JP2012150107A - Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film - Google Patents

Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film Download PDF

Info

Publication number
JP2012150107A
JP2012150107A JP2011285145A JP2011285145A JP2012150107A JP 2012150107 A JP2012150107 A JP 2012150107A JP 2011285145 A JP2011285145 A JP 2011285145A JP 2011285145 A JP2011285145 A JP 2011285145A JP 2012150107 A JP2012150107 A JP 2012150107A
Authority
JP
Japan
Prior art keywords
anisotropic film
change
film
optically anisotropic
polarization state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011285145A
Other languages
Japanese (ja)
Inventor
Hungu Chiongu Ra
フング チオング ラ
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2011285145A priority Critical patent/JP2012150107A/en
Publication of JP2012150107A publication Critical patent/JP2012150107A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method with which whether a traveling long optical anisotropic film can obtain desired optical characteristics can be measured in an in-line state, a measuring apparatus for enabling such an evaluation method, and a method of manufacturing the optical anisotropic film having the desired optical characteristics using a result of the evaluation.SOLUTION: An evaluation method of an optical anisotropic film is provided. The method includes a step of radiating light in a direction being vertical to the optical anisotropic film and having an azimuth angle -5° to +5° and a polar angle θ(30°≤θ≤70°) with respect to an in-plane delay phase axial direction and in a direction having an azimuth angle θ(30°≤θ≤60°) and a polar angle θ(30°≤θ≤70°) with respect to the in-plane delay phase axial direction and measuring a change in transmission polarization state, respectively, and a step of comparing the measurement with a change in transmission polarization state obtained by performing the similar measurement on an optical anisotropic film having desired optical characteristics.

Description

本発明は、光学異方性膜の評価方法、光学異方性膜の光学特性の測定装置および光学異方性膜の製造方法に関する。より詳しくは、走行している長尺の光学異方性膜が光学特性が得られているか否かの判定をインラインでの測定で可能にする評価方法、該評価方法を可能にする測定装置、および該評価結果を用いて所望の光学特性を有する光学異方性膜を製造する方法に関する。   The present invention relates to an optically anisotropic film evaluation method, an optical property measuring apparatus for an optically anisotropic film, and an optically anisotropic film manufacturing method. More specifically, an evaluation method that enables in-line measurement to determine whether or not a long optical anisotropic film that is running has optical characteristics, a measurement device that enables the evaluation method, The present invention also relates to a method for producing an optical anisotropic film having desired optical characteristics using the evaluation results.

光の偏光状態を変化させることができる光学異方性膜は、位相差板、視野角補償板などとして液晶表示装置をはじめ様々な光学装置に用いられている。光学装置に求められる光学特性に応じて、光学異方性膜として異なる二種以上の層からなる多層のフィルムが用いられることがある。しかしながら所望の光学特性を有する多層の光学異方性膜を製造することは容易ではなかった。   Optically anisotropic films capable of changing the polarization state of light are used in various optical devices such as liquid crystal display devices as retardation plates and viewing angle compensation plates. Depending on the optical characteristics required for the optical device, a multilayer film composed of two or more different layers may be used as the optical anisotropic film. However, it has not been easy to produce a multilayer optically anisotropic film having desired optical characteristics.

すなわち、光学異方性膜が単一の層からなる場合は、該光学異方性膜の面内レターデーションReおよび厚さ方向のレターデーションRthを所望の値と一致させることで、所望の光学特性を有する光学異方性膜を得ることができた。しかし多層の光学異方性膜については、ReおよびRthを一致させるだけでは、所望の光学特性を得られない場合があった。これは多層の光学異方性膜全体の値として得られるReおよびRthが一致しても各層ごとの光学特性が異なるためと推測される。   That is, in the case where the optically anisotropic film is composed of a single layer, the in-plane retardation Re and the thickness direction retardation Rth of the optically anisotropic film are made to coincide with the desired values. An optically anisotropic film having characteristics could be obtained. However, for a multilayer optically anisotropic film, desired optical characteristics may not be obtained only by matching Re and Rth. This is presumably because the optical characteristics of each layer are different even when Re and Rth obtained as values of the entire multilayer optically anisotropic film coincide.

二種の層からなる光学異方性膜の各層ごとのレターデーションを測定する方法として、該光学異方性膜を1枚のフィルムとみなし、光学異方性膜全体のレターデーション値を測定して得た実測値と、各層のレターデーション値と主軸の配向方向とを仮定して貼り合わせたときのレターデーション値を計算して得た計算値とから、実測値と一致する光学異方性膜のレターデーション値と配向方向との組合せを求めることで、各層のReを決定する方法が開示されている(非特許文献1参照)。   As a method of measuring the retardation of each layer of the optically anisotropic film composed of two types of layers, the optically anisotropic film is regarded as one film, and the retardation value of the entire optically anisotropic film is measured. Optical anisotropy that agrees with the actual measurement value from the actual measurement value obtained by calculating the retardation value when bonding was performed assuming the retardation value of each layer and the orientation direction of the main axis. A method for determining Re of each layer by obtaining a combination of a retardation value of a film and an orientation direction is disclosed (see Non-Patent Document 1).

また本発明者らは、光学異方性膜に対し3方向から光を照射してそれぞれの透過偏光状態の変化を測定することで、二種の層からなる光学異方性膜の各層のReおよびRthを求められることを見出した(非特許文献2参照)。   In addition, the present inventors irradiate light from three directions to the optically anisotropic film and measure the change of the respective transmitted polarization states, whereby Re of each layer of the optically anisotropic film composed of two types of layers is measured. And Rth were found (see Non-Patent Document 2).

「プラスチックエージ」,2000年,4月号,p.154−156“Plastic Age”, April 2000, p. 154-156 International Display Workshops 2010予稿集,LCTp3−3International Display Worksshop 2010 Proceedings, LCTp3-3

しかしこれらの方法では、各層のReを仮定して計算を行い、二種の層全体の値として得られるReおよびRthの実測値と対比して一致させる、フィッティングと呼ばれる解析を行なう必要があった。フィッティングはしばしば複雑な計算と解析を伴うため、光学異方性膜を連続的に製造する場合において、適時に測定と解析を行い、その結果を所望の光学特性を得るための製造条件に反映させることは容易ではなかった。   However, in these methods, it is necessary to perform an analysis called fitting that performs calculation assuming Re of each layer and matches the measured values of Re and Rth obtained as the values of the two layers as a whole. . Since fitting often involves complicated calculations and analysis, when manufacturing optically anisotropic films continuously, measurement and analysis are performed in a timely manner, and the results are reflected in manufacturing conditions for obtaining desired optical properties. That was not easy.

また、多層の光学異方性膜を多層押し出しで製造する場合は、多層押し出しで得られた未延伸のフィルムを延伸して光学異方性を付与することが通常である。この方法では各層ごとのReおよびRthを個別に制御することはできないため、光学異方性膜の各層ごとのReおよびRthを求められたとしても、製造条件を調整して所望の光学特性を得ることは容易ではなかった。   In the case of producing a multilayer optically anisotropic film by multilayer extrusion, it is usual to impart optical anisotropy by stretching an unstretched film obtained by multilayer extrusion. In this method, Re and Rth for each layer cannot be individually controlled. Therefore, even if Re and Rth for each layer of the optical anisotropic film are obtained, the manufacturing conditions are adjusted to obtain desired optical characteristics. That was not easy.

そこで本発明は、走行している長尺の光学異方性膜が所望の光学特性が得られているか否かの判定をインラインでの測定で可能にする評価方法を提供することを目的とする。また本発明は、かかる評価方法を可能にする測定装置、および該評価結果を用いて所望の光学特性を有する光学異方性膜を製造する方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide an evaluation method that makes it possible to determine whether or not a desired long optical anisotropic film has a desired optical characteristic by in-line measurement. . It is another object of the present invention to provide a measuring apparatus that enables such an evaluation method and a method for producing an optical anisotropic film having desired optical characteristics using the evaluation result.

本発明者らは鋭意検討の結果、多層の光学異方性膜に対し特定の3方向から光を照射して得られる、それぞれの透過偏光状態の変化が、光学異方性膜の光学特性と強い相関を有することを見出し、この知見に基づき本発明を完成するに至った。   As a result of intensive studies, the present inventors have determined that the change in the respective transmitted polarization states obtained by irradiating the multilayer optically anisotropic film with light from three specific directions is the optical characteristics of the optically anisotropic film. It has been found that there is a strong correlation, and the present invention has been completed based on this finding.

かくして本発明によれば、下記[1]〜[3]が開示される。
[1]多層の光学異方性膜の評価方法であって、
前記光学異方性膜に対し垂直方向に光を照射してその透過偏光状態の変化(1)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する工程、および
前記透過偏光状態の変化(1)〜(3)の測定値と、所望の光学特性を有する光学異方性膜について同様の測定を行って得られる透過偏光状態の変化(1)〜(3)とを対比する工程、
を有することを特徴とする光学異方性膜の評価方法。
Thus, according to the present invention, the following [1] to [3] are disclosed.
[1] A method for evaluating a multilayer optically anisotropic film,
Irradiating light in a direction perpendicular to the optically anisotropic film and measuring a change (1) in the transmitted polarization state;
Irradiating light in the direction of the azimuth angle −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °) with respect to the in-plane slow axis direction of the optically anisotropic film Measuring the change (2) in the transmitted polarization state;
An azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 ° with respect to the in-plane slow axis direction of the optically anisotropic film. A step of irradiating light in a certain direction and measuring the change (3) of the transmitted polarization state, and the measured values of the changes (1) to (3) of the transmitted polarization state and an optical having desired optical characteristics A step of comparing the transmitted polarization state changes (1) to (3) obtained by performing the same measurement on the anisotropic film,
A method for evaluating an optically anisotropic film, comprising:

[1]記載の評価方法において、前記透過偏光状態の変化(1)〜(3)の測定が分光エリプソメトリーによるものであり、
前記透過偏光状態の変化(1)が透過光の位相差の変化Δであり、
前記透過偏光状態の変化(2)が透過光の位相差の変化Δであり、
前記透過偏光状態の変化(3)が透過光の位相差の変化Δおよび振幅比の変化Ψであることが好ましい。
また、θが40°≦θ≦50°であることが好ましい。
また、多層の光学異方性膜が多層押し出し成形により得られたものであることが好ましい。
In the evaluation method according to [1], the measurement of the change (1) to (3) in the transmitted polarization state is based on spectroscopic ellipsometry,
The change in the transmitted polarization state (1) is the change delta 1 phase difference of the transmitted light,
The change in the transmitted polarization state (2) is a change in delta 2 of the phase difference of the transmitted light,
It is preferable that the change in the transmitted polarization state (3) is changed [psi 3 changes delta 3 and an amplitude ratio of the phase difference of the transmitted light.
Further, θ 2 is preferably 40 ° ≦ θ 2 ≦ 50 °.
The multilayer optically anisotropic film is preferably obtained by multilayer extrusion molding.

