A foamed thermoplastic resin is used as a resin seal material, and a shape of an outer periphery of a cross section, perpendicular to a substrate, of a sealing resin part is designed to assume an arc shape. Preferably, the arc shape is an approximately perfect circle-like arc shape. Preferably, a surface of the sealing resin part is formed as an approximately perfect spherical surface. In addition, preferably, the foamed thermoplastic resin is mainly composed of a low-melting-point and high-fluidity polybutylene terephthalate resin.

Description

本発明は、電子部品実装部品に関する。   The present invention relates to an electronic component mounting component.

IC、コンデンサやダイオード等の電子部品を、機械的・電気的な外部環境から保護するための封止技術として、安価で量産性に優れた樹脂封止が知られている。   As a sealing technique for protecting electronic components such as ICs, capacitors, and diodes from mechanical and electrical external environments, resin sealing that is inexpensive and has excellent mass productivity is known.

この樹脂封止の方法としては、先ず、基材上に搭載された半導体素子等を金型中にセットしておき、次いで、当該金型中に封止のための樹脂を溶融、射出して、最後に、樹脂を硬化させた後、脱型する方法が知られている。   As a resin sealing method, first, a semiconductor element mounted on a substrate is set in a mold, and then a resin for sealing is melted and injected into the mold. Finally, a method of demolding after curing the resin is known.

IC等の電子部品を封止するための樹脂としては、フェノール樹脂、エポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂が使用されている(例えば、特許文献1参照)。これらの熱硬化性樹脂は、セラミックや金属との密着性に優れ、耐熱性、耐薬品性にも優れる。したがって、熱硬化性樹脂は、IC等の電子部品を封止する材料として好適である。   As a resin for sealing an electronic component such as an IC, a thermosetting resin such as a phenol resin, an epoxy resin, or a silicone resin is used (for example, see Patent Document 1). These thermosetting resins are excellent in adhesion to ceramics and metals, and are excellent in heat resistance and chemical resistance. Therefore, the thermosetting resin is suitable as a material for sealing an electronic component such as an IC.

しかしながら、熱硬化性樹脂を硬化させるための時間が非常に長いため、熱硬化性樹脂をIC等の電子部品を封止する材料として使用すると、樹脂封止された電子部品の生産性が低くなる。   However, since the time for curing the thermosetting resin is very long, if the thermosetting resin is used as a material for sealing an electronic component such as an IC, the productivity of the resin-encapsulated electronic component is lowered. .

樹脂封止された電子部品の生産性を高めるために、熱硬化性樹脂に代えて熱可塑性樹脂を使用ことが考えられる。しかし、熱可塑性樹脂で封止樹脂を成形すると、封止樹脂の固化収縮により、電子部品に収縮応力が集中しやすい。電子部品に収縮応力が集中すると、電子部品が破損する等の悪影響を及ぼす可能性がある。   In order to increase the productivity of resin-sealed electronic components, it is conceivable to use a thermoplastic resin instead of a thermosetting resin. However, when the sealing resin is molded with a thermoplastic resin, the shrinkage stress tends to concentrate on the electronic component due to solidification shrinkage of the sealing resin. If the shrinkage stress is concentrated on the electronic component, the electronic component may be damaged.

特開平05−3218号公報Japanese Patent Laid-Open No. 05-3218

本発明は、上記課題を解決するためになされたものであり、その目的は、樹脂封止された電子部品の生産性を高めるために熱可塑性樹脂を使用しつつ、且つ熱可塑性樹脂を使用することにより生じる、封止樹脂の固化収縮による問題を抑制することにある。   The present invention has been made to solve the above-mentioned problems, and the object thereof is to use a thermoplastic resin while using a thermoplastic resin in order to increase the productivity of resin-sealed electronic components. This is to suppress problems caused by solidification shrinkage of the sealing resin.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、樹脂封止の材料として、発泡熱可塑性樹脂を使用し、且つ封止樹脂部の基材に垂直な断面の外周形状が、円弧状であれば以上の課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the present inventors have found that the above problems can be solved if a foamed thermoplastic resin is used as the resin sealing material and the outer peripheral shape of the cross section perpendicular to the base material of the sealing resin portion is an arc shape. The invention has been completed. More specifically, the present invention provides the following.

(1) 基材と、前記基材の表面に搭載された電子部品と、前記電子部品を封止する封止樹脂部と、を備え、前記封止樹脂部は、発泡熱可塑性樹脂から構成され、前記封止樹脂部の基材に垂直な断面における、前記封止樹脂部の表面の外周形状は、円弧状である電子部品実装部品。   (1) A base material, an electronic component mounted on the surface of the base material, and a sealing resin portion that seals the electronic component, wherein the sealing resin portion is made of a foamed thermoplastic resin. An electronic component mounting component in which the outer peripheral shape of the surface of the sealing resin portion in a cross section perpendicular to the base material of the sealing resin portion is an arc shape.

(2) 前記外周形状は、略真円の円弧である(1)に記載の電子部品実装部品。   (2) The electronic component mounting component according to (1), wherein the outer peripheral shape is a substantially circular arc.

(3) 前記封止樹脂部の表面が略真球面状である(1)又は(2)に記載の電子部品実装部品。   (3) The electronic component mounting component according to (1) or (2), wherein the surface of the sealing resin portion is substantially spherical.

(4) (1)から(3)のいずれかに記載の電子部品実装部品を製造する方法であって、基材の表面に搭載された電子部品を射出成形用金型内に固定し、熱可塑性樹脂と発泡剤及び/又は発泡核剤とを含む樹脂組成物を前記射出成形用金型内に射出する電子部品実装部品の製造方法。   (4) A method for manufacturing an electronic component mounting component according to any one of (1) to (3), wherein an electronic component mounted on a surface of a substrate is fixed in an injection mold, and heat The manufacturing method of the electronic component mounting component which inject | pours the resin composition containing a plastic resin and a foaming agent and / or a foaming nucleating agent in the said injection mold.

(5) 射出成形時の保圧が多段階に行われ、充填時には保圧が50MPa以上であり、その後ゲートシールまで50MPa未満であることを特徴とする(4)記載の電子部品実装部品の製造方法。   (5) Manufacture of electronic component mounting component according to (4), wherein holding pressure during injection molding is performed in multiple stages, holding pressure is 50 MPa or more at the time of filling, and then less than 50 MPa until the gate seal. Method.

本発明によれば、IC等の電子部品を封止する材料として熱可塑性樹脂を使用する。このため、本発明の電子部品実装部品は、熱硬化性樹脂を使用する場合と比較して、生産性が高い。   According to the present invention, a thermoplastic resin is used as a material for sealing an electronic component such as an IC. For this reason, the electronic component mounting component of this invention has high productivity compared with the case where a thermosetting resin is used.

そして、本発明の電子部品実装部品は、電子部品等を封止する封止樹脂部が発泡熱可塑性樹脂から構成される。発泡することで、射出/保圧力による電子部品へ加わる力を低減でき、なおかつ気泡を形成することにより、固化の際の収縮で電子部品に収縮応力が集中することを抑えられる。   And as for the electronic component mounting component of this invention, the sealing resin part which seals an electronic component etc. is comprised from a foamed thermoplastic resin. By foaming, the force applied to the electronic component due to injection / holding pressure can be reduced, and by forming bubbles, it is possible to suppress the concentration of shrinkage stress on the electronic component due to shrinkage during solidification.

