JP2012151118A - Dielectric constant conditioner and resin composition - Google Patents
Dielectric constant conditioner and resin composition Download PDFInfo
- Publication number
- JP2012151118A JP2012151118A JP2012050126A JP2012050126A JP2012151118A JP 2012151118 A JP2012151118 A JP 2012151118A JP 2012050126 A JP2012050126 A JP 2012050126A JP 2012050126 A JP2012050126 A JP 2012050126A JP 2012151118 A JP2012151118 A JP 2012151118A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric constant
- resin
- organic substance
- mass
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 16
- 239000011148 porous material Substances 0.000 claims abstract description 139
- 229920005989 resin Polymers 0.000 claims abstract description 109
- 239000011347 resin Substances 0.000 claims abstract description 109
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims description 83
- 239000003795 chemical substances by application Substances 0.000 claims description 51
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 43
- 238000011049 filling Methods 0.000 claims description 34
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- 238000002156 mixing Methods 0.000 claims description 17
- 229920001187 thermosetting polymer Polymers 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 10
- 239000003607 modifier Substances 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 3
- 239000011368 organic material Substances 0.000 abstract description 27
- 230000008859 change Effects 0.000 abstract description 6
- 230000009257 reactivity Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 26
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 24
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- -1 polyethylene Polymers 0.000 description 19
- 238000003756 stirring Methods 0.000 description 19
- 239000005416 organic matter Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 229920000647 polyepoxide Polymers 0.000 description 11
- 229910019142 PO4 Inorganic materials 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 239000011889 copper foil Substances 0.000 description 8
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229920005573 silicon-containing polymer Polymers 0.000 description 8
- 239000002966 varnish Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000005011 phenolic resin Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 5
- 239000011344 liquid material Substances 0.000 description 5
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- 235000010290 biphenyl Nutrition 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000004641 Diallyl-phthalate Substances 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004962 Polyamide-imide Substances 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 3
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920002312 polyamide-imide Polymers 0.000 description 3
- 229920001230 polyarylate Polymers 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920001289 polyvinyl ether Polymers 0.000 description 3
- 239000005033 polyvinylidene chloride Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920006259 thermoplastic polyimide Polymers 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- TUQLLQQWSNWKCF-UHFFFAOYSA-N trimethoxymethylsilane Chemical compound COC([SiH3])(OC)OC TUQLLQQWSNWKCF-UHFFFAOYSA-N 0.000 description 3
- 229920006337 unsaturated polyester resin Polymers 0.000 description 3
- 229920001567 vinyl ester resin Polymers 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
本発明は、誘電率調整剤及び誘電率調整剤を樹脂中に分散させた樹脂組成物に関する。 The present invention relates to a dielectric constant adjusting agent and a resin composition in which a dielectric constant adjusting agent is dispersed in a resin.
従来、樹脂の比誘電率の調整は、樹脂と、その樹脂と比誘電率が異なる材料(誘電率調整剤)とを混合することによって行わている。接触的混合方法としては、誘電率調整剤を樹脂に均一に溶解する方法、誘電率調整剤を樹脂に分散混合させる方法、樹脂中に空隙を設ける方法等がある。しかし、これらの方法では、必要とする樹脂の比誘電率を調整することは可能であるが、樹脂本来の強度やガラス転移温度等を維持することができず、これらの物性は樹脂と比誘電率の異なる材料との中間、あるいはそれ以下になることが知られている。また、混合する比誘電率の異なる材料の種類によっては、比誘電率の異なる材料を樹脂に均一に溶解(相溶化)する場合、樹脂の反応速度(例えば硬化速度)の低下、或いは上昇をまねき、反応制御が困難となる等の化学的特性の面で問題があり、加えて耐熱性(ガラス転移温度、熱に対する寸法安定性を含む等)、誘電正接、接着性、機械的強度等の物理特性の面でも問題があった。このように、樹脂に誘電率調整剤を接触的混合させた場合には、樹脂から本来予期される特性の性能が低下し、所望の性能すべてが得られないという問題があった。 Conventionally, the relative dielectric constant of a resin is adjusted by mixing the resin and a material (dielectric constant adjusting agent) having a different relative dielectric constant from that of the resin. Examples of the contact mixing method include a method of uniformly dissolving the dielectric constant adjusting agent in the resin, a method of dispersing and mixing the dielectric constant adjusting agent in the resin, and a method of providing voids in the resin. However, with these methods, it is possible to adjust the required dielectric constant of the resin, but the original strength of the resin, glass transition temperature, etc. cannot be maintained, and these physical properties are relative to those of the resin. It is known that it is intermediate or lower than that of materials with different rates. In addition, depending on the types of materials having different relative dielectric constants to be mixed, when the materials having different relative dielectric constants are uniformly dissolved (compatibilized) in the resin, the reaction rate (for example, the curing rate) of the resin may decrease or increase. In addition, there are problems in terms of chemical properties such as difficulty in reaction control, in addition to physical properties such as heat resistance (including glass transition temperature, dimensional stability against heat, etc.), dielectric loss tangent, adhesion, mechanical strength, etc. There was also a problem in terms of characteristics. As described above, when the dielectric constant adjusting agent is contact-mixed with the resin, there is a problem that the performance of the characteristic originally expected from the resin is lowered and not all the desired performance can be obtained.
また、多孔質材料に樹脂と比誘電率の異なる有機物を固定化し、こうして得られた多孔質材料を用いる方法も考えられる。しかし。この方法に従えば、有機物による反応性や物性への影響を抑制しながら比誘電率を低減できるメリットがあるが、多孔質材料を溶剤中に長期間保管した場合に、含浸した有機物が溶け出し、有機物の悪影響が出ることが分かった。 Another possible method is to immobilize an organic substance having a dielectric constant different from that of the resin in the porous material and use the porous material thus obtained. However. According to this method, there is an advantage that the relative permittivity can be reduced while suppressing the influence of the organic matter on the reactivity and physical properties. However, when the porous material is stored in a solvent for a long time, the impregnated organic matter is dissolved. It turned out that the bad influence of organic matter comes out.
本発明の目的は、所望の比誘電率を有する樹脂を達成することができ、かつ樹脂の特性変化や反応性の変化の少ない誘電率調整剤及びそれを用いた樹脂組成物を提供することである。 An object of the present invention is to provide a dielectric constant adjusting agent that can achieve a resin having a desired relative dielectric constant and has little change in properties and reactivity of the resin, and a resin composition using the same. is there.
本発明者等は、上述した課題を解決するために、多孔質材料の細孔内に有機物を充填し、細孔内に充填した有機物を樹脂で固定させ、かつ細孔内に充填した有機物を多孔質材料の細孔の外部の樹脂と接触させない又は外部に溶出させないようにすることにより、上記の目的を達成することができる誘電率調整剤及びそれを用いた樹脂組成物を見出し、本発明を完成するに至った。 In order to solve the above-described problems, the present inventors have filled the organic material in the pores of the porous material, fixed the organic material filled in the pores with a resin, and the organic material filled in the pores. A dielectric constant adjusting agent capable of achieving the above-mentioned object by preventing the resin from contacting or elution from the resin outside the pores of the porous material, and a resin composition using the same, have been found. It came to complete.
かくして本発明によれば、以下の1〜11の発明が提供される。
1.多孔質材料の細孔内に、初めに有機物を細孔容量全体の1〜99容積%充填し、次いで有機物固定用樹脂を前記細孔容量の未充填容積の30〜100容積%充填したことを特徴とする誘電率調整剤。
2.有機物と有機物固定用樹脂とを混合した混合物を多孔質材料の細孔容量全体の5〜100容積%充填したことを特徴とする誘電率調整剤。
3.有機物と有機物固定用樹脂とを混合した混合物中の有機物の割合が10〜90容積%であることを特徴とする項2に記載の誘電率調整剤。
4.多孔質材料の細孔に充填する有機物が、20℃で固体であることを特徴とする項1から3のいずれか一に記載の誘電率調整剤。
5.多孔質材料の細孔容量が吸油量に換算して10〜700ml/100gであることを特徴とする項1から4のいずれか一に記載の誘電率調整剤。
6.多孔質材料の平均粒径が0.1〜100μmであることを特徴とする項1から5のいずれか一に記載の誘電率調整剤。
7.多孔質材料の平均細孔径が0.5〜1000nmであることを特徴とする項1から6のいずれか一に記載の誘電率調整剤。
8.多孔質材料が、多孔質シリカであることを特徴とする項1から7のいずれか一に記載の誘電率調整剤。
9.細孔内に充填する有機物または有機物固定用樹脂が熱硬化性を有することを特徴とする項1から8のいずれか一に記載の誘電率調整剤。
10.項1から9のいずれか一に記載の誘電率調整剤1〜700質量部を樹脂100質量部中に分散させたことを特徴とする樹脂組成物。
11.熱硬化性を有することを特徴とする項10に記載の樹脂組成物。
Thus, according to the present invention, the following inventions 1 to 11 are provided.