[2]走行している長尺の、多層の光学異方性膜の光学特性を測定する装置であって、
前記光学異方性膜に対し垂直方向に光を照射してその透過偏光状態の変化(1)を測定するユニット、
前記光学異方性膜の面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定するユニット、および
前記光学異方性膜の面内遅相軸方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定するユニット、
を有することを特徴とする光学異方性膜の光学特性の測定装置。
[2] A device for measuring optical characteristics of a long, multi-layered optically anisotropic film that travels,
A unit that irradiates light in a direction perpendicular to the optically anisotropic film and measures a change (1) in the transmitted polarization state;
Irradiating light in the direction of the azimuth angle −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °) with respect to the in-plane slow axis direction of the optically anisotropic film A unit for measuring the change (2) in the transmitted polarization state, and an azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a pole with respect to the in-plane slow axis direction of the optically anisotropic film A unit that irradiates light in the direction of an angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 °) and measures the change (3) in the transmitted polarization state;
An apparatus for measuring optical characteristics of an optically anisotropic film, characterized by comprising:

[3]多層で長尺の光学異方性膜を連続的に製造する方法であって、
多層で長尺の光学フィルムを延伸して該光学フィルムに光学異方性を付与する工程、
前記光学フィルムに対し垂直方向に光を照射してその透過偏光状態の変化(1)を測定する工程、
前記光学フィルムの面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する工程、
前記光学フィルムの面内遅相軸方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する工程、および
前記透過偏光状態の変化(1)〜(3)が所望の値となるように製造条件を調整する工程、
を含むことを特徴とする長尺の光学異方性膜の製造方法。
[3] A method for continuously producing a multilayer and long optically anisotropic film,
A step of stretching a long optical film in multiple layers to impart optical anisotropy to the optical film;
Irradiating light in the vertical direction to the optical film and measuring the change (1) in the transmitted polarization state;
With respect to the in-plane slow axis direction of the optical film, light is irradiated in the direction of azimuth angle −5 ° to + 5 ° and polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °), and the transmitted polarized light. Measuring the state change (2);
An azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 °) with respect to the in-plane slow axis direction of the optical film. Irradiating light in the direction to measure the change (3) in the transmitted polarization state, and adjusting the manufacturing conditions so that the changes (1) to (3) in the transmitted polarization state have desired values,
The manufacturing method of the elongate optically anisotropic film | membrane characterized by including.

本発明の評価方法によれば、複雑な計算や解析を行なうことなく、多層の光学異方性膜が所望の光学特性を有するか否かを簡易に判定することができる。また本発明の測定装置は、上記判定に必要な透過偏光状態の変化をインラインで容易に測定することができる。さらに本発明の製造方法によれば、上記判定結果を適時に光学異方性膜の製造条件に反映させることができるので、所望の光学特性を有する光学異方性膜を効率よく製造することができる。   According to the evaluation method of the present invention, it is possible to easily determine whether or not a multilayer optically anisotropic film has a desired optical characteristic without performing complicated calculation and analysis. In addition, the measuring apparatus of the present invention can easily measure in-line changes in the transmission polarization state necessary for the determination. Furthermore, according to the manufacturing method of the present invention, the determination result can be reflected in the manufacturing conditions of the optically anisotropic film in a timely manner, so that an optically anisotropic film having desired optical characteristics can be efficiently manufactured. it can.

本発明の一実施形態に係る光学異方性膜の光学特性の測定装置を示す概略図である。It is the schematic which shows the measuring apparatus of the optical characteristic of the optically anisotropic film which concerns on one Embodiment of this invention.

本発明の評価方法は、多層の光学異方性膜の光学特性を評価する方法である。本発明の評価方法が適用できる光学異方性膜は、多層であり、各層の面内遅相軸が互いに平行または直交な関係にある膜である。ここで多層とは、異なる二種以上の層が積層された構成を有することを表す。光学異方性膜の構成は、多層であれば二層であっても三層以上であってもよいが、好ましくは二種二層または二種三層であり、より好ましくは二種二層である。   The evaluation method of the present invention is a method for evaluating the optical characteristics of a multilayer optically anisotropic film. The optically anisotropic film to which the evaluation method of the present invention can be applied is a multilayer film in which the in-plane slow axes of each layer are in parallel or orthogonal to each other. Here, the term “multilayer” refers to a configuration in which two or more different layers are stacked. The structure of the optically anisotropic film may be two layers or three or more layers as long as it is a multilayer, but preferably two or two layers or two or three layers, more preferably two or two layers. It is.

光学異方性膜の各層を構成する材料は、光を透過する性質のあるものであれば特に限定されないが、通常は樹脂フィルムが用いられる。用いられる樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリエステル、トリアセチルセルロース、環状オレフィン樹脂などを挙げることができる。   The material constituting each layer of the optically anisotropic film is not particularly limited as long as it has a property of transmitting light, but a resin film is usually used. Examples of the resin used include polymethyl methacrylate, polystyrene, polycarbonate, polyether sulfone, polyester, triacetyl cellulose, and cyclic olefin resin.

光学異方性膜の膜厚は、通常20〜250μm、好ましくは40〜180μmである。光学異方性膜は、通常、薄いので、互いに直交するx軸及びy軸を膜面に平行な方向に、z軸を膜に垂直な方向(厚さ方向)にとり、そして、nを光学異方性膜の面内遅相軸方向の屈折率、nを光学異方性膜の面内遅相軸に面内で直交する方向の屈折率、nを光学異方性膜の厚さ方向の屈折率と定義している。 The film thickness of the optically anisotropic film is usually 20 to 250 μm, preferably 40 to 180 μm. Optically anisotropic film is usually so thin, optically in a direction parallel to the film surface in the x-axis and y-axis orthogonal to each other, taken perpendicular to the z-axis membrane (thickness direction), and the n x plane slow axis direction of the refractive index of the anisotropic layer, the refractive index in the direction orthogonal in the plane of the n y in-plane slow axis of the optically anisotropic film, the thickness of the optically anisotropic film n z It is defined as the refractive index in the vertical direction.

光学異方性膜は、長尺のフィルムであることが好ましい。ここで「長尺」のフィルムとは、フィルムの幅に対して、少なくとも5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。このような長尺のフィルムは製造ラインにおいて、長さ方向に連続的に製造工程を行なうことにより得られる。本発明の評価方法によれば、長尺の位相差フィルムを連続的に製造する場合に、各工程の一部または全部をインラインで簡便且つ効率的に行なうことが可能である。   The optically anisotropic film is preferably a long film. Here, the “long” film means a film having a length of at least 5 times the width of the film, preferably a length of 10 times or more, specifically a roll. It has a length enough to be wound up into a shape and stored or transported. Such a long film can be obtained by continuously performing the production process in the length direction on the production line. According to the evaluation method of the present invention, when a long retardation film is continuously produced, part or all of each step can be simply and efficiently performed in-line.

樹脂フィルムからなる光学異方性膜の製造方法は限定されない。具体的には、(a)光学異方性を有する二以上のフィルムを、それぞれのフィルムの面内遅相軸が平行または直交となるように貼り合せる方法;(b)光学異方性を有さない二以上のフィルムを貼り合せ、次いでこのフィルムを延伸して光学異方性を付与する方法;および(c)多層のフィルムを多層押し出しにより成形し、次いでこのフィルムを延伸して光学異方性を付与する方法;が挙げられる。これらの中でも、各層の面内遅相軸を平行または直交にすることが容易であるので(b)および(c)の方法が好ましく、(c)の方法が特に好ましい。なお光学異方性を有さない樹脂フィルムを一方向に延伸(一軸延伸)して光学異方性を付与すると、そのフィルムの面内遅相軸は、通常、フィルムを構成する樹脂が正の固有複屈折を有する場合は延伸方向(配向方向)に平行な方向となり、フィルムを構成する樹脂が負の固有複屈折を有する場合は延伸方向(配向方向)と面内で垂直な方向となる。本発明の測定方法によれば、各層を分離することが困難な(c)の方法で製造した光学異方性膜であっても、その光学特性を評価することができる。   The manufacturing method of the optically anisotropic film which consists of a resin film is not limited. Specifically, (a) a method of bonding two or more films having optical anisotropy so that the in-plane slow axes of the respective films are parallel or orthogonal; (b) having optical anisotropy. Bonding two or more films, and then stretching the film to impart optical anisotropy; and (c) forming a multilayer film by multilayer extrusion and then stretching the film to optically anisotropic A method for imparting sex. Among these, since it is easy to make the in-plane slow axis of each layer parallel or orthogonal, the methods (b) and (c) are preferable, and the method (c) is particularly preferable. When a resin film having no optical anisotropy is stretched in one direction (uniaxial stretching) to impart optical anisotropy, the in-plane slow axis of the film is usually such that the resin constituting the film is positive. When it has intrinsic birefringence, it becomes a direction parallel to the stretching direction (orientation direction), and when the resin constituting the film has negative intrinsic birefringence, it becomes a direction perpendicular to the stretching direction (orientation direction) in the plane. According to the measuring method of the present invention, even if the optically anisotropic film is produced by the method (c) in which it is difficult to separate the layers, the optical characteristics can be evaluated.