さらに、封止樹脂部の基材に垂直な断面の外周形状の少なくとも一部が、円弧状である結果、円弧状の部分については封止樹脂部の表面が、固化収縮による変形をしにくく、発泡による電子部品の保護効果を妨げることがない。   Furthermore, as a result of at least a part of the outer peripheral shape of the cross section perpendicular to the base material of the sealing resin part being arcuate, the surface of the sealing resin part is difficult to deform due to solidification shrinkage for the arcuate part, The protective effect of electronic parts by foaming is not disturbed.

実施形態の電子部品実装部品を模式的に示す図であり、(a)は斜視図であり、(b)は断面図である。It is a figure which shows typically the electronic component mounting component of embodiment, (a) is a perspective view, (b) is sectional drawing. 実施形態の電子部品実装部品における、封止樹脂部を模式的に示す図であり、(a)は斜視図であり、(b)は断面図である。It is a figure which shows typically the sealing resin part in the electronic component mounting component of embodiment, (a) is a perspective view, (b) is sectional drawing. 変形例を説明するための模式図であり、(a)は第一の変形例を説明するための断面図であり、(b)は第二の変形例を説明するための断面図である。It is a schematic diagram for demonstrating a modification, (a) is sectional drawing for demonstrating a 1st modification, (b) is sectional drawing for demonstrating a 2nd modification.

以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.

<電子部品実装部品>
図1(a)は、本実施形態の電子部品実装部品1を模式的に示す斜視図であり、図1(b)は、図1(a)のAA断面を模式的に示す断面図である。本実施形態の電子部品実装部品1は、基板10と、電子部品11と、封止樹脂部12とを備える。
<Electronic component mounting parts>
Fig.1 (a) is a perspective view which shows typically the electronic component mounting component 1 of this embodiment, FIG.1 (b) is sectional drawing which shows typically AA cross section of Fig.1 (a). . The electronic component mounting component 1 according to this embodiment includes a substrate 10, an electronic component 11, and a sealing resin portion 12.

図1(a)に示すように、本実施形態の電子部品実装部品1においては、基板10に実装された電子部品11を保護するために、封止樹脂部12が、電子部品11を封止してなる。   As shown in FIG. 1A, in the electronic component mounting component 1 of the present embodiment, the sealing resin portion 12 seals the electronic component 11 in order to protect the electronic component 11 mounted on the substrate 10. Do it.

基板10は、図1に示すように、一の面上に電子部品11が実装される部材である。基板10には、必要に応じて、電子部品11と他の電子部品等とを電気的に接続するための配線回路を有していてもよい。基板10が本発明における基材にあたる。   As shown in FIG. 1, the substrate 10 is a member on which an electronic component 11 is mounted on one surface. The board 10 may have a wiring circuit for electrically connecting the electronic component 11 and other electronic components as necessary. The substrate 10 corresponds to the base material in the present invention.

基板10の材質は特に限定されず従来公知のものを使用することができる。例えば、シリコンウェハ、エポキシ樹脂等から構成される樹脂基板等を例示することができる。また、複数の材料からなる多層基板等であってもよい。   The material of the board | substrate 10 is not specifically limited, A conventionally well-known thing can be used. For example, a resin substrate composed of a silicon wafer, an epoxy resin, or the like can be exemplified. Moreover, the multilayer substrate etc. which consist of a some material may be sufficient.

基板10の形状も特に限定されず、図1(a)に示すような板状以外のものも含まれる。また、フレキシブル基板のように柔軟な基板、リジット基板のように硬い基板のいずれも使用することができる。   The shape of the substrate 10 is not particularly limited, and includes a shape other than the plate shape shown in FIG. Further, a flexible substrate such as a flexible substrate or a hard substrate such as a rigid substrate can be used.

電子部品11は、基板10の一の面上に実装される部材である。電子部品11の具体例としては、シリコーン、ゲルマニウム等の元素半導体を有する半導体チップ、ガリウム−ヒ素、インジウム−リン等の化合物半導体を有する半導体チップ、抵抗器、サーミスタ、コンデンサ等が挙げられる。   The electronic component 11 is a member that is mounted on one surface of the substrate 10. Specific examples of the electronic component 11 include a semiconductor chip having an elemental semiconductor such as silicone and germanium, a semiconductor chip having a compound semiconductor such as gallium-arsenic, indium-phosphorus, a resistor, a thermistor, and a capacitor.

なお、後述する通り、特定の熱可塑性樹脂を使用すれば、電子部品12への機械的ダメージを充分に抑えることができる。したがって、本発明は、機械的ダメージに特に弱いフェライト等の電子部品を使用する場合にも、好適に適用することができる。   As will be described later, mechanical damage to the electronic component 12 can be sufficiently suppressed by using a specific thermoplastic resin. Therefore, the present invention can be suitably applied also when using electronic parts such as ferrite that are particularly vulnerable to mechanical damage.

電子部品11は、基板上の配線回路等と電気的に接続するための電極を有していてもよい。電極としては、スズ、銅、銀、金等の金属及びこれらの金属を含む合金や、はんだ等の材料からなるものを例示することができる。   The electronic component 11 may have an electrode for electrical connection with a wiring circuit or the like on the substrate. Examples of the electrode include metals such as tin, copper, silver, and gold, alloys containing these metals, and materials such as solder.

封止樹脂部12は、基板10上に実装された電子部品11を保護するために、電子部品11の周囲を覆う部材である。本発明は封止樹脂部12に特徴を有する。その特徴とは、封止樹脂部12が発泡熱可塑性樹脂から構成されることと、封止樹脂部12の基板に垂直な断面の外周形状が円弧状であることである。   The sealing resin portion 12 is a member that covers the periphery of the electronic component 11 in order to protect the electronic component 11 mounted on the substrate 10. The present invention is characterized by the sealing resin portion 12. The characteristics are that the sealing resin portion 12 is made of a foamed thermoplastic resin and that the outer peripheral shape of the cross section perpendicular to the substrate of the sealing resin portion 12 is an arc shape.

先ず、発泡熱可塑性樹脂について説明する。発泡熱可塑性樹脂とは、内部に気泡構造を有する熱可塑性樹脂であり、熱可塑性樹脂と発泡剤や発泡核剤とを混練して成形することで製造することができる。   First, the foamed thermoplastic resin will be described. The foamed thermoplastic resin is a thermoplastic resin having a cell structure inside, and can be manufactured by kneading and molding a thermoplastic resin, a foaming agent, and a foam nucleating agent.

使用可能な熱可塑性樹脂としては、特に限定されず、従来公知のものを使用することができる。例えば、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂、液晶性樹脂等を例示することができる。   Usable thermoplastic resins are not particularly limited, and conventionally known ones can be used. For example, polybutylene terephthalate resin, polyphenylene sulfide resin, liquid crystal resin and the like can be exemplified.