1. First, the pores of the porous material were filled with organic matter in an amount of 1 to 99% by volume of the whole pore volume, and then the organic matter fixing resin was filled with 30 to 100% by volume of the unfilled volume of the pore volume. Characteristic dielectric constant modifier.
2. A dielectric constant adjuster characterized by filling a mixture of an organic substance and an organic substance fixing resin in an amount of 5 to 100% by volume of the entire pore volume of the porous material.
3. Item 3. The dielectric constant adjusting agent according to Item 2, wherein the ratio of the organic substance in the mixture obtained by mixing the organic substance and the organic substance fixing resin is 10 to 90% by volume.
4). Item 4. The dielectric constant adjusting agent according to any one of Items 1 to 3, wherein the organic material filled in the pores of the porous material is solid at 20 ° C.
5. Item 5. The dielectric constant adjuster according to any one of Items 1 to 4, wherein the pore volume of the porous material is 10 to 700 ml / 100 g in terms of oil absorption.
6). Item 6. The dielectric constant modifier according to any one of Items 1 to 5, wherein the porous material has an average particle diameter of 0.1 to 100 µm.
7). Item 7. The dielectric constant modifier according to any one of Items 1 to 6, wherein the porous material has an average pore diameter of 0.5 to 1000 nm.
8). Item 8. The dielectric constant modifier according to any one of Items 1 to 7, wherein the porous material is porous silica.
9. Item 9. The dielectric constant adjusting agent according to any one of Items 1 to 8, wherein the organic substance or the organic substance fixing resin filled in the pores has thermosetting properties.
10. Item 11. A resin composition, wherein 1 to 700 parts by mass of the dielectric constant adjusting agent according to any one of Items 1 to 9 are dispersed in 100 parts by mass of a resin.
11. Item 11. The resin composition according to Item 10, which has thermosetting properties.
本発明の誘電率調整剤及びそれを用いた樹脂組成物は、樹脂の比誘電率を所望の比誘電率に変えることができ、しかも樹脂に与える特性変化や反応性の変化の影響が小さい。 The dielectric constant adjusting agent of the present invention and the resin composition using the same can change the relative dielectric constant of the resin to a desired relative dielectric constant, and are less affected by changes in properties and reactivity applied to the resin.
本発明において用いる多孔質材料は、細孔を有していれば任意の物でよく、特に材質を限定するものではない。多孔質材料として、例えば球状ポーラスシリカ粉末、多孔質シリカ粉末、細孔シリカゲル、ゼオライト、ケイ酸カルシウム、活性炭等を挙げることができ、特に多孔質シリカ粉末が好ましい。また、多孔質材料は、その形状も特に限定するものではなく、球状、鱗片状、不定形等を挙げることができ、特に球状のものは、樹脂の流動性への阻害が小さいことから好ましい。また、多孔質材料の平均粒径は0.1〜100μm、好ましくは0.2〜20μm、更に好ましくは0.3〜10μmである。 The porous material used in the present invention may be any material as long as it has pores, and the material is not particularly limited. Examples of the porous material include spherical porous silica powder, porous silica powder, porous silica gel, zeolite, calcium silicate, activated carbon and the like, and porous silica powder is particularly preferable. In addition, the shape of the porous material is not particularly limited, and examples thereof include a spherical shape, a scale shape, and an indeterminate shape, and a spherical material is particularly preferable since the inhibition on the fluidity of the resin is small. Moreover, the average particle diameter of a porous material is 0.1-100 micrometers, Preferably it is 0.2-20 micrometers, More preferably, it is 0.3-10 micrometers.
多孔質材料の細孔容量はJIS K 510.01あまに油法の吸油量に換算して10〜700ml/100g、好ましくは50〜500ml/100g、更に好ましくは100〜400ml/100gである。吸油量が10ml/100g以上であれば、難燃性の発現効果が良好であり、他方、700ml/100g以下であれば、多孔質材料の強度が十分である。平均細孔径は0.5〜1000nm、好ましくは3〜100nm、更に好ましくは5〜50nmである。平均細孔径が0.5nm以上であれば、有機物の充填が容易であり、他方、1000nm以下であれば、樹脂との接触面積が大きくなく、有機物の流出量が増えない。多孔質材料の材質、形状、平均細孔径、吸油量、平均粒径は同一でもよいし、2種類以上異なってもよい。 The pore volume of the porous material is 10 to 700 ml / 100 g, preferably 50 to 500 ml / 100 g, more preferably 100 to 400 ml / 100 g in terms of the oil absorption amount of JIS K 510.01 oil method. If the amount of oil absorption is 10 ml / 100 g or more, the effect of expressing flame retardancy is good, and if it is 700 ml / 100 g or less, the strength of the porous material is sufficient. The average pore diameter is 0.5 to 1000 nm, preferably 3 to 100 nm, more preferably 5 to 50 nm. When the average pore diameter is 0.5 nm or more, the organic material can be easily filled. On the other hand, when the average pore size is 1000 nm or less, the contact area with the resin is not large and the outflow amount of the organic material does not increase. The material, shape, average pore diameter, oil absorption, and average particle diameter of the porous material may be the same, or two or more types may be different.
多孔質材料の細孔内に有機物を充填し、有機物の上部に有機物固定用樹脂を充填する場合には、多孔質材料の細孔内への有機物の充填割合は、細孔容量全体の1〜99容積%で、好ましくは1〜90容積%、更に好ましくは20〜80容積%である。細孔内への有機物の充填割合が細孔容量全体の1容積%以上では、多孔質材料の細孔内外の隔離が十分である。このことは、例えば、常圧下で有機物を細孔内に充填する場合に、有機物充填後の細孔内部に空気が残存する。空気が残存する部分の周囲は有機物及び有機物固定用樹脂で囲われて外部から遮断され、細孔内部に空気を固定することが可能になる。空気の誘電率は材料中で一番低く、ほぼ1であるから、この空気分誘電率を低減することが可能になる。また、この空気量は、減圧条件で変更することができる。細孔内部に残存する空気が細孔外部に漏れ出さないように細孔内部に隔離でき、かつ多孔質材料の強度により、外部からかかる圧力にも耐えることを意味する。 When the organic material is filled in the pores of the porous material and the organic material fixing resin is filled in the upper portion of the organic material, the filling ratio of the organic material into the pores of the porous material is 1 to 1 of the entire pore volume. It is 99 volume%, Preferably it is 1-90 volume%, More preferably, it is 20-80 volume%. When the filling ratio of the organic substance into the pores is 1% by volume or more of the whole pore volume, the porous material is sufficiently isolated from inside and outside the pores. This means that, for example, when an organic substance is filled in the pores under normal pressure, air remains in the pores after the organic substance is filled. The periphery of the portion where the air remains is surrounded by an organic substance and an organic substance fixing resin and blocked from the outside, so that the air can be fixed inside the pores. Since the dielectric constant of air is the lowest among the materials and is almost 1, this air dielectric constant can be reduced. Further, this air amount can be changed under reduced pressure conditions. It means that the air remaining inside the pores can be isolated inside the pores so as not to leak out to the outside of the pores and can withstand the pressure applied from the outside due to the strength of the porous material.