本発明の評価方法は、前記光学異方性膜に対し光を照射してその透過偏光状態の変化を測定する工程を含む。本発明で用いる光の種類は限定されないが、波長が350〜800nmの可視光線であることが好ましい。また、レーザー光等の細い平行光線であることが好ましい。光学異方性膜に照射される光の範囲を狭くでき、より正確な測定が可能になるからである。   The evaluation method of the present invention includes a step of irradiating the optically anisotropic film with light and measuring a change in the transmitted polarization state. Although the kind of light used by this invention is not limited, It is preferable that it is visible light with a wavelength of 350-800 nm. Moreover, it is preferable that it is thin parallel rays, such as a laser beam. This is because the range of light applied to the optically anisotropic film can be narrowed and more accurate measurement can be performed.

本発明で透過偏光状態の変化を測定する方法としては分光エリプソメトリーおよびミュラーマトリックスが挙げられ、それぞれ分光エリプソメータおよびミュラーマトリックス偏光計を用いて測定することができる。中でも、少数のパラメータで十分な情報量が得られるので分光エリプソメトリーによる測定が好ましい。   Examples of the method for measuring the change in the state of transmitted polarization in the present invention include spectroscopic ellipsometry and Mueller matrix, which can be measured using a spectroscopic ellipsometer and Mueller matrix polarimeter, respectively. Among them, measurement by spectroscopic ellipsometry is preferable because a sufficient amount of information can be obtained with a small number of parameters.

本発明の評価方法では、第1の測定として、前記光学異方性膜に対し垂直方向に光を照射してその透過偏光状態の変化(1)を測定する。ここで光学異方性膜に対し垂直方向とは前記z軸の方向に等しい。ただし光の照射方向は、本発明の効果を著しく損なわない範囲内で該z軸の方向に対して誤差を含んでいてもよく、具体的には光の照射方向とz軸がなす角である極角が5°以下であることを表す。透過偏光状態の変化(1)は光学異方性膜全体のReに相当し、分光エリプソメトリーによる測定を行う場合は、偏光状態の変化(1)は透過光の位相差の変化Δで表される。 In the evaluation method of the present invention, as a first measurement, light is irradiated in a direction perpendicular to the optically anisotropic film, and the change (1) in the transmitted polarization state is measured. Here, the direction perpendicular to the optical anisotropic film is equal to the z-axis direction. However, the light irradiation direction may include an error with respect to the z-axis direction as long as the effects of the present invention are not significantly impaired. Specifically, the light irradiation direction is an angle formed by the light irradiation direction and the z-axis. The polar angle is 5 ° or less. Table with a transmission change in the polarization state (1) corresponds to the Re of the entire optical anisotropic film, spectroscopic ellipsometry When performing measurement by cytometry, the change in polarization state (1) is the change delta 1 phase difference of the transmitted light Is done.

本発明の評価方法では、第2の測定として、前記光学異方性膜の配向方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する。極角θの範囲は、好ましくは40°≦θ≦60°である。この範囲であると、測定感度に優れる。透過偏光状態の変化(2)は光学異方性膜全体のRthと相関し、分光エリプソメトリーによる測定を行う場合は、偏光状態の変化(2)は透過光の位相差の変化Δで表される。 In the evaluation method of the present invention, as the second measurement, the azimuth angle is −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 ° with respect to the alignment direction of the optically anisotropic film. ) Is irradiated with light, and the change (2) in the transmitted polarization state is measured. The range of the polar angle θ 1 is preferably 40 ° ≦ θ 1 ≦ 60 °. Within this range, the measurement sensitivity is excellent. The change (2) in the transmitted polarization state correlates with the Rth of the entire optically anisotropic film. When measurement is performed by spectroscopic ellipsometry, the change (2) in the polarization state is expressed by a change Δ 2 in the phase difference of transmitted light. Is done.

本発明の評価方法では、第3の測定として、前記光学異方性膜の配向方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する。 In the evaluation method of the present invention, as a third measurement, an azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (wherein the orientation direction of the optically anisotropic film) Light is irradiated in the direction of 30 ° ≦ θ 3 ≦ 70 °), and the change (3) in the transmitted polarization state is measured.

方位角θの範囲は45°に近いほど好ましく、好ましくは40°≦θ≦50°、より好ましくは44°≦θ≦46°である。この範囲であると、測定感度に優れる。極角θの範囲は、好ましくは40°≦θ≦60°である。この範囲であると、測定感度に優れる。分光エリプソメトリーによる測定を行う場合は、偏光状態の変化(3)は透過光の位相差の変化Δおよび振幅比の変化Ψで表される。 The range of the azimuth angle θ 2 is preferably as close to 45 °, preferably 40 ° ≦ θ 2 ≦ 50 °, more preferably 44 ° ≦ θ 2 ≦ 46 °. Within this range, the measurement sensitivity is excellent. The range of the polar angle θ 3 is preferably 40 ° ≦ θ 1 ≦ 60 °. Within this range, the measurement sensitivity is excellent. When performing measurement by spectroscopic ellipsometry, a change in polarization state (3) is expressed by the change [psi 3 changes delta 3 and an amplitude ratio of the phase difference of the transmitted light.

本発明の評価方法は、前記透過偏光状態の変化(1)〜(3)の測定値と、所望の光学特性を有する光学異方性膜について同様の測定を行って得られる透過偏光状態の変化(1)〜(3)とを対比する工程を含む。   In the evaluation method of the present invention, the measured values of the transmitted polarization state changes (1) to (3) and the transmitted polarization state change obtained by performing the same measurement on the optical anisotropic film having desired optical characteristics A step of comparing (1) to (3) is included.

本発明者らの見出した知見によれば、前記透過偏光状態の変化(1)および(2)に加え、透過偏光状態の変化(3)を所望の光学特性を有する光学異方性膜と一致させることで、光学異方性膜の各層ごとのReやRthに係わらず、光学異方性膜として同等の光学特性を得ることができる。したがって、光学異方性膜の各層ごとの光学特性を測定することなく、上記透過偏光状態の変化(1)〜(3)を測定するのみで、容易に光学異方性膜の光学特性を評価することができる。   According to the findings found by the present inventors, in addition to the changes (1) and (2) in the transmission polarization state, the change (3) in the transmission polarization state coincides with the optical anisotropic film having desired optical characteristics. By doing so, the same optical characteristics as the optically anisotropic film can be obtained regardless of Re and Rth for each layer of the optically anisotropic film. Therefore, it is possible to easily evaluate the optical characteristics of the optical anisotropic film only by measuring the changes (1) to (3) in the transmission polarization state without measuring the optical characteristics of each layer of the optical anisotropic film. can do.

上記第1〜第3の測定を行なう順序は限定されない。各測定を順次行なってもよいし、一度に(同時に)行なってもよい。具体的には、例えば分光エリプソメトリーによる測定を行う場合は、光源と検光子を1組有する分光エリプソメータを用いて順次光源と検光子の角度を変えながら測定を行なってもよいし、光源と検光子を3組有する分光エリプソメータを用いて一度に第1〜第3の測定を行なってもよい。短時間で精度よく測定ができるので、各測定を一度に行なうことが好ましい。   The order in which the first to third measurements are performed is not limited. Each measurement may be performed sequentially or at the same time (simultaneously). Specifically, for example, when performing measurement by spectroscopic ellipsometry, the measurement may be performed by sequentially changing the angle of the light source and the analyzer using a spectroscopic ellipsometer having one set of the light source and the analyzer. You may perform the 1st-3rd measurement at once using the spectroscopic ellipsometer which has 3 sets of photons. Since measurement can be performed with high accuracy in a short time, each measurement is preferably performed at once.

本発明の測定装置は、上記第1の測定を行なうユニット、第2の測定を行なうユニット、および第3の測定を行なうユニットを有する、光学異方性膜の光学特性の測定装置である。好ましくは光源と検光子を3組有する分光エリプソメータである。分光エリプソメータは光学異方性膜に接触することなく短時間で測定することが可能なので、走行中の長尺の光学異方性膜についてインラインで測定することが可能である。   The measuring device of the present invention is a measuring device for the optical characteristics of an optically anisotropic film, which includes the first measuring unit, the second measuring unit, and the third measuring unit. A spectroscopic ellipsometer having three sets of light sources and analyzers is preferable. Since the spectroscopic ellipsometer can perform measurement in a short time without contacting the optically anisotropic film, it is possible to perform in-line measurement on a long optically anisotropic film while traveling.

以下に、本発明の測定装置の一実施形態を図面に基づいて詳細に説明する。なお、この一実施形態により本発明が限定されるものではない。   Hereinafter, an embodiment of a measuring apparatus of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiment.

図1は、本発明の測定装置を示す概略図である。図1において、長尺で多層の、幅方向に面内遅相軸を有する光学異方性膜2が図1の左下側から右上側に向かって走行している。光学異方性膜2の上部には、光学異方性膜2に対し垂直方向に光を照射する第1光源11、光学異方性膜の面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射する第2光源12、および光学異方性膜の面内遅相軸方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射する第3光源13が設置されている。 FIG. 1 is a schematic view showing a measuring apparatus of the present invention. In FIG. 1, a long and multilayer optically anisotropic film 2 having an in-plane slow axis in the width direction runs from the lower left side to the upper right side in FIG. A first light source 11 for irradiating light in a direction perpendicular to the optical anisotropic film 2 is provided above the optical anisotropic film 2, and an azimuth angle of -5 ° with respect to the in-plane slow axis direction of the optical anisotropic film. Second light source 12 that irradiates light in the direction of ˜ + 5 ° and polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °), and orientation with respect to the in-plane slow axis direction of the optically anisotropic film A third light source 13 that irradiates light in the direction of the angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and the polar angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 °) is installed. ing.