上記の通り、本発明においては、いずれの熱可塑性樹脂も好ましく使用することができるが、特に、ポリブチレンテレフタレート樹脂の使用が好ましい。ポリブチレンテレフタレート樹脂としては、例えば、特開2010−150484に記載される樹脂と同様のものを使用することができる。   As described above, in the present invention, any thermoplastic resin can be preferably used, but the use of polybutylene terephthalate resin is particularly preferable. As the polybutylene terephthalate resin, for example, the same resins as those described in JP-A 2010-150484 can be used.

ポリブチレンテレフタレート樹脂を用いると、電子部品11や基板10への機械的ダメージを抑えられることに加え、低融点のものを使用することで電子部品11や基板10への熱的ダメージも抑えることができる。また、高流動のものを使用することで電子部品11が小さい場合であっても、容易に電子部品11を封止することができる。   When polybutylene terephthalate resin is used, mechanical damage to the electronic component 11 and the substrate 10 can be suppressed, and thermal damage to the electronic component 11 and the substrate 10 can be suppressed by using a low melting point resin. it can. Moreover, even if the electronic component 11 is small by using a high fluidity thing, the electronic component 11 can be easily sealed.

ポリブチレンテレフタレート樹脂を使用すれば、必要とされる耐久性を備え、電子部品11や基板10への熱的、機械的ダメージを充分に抑えることができる封止樹脂部12になるため好ましい。   Use of polybutylene terephthalate resin is preferable because it provides the sealing resin portion 12 that has the required durability and can sufficiently suppress thermal and mechanical damage to the electronic component 11 and the substrate 10.

発泡熱可塑性樹脂は、本発明の効果を損なわない範囲で、必要に応じて、その他の熱可塑性樹脂、各種配合剤等を添加することができる。他の樹脂としては、例えば、他のポリオレフィン系樹脂、ポリスチレン系樹脂、フッ素樹脂等が例示される。これらの他の樹脂は単独で又は2種以上組み合わせてもよい。また、配合剤としては、ガラス繊維等の強化剤、安定剤(酸化防止剤又は抗酸化剤、紫外線吸収剤、熱安定剤等)、帯電防止剤、難燃剤、難燃助剤、着色剤(染料や顔料等)、潤滑剤、可塑剤、滑剤、離型剤、結晶核剤、ドリッピング防止剤、架橋剤等が例示される。   The foamed thermoplastic resin can be added with other thermoplastic resins, various compounding agents, and the like as necessary within a range not impairing the effects of the present invention. Examples of other resins include other polyolefin resins, polystyrene resins, and fluororesins. These other resins may be used alone or in combination of two or more. In addition, as compounding agents, reinforcing agents such as glass fibers, stabilizers (antioxidants or antioxidants, ultraviolet absorbers, heat stabilizers, etc.), antistatic agents, flame retardants, flame retardant aids, colorants ( Dyes, pigments, etc.), lubricants, plasticizers, lubricants, mold release agents, crystal nucleating agents, anti-dripping agents, crosslinking agents and the like.

上記の通り、発泡熱可塑性樹脂の製造には、発泡剤は発泡核剤等が使用される。   As described above, a foaming nucleating agent or the like is used as the foaming agent in the production of the foamed thermoplastic resin.

発泡剤としては、物理発泡に用いられる揮発性発泡剤や、化学発泡に用いられる分解性発泡剤等が挙げられる。揮発性発泡剤としては、例えば、不活性又は不燃性ガス(窒素、炭酸ガス、フロン、代替フロン等)、水、有機系物理発泡剤[例えば、脂肪族炭化水素(プロパン、n−ブタン、イソブタン、ペンタン(n−ペンタン、イソペンタン等)、ヘキサン(n−ヘキサン等)等)、芳香族炭化水素(トルエン等)、ハロゲン化炭化水素(三塩化フッ化メタン等)、エーテル類(ジメチルエーテル、石油エーテル等)、ケトン類(アセトン等)等]が挙げられる。また、分解性発泡剤としては、例えば、重炭酸ナトリウム、炭酸アンモニウム等の無機炭酸塩又はその塩;クエン酸等の有機酸又はその塩(クエン酸ナトリウム等);2,2’−アゾビスイソブチロニトリル、アゾジカルボン酸アミド等のアゾ化合物;ベンゼンスルホニルヒドラジド等のスルホニルヒドラジド化合物;N,N’−ジニトロソペンタメチレンテトラミン(DNPT)等のニトロソ化合物;テレフタルアジド等のアジド化合物等が挙げられる。これらの発泡剤のうち、ブタン、ペンタン等の脂肪族炭化水素、クエン酸等の有機酸又はその塩(クエン酸ナトリウム等)等を用いる場合が多い。これらの発泡剤は、単独で又は二種以上組み合わせて使用してもよい。   Examples of the foaming agent include volatile foaming agents used for physical foaming and degradable foaming agents used for chemical foaming. Examples of volatile blowing agents include inert or non-flammable gases (nitrogen, carbon dioxide, chlorofluorocarbon, alternative chlorofluorocarbon, etc.), water, organic physical blowing agents [for example, aliphatic hydrocarbons (propane, n-butane, isobutane). , Pentane (n-pentane, isopentane, etc.), hexane (n-hexane, etc.), aromatic hydrocarbon (toluene, etc.), halogenated hydrocarbon (trichlorofluoromethane, etc.), ethers (dimethyl ether, petroleum ether) Etc.), ketones (acetone etc.), etc.]. Examples of the decomposable foaming agent include inorganic carbonates such as sodium bicarbonate and ammonium carbonate or salts thereof; organic acids such as citric acid or salts thereof (sodium citrate, etc.); 2,2′-azobisiso Azo compounds such as butyronitrile and azodicarboxylic acid amide; sulfonyl hydrazide compounds such as benzenesulfonyl hydrazide; nitroso compounds such as N, N′-dinitrosopentamethylenetetramine (DNPT); azide compounds such as terephthalazide and the like . Of these foaming agents, aliphatic hydrocarbons such as butane and pentane, organic acids such as citric acid, or salts thereof (sodium citrate, etc.) are often used. These foaming agents may be used alone or in combination of two or more.

発泡剤の使用量は特に限定されない。使用する発泡剤に適した割合で熱可塑性樹脂に配合する。   The amount of foaming agent used is not particularly limited. It mix | blends with a thermoplastic resin in the ratio suitable for the foaming agent to be used.

発泡核剤としては、上記発泡剤の説明で例示の重炭酸ナトリウム、炭酸アンモニウム等の無機炭酸塩又はその塩;クエン酸等の有機酸又はその塩(クエン酸ナトリウム等)等の他、ケイ酸化合物(タルク、シリカ、ゼオライト等)、金属水酸化物(水酸化アルミニウム等)、金属酸化物(酸化亜鉛、酸化チタン、アルミナ等)等が挙げられる。これらの発泡核剤は、単独で又は二種以上組み合わせ使用してもよい。発泡核剤のうち、特に、タルク等のケイ酸化合物等を使用すると、気泡構造を均一化できる。   Examples of the foam nucleating agent include inorganic carbonates such as sodium bicarbonate and ammonium carbonate exemplified in the description of the foaming agent or salts thereof; organic acids such as citric acid or salts thereof (sodium citrate, etc.), and silicic acid. Examples thereof include compounds (talc, silica, zeolite, etc.), metal hydroxides (aluminum hydroxide, etc.), metal oxides (zinc oxide, titanium oxide, alumina, etc.) and the like. These foam nucleating agents may be used alone or in combination of two or more. Among the foam nucleating agents, in particular, when a silicate compound such as talc is used, the cell structure can be made uniform.