また有機物固定用樹脂の充填割合は、有機物を充填した前記細孔容量の未充填容積の30〜100容積%、好ましくは40〜95容積%、更に好ましくは50〜90容積%である。有機物固定用樹脂の充填割合が未充填容積の30容積%以上では、有機物の隔離効果が十分である。すなわち、有機物が有機物固定用樹脂によって溶剤や周りの樹脂と接触しない。 The filling rate of the organic substance fixing resin is 30 to 100% by volume, preferably 40 to 95% by volume, more preferably 50 to 90% by volume of the unfilled volume of the pore volume filled with the organic substance. When the filling rate of the organic matter fixing resin is 30% by volume or more of the unfilled volume, the organic matter sequestration effect is sufficient. That is, the organic substance does not come into contact with the solvent or the surrounding resin by the organic substance fixing resin.
有機物と有機物固定用樹脂とを混合した混合物を多孔質材料の細孔内部に充填して誘電率調整剤を得る場合には、まず有機物固定用樹脂を作製し、溶解させ、その中に有機物を溶解させ、十分に混合して混合物を作製する。その後、有機物と有機物固定用樹脂との混合物を多孔質材料の細孔容量全体の5〜100容積%充填する。また、混合物中の有機物の割合は、10〜90容積%、好ましくは30〜80容積%、更に好ましくは30〜70容積%である。有機物が10容積%以上では、低誘電率化効果が発現し、他方、90容積%以下では、有機物固定用樹脂による有機物の固定効果が発現する。 In the case of obtaining a dielectric constant adjusting agent by filling a mixture of an organic substance and an organic substance fixing resin into the pores of the porous material to obtain a dielectric constant adjusting agent, first, an organic substance fixing resin is prepared, dissolved, and the organic substance is put therein. Dissolve and mix thoroughly to make a mixture. Then, 5-100 volume% of the mixture of organic substance and organic substance fixing resin is filled with respect to the whole pore volume of the porous material. Moreover, the ratio of the organic substance in a mixture is 10-90 volume%, Preferably it is 30-80 volume%, More preferably, it is 30-70 volume%. When the organic substance is 10% by volume or more, the effect of reducing the dielectric constant is exhibited. On the other hand, when the organic substance is 90% by volume or less, the effect of fixing the organic substance by the organic substance fixing resin is exhibited.
本発明において、有機物や有機物固定用樹脂を充填するには、これらの材料を液体にすることが必要である。材料を液体状態にすれば、多孔質材料の細孔径が小さいため、液体材料は毛管現象で細孔内部に充填される。従って、多孔質材料の細孔容量より液体材料の容量が小さい場合には、液体材料は、多孔質材料の細孔空間内に全て吸い込まれることになる。このため、細孔内部への液体材料の充填量は、有機物及び有機物固定用樹脂の配合量に依存し、充填量の調節は、それらの配合量を調節することによって行う。ただし、液体材料を細孔内部に完全充填するためには、材料を充填する前に減圧して細孔内部から空気を抜く必要がある。これは、細孔内部に空気があると最終的に材料を細孔内部に完全充填するのが難しくなるからである。しかし、常圧で充填を行い内部に空気を閉じ込めた場合、誘電率は完全充填よりも低くなる。常圧では、多孔質材料の細孔容量の70〜80%位の空間容積までしか充填はできない。逆に、空気量を増やしたい場合には、加圧下での充填が有効である。 In the present invention, in order to fill an organic substance or an organic substance fixing resin, it is necessary to make these materials liquid. If the material is in a liquid state, the pore diameter of the porous material is small, so that the liquid material is filled inside the pores by capillary action. Therefore, when the volume of the liquid material is smaller than the pore volume of the porous material, the liquid material is all sucked into the pore space of the porous material. For this reason, the filling amount of the liquid material into the pores depends on the blending amount of the organic substance and the organic substance fixing resin, and the filling amount is adjusted by adjusting the blending amount. However, in order to completely fill the liquid material into the pores, it is necessary to reduce the pressure before extracting the air from the pores before filling the material. This is because if there is air inside the pores, it becomes difficult to finally completely fill the pores with the material. However, when filling is performed at normal pressure and air is trapped inside, the dielectric constant becomes lower than that of complete filling. At normal pressure, filling is possible only up to a spatial volume of about 70 to 80% of the pore volume of the porous material. Conversely, when it is desired to increase the amount of air, filling under pressure is effective.
本発明で多孔質材料の細孔内に充填する有機物は、誘電率調整剤を配合する樹脂より誘電率が異なれば、任意の物でよく、樹脂への有機物の溶解を抑制するために20℃で固体である物が好ましく、また、細孔内に流入する点から、流動時の粘度が1000Pa・s以下(10000ポイズ以下)、好ましくは10Pa・s以下(100ポイズ以下)、更に好ましくは5Pa・s以下(50ポイズ以下)である物である。有機物としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、ポリアミドイミド、ポリアリレート、熱可塑性ポリイミド、ポリエーテルエーテルケトン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリカーボネート、ポリ酢酸ビニル、ポリスチレン、ポリブタジエン、ポリビニルエーテル等の熱可塑性樹脂、エポキシ樹脂、キシレン樹脂、グアナミン樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン、マレイン樹脂、メラミン樹脂、ユリア樹脂等の熱硬化性樹脂、エポキシアクリレート等の感光性樹脂、融点、軟化点を有し加熱することで流動性を有する有機物、ワックス等の加圧することで流動性を有する有機物、溶剤等の室温で液状の有機物等を挙げることができる。しかし、本発明において用いる有機物は、特に限定するものではない。また、充填する有機物は1種類でも、又は2種類以上を用いてもよい。 In the present invention, the organic material filled in the pores of the porous material may be any material as long as the dielectric constant is different from that of the resin containing the dielectric constant adjusting agent, and is 20 ° C. in order to suppress dissolution of the organic material in the resin. From the point of flowing into the pores, the fluid viscosity is 1000 Pa · s or less (10000 poise or less), preferably 10 Pa · s or less (100 poise or less), more preferably 5 Pa. -It is the thing which is s or less (50 poise or less). Organic materials include polyethylene, polypropylene, polyester, polyamide, polyamideimide, polyarylate, thermoplastic polyimide, polyether ether ketone, polyethylene oxide, polyethylene terephthalate, polyvinylidene chloride, polyvinyl chloride, polycarbonate, polyvinyl acetate, polystyrene, polybutadiene Thermosetting of thermoplastic resins such as polyvinyl ether, epoxy resin, xylene resin, guanamine resin, diallyl phthalate resin, vinyl ester resin, phenol resin, unsaturated polyester resin, polyimide, polyurethane, malein resin, melamine resin, urea resin Pressure of organic resin, wax, etc. that have fluidity by heating with photosensitive resin, epoxy resin, photosensitive resin, melting point, softening point Organic matter having fluidity can include a liquid organic substances at room temperature such as a solvent. However, the organic substance used in the present invention is not particularly limited. Moreover, the organic substance to be filled may be one type or two or more types.
本発明で多孔質材料の細孔内に充填する有機物固定用樹脂は、誘電率調整剤を配合することができかつ溶剤に溶解しなければ任意の物でよい。しかし、有機物固定用樹脂は、樹脂への溶解を抑制するために20℃で固体である物が好ましく、また、細孔内に流入する点から、流動時の粘度が1000Pa・s以下(10000ポイズ以下)である物がより好ましく、硬化性があるとさらに好ましい。 In the present invention, the organic substance fixing resin filled in the pores of the porous material may be any material as long as it can be mixed with a dielectric constant adjusting agent and does not dissolve in the solvent. However, the organic fixing resin is preferably a solid at 20 ° C. in order to suppress dissolution in the resin, and the viscosity during flow is 1000 Pa · s or less (10,000 poises) from the point of flowing into the pores. The following is more preferable, and it is more preferable that it is curable.