光学異方性膜2の下部には、第1光源11から照射された光を受光する第1検光子21、第2光源12から照射された光を受光する第2検光子22、および第3光源13から照射された光を受光する第3検光子23が設置されている。   Below the optically anisotropic film 2, a first analyzer 21 that receives light emitted from the first light source 11, a second analyzer 22 that receives light emitted from the second light source 12, and a third A third analyzer 23 that receives light emitted from the light source 13 is provided.

第1検光子21は第1光源11と光学異方性膜2を挟んで対向する位置に配置され、第1検光子21により、光学異方性膜2を透過した光の位相差の変化Δが測定される。第2検光子22は第2光源12と光学異方性膜2を挟んで対向する位置に配置され、第1検光子22により、光学異方性膜2を透過した光の位相差の変化Δが測定される。第3検光子23は第3光源13と光学異方性膜2を挟んで対向する位置に配置され、第3検光子23により、光学異方性膜3を透過した光の位相差の変化Δ3および振幅比の変化Ψが測定される。なお図1中、光源と検光子を結ぶ線は測定に用いる光の光軸を表す。 The first analyzer 21 is disposed at a position facing the first light source 11 with the optical anisotropic film 2 interposed therebetween, and the first analyzer 21 changes the phase difference Δ of the light transmitted through the optical anisotropic film 2. 1 is measured. The second analyzer 22 is disposed at a position facing the second light source 12 with the optical anisotropic film 2 interposed therebetween, and the first analyzer 22 changes the phase difference Δ of the light transmitted through the optical anisotropic film 2. 2 is measured. The third analyzer 23 is disposed at a position facing the third light source 13 with the optical anisotropic film 2 interposed therebetween, and the third analyzer 23 changes the phase difference Δ of the light transmitted through the optical anisotropic film 3. 3 and the change in amplitude ratio Ψ 3 are measured. In FIG. 1, the line connecting the light source and the analyzer represents the optical axis of light used for measurement.

すなわち、第1光源11と第1検光子21により上記第1の測定を行なうユニットが構成され、第12光源12と第2検光子22により上記第2の測定を行なうユニットが構成され、第3光源13と第3検光子23により上記第3の測定を行なうユニットが構成され、上記各ユニットにより本発明の測定装置1が構成される。上記各光源および各検光子は光学異方性膜2に接触しない位置に設置されるので、走行している長尺の光学異方性膜2の光学特性をインラインで測定することができる。   That is, the first light source 11 and the first analyzer 21 constitute a unit for performing the first measurement, and the twelfth light source 12 and the second analyzer 22 constitute a unit for performing the second measurement. The light source 13 and the third analyzer 23 constitute a unit for performing the third measurement, and the respective units constitute the measuring apparatus 1 of the present invention. Since each of the light sources and each of the analyzers is installed at a position not in contact with the optical anisotropic film 2, the optical characteristics of the long optical anisotropic film 2 that is running can be measured in-line.

上記本発明の測定装置は、長尺の光学異方性膜の製造において延伸処理を行なう装置と同一のライン上に設置することが好ましい。延伸処理直後の光学異方性膜の光学特性を測定し、その結果に基づき延伸処理の条件を調整し、所望の光学特性を有する光学異方性膜を容易に製造できるからである。   The measurement apparatus of the present invention is preferably installed on the same line as the apparatus that performs the stretching process in the production of a long optically anisotropic film. This is because it is possible to easily manufacture an optical anisotropic film having desired optical characteristics by measuring the optical characteristics of the optical anisotropic film immediately after the stretching process and adjusting the conditions of the stretching process based on the result.

本発明の製造方法は、多層で長尺の光学異方性膜を連続的に製造する方法であって、多層で長尺の光学フィルムを延伸して該光学フィルムに光学異方性を付与する工程を含む。   The production method of the present invention is a method for continuously producing a multilayer and long optical anisotropic film, and extending the multilayer and long optical film to impart optical anisotropy to the optical film. Process.

延伸前の、多層で長尺の光学フィルム(以下、延伸前フィルムということがある。)を製造する方法は限定されず、公知の方法をいずれも採用できるが、多層押し出しにより製造することが好ましい。多層押し出しにより得られた延伸前フィルムは、一旦ロールなどに巻き取って巻回体とした後に延伸処理に供してもよいし、多層押し出しと後述する延伸処理を一連の製造ライン上で行なってもよい。   The method for producing a multilayer and long optical film before stretching (hereinafter sometimes referred to as a film before stretching) is not limited, and any known method can be adopted, but it is preferably produced by multilayer extrusion. . The pre-stretch film obtained by multilayer extrusion may be wound on a roll or the like to form a wound body, and then subjected to a stretching treatment, or the multilayer extrusion and the stretching treatment described later may be performed on a series of production lines. Good.

延伸前フィルムの厚さは、延伸倍率を考慮して適宜定めればよく、好ましくは30〜1000μm、より好ましくは80〜380μmである。   The thickness of the pre-stretch film may be appropriately determined in consideration of the stretch ratio, and is preferably 30 to 1000 μm, more preferably 80 to 380 μm.

延伸前フィルムを延伸して該光学フィルムに光学異方性を付与する。延伸の操作としては、例えば、ロール間の周速の差を利用して長尺方向に一軸延伸する方法(縦一軸延伸);テンターを用いて幅方向に一軸延伸する方法(横一軸延伸);縦一軸延伸と横一軸延伸とを順に行う方法(逐次二軸延伸);延伸前フィルムの長尺方向に対して斜め方向に延伸する方法(斜め延伸);等を採用できる。光学異方性膜の面内遅相軸の方向を一定にできるとの観点からは、縦一軸延伸、横一軸延伸または逐次二軸延伸が好ましい。   The film before stretching is stretched to impart optical anisotropy to the optical film. Examples of the stretching operation include a method of uniaxial stretching in the longitudinal direction using a difference in peripheral speed between rolls (longitudinal uniaxial stretching); a method of uniaxial stretching in the width direction using a tenter (lateral uniaxial stretching); A method of performing longitudinal uniaxial stretching and lateral uniaxial stretching in order (sequential biaxial stretching); a method of stretching in an oblique direction with respect to the longitudinal direction of the film before stretching (oblique stretching); From the viewpoint that the in-plane slow axis direction of the optically anisotropic film can be made constant, longitudinal uniaxial stretching, lateral uniaxial stretching, or sequential biaxial stretching is preferable.

延伸温度は、延伸前フィルムを構成する樹脂のガラス転移温度にもよるが、好ましくは70〜200℃、より好ましくは100〜170℃である。また延伸倍率は、所望の光学特性を発現しうる任意の倍率とすることができるが、1.1倍以上5倍以下であることが好ましく、1.3倍以上3倍以下であることがより好ましい。   The stretching temperature is preferably 70 to 200 ° C, more preferably 100 to 170 ° C, although it depends on the glass transition temperature of the resin constituting the film before stretching. The draw ratio can be any ratio that can express desired optical properties, but is preferably 1.1 times or more and 5 times or less, more preferably 1.3 times or more and 3 times or less. preferable.

次いで、上記により延伸したフィルムの、前記透過偏光状態の変化(1)〜(3)を測定する。測定を迅速に行ない、適時に後述する延伸条件の調整に反映できるとの観点からは、測定は走行している上記延伸処理後のフィルムに対してインラインで行なうことが好ましい。また上記第1〜第3の測定は、同時に行なうことが好ましい。   Next, the changes (1) to (3) in the transmission polarization state of the film stretched as described above are measured. From the viewpoint that the measurement can be performed quickly and reflected in the adjustment of the stretching conditions to be described later in a timely manner, the measurement is preferably performed in-line on the running film after the stretching treatment. The first to third measurements are preferably performed simultaneously.

続いて、上記測定の結果に基づき、透過偏光状態の変化(1)〜(3)が所望の値となるように製造条件を調整する。ここで製造条件を調整するとは、好ましくは延伸の条件を調整することであるが、多層押し出しにより連続的に延伸前フィルムを製造し、これを同一の製造ライン上で延伸して光学異方性膜を得る場合には、延伸前フィルムの少なくとも一つの層の厚さを調整してもよい。延伸前フィルムの層の厚さを調整する方法としては、多層押し出しに供する樹脂の量を調整する方法や、押し出し成形の速度を調整する方法が挙げられる。   Subsequently, based on the result of the above measurement, the manufacturing conditions are adjusted so that the changes (1) to (3) in the transmitted polarization state become desired values. Here, adjusting the manufacturing conditions preferably means adjusting the stretching conditions, but the film before stretching is continuously produced by multilayer extrusion, and this is stretched on the same production line to obtain optical anisotropy. When obtaining a film, the thickness of at least one layer of the film before stretching may be adjusted. Examples of the method for adjusting the thickness of the pre-stretch film layer include a method for adjusting the amount of resin used for multilayer extrusion and a method for adjusting the speed of extrusion.

延伸条件の調整は、通常、延伸の温度または延伸倍率を調整することにより行なうが、得られる光学異方性膜の膜厚および幅を一定にできるとの観点から、延伸の温度を調整することが好ましい。   The stretching conditions are usually adjusted by adjusting the stretching temperature or stretching ratio, but the stretching temperature is adjusted from the viewpoint that the thickness and width of the obtained optically anisotropic film can be made constant. Is preferred.