発泡核剤の使用量は、特に限定されない。必要に応じて適宜配合することができる。   The amount of the foam nucleating agent used is not particularly limited. It can mix | blend suitably as needed.

封止樹脂部12の発泡倍率は特に限定されない。製品の品質を著しく低下させない範囲で適宜発泡倍率を調整すればよい。また、発泡倍率の調整は、熱可塑性樹脂等の成分、発泡剤や発泡核剤の種類、発泡剤や発泡核剤の添加量、封止樹脂部の形成方法等により調整することができる。   The expansion ratio of the sealing resin portion 12 is not particularly limited. What is necessary is just to adjust a foaming ratio suitably in the range which does not reduce the quality of a product remarkably. The expansion ratio can be adjusted by components such as a thermoplastic resin, the type of foaming agent or foam nucleating agent, the amount of foaming agent or foaming nucleating agent added, the method of forming the sealing resin portion, and the like.

封止樹脂部12内部の気泡構造は特に限定されず、独立気泡構造であっても連続気泡構造であってもよく、双方の気泡構造が混在していてもよい。用途に応じて適宜変更することができる。独立気泡構造、連続気泡構造の制御は従来公知の方法で行うことができる。   The cell structure inside the sealing resin portion 12 is not particularly limited, and may be a closed cell structure or an open cell structure, or both cell structures may be mixed. It can change suitably according to a use. Control of the closed cell structure and the open cell structure can be performed by a conventionally known method.

本発明においては、発泡剤が外殻に内包された熱膨張性マイクロカプセルを使用することが、独立気泡の形成という理由で好ましい。発泡体積が増え、気泡が連続すると、連続した空隙を形成しやすくなり、成形体表面から成形体内部へ連なる空隙を伝わって、水分等が浸入することにより絶縁障害等を発生することがある。独立気泡を形成する熱膨張性マイクロカプセルを使用することにより、連続した空隙の形成が避けられることから、このような障害が発生しにくくなる。   In the present invention, it is preferable to use thermally expandable microcapsules in which a foaming agent is enclosed in an outer shell because of the formation of closed cells. When the foaming volume increases and the bubbles continue, it becomes easy to form continuous voids, and an insulation failure or the like may occur due to moisture entering through the voids continuous from the surface of the molded body to the inside of the molded body. By using thermally expandable microcapsules that form closed cells, the formation of continuous voids can be avoided, making it difficult for such obstacles to occur.

熱膨張性マイクロカプセルの外殻は、加熱により軟化し、且つ、ガス透過性の低い樹脂からなる。樹脂としては、例えば、塩化ビニリデン系重合体、アクリロニトリル系重合体、アクリル系重合体等を挙げることができる。これらは1種単独で、又は2種以上組み合わせて用いることができる。これらの中でも、環境負荷が少ないという理由から、アクリル系重合体が好ましい。アクリル系重合体としては、例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸メチル、アクリル酸エチル等の単独重合体や共重合体、又は酢酸ビニル等、他の化合物との共重合体等を挙げることができる。   The outer shell of the thermally expandable microcapsule is made of a resin that is softened by heating and has low gas permeability. Examples of the resin include vinylidene chloride polymers, acrylonitrile polymers, acrylic polymers, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, an acrylic polymer is preferable because it has a low environmental load. Examples of the acrylic polymer include homopolymers and copolymers such as polyacrylic acid, polymethacrylic acid, methyl acrylate, and ethyl acrylate, or copolymers with other compounds such as vinyl acetate. be able to.

発泡剤は、外殻を構成する樹脂の軟化点(一般的には90〜150℃)以下の沸点を有する物質であればよい。   The foaming agent may be a substance having a boiling point equal to or lower than the softening point (generally 90 to 150 ° C.) of the resin constituting the outer shell.

熱膨張性マイクロカプセルは、上記発泡剤を、常法にて、例えば、特公昭42−26524号公報に記載の方法(重合性単量体を発泡剤及び重合開始剤と混合し、この混合物を、必要により乳化分散助剤を含む水性媒体中で懸濁重合させる)にて、製造することができる。   The heat-expandable microcapsule is prepared by subjecting the above foaming agent to a conventional method, for example, a method described in JP-B-42-26524 (mixing a polymerizable monomer with a foaming agent and a polymerization initiator, , If necessary, suspension polymerization in an aqueous medium containing an emulsifying and dispersing aid).

このような熱膨張性マイクロカプセルは、例えば、松本油脂製薬株式会社より「マツモトマイクロスフェア」として、積水化学工業株式会社より「アドバンセル」として、株式会社クレハより「クレハマイクロスフェアー」として、あるいはアクゾノーベル株式会社より「エクスパンセルマイクロスフェア」として入手可能である。   Such thermally expandable microcapsules are, for example, as “Matsumoto Microsphere” from Matsumoto Yushi Seiyaku Co., Ltd., as “Advancel” from Sekisui Chemical Co., Ltd., as “Kureha Microsphere” from Kureha Corporation, or It is available from Akzo Nobel as “Expansel Microsphere”.

次いで、封止樹脂部12の形状について説明する。封止樹脂部12は、図2(a)に示すように、基板10に接する底面120と、電子部品と接する凹部121と、外気等の電子部品実装部品1に含まれる部品以外のものと接する表面122と、を有する。   Next, the shape of the sealing resin portion 12 will be described. As shown in FIG. 2A, the sealing resin portion 12 is in contact with a bottom surface 120 that is in contact with the substrate 10, a recess 121 that is in contact with the electronic component, and a component other than the components included in the electronic component mounting component 1, such as outside air. A surface 122.

底面120は基板10と接する面であり、より具体的には、底面120は、基板10の電子部品11が実装される面接する。   The bottom surface 120 is a surface in contact with the substrate 10, and more specifically, the bottom surface 120 is in contact with the surface on which the electronic component 11 of the substrate 10 is mounted.

底面120に垂直な平面で封止樹脂部12を切ったときの、封止樹脂部12の断面が、封止樹脂部12の基板10に垂直な断面にあたる。例えば、図2(a)のBB断面を模式的に表す断面図(図2(b))が、封止樹脂部12の基板10に垂直な断面の一例である。   A cross section of the sealing resin portion 12 when the sealing resin portion 12 is cut along a plane perpendicular to the bottom surface 120 corresponds to a cross section of the sealing resin portion 12 perpendicular to the substrate 10. For example, a cross-sectional view (FIG. 2B) schematically representing the BB cross section of FIG. 2A is an example of a cross section perpendicular to the substrate 10 of the sealing resin portion 12.