有機物固定用樹脂としては、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリアリレート、熱可塑性ポリイミド、ポリエーテルエーテルケトン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリカーボネート、ポリ酢酸ビニル、ポリスチレン、ポリブタジエン、ポリビニルエーテル等の熱可塑樹脂、モノマーあるいは半硬化状態のエポキシ樹脂、キシレン樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン、マレイン樹脂、メラミン樹脂、ユリア樹脂等の熱硬化性樹脂、モノマーあるいは半硬化状態のエポキシアクリレート等の感光性樹脂等を挙げることができる。しかし、本発明において用いる有機物固定用樹脂は、特に限定するものではない。また、充填する有機物固定樹脂は1種類でも、又は2種類以上を用いてもよい。 Examples of organic fixing resins include polyethylene, polypropylene, polyamide, polyamideimide, polyarylate, thermoplastic polyimide, polyetheretherketone, polyethylene oxide, polyethylene terephthalate, polyvinylidene chloride, polyvinyl chloride, polycarbonate, polyvinyl acetate, polystyrene, Thermoplastic resins such as polybutadiene and polyvinyl ether, monomer or semi-cured epoxy resin, xylene resin, diallyl phthalate resin, vinyl ester resin, phenol resin, unsaturated polyester resin, polyimide, polyurethane, malein resin, melamine resin, urea resin And a photosensitive resin such as a monomer or a semi-cured epoxy acrylate. However, the organic substance fixing resin used in the present invention is not particularly limited. Moreover, the organic substance fixing resin to be filled may be one type or two or more types.
本発明で多孔質材料の細孔内に有機物を充填する方法は特に限定するものではない。例えば,液状の有機物と多孔質材料とを撹拌して細孔内に充填する方法、加圧下で液状の有機物と多孔質材料とを撹拌して細孔内に充填する方法、減圧してから液状の有機物に多孔質材料を投入し撹拌して細孔内に充填する方法、予め多孔質材料と有機物とを混合しておき加熱により有機物を溶解して細孔内に充填する方法、予め多孔質材料と有機物とを混合しておき減圧してから加熱により有機物を溶解して細孔内に充填する方法、予め多孔質材料と有機物とを混合しておき加圧、加熱により有機物を溶解して細孔内に充填する方法、有機物を溶剤等で溶解して多孔質材料と撹拌し細孔内に充填する方法、有機物を溶剤等で溶解して多孔質材料と撹拌し細孔内に充填した後、加熱により溶剤を除去する方法、有機物を溶剤等で溶解して多孔質材料と撹拌し、細孔内に充填した後、減圧加熱により溶剤を除去する方法等を挙げることができる。 In the present invention, the method of filling the organic material into the pores of the porous material is not particularly limited. For example, a method of stirring a liquid organic substance and a porous material and filling the pores, a method of stirring a liquid organic substance and a porous material under pressure and filling the pores, a liquid state after reducing the pressure A method of charging a porous material into the organic material and stirring to fill the pores, a method of mixing the porous material and the organic material in advance and dissolving the organic material by heating to fill the pores, A method of mixing the material and the organic material, reducing the pressure and then dissolving the organic material by heating to fill the pores, mixing the porous material and the organic material in advance and dissolving the organic material by applying pressure and heating A method of filling in the pores, a method of dissolving the organic substance with a solvent and stirring it with the porous material and filling the pores, a solvent dissolving the organic substance with a solvent and stirring the porous material and filling the pores After that, the method of removing the solvent by heating, the organic substance is dissolved with a solvent etc. Stirring the material was filled into the pores, and a method for removing the solvent by heating under reduced pressure.
有機物の充填が終了した多孔質材料は、誘電率調整剤として使用する前に多孔質材料外部に残る有機物を除去するために、溶剤等で洗浄してもよい。また、有機物を充填する前に有機物の充填性を高めるために、カップリン剤等で多孔質材料の細孔表面を処理してもよい。有機物を充填した誘電率調整剤は、分散性を高めるためにカップリン剤等で表面処理してもよく、粉砕等の処理を行って粒径を小さくしてもよい。 The porous material that has been filled with the organic substance may be washed with a solvent or the like in order to remove the organic substance remaining outside the porous material before being used as a dielectric constant adjusting agent. Moreover, in order to improve the filling property of organic matter before filling with organic matter, the pore surface of the porous material may be treated with a coupling agent or the like. The dielectric constant modifier filled with an organic substance may be surface-treated with a coupling agent or the like in order to enhance dispersibility, or may be subjected to a treatment such as pulverization to reduce the particle size.
有機物の充填が終了した多孔質材料の未充填細孔内に、次いで有機物固定用樹脂を充填する。有機物固定用樹脂を充填する方法も本質的に有機物を充填する方法と変わりがない。有機物を含浸した多孔質材料を容器から取り出し,加熱して有機物固定用樹脂の硬化を行い,誘電率調整剤を作成する。充填した誘電率調整剤は、分散性を高めるためにカップリン剤等で表面処理してもよい。 The organic material fixing resin is then filled into the unfilled pores of the porous material that has been filled with the organic material. The method of filling the organic substance fixing resin is essentially the same as the method of filling the organic substance. The porous material impregnated with organic matter is taken out of the container and heated to cure the organic substance fixing resin, and a dielectric constant adjusting agent is prepared. The filled dielectric constant adjusting agent may be surface-treated with a coupling agent or the like in order to enhance dispersibility.
有機物と有機物固定用樹脂とを混合した混合物を多孔質材料の細孔内に充填する方法は、あらかじめ有機物と有機物固定用樹脂とを混合した混合物を用いる他は,本質的に有機物、次いで有機物固定用樹脂を充填する方法と変わりがない。充填した誘電率調整剤は、分散性を高めるためにカップリン剤等で表面処理してもよく、粉砕の処理を行って粒径を小さくしてもよい。 The method of filling the mixture of organic substance and organic substance fixing resin into the pores of the porous material is essentially organic substance, then organic substance fixation, except that the mixture of organic substance and organic substance fixing resin is used in advance. There is no difference from the method of filling the resin. The filled dielectric constant adjusting agent may be surface-treated with a coupling agent or the like in order to improve dispersibility, or may be pulverized to reduce the particle size.
本発明の誘電率調整剤を樹脂中に配合する場合、樹脂100質量部に対し誘電率調整剤を1〜700質量部、好ましくは30〜600質量部、更に好ましくは50〜500質量部を用いるのが好ましい。誘電率調整剤の配合量が1質量部以上では、誘電率の調整効果が発現し、700質量部以下では、樹脂組成物の取扱いが容易である。また、誘電率調整剤の分散性を向上するために、ニーダー、ボールミル、ビーズミル、3本ロール、ナノマイザー等既知の混練方法を用いて分散させてもよく、誘電率調整剤を樹脂組成物の状態で粉砕し、粒径を小さくして分散させてもよい。 When mix | blending the dielectric constant modifier of this invention in resin, 1-700 mass parts of a dielectric constant regulator is used with respect to 100 mass parts of resin, Preferably it is 30-600 mass parts, More preferably, 50-500 mass parts is used. Is preferred. When the blending amount of the dielectric constant adjusting agent is 1 part by mass or more, the effect of adjusting the dielectric constant is exhibited, and when it is 700 parts by mass or less, the resin composition is easily handled. Further, in order to improve the dispersibility of the dielectric constant adjusting agent, it may be dispersed by using a kneading method such as kneader, ball mill, bead mill, three rolls, nanomizer, etc., and the dielectric constant adjusting agent is in the state of the resin composition. May be pulverized and dispersed with a reduced particle size.
本発明で誘電率調整剤を分散させる樹脂は任意の物でよい。このような樹脂として、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリアリレート、熱可塑性ポリイミド、ポリエーテルエーテルケトン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリカーボネート、ポリ酢酸ビニル、ポリスチレン、ポリブタジエン、ポリビニルエーテル等の熱可塑性樹脂、エポキシ樹脂、キシレン樹脂、グアナミン樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン、マレイン樹脂、メラミン樹脂、ユリア樹脂等の熱硬化性樹脂、エポキシアクリレート等の感光性樹脂等を挙げることができる。しかし、本発明において用いる樹脂は、特に限定するものではない。また、分散させる誘電率調整剤は1種類でも、又は2種類以上を用いてもよい。 In the present invention, the resin in which the dielectric constant adjusting agent is dispersed may be arbitrary. Such resins include polyethylene, polypropylene, polyamide, polyamideimide, polyarylate, thermoplastic polyimide, polyether ether ketone, polyethylene oxide, polyethylene terephthalate, polyvinylidene chloride, polyvinyl chloride, polycarbonate, polyvinyl acetate, polystyrene, polybutadiene. Thermosetting of thermoplastic resins such as polyvinyl ether, epoxy resin, xylene resin, guanamine resin, diallyl phthalate resin, vinyl ester resin, phenol resin, unsaturated polyester resin, polyimide, polyurethane, malein resin, melamine resin, urea resin And photosensitive resins such as epoxy resins and epoxy acrylates. However, the resin used in the present invention is not particularly limited. Moreover, the dielectric constant adjusting agent to be dispersed may be one type or two or more types.