製造条件の調整が透過偏光状態の変化(1)〜(3)に及ぼす影響を予め把握しておくと、製造条件を適切に調整し、所望の光学特性を有する光学異方性膜を容易に得られるので好ましい。すなわち、例えば上記測定が分光エリプソメトリーである場合には、製造条件の調整(例えば、延伸の温度を上げる)を行なうことにより、Δ、Δ、ΔおよびΨがそれぞれどの程度変動するかを予め把握しておくことで、より適切に製造条件を調整でき、フィルムの走行を止めることなく連続的に光学異方性膜を製造することができる。 If the influence of the adjustment of the manufacturing conditions on the transmission polarization state changes (1) to (3) is grasped in advance, the manufacturing conditions are adjusted appropriately, and an optical anisotropic film having desired optical characteristics can be easily obtained. Since it is obtained, it is preferable. That is, for example, when the above measurement is spectroscopic ellipsometry, how much Δ 1 , Δ 2 , Δ 3, and Ψ 3 fluctuate by adjusting the manufacturing conditions (for example, increasing the stretching temperature). By grasping in advance, the production conditions can be adjusted more appropriately, and the optically anisotropic film can be continuously produced without stopping the film running.

以下、実施例を参照して本発明をより詳細に説明するが、本発明はこれらに限定されない。なお実施例中、添字のA〜Fは、それぞれ光学異方性膜A〜Fについての値であることを表す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited to these. In the examples, subscripts A to F represent values for the optically anisotropic films A to F, respectively.

(実施例1)
二種二層の共押出成形用のフィルム成形装置を準備し、ポリカーボネート樹脂(旭化成社製、ワンダーライトPC−110、荷重たわみ温度145℃、平均屈折率ni1=1.590)のペレットを、ダブルフライト型のスクリューを備えた一方の一軸押出機に投入して、溶融させた。スチレン−無水マレイン酸共重合体樹脂(NovaChemicals社製、Dylark D332、荷重たわみ温度135℃、平均屈折率:ni2=1.585)のペレットをダブルフライト型のスクリューを備えたもう一方の一軸押出機に投入して、溶融させた。溶融された260℃のポリカーボネート樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してマルチマニホールドダイの一方のマニホールドに、溶融された260℃のスチレン−無水マレイン酸共重合体樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してもう一方のマニホールドにそれぞれ供給した。ポリカーボネート樹脂およびスチレン−無水マレイン酸共重合体樹脂を該マルチマニホールドダイから260℃で同時に押し出しフィルム状にした。共押し出しさせる樹脂の量は、ポリカーボネート樹脂:スチレン−無水マレイン酸共重合体樹脂の体積比で1:9.2の割合となるようにした。該フィルム状溶融樹脂を表面温度130℃に調整された冷却ロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通して、ポリカーボネート樹脂層(第1層)とスチレン−無水マレイン酸共重合体樹脂層(第2層)からなる幅1350mmの延伸前フィルムaを得た。マイクロメータを使用して延伸前フィルムaの厚さを測った結果、150μmであった。
Example 1
A film forming apparatus for two-type two-layer coextrusion molding was prepared, and a pellet of polycarbonate resin (manufactured by Asahi Kasei Co., Ltd., Wonderlite PC-110, deflection temperature under load 145 ° C., average refractive index n i1 = 1.590), It was charged into one single screw extruder equipped with a double flight type screw and melted. Pellets of styrene-maleic anhydride copolymer resin (Nova Chemicals, Dylark D332, deflection temperature under load, 135 ° C., average refractive index: n i2 = 1.585), another uniaxial extrusion equipped with a double flight type screw The machine was charged and melted. A molten 260 ° C. polycarbonate resin is passed through a polymer filter in the form of a leaf disk having a mesh size of 10 μm to one manifold of a multi-manifold die, and a molten 260 ° C. styrene-maleic anhydride copolymer resin is leaf having a mesh size of 10 μm. Each was supplied to the other manifold through a disk-shaped polymer filter. A polycarbonate resin and a styrene-maleic anhydride copolymer resin were simultaneously extruded from the multi-manifold die at 260 ° C. to form a film. The amount of resin to be coextruded was set to a ratio of 1: 9.2 in a volume ratio of polycarbonate resin: styrene-maleic anhydride copolymer resin. The film-like molten resin was cast on a cooling roll adjusted to a surface temperature of 130 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. to obtain a polycarbonate resin layer (first layer) and styrene- A pre-stretching film a having a width of 1350 mm composed of a maleic anhydride copolymer resin layer (second layer) was obtained. It was 150 micrometers as a result of measuring the thickness of the film a before extending | stretching using a micrometer.

延伸前フィルムaを縦一軸延伸機に供給し、延伸温度155℃、延伸倍率2倍で縦方向に延伸した。続いて、延伸されたフィルムをテンター延伸機に供給し、延伸温度130℃、延伸倍率1.15で横方向に延伸して光学異方性膜Aを得た。マイクロメータを使用して光学異方性膜Aの厚さを測った結果92μmであった。なおポリカーボネート樹脂とスチレン−無水マレイン酸共重合体樹脂の量比から計算される各層の膜厚は、第1層の膜厚d=9μm、第2層の膜厚d=83μmであった。 The unstretched film a was supplied to a longitudinal uniaxial stretching machine and stretched in the longitudinal direction at a stretching temperature of 155 ° C. and a stretching ratio of 2 times. Subsequently, the stretched film was supplied to a tenter stretching machine, and stretched in the transverse direction at a stretching temperature of 130 ° C. and a stretching ratio of 1.15 to obtain an optical anisotropic film A. The thickness of the optically anisotropic film A was measured using a micrometer and found to be 92 μm. The film thickness of each layer calculated from the quantitative ratio of the polycarbonate resin and the styrene-maleic anhydride copolymer resin was the first layer thickness d 1 = 9 μm and the second layer thickness d 2 = 83 μm. .

この光学異方性膜Aについて、透過偏光状態の変化を、分光エリプソメータ(J.A.Woollam社製M−2000)を用いて以下のように測定した。なお下記第1〜第3の測定いずれにおいても光学異方性膜Aの第1層側の面から光を照射した。   About this optically anisotropic film A, the change of the transmission polarization state was measured as follows using a spectroscopic ellipsometer (M-2000 manufactured by JA Woollam). In any of the following first to third measurements, light was irradiated from the surface of the optically anisotropic film A on the first layer side.

第1の測定として、波長550nmの光ビームが光学異方性膜Aに垂直に入射されるように調整し透過光の位相差の変化Δ1Aを測定した。このときΔ1A=157.4nmであった。 As a first measurement, adjustment was made so that a light beam with a wavelength of 550 nm was perpendicularly incident on the optical anisotropic film A, and a change Δ 1A in the phase difference of transmitted light was measured. At this time, Δ 1A = 157.4 nm.

第2の測定として、光学異方性膜Aの遅相軸(配向方向)が0°且つ光ビームが光学異方性膜Aに対し極角θが50°で入射されるように調整し透過光の位相差の変化Δ2Aを測定した。このときΔ2A=158.0nmであった。 As a second measurement, adjustment was made so that the slow axis (orientation direction) of the optically anisotropic film A was 0 ° and the light beam was incident on the optically anisotropic film A at a polar angle θ 1 of 50 °. the change delta 2A of the phase difference of the transmitted light was measured. At this time, Δ 2A = 158.0 nm.

第3の測定として、光学異方性膜Aの遅相軸(配向方向)に対し方位角θが45°且つ光ビームが光学異方性膜Aに対し極角θが50°で入射されるように調整し透過光の位相差の変化Δ3Aと振幅比の変化Ψ3Aを測定した。
このときΔ3A=76.1°、Ψ3A=53.0°であった。
As a third measurement, the azimuth angle θ 2 is 45 ° with respect to the slow axis (orientation direction) of the optical anisotropic film A, and the light beam is incident on the optical anisotropic film A with the polar angle θ 3 being 50 °. Thus, the phase difference change Δ 3A of transmitted light and the amplitude ratio change Ψ 3A were measured.
At this time, Δ 3A = 76.1 ° and Ψ 3A = 53.0 °.

(実施例2,3)
延伸前フィルムaを延伸する温度および延伸倍率を調整することで、ΔおよびΔが光学異方性膜Aとほぼ等しく、ΔおよびΨが光学異方性膜Aと異なる光学異方性膜Bおよび光学異方性膜Cを得た。光学異方性膜Bについて透過光の位相差の変化および振幅比の変化を測定したところ、Δ1B=157.5nm、Δ2B=158.1nm、Δ3B=72.5°、Ψ3B=52.6°であった。また光学異方性膜Cについて透過光の位相差の変化および振幅比の変化を測定したところ、Δ1C=157.2nm、Δ2C=158.2nm、Δ3C=69.1°、Ψ3C=52.3°であった。
(Examples 2 and 3)
By adjusting the temperature at which the film a before stretching and the stretching ratio are adjusted, Δ 1 and Δ 2 are almost equal to the optical anisotropic film A, and Δ 3 and Ψ 3 are different from the optical anisotropic film A. Film B and optically anisotropic film C were obtained. When the change of the phase difference of transmitted light and the change of the amplitude ratio of the optically anisotropic film B were measured, Δ 1B = 157.5 nm, Δ 2B = 158.1 nm, Δ 3B = 72.5 °, Ψ 3B = 52 It was 6 °. Moreover, when the change of the phase difference of the transmitted light and the change of the amplitude ratio of the optically anisotropic film C were measured, Δ 1C = 157.2 nm, Δ 2C = 158.2 nm, Δ 3C = 69.1 °, Ψ 3C = It was 52.3 °.