封止樹脂部12の基板10に垂直な断面の、表面122の外周形状とは、図2(b)のX1とX2とを結ぶ線である。本発明においては、このX1とX2とを結ぶ線が円弧状である。X1とX2を結ぶ線の全体が円弧状である必要は無いが、本発明においては90%以上が円弧状であることが好ましい。   The outer peripheral shape of the surface 122 of the cross section perpendicular to the substrate 10 of the sealing resin portion 12 is a line connecting X1 and X2 in FIG. In the present invention, the line connecting X1 and X2 is arcuate. The entire line connecting X1 and X2 need not be arcuate, but 90% or more is preferably arcuate in the present invention.

本実施形態では、表面122の外周形状の全部が、X1とX2との中点Xcを中心とする略真円の円弧状である。略真円とは、実質的に真円であれば楕円であってもよいことを指す。実質的に真円とは、長径の長さが短径の長さの0.8倍以上1.2倍以下程度の楕円を指す。この程度の、楕円形であれば、真円の場合と同様の効果を奏すると考えられる。なお、許容される長径の長さと短径の長さとの関係は、材料の種類や用途等に応じて異なる。   In the present embodiment, the entire outer peripheral shape of the surface 122 is a substantially perfect circular arc centered on the midpoint Xc between X1 and X2. A substantially perfect circle indicates that it may be an ellipse as long as it is substantially a perfect circle. A substantially perfect circle refers to an ellipse whose major axis has a length of about 0.8 to 1.2 times the length of the minor axis. An ellipse of this level is considered to have the same effect as a perfect circle. The allowable relationship between the length of the major axis and the length of the minor axis varies depending on the type of material, the application, and the like.

なお、略真円の円弧状であることが好ましいが、略真円の円弧状でなくてもよい。しかし、略真円に近いほど好ましく、長径の長さが短径の長さの0.5倍以上2倍以下であることが好ましい。また、中心の位置や半径の大きさ等が異なる円弧を繋げたものも本発明に含まれる。   In addition, although it is preferable that it is a substantially perfect circular arc shape, it may not be a substantially perfect circular arc shape. However, it is preferably as close to a perfect circle as possible, and the length of the major axis is preferably 0.5 to 2 times the length of the minor axis. Moreover, what connected the circular arc from which the position of a center, the magnitude | size of a radius, etc. differ is also contained in this invention.

また、「円弧状」とは、球殻の断面のような曲線のもの以外に、正多面体(例えば、正五角形と正六角形からなるサッカーボール)の断面のように、曲線でなくても円弧状になるようなものを含む。   In addition, the “arc shape” is not a curved shape such as a cross section of a spherical shell, but is a circular shape even if it is not a curved shape, such as a cross section of a regular polyhedron (for example, a soccer ball composed of a regular pentagon and a regular hexagon). Including things like

また、図2(a)に示す通り、本実施形態の表面122の形状は、略真球面状である。この略真球面の中心は、封止樹脂部12と基板10との接触面である円の中心Oである。「略真球面」とは、真球面以外に実質的に真球面と同程度の効果を奏する楕円球面も含むことを意味する。「実質的に真球面と同程度の効果を奏する楕円球面」とは、最も長い半径の長さが、最も短い半径の長さの0.8倍以上2倍以下程度である。なお、許容される長径の長さと短径の長さとの上記関係は、材料の種類や用途等に応じて異なる。   Further, as shown in FIG. 2A, the shape of the surface 122 of the present embodiment is a substantially spherical shape. The center of this substantially spherical surface is the center O of a circle that is a contact surface between the sealing resin portion 12 and the substrate 10. The “substantially true spherical surface” means that an elliptical spherical surface that has substantially the same effect as the true spherical surface is included in addition to the true spherical surface. “The elliptical spherical surface having substantially the same effect as a true spherical surface” means that the length of the longest radius is about 0.8 to 2 times the length of the shortest radius. Note that the above-described relationship between the length of the major axis and the length of the minor axis varies depending on the type and use of the material.

なお、表面122の90%以上が略真球面であることが、本発明の効果を充分に得る観点から好ましい。また、表面122は略真球面に近いほど好ましいが、楕円球面等の略真球面以外の形状であってもよく、最も長い径の長さが、最も短い径の長さの0.5倍以上2倍以下であることが好ましい。また、表面122の形状は、中心や半径の異なる球面を繋ぎ合わせた形状であってもよい。   In addition, 90% or more of the surface 122 is preferably a substantially spherical surface from the viewpoint of sufficiently obtaining the effects of the present invention. The surface 122 is preferably closer to a substantially spherical surface, but may have a shape other than a substantially spherical surface such as an elliptical spherical surface, and the length of the longest diameter is 0.5 times or more the length of the shortest diameter. It is preferable that it is 2 times or less. The shape of the surface 122 may be a shape in which spherical surfaces having different centers and radii are connected.

<電子部品実装部品の製造方法>
本実施形態の電子部品実装部品1の製造方法について説明する。本発明の電子部品実装部品の製造方法は特に限定されないが、例えば、以下の方法を例示することができる。
<Method of manufacturing electronic component mounting component>
The manufacturing method of the electronic component mounting component 1 of this embodiment is demonstrated. Although the manufacturing method of the electronic component mounting component of this invention is not specifically limited, For example, the following method can be illustrated.

先ず、基板10上に電子部品11を実装する。電子部品11を基板10上に実装する方法は特に限定されず、電子部品11の種類等に応じて、一般的な方法の中から適宜好ましい方法を採用することができる。   First, the electronic component 11 is mounted on the substrate 10. The method for mounting the electronic component 11 on the substrate 10 is not particularly limited, and a preferable method can be appropriately selected from general methods according to the type of the electronic component 11 and the like.

次いで、電子部品11を保護するための封止樹脂部12を形成する。封止樹脂部12の形成方法は特に限定されない。例えば、射出成形用の金型内に、電子部品11が実装された基板10を取り付け、その金型内に、熱可塑性樹脂と発泡剤等とを含む樹脂組成物を射出することで、封止樹脂部12を形成することができる。この成形法が射出封止成形法にあたる。   Next, a sealing resin portion 12 for protecting the electronic component 11 is formed. The formation method of the sealing resin part 12 is not specifically limited. For example, the substrate 10 on which the electronic component 11 is mounted is mounted in a mold for injection molding, and sealing is performed by injecting a resin composition containing a thermoplastic resin and a foaming agent into the mold. The resin part 12 can be formed. This molding method corresponds to the injection sealing molding method.

発泡剤、発泡核剤と熱可塑性樹脂とを混合するタイミングは特に限定されず、熱可塑性樹脂と発泡剤等とを混ぜた原料を成形機に投入してもよく、可塑化又は混練中の樹脂に発泡剤等を添加又は圧入してもよい。なお、例示の添加剤やその他の樹脂等も、必要により、適当な段階で添加してもよい。   The timing of mixing the foaming agent, the foam nucleating agent and the thermoplastic resin is not particularly limited, and a raw material in which the thermoplastic resin and the foaming agent are mixed may be charged into the molding machine, and the resin being plasticized or kneaded A foaming agent or the like may be added to or pressed into. In addition, you may add the example additive, other resin, etc. in a suitable step if needed.