以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。
本実施例及び比較例では、有機物と有機物固定用樹脂とを細孔中に充填した後での容積%の確認方法は、TG−DTAを用いた。すなわち、有機物と有機物固定用樹脂とを1000℃まで昇温して燃焼して、分解残渣を多孔質材料の質量、分解成分を有機物等として、比重から計算した。また、2段階充填では、途中段階と最終段階との2回燃焼して、分解残渣測定をして確認した。
誘電率は、RFインピーダンス/マテリアルアナライザ(アジレントテクノロジー社製、HP 4291B)を用いて1GHzでの誘電率を測定した。
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.
In this example and comparative example, TG-DTA was used as a method for confirming the volume% after the organic substance and the organic substance fixing resin were filled in the pores. That is, the organic substance and the organic substance fixing resin were heated to 1000 ° C. and burned, and the decomposition residue was calculated from the specific gravity using the mass of the porous material and the decomposition component as the organic substance. Further, in the two-stage filling, it was confirmed by burning twice in the intermediate stage and the final stage and measuring the decomposition residue.
The dielectric constant was measured at 1 GHz using an RF impedance / material analyzer (manufactured by Agilent Technologies, HP 4291B).
(実施例1)
(1)有機物固定用樹脂を製造するのに、液状エポキシ樹脂(ジャパンエポキシレジン製エピコート815)、液状フェノール(明和化成製、MEH−8000H)、硬化促進剤としてのイミダゾール(四国化成工業株式会社製2E4MZ)を用いた。液状エポキシ樹脂(エピコート815)50質量部、液状フェノール(MEH−8000H)37.9質量部、イミダゾール(2E4MZ)0.5質量部をビーカーに取り、25℃で1時間撹拌混合した。
(2)多孔質材料として、多孔質シリカ(吸油量150ml/100g、平均粒径1.1μm、鈴木油脂工業株式会社製ゴッドボールE−2C(商品名)))を、充填する有機物として縮合リン酸エステル(融点95℃、大八化学工業株式会社製PX−200(商品名))を用いた。多孔質シリカ(E−2C)200質量部、縮合リン酸エステル(PX−200)207質量部を温度計、冷却管、減圧装置、攪拌装置を備えた4つ口セパラブルフラスコに取り、撹拌しながら4つ口セパラブルフラスコ内を減圧した。4つ口セパラブルフラスコ内の圧力が10mmHg以下まで下がった事を確認後、内部温度が120℃になるように4つ口セパラブルフラスコを加熱し、温度を保持したまま1時間加熱撹拌して縮合リン酸エステルを多孔質シリカの細孔内に、細孔容量に対して60容積%充填した。
(3)充填後、4つ口セパラブルフラスコを50℃まで冷却し、(1)で用意した有機物固定用樹脂72質量部を4つ口セパラブルフラスコに取り、撹拌しながら4つ口セパラブルフラスコ内を減圧した。4つ口セパラブルフラスコ内の圧力が10mmHg以下まで下がった事を確認した後に、内部温度が120℃になるように4つ口セパラブルフラスコを加熱し、温度を保持したまま1時間加熱撹拌して有機物固定用樹脂を多孔質シリカの細孔内に前記細孔容量の未充填容積の50容積%充填した。
(4)充填後、4つ口セパラブルフラスコを50℃まで冷却し、有機物を含浸した多孔質シリカを取り出し、180℃で2時間加熱して有機物固定用樹脂の硬化を行い、誘電率調整剤を作製した。
(5)メタノール10質量部、ジフェニルジメトキシシラン40質量部、ジメチルジメトキシシラン20質量部を温度計、冷却管、減圧装置、攪拌装置を備えた4つ口セパラブルフラスコに取り、撹拌しながら蒸留水6質量部、酢酸0.5質量部を溶液に添加し、50℃で4時間加熱して加水分解、重縮合反応を行った。一旦、0℃に冷却した後に、トリメトキシメチルシラン8質量部を滴下して室温で2時間撹拌してシリコーン重合体を得た。
(6)(4)で作製した誘電率調整剤100質量部、メチルエチルケトン100質量部、(5)で作製したシリコーン重合体0.6質量部をビーカーに取り、1時間撹拌混合した。その後、下記の材料を加えて2時間撹拌し、評価用ワニスを作製した。このワニスを2日間室温で保管した後に18μmの銅箔上に塗工し、100℃−15分間乾燥して膜厚100±3μmの樹脂フィルムを作製した。
・誘電率調整剤溶液:120質量部
・ビフェニル系エポキシ樹脂:NC3000−H(日本化薬株式会社社製、商品名):78質量部
・熱硬化剤:ジシアンジアミド(日本カーバイド株式会社製、商品名):3.1質量部
・熱硬化剤ノボラックフェノール樹脂:HP−850(日立化成工業株式会社製、商品名):14.1質量部
・イミダゾール:2−フェニルイミダゾール(四国化成工業株式会社製、商品名2PZ):0.6質量部
・溶剤:メチルエチルケトン:100質量部
(7)次に、180℃―120分の硬化条件で樹脂フィルムを硬化した。その後、銅箔をエッチングで除去し、評価用フィルムを作製した。
Example 1
(1) Liquid epoxy resin (Japan Epoxy Resin Epicoat 815), liquid phenol (Maywa Kasei, MEH-8000H), and imidazole as a curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd.) 2E4MZ) was used. 50 parts by mass of a liquid epoxy resin (Epicoat 815), 37.9 parts by mass of liquid phenol (MEH-8000H) and 0.5 parts by mass of imidazole (2E4MZ) were placed in a beaker and stirred and mixed at 25 ° C. for 1 hour.
(2) As a porous material, porous silica (oil absorption 150 ml / 100 g, average particle size 1.1 μm, Suzuki Oil & Fat Industries, Inc., God Ball E-2C (trade name))) is used as an organic substance to be filled. Acid ester (melting point 95 ° C., PX-200 (trade name) manufactured by Daihachi Chemical Industry Co., Ltd.) was used. Take 200 parts by weight of porous silica (E-2C) and 207 parts by weight of condensed phosphate ester (PX-200) in a four-necked separable flask equipped with a thermometer, a condenser, a decompressor, and a stirrer and stir. The pressure in the four-neck separable flask was reduced. After confirming that the pressure in the four-neck separable flask has dropped to 10 mmHg or less, heat the four-neck separable flask so that the internal temperature becomes 120 ° C., and heat and stir for 1 hour while maintaining the temperature. The condensed phosphate ester was filled in the pores of the porous silica at 60% by volume with respect to the pore volume.
(3) After filling, the four-neck separable flask is cooled to 50 ° C., 72 parts by mass of the organic substance fixing resin prepared in (1) is taken into the four-neck separable flask, and the four-neck separable flask is stirred. The inside of the flask was depressurized. After confirming that the pressure in the four-neck separable flask has dropped to 10 mmHg or less, heat the four-neck separable flask so that the internal temperature becomes 120 ° C., and stir for 1 hour while maintaining the temperature. Then, the organic substance fixing resin was filled into the pores of the porous silica at 50% by volume of the unfilled volume of the pore volume.
(4) After filling, the four-necked separable flask is cooled to 50 ° C., the porous silica impregnated with the organic matter is taken out, heated at 180 ° C. for 2 hours to cure the organic substance fixing resin, and the dielectric constant adjuster Was made.
(5) Take 10 parts by mass of methanol, 40 parts by mass of diphenyldimethoxysilane, and 20 parts by mass of dimethyldimethoxysilane in a four-necked separable flask equipped with a thermometer, a condenser, a decompressor, and a stirrer, and add distilled water while stirring. 6 parts by mass and 0.5 part by mass of acetic acid were added to the solution and heated at 50 ° C. for 4 hours to conduct hydrolysis and polycondensation reactions. Once cooled to 0 ° C., 8 parts by mass of trimethoxymethylsilane was added dropwise and stirred at room temperature for 2 hours to obtain a silicone polymer.