(実施例4)
第1層用の延伸前フィルムとして、厚さが67μmの環状オレフィン樹脂フィルム(ゼオノアフィルムZF14;日本ゼオン社製、平均屈折率ni1=1.535)を準備した。これとは別に、第2層用の延伸前フィルムとして、スチレン−無水マレイン酸共重合体樹脂(NovaChemicals社製、Dylark D332、荷重たわみ温度135℃、平均屈折率:ni2=1.585)を溶融押し出しして、厚さ150μmのスチレン−無水マレイン酸共重合体樹脂フィルムを得た。
Example 4
A cyclic olefin resin film (Zeonor film ZF14; manufactured by Nippon Zeon Co., Ltd., average refractive index n i1 = 1.535) having a thickness of 67 μm was prepared as a film before stretching for the first layer. Separately from this, a styrene-maleic anhydride copolymer resin (manufactured by Nova Chemicals, Dylark D332, deflection temperature under load of 135 ° C., average refractive index: n i2 = 1.585) is used as a film before stretching for the second layer. By melt extrusion, a styrene-maleic anhydride copolymer resin film having a thickness of 150 μm was obtained.

透過光の位相差の変化および振幅比の変化が光学異方性膜Aと等しい光学異方性膜Dを、上記の延伸前フィルムを用いて得る条件を計算により求めた。具体的には、上記非特許文献2に開示される計算方法に基づき、かかる光学異方性膜Dを形成するために必要な各層の面内レターデーションReおよび厚さ方向のレターデーションRthを計算し、Re=39nm、Rth=121nm、Re=118nmおよびRth=−127nmを得た。なおここで、添字の1および2は、それぞれ第1層および第2層についての値であることを表す。 The conditions for obtaining the optically anisotropic film D in which the change in the retardation of the transmitted light and the change in the amplitude ratio are the same as those of the optically anisotropic film A were obtained by calculation. Specifically, based on the calculation method disclosed in Non-Patent Document 2, the in-plane retardation Re and the thickness direction retardation Rth required for forming the optically anisotropic film D are calculated. As a result, Re 1 = 39 nm, Rth 1 = 121 nm, Re 2 = 118 nm, and Rth 2 = -127 nm were obtained. Here, the subscripts 1 and 2 represent values for the first layer and the second layer, respectively.

ReおよびRthが上記の値となるように延伸条件を調整して上記環状オレフィン樹脂フィルムを延伸し、延伸フィルムd1を得た。これとは別に、ReおよびRthが上記の値となるように延伸条件を調整して上記スチレン−無水マレイン酸共重合体樹脂フィルムを延伸し、延伸フィルムd2を得た。 Stretching conditions were adjusted so that Re 1 and Rth 1 were the above values, and the cyclic olefin resin film was stretched to obtain stretched film d1. Separately from this, the styrene-maleic anhydride copolymer resin film was stretched by adjusting the stretching conditions so that Re 2 and Rth 2 had the above values, to obtain a stretched film d2.

次いで、日東電工社製両面接着テープを用いて延伸フィルムd1および延伸フィルムd2をそれぞれの遅相軸が平行となるように貼り合わせて光学異方性膜Dを作製した。光学異方性膜Dについて透過光の位相差の変化および振幅比の変化を測定したところ、Δ1D=157.4nm、Δ2D=158.0nm、Δ3D=76.1°、Ψ3D=53.1°であり、光学異方性膜Aの値と等しいことが確認できた。 Subsequently, the stretched film d1 and the stretched film d2 were bonded using a double-sided adhesive tape manufactured by Nitto Denko Corporation so that the slow axes thereof were parallel to prepare an optically anisotropic film D. When the change of the phase difference of transmitted light and the change of the amplitude ratio of the optically anisotropic film D were measured, Δ 1D = 157.4 nm, Δ 2D = 158.0 nm, Δ 3D = 76.1 °, Ψ 3D = 53 It was confirmed to be equal to the value of the optically anisotropic film A.

(実施例5)
透過光の位相差の変化および振幅比の変化が光学異方性膜Bと等しい光学異方性膜Eを、上記の延伸前フィルムを用いて得られる条件を実施例4と同様に計算し、Re=54nm、Rth=161nm、Re=103nmおよびRth=−171nmを得た。
(Example 5)
The optical anisotropic film E in which the change in retardation of the transmitted light and the change in the amplitude ratio are the same as those in the optical anisotropic film B were calculated in the same manner as in Example 4 using the above-mentioned film before stretching. Re 1 = 54 nm, Rth 1 = 161 nm, Re 2 = 103 nm and Rth 2 = −171 nm were obtained.

ReおよびRthが上記の値となるように延伸条件を調整して上記環状オレフィン樹脂フィルムを延伸し、延伸フィルムe1を得た。これとは別に、ReおよびRthが上記の値となるように延伸条件を調整して上記スチレン−無水マレイン酸共重合体樹脂フィルムを延伸し、延伸フィルムe2を得た。 Stretching conditions were adjusted so that Re 1 and Rth 1 were the above values, and the cyclic olefin resin film was stretched to obtain stretched film e1. Separately from this, the styrene-maleic anhydride copolymer resin film was stretched by adjusting the stretching conditions so that Re 2 and Rth 2 had the above values, to obtain a stretched film e2.

次いで、日東電工社製両面接着テープを用いて延伸フィルムe1および延伸フィルムe2をそれぞれの遅相軸が平行となるように貼り合わせて光学異方性膜Eを作製した。光学異方性膜Eについて透過光の位相差の変化および振幅比の変化を測定したところ、Δ1E=157.3nm、Δ2E=158.1nm、Δ3E=72.4°、Ψ3E=52.6°であり、光学異方性膜Bの値とほぼ等しいことが確認できた。 Next, using a double-sided adhesive tape manufactured by Nitto Denko Corporation, the stretched film e1 and the stretched film e2 were bonded to each other so that their slow axes were parallel to produce an optically anisotropic film E. When the change of the phase difference of transmitted light and the change of the amplitude ratio of the optically anisotropic film E were measured, Δ 1E = 157.3 nm, Δ 2E = 158.1 nm, Δ 3E = 72.4 °, Ψ 3E = 52 .6 °, which was confirmed to be substantially equal to the value of the optically anisotropic film B.

(実施例6)
透過光の位相差の変化および振幅比の変化が光学異方性膜Cと等しい光学異方性膜Fを、上記の延伸前フィルムを用いて得られる条件を実施例4と同様に計算し、Re=67nm、Rth=201nm、Re=91nmおよびRth=−214nmを得た。
(Example 6)
The conditions obtained by using the pre-stretch film for the optical anisotropic film F in which the change in retardation of the transmitted light and the change in the amplitude ratio are equal to the optical anisotropic film C are calculated in the same manner as in Example 4. Re 1 = 67 nm, Rth 1 = 201 nm, Re 2 = 91 nm and Rth 2 = −214 nm were obtained.

ReおよびRthが上記の値となるように延伸条件を調整して上記環状オレフィン樹脂フィルムを延伸し、延伸フィルムf1を得た。これとは別に、ReおよびRthが上記の値となるように延伸条件を調整して上記スチレン−無水マレイン酸共重合体樹脂フィルムを延伸し、延伸フィルムf2を得た。 Stretching conditions were adjusted so that Re 1 and Rth 1 were the above values, and the cyclic olefin resin film was stretched to obtain stretched film f1. Separately from this, the styrene-maleic anhydride copolymer resin film was stretched by adjusting the stretching conditions so that Re 2 and Rth 2 had the above values, to obtain a stretched film f2.

次いで、日東電工社製両面接着テープを用いて延伸フィルムf1および延伸フィルムf2をそれぞれの遅相軸が平行となるように貼り合わせて光学異方性膜Fを作製した。光学異方性膜Fについて透過光の位相差の変化および振幅比の変化を測定したところ、Δ1F=157.2nm、Δ2F=158.2nm、Δ3F=69.1°、Ψ3F=52.2°であり、光学異方性膜Cの値とほぼ等しいことが確認できた。 Subsequently, the stretched film f1 and the stretched film f2 were bonded together using a double-sided adhesive tape manufactured by Nitto Denko Corporation so that the slow axes thereof were parallel to prepare an optically anisotropic film F. When the change of the phase difference of the transmitted light and the change of the amplitude ratio of the optically anisotropic film F were measured, Δ 1F = 157.2 nm, Δ 2F = 158.2 nm, Δ 3F = 69.1 °, Ψ 3F = 52 It was confirmed that the angle was .2 ° and was substantially equal to the value of the optically anisotropic film C.

(実施例7)
日東電工社製両面接着テープを用いて光学異方性膜Aを日東電工社製偏光フィルムNPF−G1029DUに貼り合わせ、大きさが5cm×5cmの偏光板Aを作製した。ただし偏光板の透過軸と光学異方性膜の遅相軸が平行になるように貼り合わせた。次いでナナオ社製液晶モニターFlexScan S2410Wを分解し、液晶パネルのレア側偏光板を剥がして代わりに偏光板Aを並べて貼り付け、液晶モニターサンプルAを作製した。ただし偏光板Aの透過軸がフロント側偏光板の透過軸と直交になるように、且つ光学異方性膜が液晶セル側に来るように貼り合わせた。液晶モニターを再組み立てし、点灯させてRADIANT IMAGING社製視野角測定装置IMAGING SPHEREを用い暗表示輝度を測定した。
(Example 7)
The optically anisotropic film A was bonded to a polarizing film NPF-G1029DU manufactured by Nitto Denko Corporation using a double-sided adhesive tape manufactured by Nitto Denko Corporation to prepare a polarizing plate A having a size of 5 cm × 5 cm. However, they were bonded so that the transmission axis of the polarizing plate and the slow axis of the optically anisotropic film were parallel. Next, a liquid crystal monitor FlexScan S2410W manufactured by Nanao Co., Ltd. was disassembled, and the rare-side polarizing plate of the liquid crystal panel was peeled off, and a polarizing plate A was placed side by side, and a liquid crystal monitor sample A was produced. However, the lamination was performed so that the transmission axis of the polarizing plate A was perpendicular to the transmission axis of the front-side polarizing plate, and the optically anisotropic film was on the liquid crystal cell side. The liquid crystal monitor was reassembled, turned on, and the dark display brightness was measured using a viewing angle measuring device IMAGEING SPHERE manufactured by RADIUS IMAGEING.