通常、上記熱可塑性樹脂と発泡剤等とを溶融混練し、発泡成形することにより、内部に気泡構造を有する発泡熱可塑性樹脂から構成される封止樹脂部を形成することができる。   Usually, the sealing resin part comprised from the foamed thermoplastic resin which has a cell structure inside can be formed by melt-kneading the said thermoplastic resin, a foaming agent, etc., and foam-molding.

成形温度は、熱可塑性樹脂ならびに発泡剤に適した温度範囲で適宜最適な条件が設定される。   As the molding temperature, optimum conditions are appropriately set within a temperature range suitable for the thermoplastic resin and the foaming agent.

成形時の保圧として、多段階保圧を行うことが望ましい。一般的には、一定の保圧を保つことにより、発泡圧力により気泡がほぼ均一になるように形成されるが、本発明では、電子部品に収縮応力が集中しないように発泡形態を制御する際に、保圧力をあまり低く制御できない。保圧力をあまり低くすると、特に多数個を一度に成形する場合に、製品品質のばらつきが懸念される。多段階保圧を行うことにより、金型キャビティ内に完全充填させる際には、発泡が抑えられるような高い圧力で行うことができ、外皮が形成された後、低い圧力で電子部品に収縮応力が集中しないような高発泡領域を形成させることができる。   It is desirable to perform multi-stage holding as the holding pressure at the time of molding. In general, by maintaining a constant holding pressure, the bubbles are formed to be almost uniform by the foaming pressure. However, in the present invention, when controlling the foaming form so that the shrinkage stress is not concentrated on the electronic component. In addition, the holding pressure cannot be controlled too low. If the holding pressure is too low, there is a concern about variations in product quality, particularly when many pieces are molded at once. By performing multistage pressure holding, when filling the mold cavity completely, it can be performed at a high pressure that suppresses foaming, and after the outer skin is formed, the shrinkage stress is applied to the electronic component at a low pressure. It is possible to form a highly foamed region that does not concentrate.

射出成形時に多段階保圧を行なう場合、充填時には50MPa以上の保圧に設定し、その後ゲートシールまでの保圧を50MPa未満に設定することが好ましい。保圧時間は、成形する封止樹脂部の大きさ、形状、原料として使用する熱可塑性樹脂の種類等に応じて適宜調整する。保圧が50MPa以上の条件から、保圧が50MPa未満の条件への切り替えのタイミングは、それぞれの保圧時間を決定すれば一義的に決定される。   When performing multistage holding pressure at the time of injection molding, it is preferable to set the holding pressure to 50 MPa or more at the time of filling, and then set the holding pressure to the gate seal to less than 50 MPa. The holding time is appropriately adjusted according to the size and shape of the sealing resin portion to be molded, the type of thermoplastic resin used as a raw material, and the like. The timing of switching from the condition in which the holding pressure is 50 MPa or more to the condition in which the holding pressure is less than 50 MPa is uniquely determined by determining each holding time.

<効果>
続いて、本実施形態の電子部品実装部品の効果について説明する。本実施形態の電子部品実装部品において、封止樹脂部の基板に垂直な断面の、封止樹脂部の表面の外周形状は、一部が円弧状である。先ず、この表面の外周形状が円弧状であることの効果について説明する。
発泡剤は、発泡剤と熱可塑性樹脂とをキャビティに充填した段階から発泡している。この発泡により、充填時の原料を射出する段階で電子部品に加わる力を低減することができる。また、射出成形の保圧時に保圧力が電子部品に与える力を低減することができる。
上記の通り、封止樹脂部12は、溶融状態の樹脂組成物を金型内に射出することにより形成するが、形成された封止樹脂部12は表面122から徐々に固化していき最後には内部まで固化する。この固化の過程で封止樹脂部12は収縮するが、上記円弧形状を有すれば、初期に固化する表面の表面剛性が高くなり、冷却過程の収縮力による封止樹脂部12の変形を抑えることができる。変形を抑えることができる結果、固化の際の収縮により、発泡成形による気泡構造を破壊し、電子部品11に収縮応力が集中することを抑えることができる。
<Effect>
Then, the effect of the electronic component mounting component of this embodiment is demonstrated. In the electronic component mounting component of the present embodiment, a part of the outer peripheral shape of the surface of the sealing resin portion in a cross section perpendicular to the substrate of the sealing resin portion is an arc shape. First, the effect of the outer peripheral shape of the surface being an arc will be described.
The foaming agent is foamed from the stage of filling the cavity with the foaming agent and the thermoplastic resin. By this foaming, the force applied to the electronic component at the stage of injecting the raw material at the time of filling can be reduced. Moreover, the force which a holding pressure gives to an electronic component at the time of holding pressure of injection molding can be reduced.
As described above, the sealing resin portion 12 is formed by injecting a molten resin composition into a mold. The formed sealing resin portion 12 gradually solidifies from the surface 122 and finally. Solidifies to the inside. The sealing resin portion 12 shrinks during the solidification process. However, if the arc shape is provided, the surface rigidity of the surface solidified in the initial stage becomes high, and deformation of the sealing resin portion 12 due to the shrinkage force during the cooling process is suppressed. be able to. As a result of suppressing the deformation, it is possible to suppress the bubble structure due to the foaming molding due to the shrinkage at the time of solidification and to suppress the concentration of the shrinkage stress on the electronic component 11.

本実施形態において、上記断面における表面122の外周形状は略真円の円弧状である。略真円の円弧状であれば、初期に固化する表面の剛性が非常に高くなる。その結果、電子部品11に収縮応力が集中する可能性がさらに低くなる。   In this embodiment, the outer periphery shape of the surface 122 in the said cross section is a substantially perfect circular arc shape. If the arc shape is a substantially perfect circle, the rigidity of the surface solidified in the initial stage becomes very high. As a result, the possibility that the shrinkage stress is concentrated on the electronic component 11 is further reduced.

本実施形態において、表面122は略真球面状である。先ず、表面122が略真球面であれば、表面の剛性が全体として高くなり、電子部品11への収縮応力の集中をより抑えることができる。   In the present embodiment, the surface 122 is substantially spherical. First, if the surface 122 is a substantially spherical surface, the rigidity of the surface is increased as a whole, and the concentration of shrinkage stress on the electronic component 11 can be further suppressed.

さらに、表面122が略真球面の場合、表面122のいずれの位置からでも、略真球面の中心Oまでの距離が等しい。したがって、表面122の外周から封止樹脂部12の中心Oに向かう収縮力は、外周のいずれの位置からもほぼ同じになる。このため、収縮力が局所的に大きく働く位置が存在しにくく、この点からも変形が生じ難い。   Furthermore, when the surface 122 is a substantially spherical surface, the distance from any position of the surface 122 to the center O of the substantially spherical surface is the same. Accordingly, the contraction force from the outer periphery of the surface 122 toward the center O of the sealing resin portion 12 is substantially the same from any position on the outer periphery. For this reason, it is difficult for a position where the contractile force acts locally to exist, and deformation is hardly caused from this point.

発泡性熱可塑性樹脂がポリブチレンテレフタレート樹脂であれば、成形時における電子部品11への熱的ダメージも低減することができる。   If the foamable thermoplastic resin is a polybutylene terephthalate resin, thermal damage to the electronic component 11 during molding can be reduced.