(6) 100 parts by mass of the dielectric constant adjusting agent prepared in (4), 100 parts by mass of methyl ethyl ketone, and 0.6 parts by mass of the silicone polymer prepared in (5) were placed in a beaker and mixed with stirring for 1 hour. Thereafter, the following materials were added and stirred for 2 hours to prepare an evaluation varnish. The varnish was stored at room temperature for 2 days, then coated on an 18 μm copper foil and dried at 100 ° C. for 15 minutes to prepare a resin film having a film thickness of 100 ± 3 μm.
Dielectric constant adjusting agent solution: 120 parts by mass Biphenyl type epoxy resin: NC3000-H (Nippon Kayaku Co., Ltd., trade name): 78 parts by mass Thermosetting agent: Dicyandiamide (Nippon Carbide, trade name) ): 3.1 parts by mass / thermosetting agent novolak phenol resin: HP-850 (manufactured by Hitachi Chemical Co., Ltd., trade name): 14.1 parts by mass / imidazole: 2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) (Product name 2PZ): 0.6 parts by mass. Solvent: methyl ethyl ketone: 100 parts by mass. (7) Next, the resin film was cured under curing conditions of 180 ° C.-120 minutes. Thereafter, the copper foil was removed by etching to produce a film for evaluation.
(実施例2)
誘電率調整剤の配合量を150質量部、メチルエチルケトン150質量部、シリコーン重合体1.0質量部、誘電率調整剤溶液240質量部とした以外は、実施例1と同様にして行った。
(Example 2)
The same procedure as in Example 1 was carried out except that the blending amount of the dielectric constant adjusting agent was 150 parts by mass, 150 parts by mass of methyl ethyl ketone, 1.0 part by mass of the silicone polymer, and 240 parts by mass of the dielectric constant adjusting agent solution.
(実施例3)
多孔質シリカを富士シリシア化学株式会社製多孔質シリカ(吸油量330ml/100g、平均粒径2.6μm、SYLYSIA310P(商品名))とし、配合量を100質量部とした。また縮合リン酸エステルの配合量は230質量部(細孔容量の60体積%充填)、有機物固定用樹脂は80質量部(細孔容量の残存体積の51%充填)、誘電率調整剤溶液は100質量部とし、シリコーン重合体1.0質量部とした以外は、実施例1と同様にして行った。
(Example 3)
The porous silica was made by Fuji Silysia Chemical Co., Ltd. porous silica (oil absorption 330 ml / 100 g, average particle size 2.6 μm, SYLYSIA310P (trade name)), and the blending amount was 100 parts by mass. The compounding amount of the condensed phosphate ester is 230 parts by mass (filling 60% by volume of the pore volume), the organic substance fixing resin is 80 parts by mass (filling 51% of the remaining volume of the pore volume), The same procedure as in Example 1 was carried out except that the content was 100 parts by mass and the silicone polymer was 1.0 part by mass.
(実施例4)
(1)実施例1で用いた液状エポキシ樹脂(エピコート815)41質量部、液状フェノール(MEH−8000H)31質量部、縮合リン酸エステル(PX−200)207質量部を温度計、冷却管、減圧装置、攪拌装置を備えた4つ口セパラブルフラスコに取り、120℃で1時間撹拌して溶解し、混合した。その後50℃まで冷却し、イミダゾール(2E4MZ)0.4質量部を配合して30分間撹拌混合して有機物と有機物固定用樹脂を混合した。
(2)実施例1で用いた多孔質シリカ(E−2C)200質量部を加え、撹拌しながら4つ口セパラブルフラスコ内を減圧した。4つ口セパラブルフラスコ内の圧力が10mmHg以下まで下がった事を確認した後に、内部温度が120℃になるように4つ口セパラブルフラスコを加熱し、温度を保持したまま1時間加熱撹拌して有機物と有機物固定用樹脂を混合した樹脂を多孔質シリカの細孔内に、細孔容量に対して83体積%充填した。
(3)充填後、4つ口セパラブルフラスコを50℃まで冷却し、有機物を含浸した多孔質シリカを取り出し、180℃で2時間加熱して有機物固定用樹脂の硬化を行い、誘電率調整剤を作製した。
(4)メタノール10質量部、ジフェニルジメトキシシラン40質量部、ジメチルジメトキシシラン20質量部を温度計、冷却管、減圧装置、攪拌装置を備えた4つ口セパラブルフラスコに取り、撹拌しながら蒸留水6質量部、酢酸0.5質量部を溶液に添加し、50℃で4時間加熱して加水分解し、重縮合反応を行った。一旦、0℃に冷却した後に、トリメトキシメチルシラン8質量部を滴下して室温で2時間撹拌してシリコーン重合体を得た。
(5)(3)で作製した誘電率調整剤50質量部、メチルエチルケトン50質量部、(4)で作製したシリコーン重合体0.3質量部をビーカーに取り、1時間撹拌混合した。その後、下記の材料を加えて2時間撹拌し、評価用ワニスを作製した。このワニスを2日間室温で保管した後に18μmの銅箔上に塗工し、100℃−15分間乾燥して膜厚100±3μmの樹脂フィルムを作製した。
・誘電率調整剤溶液:120質量部
・ビフェニル系エポキシ樹脂:NC3000−H(日本化薬株式会社社製、商品名):78質量部
・熱硬化剤:ジシアンジアミド(日本カーバイド株式会社製、商品名):3.1質量部
・熱硬化剤:ノボラックフェノール樹脂、HP−850(日立化成工業株式会社製、商品名):14.1質量部
・イミダゾール:2−フェニルイミダゾール(四国化成工業株式会社製、商品名2PZ):0.6質量部
・溶剤:メチルエチルケトン:100質量部
(6)次に、180℃―120分間の硬化条件で樹脂フィルムを硬化した。その後、銅箔をエッチングで除去し、評価用フィルムを作製した。
Example 4
(1) 41 parts by mass of liquid epoxy resin (Epicoat 815) used in Example 1, 31 parts by mass of liquid phenol (MEH-8000H), 207 parts by mass of condensed phosphate ester (PX-200), thermometer, condenser, It took in the 4-neck separable flask provided with the pressure reduction apparatus and the stirring apparatus, and it stirred and stirred for 1 hour at 120 degreeC, and mixed. Thereafter, the mixture was cooled to 50 ° C., 0.4 parts by mass of imidazole (2E4MZ) was blended, and stirred and mixed for 30 minutes to mix the organic substance and the organic substance fixing resin.
(2) 200 parts by mass of porous silica (E-2C) used in Example 1 was added, and the pressure in the four-necked separable flask was reduced while stirring. After confirming that the pressure in the four-neck separable flask has dropped to 10 mmHg or less, heat the four-neck separable flask so that the internal temperature becomes 120 ° C., and stir for 1 hour while maintaining the temperature. Then, 83 volume% of the pore volume of the porous silica was filled with a resin obtained by mixing the organic substance and the organic substance fixing resin.
(3) After filling, the four-necked separable flask is cooled to 50 ° C., the porous silica impregnated with the organic matter is taken out, heated at 180 ° C. for 2 hours to cure the resin for fixing the organic matter, and a dielectric constant adjuster Was made.
(4) Take 10 parts by weight of methanol, 40 parts by weight of diphenyldimethoxysilane, and 20 parts by weight of dimethyldimethoxysilane in a four-necked separable flask equipped with a thermometer, a condenser, a decompression device, and a stirrer. 6 parts by mass and 0.5 part by mass of acetic acid were added to the solution, followed by hydrolysis by heating at 50 ° C. for 4 hours to carry out a polycondensation reaction. Once cooled to 0 ° C., 8 parts by mass of trimethoxymethylsilane was added dropwise and stirred at room temperature for 2 hours to obtain a silicone polymer.