(実施例8〜12)
光学異方性膜Aに代えて、光学異方性膜B〜Fを用いた他は、実施例7と同様にして液晶モニターサンプルB〜Fを作製した。これらのサンプルを用いて、実施例7と同様にして暗表示輝度を測定した。
(Examples 8 to 12)
Liquid crystal monitor samples B to F were produced in the same manner as in Example 7 except that the optical anisotropic films B to F were used in place of the optical anisotropic film A. Using these samples, dark display luminance was measured in the same manner as in Example 7.

暗表示輝度(透過輝度)を極角60°、方位角45°方向で測定した結果を表1に示す。ただし、値は透過輝度が最も小さいサンプルDを用いた場合(実施例10)の透過輝度を1としたときの相対値である。   Table 1 shows the results of measuring the dark display luminance (transmission luminance) in the polar angle of 60 ° and the azimuth angle of 45 °. However, the value is a relative value when the transmission luminance is set to 1 when the sample D having the smallest transmission luminance is used (Example 10).

Figure 2012150107
Figure 2012150107

以上の結果より、サンプルAとサンプルD、サンプルBとサンプルE、サンプルCとサンプルFの3つの組み合わせはそれぞれ透過輝度が同等であり、他の組み合わせはその透過輝度が大きく異なっていることが分かる。これにより、ΔおよびΔを等しくしたのみでは多層の光学異方性膜の光学特性を一致させることはできないが、ΔおよびΔに加えてΔおよびΨも同じ値とすることで、光学異方性膜の光学特性を等しくできることが分かる。したがって、Δ、Δ、Δ、およびΨを測定することにより多層の光学異方性膜の性能を適切に評価できることが分かる。 From the above results, it can be seen that the three combinations of sample A and sample D, sample B and sample E, sample C and sample F have the same transmission luminance, and the other combinations have greatly different transmission luminance. . As a result, the optical characteristics of the multilayer optically anisotropic film cannot be matched only by making Δ 1 and Δ 2 equal, but in addition to Δ 1 and Δ 2 , Δ 3 and Ψ 3 should have the same value. Thus, it can be seen that the optical characteristics of the optical anisotropic film can be made equal. Therefore, it can be seen that the performance of the multilayer optically anisotropic film can be appropriately evaluated by measuring Δ 1 , Δ 2 , Δ 3 , and ψ 3 .

(実施例13)
実施例1と同様にして共押し出しによるフィルム成形を行い、ポリカーボネート樹脂層(第1層)とスチレン−無水マレイン酸共重合体樹脂層(第2層)からなる厚さが158μmで幅1350mmの長尺の延伸前フィルムgを得た。
(Example 13)
A film was formed by coextrusion in the same manner as in Example 1, and the length consisting of a polycarbonate resin layer (first layer) and a styrene-maleic anhydride copolymer resin layer (second layer) was 158 μm long and 1350 mm wide. A film g before stretching was obtained.

延伸前フィルムgを縦一軸延伸機に供給し、延伸温度155℃、延伸倍率2倍で縦方向に延伸した。続いて、延伸されたフィルムをテンター延伸機に連続的に供給し、延伸温度130℃、延伸倍率1.15で横方向に延伸して光学異方性膜Gを得た。連続的に製造される光学異方性膜Gを一部サンプリングし、マイクロメータを使用して厚さを測った結果99μmであった。なおポリカーボネート樹脂とスチレン−無水マレイン酸共重合体樹脂の量比から計算される各層の膜厚は、第1層の膜厚d1=10μm、第2層の膜厚d2=89μmであった。   The unstretched film g was supplied to a longitudinal uniaxial stretching machine and stretched in the longitudinal direction at a stretching temperature of 155 ° C. and a stretching ratio of 2 times. Subsequently, the stretched film was continuously supplied to a tenter stretching machine, and stretched in the transverse direction at a stretching temperature of 130 ° C. and a stretching ratio of 1.15 to obtain an optical anisotropic film G. A part of the optically anisotropic film G manufactured continuously was sampled, and the thickness was measured using a micrometer. As a result, it was 99 μm. The film thickness of each layer calculated from the quantitative ratio of the polycarbonate resin and the styrene-maleic anhydride copolymer resin was the first layer thickness d1 = 10 μm and the second layer thickness d2 = 89 μm.

連続的に製造される光学異方性膜Gの透過偏光状態の変化を、インラインで測定した。測定は、図1に示される、光源と検光子を3組有する分光エリプソメータを用いて、第1〜第3の測定を同時に行うほかは、実施例1と同様の条件で行った。   The change in the transmission polarization state of the continuously manufactured optically anisotropic film G was measured in-line. The measurement was performed under the same conditions as in Example 1 except that the first to third measurements were simultaneously performed using a spectroscopic ellipsometer having three sets of light sources and analyzers as shown in FIG.

第1の測定で得られる透過光の位相差の変化Δ1Gは、157.4nmであった。第2の測定で得られる透過光の位相差の変化Δ2Gは、158.0nmであった。第3の測定で得られる透過光の位相差の変化Δ3Gは77.5°、振幅比の変化Ψ3Gは53.3°であった。また光学異方性膜Gを用いて実施例7と同様にして液晶モニターサンプルGを作成し、暗表示輝度を測定した。透過輝度は、サンプルDを用いた場合(実施例10)の透過輝度を1としたときの相対値で1.30であった。結果を表1に示す。 The change Δ 1G in the phase difference of the transmitted light obtained in the first measurement was 157.4 nm. The change Δ 2G in the phase difference of transmitted light obtained in the second measurement was 158.0 nm. The change Δ 3G in transmitted light phase difference obtained in the third measurement was 77.5 °, and the change in amplitude ratio Ψ 3G was 53.3 °. A liquid crystal monitor sample G was prepared using the optically anisotropic film G in the same manner as in Example 7, and the dark display luminance was measured. The transmission luminance was 1.30 as a relative value when the transmission luminance when Sample D was used (Example 10) was 1. The results are shown in Table 1.

(実施例14)
上記の延伸前フィルムgを用いて透過光の位相差の変化および振幅比の変化が光学異方性膜Aと等しい光学異方性膜を得るために、上記光学異方性膜Gの連続製造の途中で、インラインで第1〜第3の測定を行いながら延伸条件を変更した。縦方向の延伸倍率を1.98倍、横方向の延伸温度を131℃としたところ、Δ1H=157.4nm、Δ2H=158.0nm、Δ3H=76.1°、Ψ3H=53.1°となったので、この延伸条件で連続的に製造を行い光学異方性膜Hを得た。この光学異方性膜Hを用いて実施例7と同様にして液晶モニターサンプルHを作成し、暗表示輝度を測定した。透過輝度は、サンプルDを用いた場合(実施例10)の透過輝度を1としたときの相対値で1.03であった。結果を表1に示す。
(Example 14)
In order to obtain an optically anisotropic film in which the change in retardation of transmitted light and the change in amplitude ratio are equal to those of the optically anisotropic film A using the unstretched film g, continuous production of the optically anisotropic film G is performed. On the way, the stretching conditions were changed while performing the first to third measurements in-line. When the draw ratio in the machine direction was 1.98 times and the draw temperature in the transverse direction was 131 ° C., Δ 1H = 157.4 nm, Δ 2H = 158.0 nm, Δ 3H = 76.1 °, Ψ 3H = 53. Since it became 1 degree, it manufactured continuously on this extending | stretching condition, and obtained the optically anisotropic film H. A liquid crystal monitor sample H was prepared using this optically anisotropic film H in the same manner as in Example 7, and the dark display luminance was measured. The transmission luminance was 1.03 as a relative value when the transmission luminance when Sample D was used (Example 10) was 1. The results are shown in Table 1.

以上の結果より、光学異方性膜の連続製造において、Δ、Δ、Δ、およびΨをインラインで連続的に測定しながら、これらの値が所望の光学特性を有する光学異方性膜と等しくなるように製造条件を調節することで、得られる光学異方性膜の光学特性を所望の物と一致させることが可能であることが分かる。 These results, in the continuous production of optically anisotropic films, Δ 1, Δ 2, Δ 3, and [psi 3 while continuously measuring inline, optically anisotropic these values with desired optical properties It can be seen that the optical characteristics of the obtained optically anisotropic film can be made to match the desired one by adjusting the manufacturing conditions so as to be equal to the property film.