射出封止成形で、電子部品実装部品を製造すると、球面や円弧状の封止樹脂部を容易且つ正確に形成することができる。これらの表面の形状を正確に製造できるため、射出封止成形によれば、安定して、所望の電子部品実装部品を製造することができる。   When an electronic component mounting component is manufactured by injection sealing molding, a spherical or arc-shaped sealing resin portion can be easily and accurately formed. Since the shape of these surfaces can be accurately manufactured, the desired electronic component mounting component can be manufactured stably by injection sealing molding.

<変形例>
以上、本発明の流路形成構造体及びその製造方法の好ましい各実施形態について説明したが、本発明は上述した実施形態に制限されることなく、種々の形態で実施することができる。
<Modification>
As mentioned above, although each preferred embodiment of the channel formation structure of the present invention and its manufacturing method was described, the present invention is not restricted to the embodiment mentioned above but can be carried out in various forms.

例えば、以上の実施形態では、略真球面の中心Oや、円弧形状の円弧の中心Xcは基板10の一の面上に存在しているが、図3(a)に示すように、略真球面の中心Oは基板10の一の面の上方に存在する場合であってもよい。   For example, in the above embodiment, the center O of the substantially true spherical surface and the center Xc of the arc-shaped arc exist on one surface of the substrate 10, but as shown in FIG. The center O of the spherical surface may be present above one surface of the substrate 10.

また、図3(b)に示すように、2つの真球が融合した形状であってもよい。この場合、いずれか一方のみが略真球面を有していてもよいが、図3(b)に示すように全てが略真球面を有することが好ましい。   Moreover, as shown in FIG.3 (b), the shape which two spheres united may be sufficient. In this case, only one of them may have a substantially spherical surface, but it is preferable that all have a substantially spherical surface as shown in FIG.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<材料>
熱可塑性樹脂:ポリブチレンテレフタレート樹脂(以下「低融点PBT」という場合がある)(ウィンテックポリマー社製、ジュラネックス 303RA、融点:182℃、MFR:13g/10min)
発泡剤:熱膨張性マイクロカプセル(積水化学社製、アドバンセルEMP501M1)
<Material>
Thermoplastic resin: polybutylene terephthalate resin (hereinafter sometimes referred to as “low melting point PBT”) (manufactured by Wintech Polymer, Juranex 303RA, melting point: 182 ° C., MFR: 13 g / 10 min)
Foaming agent: Thermally expandable microcapsule (manufactured by Sekisui Chemical Co., Ltd., Advancel EMP501M1)

<実施例1>
裏面に円筒形状の突き出しピンが設けられた、直径7mmの上面がほぼ球形のキャビティにフープ端子をセットし、低融点PBTに発泡剤を3質量%加えた材料を、以下の条件で射出成形した。このようにして実施例1の電子部品実装部品が得られた。
(成形条件)
金型温度:60℃
成形機シリンダ温度:260℃
保圧:50MPaで10秒
<Example 1>
A hoop terminal was set in a cavity having a cylindrical protruding pin on the back surface and a top surface of approximately 7 mm in diameter, and a material obtained by adding 3% by mass of a foaming agent to low melting point PBT was injection molded under the following conditions. . Thus, the electronic component mounting component of Example 1 was obtained.
(Molding condition)
Mold temperature: 60 ℃
Molding machine cylinder temperature: 260 ° C
Holding pressure: 10 seconds at 50 MPa

実施例1の電子部品実装部品の外観を目視で確認したところ、凹みを確認することはできなかった。このことから、成形における熱可塑性樹脂の固化収縮時に、発泡熱可塑性樹脂の気泡がほとんど破壊されていないことが確認できた。   When the external appearance of the electronic component mounting component of Example 1 was visually confirmed, no dent could be confirmed. From this, it was confirmed that the bubbles of the foamed thermoplastic resin were hardly destroyed at the time of solidification shrinkage of the thermoplastic resin during molding.

この電子部品実装部品を縦方向に切断し、断面を観察したところ、フープ端子の設けられる中央部に大きな気泡群がみられた。したがって、材料をキャビティに充填した際、保圧の際にワープ端子にかかる力が、発泡により小さく抑えられたといえる。   When the electronic component mounting component was cut in the vertical direction and the cross section was observed, a large bubble group was observed in the central portion where the hoop terminal was provided. Therefore, when the material is filled in the cavity, it can be said that the force applied to the warp terminal at the time of holding pressure is suppressed by foaming.

フープ端子と射出成形樹脂の界面の機密性はインク侵入試験で判定した。インク侵入がほとんど無く問題が無いことが確認された。   The confidentiality of the interface between the hoop terminal and the injection molded resin was judged by an ink penetration test. It was confirmed that there was almost no ink intrusion and there was no problem.

<実施例2>
保圧の条件を、50MPaで3秒間の保圧を行なった後、10MPaで7秒の保圧を行う条件に変更した以外は実施例1と同様の方法で、実施例2の電子部品実装部品を製造した。
<Example 2>
The electronic component mounting component of Example 2 is the same as Example 1 except that the pressure holding condition is changed to a condition of holding pressure at 50 MPa for 3 seconds and then holding pressure at 10 MPa for 7 seconds. Manufactured.

実施例2の電子部品実装部品の外観を目視で確認したところ、実施例1と同様に、凹みを確認することはできなかった。この電子部品実装部品を縦方向に切断し、断面を観察したところ、フープ端子の設けられる中央部に、極めて大きな気泡群がみられた。フープ端子と発泡熱可塑性樹脂の界面の機密性はインク侵入試験で判定した。インク侵入がほとんど無く問題が無いことが確認された。   When the external appearance of the electronic component mounting component of Example 2 was visually confirmed, a dent could not be confirmed as in Example 1. When this electronic component mounting component was cut in the vertical direction and the cross section was observed, a very large bubble group was observed in the central portion where the hoop terminal was provided. The confidentiality of the interface between the hoop terminal and the foamed thermoplastic resin was judged by an ink penetration test. It was confirmed that there was almost no ink intrusion and there was no problem.

<実施例3>
キャビティを、長径が短径の2倍となる楕円形状のものに変更した以外は、実施例1と同様の成形を行い、実施例3の電子部品実装部品を製造した。この電子部品実装部品を縦方向に切断し、断面を観察したところ、発泡熱可塑性樹脂の固化時の収縮によりフープ端子にかかる収縮応力を充分に緩和できる程度の気泡が確認された。なお、「フープ端子にかかる収縮応力を充分に緩和できる程度の気泡」とは、楕円球形状の場合、球形状の場合と比較して、発泡熱可塑性樹脂の固化時の収縮により、発泡熱可塑性樹脂が変形しやすいが、この変形のしやすさを考慮しても、内部の電子部品にかかる収縮応力や力を充分に緩和できる程度の気泡であることを指す。
<Example 3>
The electronic component mounting component of Example 3 was manufactured in the same manner as in Example 1 except that the cavity was changed to an elliptical shape whose major axis was twice the minor axis. When the electronic component mounting component was cut in the longitudinal direction and the cross section was observed, bubbles were confirmed that could sufficiently relieve the contraction stress applied to the hoop terminal by the contraction when the foamed thermoplastic resin was solidified. The term “bubbles that can sufficiently relieve the shrinkage stress applied to the hoop terminal” means that the foamed thermoplastic resin has a foamed thermoplastic resin that contracts when the foamed thermoplastic resin is solidified, as compared with a spherical shape. Although the resin is easily deformed, it refers to a bubble that can sufficiently relieve the shrinkage stress and force applied to the internal electronic component even in consideration of the ease of deformation.