(5) 50 parts by mass of the dielectric constant adjuster prepared in (3), 50 parts by mass of methyl ethyl ketone, and 0.3 part by mass of the silicone polymer prepared in (4) were placed in a beaker and mixed with stirring for 1 hour. Thereafter, the following materials were added and stirred for 2 hours to prepare an evaluation varnish. The varnish was stored at room temperature for 2 days, then coated on an 18 μm copper foil and dried at 100 ° C. for 15 minutes to prepare a resin film having a film thickness of 100 ± 3 μm.
Dielectric constant adjusting agent solution: 120 parts by mass Biphenyl type epoxy resin: NC3000-H (Nippon Kayaku Co., Ltd., trade name): 78 parts by mass Thermosetting agent: Dicyandiamide (Nippon Carbide, trade name) ): 3.1 parts by mass / thermosetting agent: novolak phenol resin, HP-850 (manufactured by Hitachi Chemical Co., Ltd., trade name): 14.1 parts by mass / imidazole: 2-phenylimidazole (manufactured by Shikoku Chemicals Co., Ltd.) (Trade name 2PZ): 0.6 parts by mass. Solvent: methyl ethyl ketone: 100 parts by mass. (6) Next, the resin film was cured under curing conditions of 180 ° C. for 120 minutes. Thereafter, the copper foil was removed by etching to produce a film for evaluation.
(比較例1)
(1)実施例1の誘電率調整剤と同質量と計算される無孔質シリカ、リン酸エステル、液状エポキシ樹脂、液状フェノール、硬化促進剤を下記の組成で配合し、評価用ワニスを作製した。このワニスを2日間室温で保管した後に18μmの銅箔上に塗工し、100℃−10分間乾燥して膜厚100±3μmの樹脂フィルムを作製した。
・縮合リン酸エステル:PX−200(大八化学工業株式会社製、商品名):26質量部
・無孔質シリカ:SO−25R、平均粒径0.5μm(株式会社アドマテックス製、商品名):25質量部
・液状エポキシ樹脂:エピコート815(ジャパンエポキシレジン株式会社製、商品名):5.2質量部
・液状フェノール:MEH−8000H(明和化成株式会社製、商品名):3.8質量部
・イミダゾール:2E4MZ(四国化成工業株式会社、商品名):0.5質量部
・ビフェニル系エポキシ樹脂:NC3000−H(日本化薬株式会社社製、商品名):78質量部
・熱硬化剤:ジシアンジアミド(日本カーバイド株式会社製、商品名):3.1質量部
・熱硬化剤ノボラックフェノール樹脂:HP−850(日立化成工業株式会社製、商品名):14.1質量部
・イミダゾール:2−フェニルイミダゾール(四国化成工業株式会社製、商品名2PZ):0.6質量部
・溶剤:メチルエチルケトン:100質量部
(2)次に、180℃―120分の硬化条件で樹脂フィルムを硬化した。その後、銅箔をエッチングで除去し、評価用フィルムを作製した。
(Comparative Example 1)
(1) An evaluation varnish is prepared by blending non-porous silica, phosphate ester, liquid epoxy resin, liquid phenol and curing accelerator having the same mass as the dielectric constant adjusting agent of Example 1 in the following composition. did. The varnish was stored at room temperature for 2 days, then coated on an 18 μm copper foil and dried at 100 ° C. for 10 minutes to prepare a resin film having a film thickness of 100 ± 3 μm.
・ Condensed phosphate ester: PX-200 (trade name, manufactured by Daihachi Chemical Industry Co., Ltd.): 26 parts by mass ): 25 parts by mass Liquid epoxy resin: Epicoat 815 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.): 5.2 parts by mass Liquid phenol: MEH-8000H (trade name, manufactured by Meiwa Kasei Co., Ltd.): 3.8 Part by mass / imidazole: 2E4MZ (Shikoku Chemicals Co., Ltd., trade name): 0.5 part by mass / biphenyl epoxy resin: NC3000-H (trade name, manufactured by Nippon Kayaku Co., Ltd.): 78 parts by mass / thermosetting Agent: Dicyandiamide (trade name, manufactured by Nippon Carbide Co., Ltd.): 3.1 parts by mass / thermosetting agent novolak phenol resin: HP-850 (manufactured by Hitachi Chemical Co., Ltd., product) ): 14.1 parts by mass-Imidazole: 2-phenylimidazole (trade name 2PZ, manufactured by Shikoku Chemicals Co., Ltd.): 0.6 parts by mass-Solvent: methyl ethyl ketone: 100 parts by mass (2) Next, 180 ° C.-120 The resin film was cured under the curing conditions of minutes. Thereafter, the copper foil was removed by etching to produce a film for evaluation.
(比較例2)
比較例1において、縮合リン酸エステルを除き、その他は比較例1と同様にして行った。
(Comparative Example 2)
In Comparative Example 1, the procedure was the same as Comparative Example 1 except for the condensed phosphate ester.
(比較例3)
(1)多孔質材料として多孔質シリカ(吸油量150ml/100g、平均粒径1.1μm、鈴木油脂工業株式会社製ゴッドボールE−2C(商品名))、充填する有機物として縮合リン酸エステル(融点95℃、大八化学工業株式会社製PX−200(商品名))を用いた。多孔質シリカ(E−2C)200質量部、縮合リン酸エステル(PX−200)207質量部を温度計、冷却管、減圧装置、攪拌装置を備えた4つ口セパラブルフラスコに取り、撹拌しながら4つ口セパラブルフラスコ内を減圧した。4つ口セパラブルフラスコ内の圧力が10mmHg以下まで下がった事を確認した後に、内部温度が120℃になるように4つ口セパラブルフラスコを加熱し、温度を保持したまま1時間加熱撹拌して縮合リン酸エステルを多孔質シリカ内の細孔内に、細孔容量に対して60体積%充填した。
(2)充填後、4つ口セパラブルフラスコを50℃まで冷却し、有機物を含浸した多孔質シリカを取り出し、180℃で2時間加熱して誘電率調整剤を作製した。
(3)メタノール10質量部、ジフェニルジメトキシシラン40質量部、ジメチルジメトキシシラン20質量部を温度計、冷却管、減圧装置、攪拌装置を備えた4つ口セパラブルフラスコに取り、撹拌しながら蒸留水6質量部、酢酸0.5質量部を溶液に添加し、50
℃で4時間加熱して加水分解し、重縮合反応を行った。一旦、0℃に冷却後、トリメトキシメチルシラン8質量部を滴下して室温で2時間撹拌してシリコーン重合体を得た。
(4)(2)で作製した誘電率調整剤75質量部、メチルエチルケトン75質量部、(3)で作製したシリコーン重合体0.6質量部をビーカーに取り、1時間撹拌混合した。その後、下記の材料を加えて2時間撹拌し、評価用ワニスを作製した。このワニスを2日間室温で保管した後に18μmの銅箔上に塗工し、100℃−15分間乾燥して膜厚100±3μmの樹脂フィルムを作製した。
・誘電率調整剤溶液:102質量部
・ビフェニル系エポキシ樹脂:NC3000−H(日本化薬株式会社社製、商品名):78質量部
・熱硬化剤:ジシアンジアミド(日本カーバイド株式会社製、商品名):3.1質量部
・熱硬化剤:ノボラックフェノール樹脂:HP−850(日立化成工業株式会社製、商品名):14.1質量部
・イミダゾール:2−フェニルイミダゾール(四国化成工業株式会社製、商品名2PZ):0.6質量部
・溶剤:メチルエチルケトン:100質量部
(5)次に、180℃―120分間の硬化条件で樹脂フィルムを硬化した。その後、銅箔をエッチングで除去し、評価用フィルムを作製した。
(Comparative Example 3)
(1) Porous silica (oil absorption 150 ml / 100 g, average particle size 1.1 μm, God Ball E-2C (trade name) manufactured by Suzuki Oil & Fat Co., Ltd.) as a porous material, condensed phosphate ester ( A melting point of 95 ° C., PX-200 (trade name) manufactured by Daihachi Chemical Industry Co., Ltd.) was used. Take 200 parts by weight of porous silica (E-2C) and 207 parts by weight of condensed phosphate ester (PX-200) in a four-necked separable flask equipped with a thermometer, a condenser, a decompressor, and a stirrer and stir. The pressure in the four-neck separable flask was reduced. After confirming that the pressure in the four-neck separable flask has dropped to 10 mmHg or less, heat the four-neck separable flask so that the internal temperature becomes 120 ° C., and stir for 1 hour while maintaining the temperature. Then, 60% by volume of the condensed phosphate ester was filled in the pores in the porous silica with respect to the pore volume.