1 光学特性の測定装置
2 光学異方性膜
11 第1光源
12 第2光源
13 第3光源
21 第1検光子
22 第2検光子
23 第3検光子
DESCRIPTION OF SYMBOLS 1 Optical characteristic measuring apparatus 2 Optical anisotropic film 11 1st light source 12 2nd light source 13 3rd light source 21 1st analyzer 22 2nd analyzer 23 3rd analyzer

Claims (6)

多層の光学異方性膜の評価方法であって、
前記光学異方性膜に対し垂直方向に光を照射してその透過偏光状態の変化(1)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する工程、および
前記透過偏光状態の変化(1)〜(3)の測定値と、所望の光学特性を有する光学異方性膜について同様の測定を行って得られる透過偏光状態の変化(1)〜(3)とを対比する工程、
を有することを特徴とする光学異方性膜の評価方法。
A method for evaluating a multilayer optically anisotropic film,
Irradiating light in a direction perpendicular to the optically anisotropic film and measuring a change (1) in the transmitted polarization state;
Irradiating light in the direction of the azimuth angle −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °) with respect to the in-plane slow axis direction of the optically anisotropic film Measuring the change (2) in the transmitted polarization state;
An azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 ° with respect to the in-plane slow axis direction of the optically anisotropic film. A step of irradiating light in a certain direction and measuring the change (3) of the transmitted polarization state, and the measured values of the changes (1) to (3) of the transmitted polarization state and an optical having desired optical characteristics A step of comparing the transmitted polarization state changes (1) to (3) obtained by performing the same measurement on the anisotropic film,
A method for evaluating an optically anisotropic film, comprising:
走行している長尺の、多層の光学異方性膜の光学特性を測定する装置であって、
前記光学異方性膜に対し垂直方向に光を照射してその透過偏光状態の変化(1)を測定するユニット、
前記光学異方性膜の面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定するユニット、および
前記光学異方性膜の面内遅相軸方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定するユニット、
を有することを特徴とする光学異方性膜の光学特性の測定装置。
A device for measuring the optical properties of a long, multi-layer optically anisotropic film that is running,
A unit that irradiates light in a direction perpendicular to the optically anisotropic film and measures a change (1) in the transmitted polarization state;
Irradiating light in the direction of the azimuth angle −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °) with respect to the in-plane slow axis direction of the optically anisotropic film A unit for measuring the change (2) in the transmitted polarization state, and an azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a pole with respect to the in-plane slow axis direction of the optically anisotropic film A unit that irradiates light in the direction of an angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 °) and measures the change (3) in the transmitted polarization state;
An apparatus for measuring optical characteristics of an optically anisotropic film, characterized by comprising:
多層で長尺の光学異方性膜を連続的に製造する方法であって、
多層で長尺の光学フィルムを延伸して該光学フィルムに光学異方性を付与する工程、
前記光学フィルムに対し垂直方向に光を照射してその透過偏光状態の変化(1)を測定する工程、
前記光学フィルムの面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する工程、
前記光学フィルムの面内遅相軸方向に対し方位角θ(ただし、30°≦θ≦60°である)かつ極角θ(ただし、30°≦θ≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する工程、および
前記透過偏光状態の変化(1)〜(3)が所望の値となるように製造条件を調整する工程、
を含むことを特徴とする長尺の光学異方性膜の製造方法。
A method for continuously producing a multilayer and long optical anisotropic film,
A step of stretching a long optical film in multiple layers to impart optical anisotropy to the optical film;
Irradiating light in the vertical direction to the optical film and measuring the change (1) in the transmitted polarization state;
With respect to the in-plane slow axis direction of the optical film, light is irradiated in the direction of azimuth angle −5 ° to + 5 ° and polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °), and the transmitted polarized light. Measuring the state change (2);
An azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 °) with respect to the in-plane slow axis direction of the optical film. Irradiating light in the direction to measure the change (3) in the transmitted polarization state, and adjusting the manufacturing conditions so that the changes (1) to (3) in the transmitted polarization state have desired values,
The manufacturing method of the elongate optically anisotropic film | membrane characterized by including.
前記透過偏光状態の変化(1)〜(3)の測定が分光エリプソメトリーによるものであり、
前記透過偏光状態の変化(1)が透過光の位相差の変化Δであり、
前記透過偏光状態の変化(2)が透過光の位相差の変化Δであり、
前記透過偏光状態の変化(3)が透過光の位相差の変化Δおよび振幅比の変化Ψである、
請求項1記載の評価方法。
The measurement of the change in the transmission polarization state (1) to (3) is based on spectroscopic ellipsometry,
The change in the transmitted polarization state (1) is the change delta 1 phase difference of the transmitted light,
The change in the transmitted polarization state (2) is a change in delta 2 of the phase difference of the transmitted light,
The transmitted polarization state change (3) is a transmitted light phase difference change Δ 3 and an amplitude ratio change ψ 3 .
The evaluation method according to claim 1.
θが40°≦θ≦50°である、請求項1または4に記載の測定方法。 The measurement method according to claim 1, wherein θ 2 is 40 ° ≦ θ 2 ≦ 50 °. 多層の光学異方性膜が多層押し出し成形により得られたものである、請求項1、4、または5に記載の評価方法。   The evaluation method according to claim 1, 4, or 5, wherein the multilayer optically anisotropic film is obtained by multilayer extrusion molding.
JP2011285145A 2010-12-27 2011-12-27 Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film Pending JP2012150107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285145A JP2012150107A (en) 2010-12-27 2011-12-27 Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010289942 2010-12-27
JP2010289942 2010-12-27
JP2011285145A JP2012150107A (en) 2010-12-27 2011-12-27 Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film

Publications (1)

Publication Number Publication Date
JP2012150107A true JP2012150107A (en) 2012-08-09

Family

ID=46792456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285145A Pending JP2012150107A (en) 2010-12-27 2011-12-27 Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film

Country Status (1)

Country Link
JP (1) JP2012150107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125997A1 (en) * 2014-02-20 2015-08-27 코스맥스 주식회사 Method for detecting multi-layered structure of liquid crystal emulsion by measuring mueller matrix
DE102014104518A1 (en) * 2014-03-31 2015-10-01 J & M Analytik Ag Multifunction probe
WO2019163843A1 (en) * 2018-02-26 2019-08-29 富士フイルム株式会社 Phase difference film manufacturing method and manufacturing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059266A2 (en) * 2002-12-20 2004-07-15 Hinds Instruments, Inc Out-of-plane birefringence measurement
JP2007052049A (en) * 2005-08-15 2007-03-01 Fujifilm Corp Optical compensation sheet and its manufacturing method
JP2007225426A (en) * 2006-02-23 2007-09-06 Nippon Zeon Co Ltd Test method of optical anisotropic film
JP2007264538A (en) * 2006-03-30 2007-10-11 Nippon Zeon Co Ltd Liquid crystal display panel and liquid crystal display device
JP2009063465A (en) * 2007-09-07 2009-03-26 Tohoku Univ Method and apparatus for measuring physical properties of liquid crystal
JP2009115646A (en) * 2007-11-07 2009-05-28 Sony Corp Evaluation method, evaluation device, and manufacturing device
JP2009229229A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Double refraction measuring instrument and double refraction measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059266A2 (en) * 2002-12-20 2004-07-15 Hinds Instruments, Inc Out-of-plane birefringence measurement
JP2007052049A (en) * 2005-08-15 2007-03-01 Fujifilm Corp Optical compensation sheet and its manufacturing method
JP2007225426A (en) * 2006-02-23 2007-09-06 Nippon Zeon Co Ltd Test method of optical anisotropic film
JP2007264538A (en) * 2006-03-30 2007-10-11 Nippon Zeon Co Ltd Liquid crystal display panel and liquid crystal display device
JP2009063465A (en) * 2007-09-07 2009-03-26 Tohoku Univ Method and apparatus for measuring physical properties of liquid crystal
JP2009115646A (en) * 2007-11-07 2009-05-28 Sony Corp Evaluation method, evaluation device, and manufacturing device
JP2009229229A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Double refraction measuring instrument and double refraction measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015023369; La Trong Hung et al.: 'Measurement of Optical Parameters for Birefringent Film Stack' Proceedings of The 17th International Display Workshops Vol.1, 20101201, pp.117-118 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125997A1 (en) * 2014-02-20 2015-08-27 코스맥스 주식회사 Method for detecting multi-layered structure of liquid crystal emulsion by measuring mueller matrix
DE102014104518A1 (en) * 2014-03-31 2015-10-01 J & M Analytik Ag Multifunction probe
DE102014104518B4 (en) 2014-03-31 2022-02-03 J & M Analytik Ag multifunction measuring head
WO2019163843A1 (en) * 2018-02-26 2019-08-29 富士フイルム株式会社 Phase difference film manufacturing method and manufacturing device
JPWO2019163843A1 (en) * 2018-02-26 2020-12-03 富士フイルム株式会社 Phase difference film manufacturing method and manufacturing equipment

Similar Documents

Publication Publication Date Title
KR101576290B1 (en) Mathod for producing retardation film
TWI763730B (en) Broadband wavelength film, method for producing the same, and method for producing a circularly polarized film
KR102114358B1 (en) Multilayer retardation film and method for producing same
KR101786618B1 (en) Multilayered film and method of manufacturing multilayered film
KR101555713B1 (en) Method for producing retardation film
TWI606927B (en) Retardation film laminate and manufacturing method of retardation film laminate
JP7413997B2 (en) Method for manufacturing broadband wavelength film and method for manufacturing circularly polarizing film
JP5399099B2 (en) Liquid crystal display
US11391876B2 (en) Optically anisotropic laminate, circularly polarizing plate and image display device
US9321227B2 (en) Phase difference plate manufacturing method, phase difference plate, and liquid crystal display device
KR20190079615A (en) Wide-band Wavelength Film, Method for its Fabrication and Method for Producing Circularly Polarized Film
JP2012150107A (en) Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film
JP4171168B2 (en) Production method of retardation plate
KR102679127B1 (en) Viewing angle enlargement films, polarizers, and liquid crystal displays
JP7413996B2 (en) Method for manufacturing broadband wavelength film and method for manufacturing circularly polarizing film
JP6131620B2 (en) Laminated retardation film and method for producing laminated retardation film
JPWO2019124456A1 (en) Circular polarizing plate, long broadband λ / 4 plate, organic electroluminescence display device and liquid crystal display device
WO2013133102A1 (en) Retarder manufacturing method
JP5728904B2 (en) Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film
JP2005292311A (en) Optical laminate, optical element, and liquid crystal display
JP4935878B2 (en) Optical laminate manufacturing method, optical element, and liquid crystal display device
KR102085861B1 (en) Phase difference film and method for producing the same
JP2012073646A (en) Manufacturing method of retardation plate
TW202321667A (en) Inspection method and method of manufacturing elliptical polarizing plate
JP2011076026A (en) Optical laminated body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209