<比較例1>
発泡剤を使用しない以外は、実施例1と同様の方法で、比較例1の電子部品実装部品を製造した。比較例1の電子部品実装部品を、縦方向に切断し、断面を観察したところ、ワープ端子の設けられる中央部には小さな空洞が認められた。しかし、この空洞は、ワープ端子等の電子部品の大きさに対し十分大きなものではなく、電子部品にかかる収縮応力や力を緩和する効果が充分に期待できないものである。
<Comparative Example 1>
An electronic component mounting component of Comparative Example 1 was manufactured in the same manner as in Example 1 except that no foaming agent was used. When the electronic component mounting component of Comparative Example 1 was cut in the vertical direction and the cross section was observed, a small cavity was observed in the central portion where the warp terminal was provided. However, this cavity is not sufficiently large with respect to the size of an electronic component such as a warp terminal, and the effect of relieving shrinkage stress and force applied to the electronic component cannot be sufficiently expected.

1 電子部品実装部品
10 基板
11 電子部品
12 封止樹脂部
120 底面
121 凹部
122 表面
DESCRIPTION OF SYMBOLS 1 Electronic component mounting component 10 Board | substrate 11 Electronic component 12 Sealing resin part 120 Bottom 121 Recessed part 122 Surface

Claims (5)

基材と、
前記基材に搭載された電子部品と、
前記電子部品を封止する封止樹脂部と、を備え、
前記封止樹脂部は、発泡熱可塑性樹脂から構成され、
前記封止樹脂部の基材に垂直な断面における、前記封止樹脂部の表面の外周形状は、円弧状である電子部品実装部品。
A substrate;
An electronic component mounted on the substrate;
A sealing resin portion for sealing the electronic component,
The sealing resin portion is made of a foamed thermoplastic resin,
An electronic component mounting component in which the outer peripheral shape of the surface of the sealing resin portion in a cross section perpendicular to the base material of the sealing resin portion is an arc shape.
前記外周形状は、略真円の円弧である請求項1に記載の電子部品実装部品。   The electronic component mounting component according to claim 1, wherein the outer peripheral shape is a substantially circular arc. 前記封止樹脂部の表面が略真球面状である請求項1又は2に記載の電子部品実装部品。   The electronic component mounting component according to claim 1, wherein a surface of the sealing resin portion has a substantially spherical shape. 請求項1から3のいずれかに記載の電子部品実装部品を製造する方法であって、
基材に搭載された電子部品を射出成形用金型内に固定し、熱可塑性樹脂と発泡剤及び/又は発泡核剤とを含む樹脂組成物を前記射出成形用金型内に射出する電子部品実装部品の製造方法。
A method for producing an electronic component mounting component according to any one of claims 1 to 3,
An electronic component in which an electronic component mounted on a substrate is fixed in an injection mold and a resin composition containing a thermoplastic resin and a foaming agent and / or a foaming nucleating agent is injected into the injection mold. Manufacturing method of mounted components.
射出成形時の保圧が多段階に行われ、充填時には50MPa以上であり、その後ゲートシールまで50MPa未満であることを特徴とする請求項4記載の電子部品実装部品の製造方法。   5. The method of manufacturing an electronic component mounting component according to claim 4, wherein the holding pressure at the time of injection molding is performed in multiple stages, is 50 MPa or more at the time of filling, and is less than 50 MPa until the gate seal thereafter.
JP2011009135A 2011-01-19 2011-01-19 Component mounted with electronic component Pending JP2012151296A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011009135A JP2012151296A (en) 2011-01-19 2011-01-19 Component mounted with electronic component
CN2012100165927A CN102610581A (en) 2011-01-19 2012-01-18 Electronic component mounting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009135A JP2012151296A (en) 2011-01-19 2011-01-19 Component mounted with electronic component

Publications (1)

Publication Number Publication Date
JP2012151296A true JP2012151296A (en) 2012-08-09

Family

ID=46527863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009135A Pending JP2012151296A (en) 2011-01-19 2011-01-19 Component mounted with electronic component

Country Status (2)

Country Link
JP (1) JP2012151296A (en)
CN (1) CN102610581A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171607A (en) * 2018-03-27 2019-10-10 株式会社翔栄 Resin molded product and mold
WO2020116539A1 (en) 2018-12-07 2020-06-11 積水化学工業株式会社 Coating agent, and method for producing electronic component module using said coating agent
WO2023074796A1 (en) * 2021-10-28 2023-05-04 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition pellets and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171607A (en) * 2018-03-27 2019-10-10 株式会社翔栄 Resin molded product and mold
WO2020116539A1 (en) 2018-12-07 2020-06-11 積水化学工業株式会社 Coating agent, and method for producing electronic component module using said coating agent
WO2023074796A1 (en) * 2021-10-28 2023-05-04 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition pellets and method for producing same

Also Published As

Publication number Publication date
CN102610581A (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US9623591B2 (en) Method of encapsulating an electronic component
JP2004015194A (en) Speaker diaphragm and its manufacturing method
JP5717927B2 (en) Electronic component device manufacturing method and electronic component device
JP2012151296A (en) Component mounted with electronic component
CA2458939A1 (en) Thermoplastic elastomer composition for core-back system foam injection molding and foam injection molding method using the same
WO2012153579A1 (en) Thermally expandable resin composition, thermally expandable resin sheet, foam and method for producing same
US9475219B2 (en) Method for molding foamable resin
JP2007161853A (en) Plastic molded product and method for producing the same
JP4506924B2 (en) Manufacturing method of synthetic resin molding
JP2007130826A (en) Method for producing injection-foamed molded article
JP5481278B2 (en) Foamed rubber molded body and method for producing the same
CA1240464A (en) Method for manufacturing foamed plastics
JP2011025450A (en) Method for producing foamed molded article and foamed molded article
JP2017514729A (en) Substrate having low dielectric constant material and molding method
US20100187727A1 (en) Method of void free for molding product
JP2008047878A (en) Case for housing solid-state imaging element, manufacturing method thereof, and solid-state imaging device
JP6777978B2 (en) Manufacturing method of foam molded product
JP5577061B2 (en) Foam molded body, method for producing foam molded body, and mold for producing foam molded body
JP2001138377A (en) Method for foam molding thermoplastic resin
JP2004323726A (en) Foaming agent composition, polyolefin-based foamed body using the same, and manufacturing method thereof
CN106808638B (en) Moulding and forming method thereof, binding structure and vehicle window
JP7449684B2 (en) Manufacturing method for foam molded products
JP4199034B2 (en) Thermal expansion material and method for producing the same
KR102179966B1 (en) Foam with damping performance reduced temperature dependency using PVC and EVA and method for making thereof
JP5399019B2 (en) Antistatic cross-linked polyolefin-based open cell body and method for producing the same