(2) After filling, the four-necked separable flask was cooled to 50 ° C., the porous silica impregnated with the organic matter was taken out, and heated at 180 ° C. for 2 hours to prepare a dielectric constant adjusting agent.
(3) Take 10 parts by weight of methanol, 40 parts by weight of diphenyldimethoxysilane, and 20 parts by weight of dimethyldimethoxysilane in a four-necked separable flask equipped with a thermometer, a condenser, a decompressor, and a stirrer, and add distilled water while stirring. Add 6 parts by weight, 0.5 parts by weight of acetic acid to the solution,
The polycondensation reaction was performed by heating at 4 ° C. for 4 hours for hydrolysis. Once cooled to 0 ° C., 8 parts by mass of trimethoxymethylsilane was added dropwise and stirred at room temperature for 2 hours to obtain a silicone polymer.
(4) 75 parts by mass of the dielectric constant adjuster prepared in (2), 75 parts by mass of methyl ethyl ketone, and 0.6 parts by mass of the silicone polymer prepared in (3) were placed in a beaker and mixed with stirring for 1 hour. Thereafter, the following materials were added and stirred for 2 hours to prepare an evaluation varnish. The varnish was stored at room temperature for 2 days, then coated on an 18 μm copper foil and dried at 100 ° C. for 15 minutes to prepare a resin film having a film thickness of 100 ± 3 μm.
Dielectric constant adjusting agent solution: 102 parts by mass Biphenyl type epoxy resin: NC3000-H (Nippon Kayaku Co., Ltd., trade name): 78 parts by mass Thermosetting agent: Dicyandiamide (Nippon Carbide, trade name) ): 3.1 parts by mass / thermosetting agent: novolak phenol resin: HP-850 (manufactured by Hitachi Chemical Co., Ltd., trade name): 14.1 parts by mass / imidazole: 2-phenylimidazole (manufactured by Shikoku Chemicals Co., Ltd.) (Trade name 2PZ): 0.6 parts by mass. Solvent: methyl ethyl ketone: 100 parts by mass. (5) Next, the resin film was cured under curing conditions of 180 ° C. for 120 minutes. Thereafter, the copper foil was removed by etching to produce a film for evaluation.
作製した評価用フィルムを、RFインピーダンス/マテリアルアナライザ(アジレントテクノロジー社製、HP 4291B)を用いて1GHzでの誘電率を測定した。また、評価用フィルムから試験片を切出して熱機械分析装置(マックサイエンス株式会社製TMA−4000)を用いて昇温;5℃/minの条件でガラス転移温度(Tg)を測定した。結果を表1に示した。 The dielectric constant at 1 GHz was measured for the produced evaluation film using an RF impedance / material analyzer (manufactured by Agilent Technologies, HP 4291B). Moreover, the test piece was cut out from the film for evaluation, and the glass transition temperature (Tg) was measured on the conditions of temperature rising; 5 degreeC / min using the thermomechanical analyzer (TMA-4000 by Mac Science Co., Ltd.). The results are shown in Table 1.
表1より、実施例1〜4では、誘電率が変化しても、ガラス転移温度(Tg)に大きな変化が見られないのに対し、比較例1〜3では、誘電率の変化に伴って、ガラス転移温度(Tg)が大きく変化していることが分かる。 From Table 1, in Examples 1-4, even if a dielectric constant changes, a big change is not looked at by glass transition temperature (Tg), but in Comparative Examples 1-3, with a change of a dielectric constant. It can be seen that the glass transition temperature (Tg) varies greatly.
これより、本発明の誘電率調整剤を樹脂に配合することにより、樹脂組成物の物性への影響や樹脂組成物の反応性を抑えながら誘電率を低減できる。 From this, by mix | blending the dielectric constant modifier of this invention with resin, a dielectric constant can be reduced, suppressing the influence on the physical property of a resin composition, or the reactivity of a resin composition.
本発明の誘電率調整剤及び樹脂樹脂組成物は、電子部品に用いる樹脂の比誘電率を所望の比誘電率に変えることができる。 The dielectric constant adjusting agent and the resin resin composition of the present invention can change the relative dielectric constant of a resin used for an electronic component to a desired relative dielectric constant.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012050126A JP5541304B2 (en) | 2005-04-26 | 2012-03-07 | Dielectric constant adjusting agent and resin composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005127816 | 2005-04-26 | ||
JP2005127816 | 2005-04-26 | ||
JP2012050126A JP5541304B2 (en) | 2005-04-26 | 2012-03-07 | Dielectric constant adjusting agent and resin composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005341666A Division JP2006332021A (en) | 2005-04-26 | 2005-11-28 | Dielectric constant conditioner and resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012151118A true JP2012151118A (en) | 2012-08-09 |
JP5541304B2 JP5541304B2 (en) | 2014-07-09 |
Family
ID=46793157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012050126A Active JP5541304B2 (en) | 2005-04-26 | 2012-03-07 | Dielectric constant adjusting agent and resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5541304B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02107692A (en) * | 1988-10-17 | 1990-04-19 | Canon Inc | Organic high polymer material having antistatic power |
JP4691921B2 (en) * | 2004-07-27 | 2011-06-01 | 日立化成工業株式会社 | Resin property adjusting agent and property adjusting resin composition using the same |
-
2012
- 2012-03-07 JP JP2012050126A patent/JP5541304B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02107692A (en) * | 1988-10-17 | 1990-04-19 | Canon Inc | Organic high polymer material having antistatic power |
JP4691921B2 (en) * | 2004-07-27 | 2011-06-01 | 日立化成工業株式会社 | Resin property adjusting agent and property adjusting resin composition using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5541304B2 (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5761639B2 (en) | Adhesive resin composition, cured product thereof, and adhesive film | |
JP4112540B2 (en) | Manufacturing method of spherical inorganic hollow powder. | |
JP4244323B2 (en) | Spherical inorganic hollow powder, method for producing the same, and resin composition | |
TW202231349A (en) | Method for producing hollow particles and hollow particles | |
JP2003137627A (en) | Highly thermally conductive inorganic powder, resin composition and surface treatment agent composition | |
JP5045895B2 (en) | Latent curing agent for epoxy resin and method for producing the same | |
JP2014189701A (en) | High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition | |
JP2008255246A (en) | Latent curing agent for epoxy resin and method for producing the same | |
JP4516779B2 (en) | Metal oxide surface-treated particles, method for producing the same, and method for producing a resin composition | |
JP2006332021A (en) | Dielectric constant conditioner and resin composition | |
JP5011714B2 (en) | Flame retardancy imparting agent and flame retardant resin composition | |
JP5541304B2 (en) | Dielectric constant adjusting agent and resin composition | |
US20220289940A1 (en) | Thermal conductive filler and preparation method thereof | |
JP2006022316A (en) | Filler for use in epoxy resin composition | |
JP2015189638A (en) | surface-modified silica powder and slurry composition | |
Mert et al. | Preparation of Pickering‐polyHIPEs from surface modified pumice stabilized high internal phase emulsions as supporting materials for lauric acid impregnation | |
JP4691921B2 (en) | Resin property adjusting agent and property adjusting resin composition using the same | |
JP3851749B2 (en) | Metal foil with resin | |
JP2015193704A (en) | High heat conductive ceramic powder-containing resin composition and cured article thereof | |
JP4155719B2 (en) | Spherical inorganic powder and its use | |
JP2002003724A (en) | Insulating material and method of producing the same | |
TW202407016A (en) | Liquid composition, prepreg, metal substrate with resin, wiring board, and silica particles | |
JP5464109B2 (en) | Resin property adjusting agent and property adjusting resin composition using the same | |
WO2023008290A1 (en) | Spherical silica powder and method for producing spherical silica powder | |
JP2015193703A (en) | Resin composition containing highly thermally-conductive ceramic powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140421 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5541304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S801 | Written request for registration of abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311801 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S801 | Written request for registration of abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311801 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |