JP2012150086A - Assembled battery system designing method and apparatus for the same - Google Patents

Assembled battery system designing method and apparatus for the same Download PDF

Info

Publication number
JP2012150086A
JP2012150086A JP2011010897A JP2011010897A JP2012150086A JP 2012150086 A JP2012150086 A JP 2012150086A JP 2011010897 A JP2011010897 A JP 2011010897A JP 2011010897 A JP2011010897 A JP 2011010897A JP 2012150086 A JP2012150086 A JP 2012150086A
Authority
JP
Japan
Prior art keywords
battery
battery cell
power supply
supply unit
battery cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011010897A
Other languages
Japanese (ja)
Inventor
Onchi Okamoto
穏治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011010897A priority Critical patent/JP2012150086A/en
Publication of JP2012150086A publication Critical patent/JP2012150086A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an assembled battery system designing method and an apparatus for implementing the system to be applied to an assembled battery system comprising a large number of battery cells, the method and the apparatus enabling a required utilization rate to be secured even if the battery cells include considerably deteriorated ones.SOLUTION: An assembled battery system comprising a large number of battery cells connected in series is provided with a main power unit made up of battery cells for normal use and a reserve power unit made up of battery cells to replace any of the battery cell running into trouble in the main power unit; the number of battery cells making up the reserve power unit, which is connected in series to the main power unit, is determined by the utilization rate required for the assembled battery system and by the probability of failure of each of the individual battery cells making up the assembled battery system.

Description

本発明は、多数の電池セルから成る組電池システムの設計方法及びその装置に関する。   The present invention relates to a design method and an apparatus for an assembled battery system including a large number of battery cells.

リチウムイオン電池は、これまでの同電池の主要市場であるノート型のパーソナルコンピュータや携帯電話機等のモバイル端末用の電源に留まらず、電気自動車やハイブッド自動車等の動力源へと市場が拡大しつつある。   The market for lithium-ion batteries is not limited to power sources for mobile terminals such as notebook personal computers and mobile phones, which are the main markets for the batteries, but the market is expanding to power sources such as electric cars and hybrid cars. is there.

1台の電気自動車には、携帯電話機に換算して数千台分のリチウムイオン電池が使用されており、リチウムイオン電池を電気自動車用の動力源として用いる場合、該リチウムイオン電池には、安全性、信頼性、耐久性に関して、モバイル端末よりも厳しい要求水準を満たす必要がある。   One electric vehicle uses several thousand lithium ion batteries in terms of a mobile phone. When a lithium ion battery is used as a power source for an electric vehicle, the lithium ion battery has a safety In terms of reliability, reliability and durability, it is necessary to meet stricter requirements than mobile terminals.

そのため、電気自動車の動力源として用いたリチウムイオン電池は、経年劣化等により電気自動車への再利用には適格性を欠くと判定されても、その他の用途では未だ十分な性能を有しており、再利用が可能と判定されることもあり得る。そのような再利用可能な用途としては、例えば太陽光や風力等の自然エネルギーを利用する、発電量の変動が大きい再生可能電源の出力電力を安定化させるための蓄電池や割安な夜間電力を貯蔵するための蓄電池等が考えられる。現在、このような電力貯蔵用の蓄電池には、主としてナトリウム硫黄電池等が用いられている。   For this reason, lithium-ion batteries used as power sources for electric vehicles still have sufficient performance in other applications even if they are judged to be unsuitable for reuse in electric vehicles due to deterioration over time. It may be determined that reuse is possible. Such reusable uses include, for example, storage batteries for stabilizing the output power of renewable power sources that use natural energy such as sunlight and wind power, and that have large fluctuations in power generation, and cheap nighttime power. A storage battery or the like can be considered. At present, sodium-sulfur batteries and the like are mainly used for such power storage batteries.

電力貯蔵用の蓄電池は、モバイル端末や電気自動車等の用途と比べて、設置スペースや重量に対する制約が厳しくない。したがって、単にエネルギー密度が高いことよりもエネルギー密度/コストの比が重要になる。現状、リチウムイオン電池は、このエネルギー密度/コストの比がナトリウム硫黄電池よりも劣っていると言える。しかしながら、今後、電気自動車等が普及することでリチウムイオン電池のコストが低下し、また再利用電池は新品の電池よりも割安であるため、リチウムイオン電池の再利用市場が拡大する可能性がある。   The storage battery for power storage has less restrictions on installation space and weight than applications such as mobile terminals and electric vehicles. Therefore, the energy density / cost ratio is more important than simply high energy density. At present, it can be said that the lithium ion battery is inferior in energy density / cost ratio to the sodium sulfur battery. However, in the future, the cost of lithium-ion batteries will decrease as electric vehicles and the like become widespread, and reuse batteries are cheaper than new batteries, so there is a possibility that the reuse market for lithium-ion batteries will expand. .

また、ナトリウム硫黄電池は、消防法で危険物扱いであるために設置時に許可が必要であり、運転時に高温状態(300℃程度)で維持する必要がある等のデメリットもある。そのため、将来的には電力貯蔵用の蓄電池として再利用リチウムイオン電池にもコスト競争力が見出せる。   In addition, since the sodium-sulfur battery is handled as a dangerous substance in the Fire Service Act, it requires permission at the time of installation, and has a demerit that it is necessary to maintain it at a high temperature (about 300 ° C.) during operation. Therefore, in the future, cost-competitiveness can also be found in reusable lithium ion batteries as storage batteries for power storage.

しかしながら、再利用リチウムイオン電池は、数年程度使用された電池セルを用いることになるため、電池セルによっては劣化がかなり進行していると考えられる。一般に、電力貯蔵用の蓄電池には、多数の電池セルを備えた、大規模な組電池が用いられる。したがって、電気自動車等で使用されたリチウムイオン電池を回収し、電池セルに分解して組電池を再構成する場合、劣化が進んだ電池セルが含まれていても、所要の性能要件を満たす組電池として機能させるための技術やその組電池の稼働率等を精度良く予測する技術が必要となる。   However, since the reusable lithium ion battery uses a battery cell that has been used for several years, it is considered that the deterioration is considerably advanced depending on the battery cell. In general, a large-scale assembled battery including a large number of battery cells is used as a storage battery for power storage. Therefore, when a lithium ion battery used in an electric vehicle or the like is collected and disassembled into battery cells to reconfigure the assembled battery, the assembled battery that satisfies the required performance requirements is included even if the battery cell has deteriorated. A technique for functioning as a battery and a technique for accurately predicting the operating rate of the assembled battery are required.

リチウムイオン電池は、通常、過充電や過放電を行うと、電極が不安定な状態となって発熱し、破裂したり発火したりする危険性がある。特にリチウムイオン電池を直列に接続して使用する場合は、過充電や過放電を回避する保護回路だけでなく、電池セル毎の不均一な蓄電量に対処するためのセルバランス回路が必要になる。   When a lithium ion battery is normally overcharged or overdischarged, there is a risk that the electrode becomes unstable and generates heat, which may rupture or ignite. In particular, when using lithium ion batteries connected in series, not only a protection circuit that avoids overcharging and overdischarging, but also a cell balance circuit that handles non-uniform power storage for each battery cell is required. .

セルバランス回路は、放電時には蓄電量が少なすぎる電池セルから放電させず、充電時には蓄電量が多すぎる電池セルに充電しない処理を行うことで、電池セル間の蓄電量のバランスを保っている。また、組電池には、このような電池セル間の蓄電量のバランスを取りながら必要な出力電圧を得るために昇圧回路を用いることもある。   The cell balance circuit maintains the balance of the amount of electricity stored between the battery cells by performing a process of not discharging the battery cell having too little charged amount during discharging and charging the battery cell having too much charged amount during charging. The assembled battery may use a booster circuit to obtain a necessary output voltage while balancing the amount of electricity stored between the battery cells.

ところで、回収された電池セルを再利用する組電池システムでは、ある程度劣化した電池セルを用いることで、再利用中に該電池セルの容量が急激に低下して事実上故障状態になることが考えられる。   By the way, in an assembled battery system that reuses collected battery cells, it is considered that the use of battery cells that have deteriorated to a certain extent causes the capacity of the battery cells to drop rapidly during reuse, resulting in a failure state. It is done.

例えば非特許文献1の図1には、電池容量と充放電サイクル数の関係を示すグラフが示されている。非特許文献1では、充放電サイクル数の増加に伴って容量が減少していく電池特性を、4つの領域(A)−(D)に分類している。   For example, FIG. 1 of Non-Patent Document 1 shows a graph showing the relationship between the battery capacity and the number of charge / discharge cycles. In Non-Patent Document 1, battery characteristics whose capacity decreases as the number of charge / discharge cycles increases are classified into four regions (A)-(D).

領域(A)は、充放電サイクル数が少ない、電池容量が急速に低下する領域である。   Region (A) is a region where the number of charge / discharge cycles is small and the battery capacity rapidly decreases.

領域(B)は、領域(A)に続く、電池容量の減少率が緩やかになる領域である。   The area (B) is an area where the rate of decrease in battery capacity is moderate following the area (A).

領域(C)は、領域(B)に続く、領域(B)よりもさらに電池容量の減少率が緩やかになる領域である。   The region (C) is a region that follows the region (B), and the rate of decrease of the battery capacity becomes more gradual than the region (B).

領域(D)は、領域(C)に続く、再び電池容量が急速に低下する領域である。   The area (D) is an area where the battery capacity rapidly decreases again following the area (C).

このような電池容量−充放電サイクル特性の測定例は、例えば非特許文献2の図3に記載されている。   A measurement example of such battery capacity-charge / discharge cycle characteristics is described in FIG.

非特許文献2の図3に示された三角形及び菱形は、上記領域(A)−(C)にあり、四角形は領域(A)−(D)にあると判断できる。   It can be determined that the triangles and rhombuses shown in FIG. 3 of Non-Patent Document 2 are in the region (A)-(C), and the quadrangle is in the region (A)-(D).

また、非特許文献3の図8によれば、負極にB−MCF(ホウ素ドープ・メソフェーズピッチ系炭素繊維)を用いたリチウムイオン電池は、500回の充放電サイクルまで領域(A)−(C)にあって未だ領域(D)に達せず、負極に負極を用いたリチウムイオン電池は、200回の充放電サイクル前後で領域(D)に到達すると認められる。   Further, according to FIG. 8 of Non-Patent Document 3, a lithium ion battery using B-MCF (boron-doped mesophase pitch-based carbon fiber) as a negative electrode has a region (A)-(C It is recognized that the lithium ion battery using the negative electrode as the negative electrode reaches the region (D) before and after 200 charge / discharge cycles.

R. Spotniz,“Simulation of Capacity fade in Lithium-ion batteries”, Journal of Power Sources, Vol.113,p.72-80, 2003R. Spotniz, “Simulation of Capacity fade in Lithium-ion batteries”, Journal of Power Sources, Vol.113, p.72-80, 2003 中川裕江、外3名、“フッ化アルキル基有リン酸エステル添加難燃性電解液を用いた高性能リチウムイオン二次電池の開発”、GS Yuasa Technical Report、第6巻、第2号、p.7−13、2009年Hiroe Nakagawa, 3 others, “Development of high-performance lithium-ion secondary battery using fluorinated alkyl group-containing phosphoric acid ester-added flame retardant electrolyte”, GS Yuasa Technical Report, Vol. 6, No. 2, p. . 7-13, 2009 高見則雄、“超薄形アルミラミネート外装リチウムイオン電池”、東芝レビュー、第56巻、第2号、p.10−13、2001年Norio Takami, “Ultra-thin aluminum laminate exterior lithium ion battery”, Toshiba Review, Vol. 56, No. 2, p. 10-13, 2001

回収された電池セルを有効活用するには、上記領域(C)の後半から領域(D)にある、電池容量の劣化がかなり進んだ状態とみなされる電池セルが組電池システムに含まれていても、なんらかの工夫により該組電池システムの可用性を担保することが重要である。   In order to effectively use the collected battery cells, the assembled battery system includes battery cells in the area (D) from the latter half of the area (C), which are considered to have been considerably deteriorated in battery capacity. However, it is important to ensure the availability of the assembled battery system by some device.

上述したセルバランス回路では、このような劣化した電池セルが多数含まれていると、組電池システムとして必要な電池容量や出力電圧を保つことが困難である。   In the above-described cell balance circuit, if many such deteriorated battery cells are included, it is difficult to maintain the battery capacity and output voltage necessary for the assembled battery system.

本発明は上述したような背景技術が有する問題点を解決するためになされたものであり、多数の電池セルを備える組電池システムにおいて、劣化が進行した電池セルが含まれていても所要の稼働率を確保できる組電池システムの設計方法及びその装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the background art, and in an assembled battery system including a large number of battery cells, the required operation is performed even if battery cells that have deteriorated are included. It is an object of the present invention to provide an assembled battery system design method and apparatus capable of securing the rate.

上記目的を達成するため本発明の組電池システムの設計方法は、通常使用される、直列に接続された複数の電池セルを備える主電源部と、
前記主電源部の電池セルの故障時に該故障した電池セルに代わって使用される、直列に接続された複数の電池セルを備える予備電源部と、
を有する組電池システムの設計方法であって、
前記電池セル毎の電池容量を測定し、該電池セル毎の電池容量に基づいて前記電池セル毎の故障確率を求め、
前記電池セル毎の故障確率から、前記予備電源部の電池セル数を変化させたときの、前記組電池システムが正常に動作する確率である稼働率をそれぞれ求め、前記組電池システムに要求される稼働率を満たす前記予備電源部の電池セル数を決定する方法である。
In order to achieve the above object, a method for designing an assembled battery system of the present invention includes a main power supply unit that includes a plurality of battery cells connected in series, which are usually used.
A spare power supply unit comprising a plurality of battery cells connected in series, used in place of the failed battery cell when the battery cell of the main power supply unit fails,
A battery pack system design method comprising:
Measure the battery capacity for each battery cell, determine the failure probability for each battery cell based on the battery capacity for each battery cell,
From the failure probability for each battery cell, an operation rate that is a probability that the assembled battery system operates normally when the number of battery cells of the standby power supply unit is changed is obtained, and is required for the assembled battery system. This is a method of determining the number of battery cells of the standby power supply unit that satisfies the operating rate.

一方、本発明の組電池システムの設計装置は、通常使用される、直列に接続された複数の電池セルを備える主電源部と、
前記主電源部の電池セルの故障時に該故障した電池セルに代わって使用される、直列に接続された複数の電池セルを備える予備電源部と、
を有する組電池システムの設計装置であって、
予め測定された前記電池セル毎の電池容量に基づいて前記電池セル毎の故障確率を求める故障確率計算部と、
前記電池セル毎の故障確率から、前記予備電源部の電池セル数を変化させたときの、前記組電池システムが正常に動作する確率である稼働率をそれぞれ求め、前記組電池システムに要求される稼働率を満たす前記予備電源部の電池セル数を決定する稼働率計算部と、
を有する。
On the other hand, the assembled battery system design apparatus of the present invention is a main power supply unit including a plurality of battery cells connected in series, which are normally used,
A spare power supply unit comprising a plurality of battery cells connected in series, used in place of the failed battery cell when the battery cell of the main power supply unit fails,
An apparatus for designing an assembled battery system having
A failure probability calculation unit for obtaining a failure probability for each battery cell based on the battery capacity of each battery cell measured in advance;
From the failure probability for each battery cell, an operation rate that is a probability that the assembled battery system operates normally when the number of battery cells of the standby power supply unit is changed is obtained, and is required for the assembled battery system. An operation rate calculation unit that determines the number of battery cells of the standby power supply unit that satisfies the operation rate;
Have

本発明によれば、多数の電池セルを備える組電池システムにおいて、劣化が進行した電池セルが含まれていても所要の稼働率を確保できる組電池システムが得られる。   According to the present invention, in an assembled battery system including a large number of battery cells, an assembled battery system that can ensure a required operating rate is obtained even when the battery cells that have progressed deterioration are included.

本発明の組電池システムの一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the assembled battery system of this invention. 図1に示した予備電源部の電池セルの数を変化させたときの主電源部及び予備電源部の電池セルが故障する確率及び組電池システムの稼働率の変化の一例を示すグラフである。It is a graph which shows an example of the change of the operating rate of the assembled battery system, and the probability that the battery cell of a main power supply part and a backup power supply part will fail when the number of battery cells of the backup power supply part shown in FIG. 1 is changed. 本発明の組電池システムの設計装置の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the design apparatus of the assembled battery system of this invention. 図3に示した測定データ解析部及びシステム構成設計部の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the measurement data analysis part and system structure design part which were shown in FIG. リチウムイオン電池の故障確率の分散が大きい場合と分散が小さい場合の確率密度分布及び累積分布の一例を示すグラフである。It is a graph which shows an example of probability density distribution and a cumulative distribution when the dispersion | variation in the failure probability of a lithium ion battery is large, and a dispersion | distribution is small. サイクル−容量曲線を初期容量で規格化した場合の容量を凸関数と凹関数でフィッティングした様子を示すグラフである。It is a graph which shows a mode that the capacity | capacitance at the time of normalizing a cycle-capacity curve with an initial capacity | capacitance was fitted with the convex function and the concave function. 電池セルの故障の確率密度関数及び累積分布の一例を示すグラフである。It is a graph which shows an example of the probability density function and cumulative distribution of the failure of a battery cell.

次に本発明について図面を用いて説明する。   Next, the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の組電池システムは、通常使用される、直列に接続されたM個の電池セルEcを備える主電源部10と、主電源部10の電池セルEcの故障時に、故障した電池セルEcに代わって使用される、直列に接続されたm個の電池セルEcを備える予備電源部20とを有し、主電源部10と予備電源部20とが直列に接続された構成である。予備電源部20で必要な電池セル数は、組電池システムを構成する各電池セルEcの故障確率から決定する。これにより、電池容量の劣化が進行した電池セルEcが含まれていても要求された稼働率を確保できる組電池システムを実現できる。   As shown in FIG. 1, the assembled battery system of the present embodiment includes a main power supply unit 10 including M battery cells Ec connected in series and a failure of the battery cell Ec of the main power supply unit 10. A spare power supply unit 20 having m battery cells Ec connected in series, sometimes used in place of the failed battery cell Ec, and the main power supply unit 10 and the standby power supply unit 20 are connected in series. It is the structure which was made. The number of battery cells required by the standby power supply unit 20 is determined from the failure probability of each battery cell Ec constituting the assembled battery system. Thereby, the assembled battery system which can ensure the requested operation rate even if the battery cell Ec whose battery capacity has been deteriorated is included can be realized.

各電池セルEcは、直列に接続される第1スイッチA(switch A)と、並列に接続される第2スイッチB(switch B)とをそれぞれ備える。また、本実施形態の組電池システムは、主電源部10や予備電源部20が備える電池セルEcが故障したか否かを判定すると共に、電池セルEc毎に備える第1スイッチA及び第2スイッチBの動作をそれぞれ制御する制御部(不図示)を備える。   Each battery cell Ec includes a first switch A (switch A) connected in series and a second switch B (switch B) connected in parallel. The assembled battery system according to the present embodiment determines whether or not the battery cell Ec included in the main power supply unit 10 or the standby power supply unit 20 has failed, and includes a first switch A and a second switch provided for each battery cell Ec. A control unit (not shown) for controlling the operations of B is provided.

このような構成では、任意の電池セルEcに対応する第1スイッチAを短絡させ、第2スイッチBを開放させると、該電池セルEcは隣接する電池セルEcと直列に接続される。一方、任意の電池セルEcに対応する第2スイッチBを短絡させ、第1スイッチAを開放させると、該電池セルEcはバイパスされる。   In such a configuration, when the first switch A corresponding to an arbitrary battery cell Ec is short-circuited and the second switch B is opened, the battery cell Ec is connected in series with the adjacent battery cell Ec. On the other hand, when the second switch B corresponding to an arbitrary battery cell Ec is short-circuited and the first switch A is opened, the battery cell Ec is bypassed.

制御部は、組電池システムの完成当初(初期状態時)、主電源部10の各電池セルEcに対応する第1スイッチAをそれぞれ短絡させ、第2スイッチBをそれぞれ開放させて各電池セルEcを直列に接続させる。一方、予備電源部20の各電池セルEcに対応する第2スイッチBをそれぞれ短絡させ、第1スイッチAをそれぞれ開放させて各電池セルEcをバイパスさせる。   The control unit short-circuits the first switches A corresponding to the battery cells Ec of the main power supply unit 10 and opens the second switches B at the beginning of the assembled battery system (in an initial state), thereby opening each battery cell Ec. Are connected in series. On the other hand, the second switch B corresponding to each battery cell Ec of the standby power supply unit 20 is short-circuited, and the first switch A is opened to bypass each battery cell Ec.

そして、組電池システムをユーザが使用することで、主電源部10の任意の電池セルEcの劣化による故障を検出した場合、制御部は、故障と判定した電池セルEcに対応する第2スイッチBを短絡させ、第1のスイッチAを開放させて該電池セルをバイパスさせる。また、予備電源部20のバイパスされた電池セルに対応する第1スイッチAを短絡させ、第2のスイッチBを開放させて該電池セルを主電源部10に直列に接続させる。このように故障と判定した主電源部10の電池セルEcを予備電源部20の電池セルEcに置き換えることで、電池システムに要求されている出力電圧や電池容量を維持する。   When the user uses the assembled battery system and detects a failure due to deterioration of an arbitrary battery cell Ec of the main power supply unit 10, the control unit detects the second switch B corresponding to the battery cell Ec determined to be a failure. Is short-circuited, the first switch A is opened, and the battery cell is bypassed. Further, the first switch A corresponding to the bypassed battery cell of the standby power supply unit 20 is short-circuited, the second switch B is opened, and the battery cell is connected to the main power supply unit 10 in series. Thus, by replacing the battery cell Ec of the main power supply unit 10 determined to be a failure with the battery cell Ec of the standby power supply unit 20, the output voltage and the battery capacity required for the battery system are maintained.

電池セルが故障したか否かは、例えば所定の周期毎に各電池セルEcの電池容量を測定し、該電池容量が予め設定されたしきい値以下となったときに故障と判定すればよい。故障判定に用いるしきい値は、例えば電池セルEcの初期容量の70−80%の値に設定すればよい。電池容量は、例えば電池セルを最後まで放電させて蓄積されている電力量を実際に測定すればよい。また、後述するように、電池容量は電池セルの内部抵抗を測定することで推定することも可能である。   Whether or not a battery cell has failed may be determined as a failure when, for example, the battery capacity of each battery cell Ec is measured every predetermined period and the battery capacity falls below a preset threshold value. . What is necessary is just to set the threshold value used for a failure determination to the value of 70-80% of the initial capacity of the battery cell Ec, for example. The battery capacity may be measured, for example, by actually measuring the amount of power accumulated by discharging the battery cell to the end. Moreover, as will be described later, the battery capacity can be estimated by measuring the internal resistance of the battery cell.

制御部は、例えばプログラムにしたがって動作するCPU、各電池セルEcの電池容量を測定するための周知の容量測定回路、各電池セルの電池容量を記憶しておくためのメモリ、各種の論理ゲート、第1のスイッチ及び第2のスイッチを駆動するための周知のドライバ回路等を含む集積回路等で実現できる。   The control unit includes, for example, a CPU that operates according to a program, a known capacity measurement circuit for measuring the battery capacity of each battery cell Ec, a memory for storing the battery capacity of each battery cell, various logic gates, This can be realized by an integrated circuit including a known driver circuit for driving the first switch and the second switch.

次に、図1に示した組電池システムの設計方法について説明する。   Next, a method for designing the assembled battery system shown in FIG. 1 will be described.

まず、主電源部10が備える個々の電池セルEcがある時点までに故障する確率をp1と定義し、予備電源部20が備える個々の電池セルEcがある時点までに故障する確率をP2と定義する。 First, the probability that an individual battery cell Ec included in the main power supply unit 10 will fail up to a certain point is defined as p 1, and the probability that an individual battery cell Ec included in the standby power supply unit 20 exists up to a certain point is defined as P 2. It is defined as

図1に示した組電池システムが正常に動作するには、主電源部10の電池セル数に相当するM個の電池セルEcが未故障でなければならない。ここで、組電池システムが正常に動作しない確率は、次の2つの確率Pr1とPr2の和で表わされる。 In order for the assembled battery system shown in FIG. 1 to operate normally, M battery cells Ec corresponding to the number of battery cells of the main power supply unit 10 must be unfailed. Here, the probability that the assembled battery system does not operate normally is represented by the sum of the following two probabilities Pr 1 and Pr 2 .

Pr1は、主電源部10で(m+1)個以上の電池セルEcが故障する確率であり、
Pr1=Σk Mk(1−p1M-k1 k …(1)
で表される。但し、kは(m+1)からMまで変化する自然数である。
Pr 1 is the probability that (m + 1) or more battery cells Ec will fail in the main power supply unit 10,
Pr 1 = Σ k MC k (1−p 1 ) Mk p 1 k (1)
It is represented by However, k is a natural number which changes from (m + 1) to M.

Pr2は、主電源部10で Pr 2 is the main power supply unit 10.

Figure 2012150086
Figure 2012150086

個のセルが故障したとき、予備電源部20で故障していない電池セルEcの個数nが(k−1)以下となる確率であり、
Pr2=Σk Mk(1−p1M-k1 kΣn mn(1−p2n2 m-n …(2)
で表される。但し、kは0からmまで変化する自然数であり、nは0から(k−1)まで変化する自然数である。
When the number of cells has failed, the number n of battery cells Ec that have not failed in the standby power supply unit 20 is a probability of being (k−1) or less,
Pr 2 = Σ k M C k (1-p 1) Mk p 1 k Σ n m C n (1-p 2) n p 2 mn ... (2)
It is represented by However, k is a natural number that varies from 0 to m, and n is a natural number that varies from 0 to (k−1).

図1に示した組電池システムが正常に動作する確率PAは、上記正常に動作しない確率Pr1及びPr2の排反事象であるため、
A=1−Pr1−Pr2 …(3)
で求めることができる。以降、本明細書では、この確率PAを「稼働率」と称す。
The probability P A that the assembled battery system shown in FIG. 1 operates normally is an excuse event of the probabilities Pr 1 and Pr 2 that do not normally operate.
P A = 1-Pr 1 -Pr 2 (3)
Can be obtained. Hereinafter, in this specification, this probability P A is referred to as “operating rate”.

例えばM=100とし、p1=p2=0.95とし、mを0から20まで変化させたときのPr1、Pr2及びPAの変化を図2に示す。 For example, the M = 100, and p 1 = p 2 = 0.95, Figure 2 shows the change of Pr 1, Pr 2 and P A when changing the m from 0 to 20.

図2に示すように、予備電源部20が無い(m=0)場合、組電池システムの稼働率PAは0.6%となる。一方、予備電源部20を備え、該予備電源部20の電池セル数mを増加させると、組電池システムの稼働率PAは徐々に上昇し、m=12では稼働率PAが99.5%となる。したがって、予備電源部20を備えることで高い稼働率PAを有する組電池システムを実現できる。 As shown in FIG. 2, when the standby power supply unit 20 is not (m = 0), operation rate P A of the battery module system is 0.6%. On the other hand, it includes a standby power supply unit 20, increasing the number of battery cells m of the auxiliary power supply unit 20, the operation rate P A of the battery pack system gradually increases, m = 12 in the operation rate P A 99.5 %. Therefore, it is possible to realize a battery module system having a high operation rate P A by providing the standby power supply unit 20.

但し、このような手法を用いる場合、電池セルEc毎に、時刻tまでに故障する確率(故障確率)pをそれぞれ計算する必要がある。この故障確率pは、以下で説明する故障の累積分布確率F(t)に対応する。   However, when such a method is used, it is necessary to calculate the probability of failure (failure probability) p by time t for each battery cell Ec. This failure probability p corresponds to a failure cumulative distribution probability F (t) described below.

時刻tにおける故障の確率密度関数f(t)と、瞬間故障確率z(t)及び信頼度R(t)とには、以下の関係式が成立する。瞬間故障確率とは、時刻tまで故障しておらず、時刻tで故障が発生する条件付確率であり、信頼度とは時刻tまでに故障していない確率である。   The following relational expression holds for the probability density function f (t) of the failure at time t, the instantaneous failure probability z (t), and the reliability R (t). The instantaneous failure probability is a conditional probability that a failure does not occur until time t and a failure occurs at time t, and the reliability is a probability that no failure occurs until time t.

z(t)={−dR(t)/dt}/R(t) …(4)
これを積分すると
R(t)=exp{−∫z(s)ds}(積分区間は0からtまで) …(5)
となる。
z (t) = {− dR (t) / dt} / R (t) (4)
When this is integrated, R (t) = exp {−∫z (s) ds} (the integration interval is from 0 to t) (5)
It becomes.

したがって、時刻tまでの故障の累積分布確率F(t)は、
F(t)=1−R(t) …(6)
であり、時刻tにおける故障の確率密度関数f(t)は、
f(t)=dF(t)/dt=z(t)exp{−∫z(s)ds} …(7)
で表される。
Therefore, the cumulative distribution probability F (t) of the failure up to time t is
F (t) = 1−R (t) (6)
The probability density function f (t) of the failure at time t is
f (t) = dF (t) / dt = z (t) exp {−∫z (s) ds} (7)
It is represented by

ところで、非特許文献4(The Electropaedia, “Battery Reliability and How to Improve it”, Battery and Energy Technologies, インターネット<URL:http://www.mpoweruk.com/reliability.htm>)のExample 2には、多数のリチウムイオン電池の故障確率がワイブル分布に従うことが示されている。ワイブル分布は、2つのパラメータα及びβを用いて、
f(t)=αβ-αtα-1exp{−(t/β)α} …(8)
の関数形式で表すことができる。
By the way, in Example 2 of Non-Patent Document 4 (The Electropaedia, “Battery Reliability and How to Improve it”, Battery and Energy Technologies, Internet <URL: http://www.mpoweruk.com/reliability.htm>) It has been shown that the failure probability of many lithium ion batteries follows a Weibull distribution. The Weibull distribution uses two parameters α and β,
f (t) = αβ αtα −1 exp {− (t / β) α} (8)
It can be expressed in the function form of

したがって、例えば電池容量の測定データをワイブル関数へフィッティングし、最小二乗法等を用いて該ワイブル関数のパラメータα、βを決定すれば、各電池セルEcの故障確率が推定できる。但し、各電池セルの電池容量のバラツキが大きく、電池セル毎の故障確率が上記ワイブル分布に従うとは言えない場合は、電池セルEc毎の累積分布確率F(t)を求める。   Therefore, for example, by fitting the measurement data of the battery capacity to the Weibull function and determining the parameters α and β of the Weibull function using the least square method or the like, the failure probability of each battery cell Ec can be estimated. However, when the variation in the battery capacity of each battery cell is large and the failure probability for each battery cell cannot be said to follow the Weibull distribution, the cumulative distribution probability F (t) for each battery cell Ec is obtained.

電池セルEcがある時刻tまでに故障する累積分布確率F(t)は、リチウムイオン電池の充放電サイクル特性から、以下のようにして決めることができる。   The cumulative distribution probability F (t) at which the battery cell Ec fails by a certain time t can be determined from the charge / discharge cycle characteristics of the lithium ion battery as follows.

まず、電池セルEcの故障を、該電池セルEcの電池容量が予め設定されたしきい値QTH以下になった状態と定義する。リチウムイオン電池の電池容量Qは、残存する電池容量が大きい領域では、充放電サイクル数あるいは時間tの平方根に比例した減少曲線を示す(本明細書ではこの残存容量が大きい領域における特性を「ルート則的挙動」と称す)。 First, the failure of the battery cell Ec is defined as a state in which the battery capacity of the battery cell Ec is equal to or less than a preset threshold value QTH . The battery capacity Q of the lithium ion battery shows a decreasing curve proportional to the number of charge / discharge cycles or the square root of time t in the region where the remaining battery capacity is large (in this specification, the characteristic in the region where the remaining capacity is large is expressed as “route”. Called "regular behavior").

通常、リチウムイオン電池は、初期容量が最大容量であるため、比例定数としてkを用い、初期容量で規格化すると、ルート則的挙動領域におけるリチウムイオン電池の電池容量Qは、以下の式(9)で表わすことができる。   Usually, since the initial capacity of a lithium ion battery is the maximum capacity, when k is used as a proportionality constant and normalized by the initial capacity, the battery capacity Q of the lithium ion battery in the root-law behavior region is expressed by the following formula (9 ).

Q=1−k√t …(9)
一方、充放電回数(サイクル数)が多い領域では、電池容量が急速に劣化する。このような充放電サイクル数に依存して電池容量がルート則的挙動や急速劣化することは、例えば上記非特許文献3の図8にも示されている。
Q = 1−k√t (9)
On the other hand, in a region where the number of charge / discharge cycles (number of cycles) is large, the battery capacity rapidly deteriorates. It is also shown in FIG. 8 of Non-Patent Document 3, for example, that the battery capacity is subject to root-law behavior or rapidly deteriorates depending on the number of charge / discharge cycles.

上述したように、電池セルEcの電池容量がルート則的挙動領域にあれば、パラメータはkのみとなり、電池容量を実際に複数回程度測定すれば、該kの値を、最小二乗法等を用いて決定できる。   As described above, if the battery capacity of the battery cell Ec is in the root law behavior region, the parameter is only k. If the battery capacity is actually measured about several times, the value of k is calculated by the least square method or the like. Can be determined.

その場合、電池セルEcが故障するとみなせる時刻t0は、次式で求めることができる。 In that case, the time t 0 at which the battery cell Ec can be regarded as malfunctioning can be obtained by the following equation.

0={(1−QTH)/k}2 …(10)
一方、電池容量が急速劣化する領域における電池容量Qの特性は、凹関数にフィッティング可能であり、例えば
Q=(r−st)1/2 …(11)
で表すことができる。ここで、t=0からフィッティングを行う場合、r=1となる。
t 0 = {(1-QT H) / k} 2 ... (10)
On the other hand, the characteristic of the battery capacity Q in the region where the battery capacity rapidly deteriorates can be fitted to a concave function, for example, Q = (r−st) 1/2 (11)
Can be expressed as Here, when fitting is performed from t = 0, r = 1.

多数の電池セルEcの容量を測定すれば、パラメータkやsの確率密度関数g(k),g(s)が得られる。そのため、時刻tにおける故障の確率密度関数f(t)は、例えば下記式(12)(kの確率密度関数g(k))及び式(13)の関係から得られる。   If the capacity of a large number of battery cells Ec is measured, probability density functions g (k) and g (s) of parameters k and s can be obtained. Therefore, the probability density function f (t) of the failure at time t is obtained from the relationship of the following equation (12) (probability density function g (k) of k) and equation (13), for example.

g(k)=g(k(t))|dk/dt|dt=f(t)dt …(12)
k=(1−QTH)/√t …(13)
図3は本発明の組電池システムの設計装置の一構成例を示すブロック図であり、図4は図3に示した測定データ解析部及びシステム構成設計部の処理手順の一例を示すフローチャートである。
g (k) = g (k (t)) | dk / dt | dt = f (t) dt (12)
k = (1-Q TH ) / √t (13)
FIG. 3 is a block diagram showing an example of the configuration of the design apparatus for the assembled battery system of the present invention, and FIG. 4 is a flowchart showing an example of the processing procedure of the measurement data analysis unit and the system configuration design unit shown in FIG. .

図3に示すように、本発明の組電池設計支援装置は、測定データ解析部100、システム構成設計部200及び表示部300を有する。   As shown in FIG. 3, the assembled battery design support apparatus of the present invention includes a measurement data analysis unit 100, a system configuration design unit 200, and a display unit 300.

測定データ解析部100は、データ入力部110、W分布フィッティング部120及びR分布フィッティング部130を備えている。また、システム構成設計部200は、データ入力部210、故障確率計算部220及び稼働率計算部230を備えている。   The measurement data analysis unit 100 includes a data input unit 110, a W distribution fitting unit 120, and an R distribution fitting unit 130. The system configuration design unit 200 includes a data input unit 210, a failure probability calculation unit 220, and an operation rate calculation unit 230.

図4(a)に示すように、測定データ解析部100は、データ入力部110を介して、周知の充放電試験機等で測定された、電池セルEc毎の充放電サイクル数(時刻)tnにおける電池容量C(tn)(容量データ)を収集する。 As shown in FIG. 4 (a), the measurement data analysis unit 100 uses the data input unit 110 to measure the number of charge / discharge cycles (time) t for each battery cell Ec measured by a known charge / discharge tester or the like. battery capacity in n C (t n) to collect (volume data).

W分布フィッティング部120は、収集した電池セルEc毎の容量データを、電池セルEc毎の故障確率を示すワイブル関数へフィッティングし、最小二乗法等を用いて該ワイブル関数のパラメータα及びβを求める。このとき、ワイブル関数へのフィッティング精度が予め設定した基準値を満たしていれば、得られたワイブル関数のパラメータα及びβをシステム構成設計部200のデータ入力部210に供給する。フィッティング精度が基準値を満たしていない場合は、R分布フィッティング部130による処理へ移行する。   The W distribution fitting unit 120 fits the collected capacity data for each battery cell Ec to a Weibull function indicating a failure probability for each battery cell Ec, and obtains parameters α and β of the Weibull function using a least square method or the like. . At this time, if the fitting accuracy to the Weibull function satisfies a preset reference value, the parameters α and β of the obtained Weibull function are supplied to the data input unit 210 of the system configuration design unit 200. If the fitting accuracy does not satisfy the reference value, the process proceeds to processing by the R distribution fitting unit 130.

R分布フィッティング部130は、電池セルEc毎の容量データに基づき、式(9)で示す凸関数で表されるルート則的挙動領域を仮定した解析を行う、または式(11)で示す凹関数で表される電池容量が急速劣化する領域を仮定した解析を行う。   The R distribution fitting unit 130 performs analysis assuming a root-law behavior region represented by a convex function represented by Expression (9) based on the capacity data for each battery cell Ec, or a concave function represented by Expression (11). An analysis is performed assuming a region where the battery capacity represented by

R分布フィッティング部130は、最小二乗法等により凸関数または凹関数のパラメータkやsの値を決定し、これらのパラメータの値をシステム構成設計部200のデータ入力部210に供給する。また、この解析で既に急速に劣化する領域の電池セルEcがあれば、その電池セルEcの情報を表示部300に主力する。   The R distribution fitting unit 130 determines the values of the parameters k and s of the convex function or the concave function by the least square method or the like, and supplies the values of these parameters to the data input unit 210 of the system configuration design unit 200. In addition, if there is a battery cell Ec in the region that has already deteriorated rapidly in this analysis, the information on the battery cell Ec is mainly used in the display unit 300.

図4(b)に示すように、システム構成設計部200には、データ入力部210を介して、組電池システムの設計に必要な、要求される稼働率(R)、主電源部10における直列セル数(M)、予備電源部20の最大セル数(mmax)、評価する充放電サイクル数あるいは時刻の数(n)とその充放電サイクルあるいは時刻(t1,t2,・・・,tn)等の値が、キーボード等の入力装置を用いてユーザにより入力される。また、システム構成設計部200のデータ入力部210には、上記測定データ解析部100で決定したパラメータα及びβ、あるいはパラメータk及びsの値が入力される。 As shown in FIG. 4 (b), the system configuration design unit 200 is connected to the required operating rate (R) required for the design of the assembled battery system via the data input unit 210 in series in the main power supply unit 10. The number of cells (M), the maximum number of cells (m max ) of the standby power supply unit 20, the number of charge / discharge cycles to be evaluated or the number of times (n) and the charge / discharge cycles or times (t 1 , t 2 ,... A value such as t n ) is input by the user using an input device such as a keyboard. The data input unit 210 of the system configuration design unit 200 receives parameters α and β determined by the measurement data analysis unit 100 or parameters k and s.

主電源部10及び予備電源部20が備える各電池セルEcの故障確率p1及びp2は、測定データ解析部100で計算されたパラメータから決定される内生変数であるが、故障確率p1及びp2は、データ入力部210を用いてユーザ等が外生変数として設定してもよい。 The failure probabilities p 1 and p 2 of each battery cell Ec included in the main power supply unit 10 and the standby power supply unit 20 are endogenous variables determined from the parameters calculated by the measurement data analysis unit 100, but the failure probability p 1 And p 2 may be set as an exogenous variable by the user or the like using the data input unit 210.

故障確率計算部220は、上記故障の分布を記述するパラメータα及びβあるいはパラメータk及びsから式(4)〜式(13)を用いて時刻   The failure probability calculation unit 220 uses the parameters α and β or the parameters k and s describing the failure distribution to calculate the time using the equations (4) to (13).

Figure 2012150086
Figure 2012150086

における主電源部10が備える各電池セルEcの故障確率p1及び予備電源部20が備える各電池セルEcの故障確率p2を計算し、求めた電池セルEc毎の故障確率p1及びp2を稼働率計算部230に出力する。 The failure probability p 1 of each battery cell Ec included in the main power supply unit 10 and the failure probability p 2 of each battery cell Ec included in the standby power supply unit 20 are calculated, and the failure probabilities p 1 and p 2 for each obtained battery cell Ec are calculated. Is output to the operating rate calculation unit 230.

稼働率計算部230は、故障確率計算部220から受け取った電池セルEc毎の故障確率p1及びp2から式(1)及び式(2)を用いて上記Pr1及びPr2を計算し、求めたPr1及びPr2から式(3)を用いて時刻tkにおける組電池システムの稼働率PAを計算する。また、稼働率計算部230は、時刻tkにおける、予備電源部20の電池セルEcの数mを0からmmaxまで変化させたときの、それぞれの稼働率PAを求め、組電池システムに要求される稼働率PAを満たす予備電源部20の電池セル数、すなわち予備電源部20が備えるべき最小の電池セル数mminを求める。そして、時刻 The operating rate calculation unit 230 calculates the Pr 1 and Pr 2 using the equations (1) and (2) from the failure probabilities p 1 and p 2 for each battery cell Ec received from the failure probability calculation unit 220, from Pr 1 and Pr 2 obtained to calculate the operation rate P a of the battery module system at time t k using equation (3). Also, operating rate calculating unit 230, at time t k, when changing the number m of cell Ec of the standby power supply section 20 from 0 to m max, determined the respective operating ratio P A, the battery pack system number of battery cells of the standby power supply section 20 to meet the required operating ratio P a, i.e. determining the minimum cell number m min should provide power backup unit 20. And time

Figure 2012150086
Figure 2012150086

における、予備電源部20の電池セルEcの数mを0からmmaxまで変化させたときの、それぞれの稼働率PA及びmminを表示部300に出力する。 In, and outputs the number m of cell Ec of the standby power supply section 20 from 0 at the time of changing up to m max, to each of the operating rate display unit 300 P A and m min.

表示部300は、システム構成設計部200から受け取った、時刻   The display unit 300 receives the time received from the system configuration design unit 200.

Figure 2012150086
Figure 2012150086

における、予備電源部20の電池セルEcの数mを0からmmaxまで変化させたときの、それぞれの稼働率PA及びmminの値を表記すると共に、予備電源部20の電池セル数mと稼働率PAの関係を、例えばグラフで表示する。また、組電池システムに急速劣化領域にある電池セルEcが含まれている場合、例えば該電池セルEcを組み込むリスクを表示して設計者に通知する。 In, when changing the number m of cell Ec of the standby power supply section 20 from 0 to m max, with representation of the value of each of the operating rate P A and m min, number of battery cells of the auxiliary power supply unit 20 m and the relationship between the operating ratio P a, for example, to display a graph. Moreover, when the battery cell Ec in the rapid deterioration area is included in the assembled battery system, for example, the risk of incorporating the battery cell Ec is displayed and notified to the designer.

図3に示す組電池設計支援装置は、プログラムにしたがって動作するCPU、メモリ、ディスプレイ、キーボード等の入力装置を備えた、例えばコンピュータで実現してもよい。   The assembled battery design support apparatus shown in FIG. 3 may be realized by, for example, a computer including input devices such as a CPU, a memory, a display, and a keyboard that operate according to a program.

本実施形態において、組電池システムを構成する電池セルEcは、その故障確率が独立同一分布に従うことが重要であるため、同一仕様で製造されたものであることが望ましい。   In this embodiment, since it is important that the battery cell Ec which comprises an assembled battery system follows the independent same distribution in the failure probability, it is desirable to be manufactured by the same specification.

例えば、組電池システムの各電池セルEcには、18650型電池(直径が18mm、長さ65mmの円筒型電池、リチウムイオン電池の標準サイズ)のように、同一形状の汎用品を用いればよい。また、組電池システムの各電池セルEcには、複数回の容量測定により、同じ故障確率分布とみなすことができる電池セルEcを用いてもよい。   For example, each battery cell Ec of the assembled battery system may be a general-purpose product having the same shape such as a 18650 type battery (a cylindrical battery having a diameter of 18 mm and a length of 65 mm, or a standard size of a lithium ion battery). Moreover, you may use the battery cell Ec which can be considered as the same failure probability distribution by each capacity | capacitance measurement for each battery cell Ec of an assembled battery system.

各電池セルEcの故障確率を計算するには、上述したように、それぞれの電池容量を実際に測定することが望ましい。但し、電池容量とインピーダンスには、相関関係があることが、例えば非特許文献5(竹野和彦、代田玲美、“移動端末用リチウムイオン電池の容量劣化特性”、NTTDocomoテクニカルジャーナル、第13巻、第4号、p.62−65)で指摘されている。そのため、各電池セルEcの電池容量は、それぞれのインピーダンスを測定することで推定してもよい。   In order to calculate the failure probability of each battery cell Ec, it is desirable to actually measure each battery capacity as described above. However, there is a correlation between battery capacity and impedance. For example, Non-Patent Document 5 (Kazuhiko Takeno, Tomomi Shirota, “Capacity Degradation Characteristics of Lithium Ion Battery for Mobile Terminals”, NTT Docomo Technical Journal, Vol. 13, Vol. 4, p.62-65). Therefore, you may estimate the battery capacity of each battery cell Ec by measuring each impedance.

電池容量のルート則的挙動領域における比例定数kや急速劣化領域におけるパラメータsの分布は、組電池システムが備える各電池セルEcの充放電試験を実施することで取得することが望ましい。   It is desirable to acquire the distribution of the proportionality constant k in the root-law behavior region of the battery capacity and the parameter s in the rapid deterioration region by performing a charge / discharge test of each battery cell Ec included in the assembled battery system.

しかしながら、統計的にkやsを決定するには、十分な数の測定値を得る必要があり、試験工数が増大するために実施が困難な場合が多い。そのため、パラメータkやsは、例えば正規分布等に従うと仮定して決定してもよい。   However, in order to determine k and s statistically, it is necessary to obtain a sufficient number of measurement values, which is often difficult to implement because the number of test steps increases. Therefore, the parameters k and s may be determined on the assumption that the distribution follows a normal distribution, for example.

組電池システムの稼働率の計算に必要な上記式(1)及び式(2)には階乗計算が含まれている。そのため、例えば主電源部10の電池セル数が100程度であれば、上記式(1)や式(2)をそのまま用いて計算できるが、階乗のlogを取って計算を実行するほうが計算精度の面で望ましい。また、電池セル数が1000程度になる場合は周知のスターリングの公式を用いて計算してもよい。   The above formulas (1) and (2) necessary for calculating the operating rate of the assembled battery system include factorial calculation. Therefore, for example, if the number of battery cells of the main power supply unit 10 is about 100, the above formula (1) and formula (2) can be used as they are, but the calculation accuracy is better when the factorial log is taken. This is desirable. Further, when the number of battery cells is about 1000, it may be calculated using a well-known Stirling formula.

なお、主電源部10と予備電源部20には、異なる種類の(故障確率分布が異なる)電池セルEcを用いてもよい。しかしながら、後述する第1実施例で示すように予備電源部20に主電源部10よりも故障確率が低い電池セルEcを用いても組電池システム全体の電池セル数を大幅に削減できるわけではない。そのため、主電源部10と予備電源部20とには同じ種類の電池セルEcを用いる方が好ましい。   Note that different types of battery cells Ec (different failure probability distributions) may be used for the main power supply unit 10 and the standby power supply unit 20. However, even if battery cells Ec having a lower probability of failure than the main power supply unit 10 are used for the standby power supply unit 20 as shown in the first embodiment described later, the number of battery cells in the entire assembled battery system cannot be significantly reduced. . Therefore, it is preferable to use the same type of battery cell Ec for the main power supply unit 10 and the standby power supply unit 20.

本発明では、所要の稼働率を満たす、予備電源部20の最小の電池セル数を求めることができるが、必要な稼働率を満たす範囲内であれば、コスト等の他の制約条件を設定して線形計画法や整数計画法等により最適な電池セル数を決定してもよい。   In the present invention, the minimum number of battery cells of the standby power supply unit 20 that satisfies the required operating rate can be obtained, but other constraints such as cost are set as long as the required operating rate is satisfied. The optimal number of battery cells may be determined by linear programming, integer programming, or the like.

本発明によれば、電池セルEc毎の容量データを測定し、その容量データから電池セルEc毎の故障確率を算出し、その値を用いて所要の稼働率を満たす組電池システムを構成できる。これにより、使用されたリチウムイオン電池等の2次電池を、所要の性能を満たす組電池システムとして再利用することが可能であり、省資源化及び経済的コストの削減に寄与する組電池システムが得られる。   According to the present invention, it is possible to configure an assembled battery system that measures capacity data for each battery cell Ec, calculates a failure probability for each battery cell Ec from the capacity data, and satisfies the required operating rate using the value. As a result, the used secondary battery such as a lithium ion battery can be reused as an assembled battery system that satisfies the required performance, and an assembled battery system that contributes to resource saving and economic cost reduction is provided. can get.

以下、本発明の実施例について図面を用いて説明する。
(第1実施例)組電池システムの構成の決定
主電源部10の電池セルEcの故障確率として、大きい場合(p1=0.3)と小さい場合(p2=0.1)の2通りを設定し、予備電源部20の電池セルEcの故障確率が主電源部10と同じ場合と、主電源部10よりも小さい場合の合計3通りに設定した。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment) Determination of the configuration of the assembled battery system The failure probability of the battery cell Ec of the main power supply unit 10 is large (p 1 = 0.3) and small (p 2 = 0.1). The battery cell Ec of the standby power supply unit 20 has the same probability of failure as that of the main power supply unit 10 and a total of three cases where the failure probability is smaller than that of the main power supply unit 10.

主電源部10の電池セル数(M)を100とし、稼働率(R)が99.9%または99.99%になる必要最小限の予備電源部20の電池セル数(mmin)を本発明の設計方法により求めた結果を表1に記載する。 The number of battery cells (M min ) of the main power supply unit 10 is assumed to be 100, and the minimum number of battery cells (m min ) of the standby power supply unit 20 that makes the operating rate (R) 99.9% or 99.99% The results obtained by the design method of the invention are listed in Table 1.

Figure 2012150086
Figure 2012150086

主電源部10が故障確率の高い電池セルEc(p1=p2=0.3)で構成されていても、予備電源部20を備えることで、M=100の大規模な組電池システムでも99.99%の稼動率を達成できる。 Even if the main power supply unit 10 is configured with battery cells Ec (p 1 = p 2 = 0.3) having a high failure probability, the spare power supply unit 20 is provided, so that even in a large-scale assembled battery system with M = 100 An operating rate of 99.99% can be achieved.

また、予備電源部20に最低限必要な電池セル数は、予備電源部20の電池セルEcの故障確率が低くなると大幅に削減できる場合がある。   Further, the minimum number of battery cells required for the standby power supply unit 20 may be significantly reduced when the failure probability of the battery cell Ec of the backup power supply unit 20 is low.

例えば、p1=0.3のとき、p2が0.3から0.1に低下すると、R=99.9%とした場合、mminは70から51へ27.5%減少する。但し、p1に対してp2が十分に小さい場合、p2がさらに小さな値になってもmminの削減量は大きくならない。例えば、p1=0.3のとき、p2が0.1から0.05に半減しても、mminは51から48に削減されるだけである。 For example, when p 1 = 0.3, the p 2 drops from 0.3 to 0.1, when the R = 99.9%, m min is reduced 27.5% from 70 to 51. However, if p 2 with respect to p 1 is sufficiently small, p 2 is not further reduction of even m min becomes a small value greater. For example, when p 1 = 0.3, even if p 2 is halved from 0.1 to 0.05, m min is only reduced from 51 to 48.

また、主電源部10の電池セルEcの故障確率が比較的小さい場合(例えば、p1=0.1)、mminの値は上述したp1=0.3の場合よりも半減するが、p2が0.1から0.01に低下してもmminの削減量は少ない。 Also, if the failure probability of the battery cell Ec of the main power source unit 10 is relatively small (e.g., p 1 = 0.1), the value of m min is half than in the case of p 1 = 0.3 described above, but p 2 is less reductions of even m min decreased from 0.1 to 0.01.

したがって、組電池システムの設計方法として、簡便には、主電源部10と予備電源部20に同じ故障確率の電池セルEcを用いることが考えられる。
(第2実施例)ワイブル分布を用いた組電池システムの構成決定
上述したように、非特許文献4ではリチウムイオン電池の故障確率がワイブル分布に従うという解析例が報告されている。
Therefore, as a design method of the assembled battery system, it is conceivable that the battery cell Ec having the same failure probability is used for the main power supply unit 10 and the standby power supply unit 20 simply.
(Second embodiment) Determination of configuration of assembled battery system using Weibull distribution As described above, Non-Patent Document 4 reports an analysis example in which the failure probability of a lithium ion battery follows the Weibull distribution.

非特許文献4のExample 2に記載された、分散が大きい場合(α,β)=(2,8)と、分散が小さい場合(α,β)=(8,8)の確率密度分布と累積分布を図5に示す(非特許文献4では、ワイブル関数のパラメータα、βが通常の表記と逆転しているが、ここでは、式(8)で示したように、通常の表記に従う)。   Probability density distribution and accumulation when the variance is large (α, β) = (2, 8) and when the variance is small (α, β) = (8, 8), described in Example 2 of Non-Patent Document 4. The distribution is shown in FIG. 5 (in Non-Patent Document 4, the parameters α and β of the Weibull function are reversed from the normal notation, but here, according to the normal notation as shown in Expression (8)).

確率密度関数の平均値として計算された電池セルEcの平均寿命は、前者が7.09年であり、後者は7.53年である。これらの場合について主電源部10と予備電源部20で同じ電池セルEcを用いると仮定し、主電源部10の電池セル数Mを100とし、稼働率(R)が99.9%を満たし、かつ稼働率(R)が99.99%を満たす必要最小限の予備電源部20の電池セル数(mmin)を求めた結果を表2(分布の分散が大きい場合)及び表3(分散が小さい場合)に示す。 The average life of the battery cell Ec calculated as the average value of the probability density function is 7.09 years for the former and 7.53 years for the latter. Assuming that the same battery cell Ec is used in the main power supply unit 10 and the standby power supply unit 20 in these cases, the number M of battery cells in the main power supply unit 10 is 100, and the operating rate (R) satisfies 99.9%. Table 2 (when the variance of the distribution is large) and Table 3 (when the variance is large) show the results of obtaining the minimum number of battery cells (m min ) of the reserve power supply unit 20 that satisfies the operating rate (R) of 99.99%. (When small).

Figure 2012150086
Figure 2012150086

Figure 2012150086
Figure 2012150086

max=100とした場合、表2に示すように分散が大きいと、再利用時における使用期間が5年までは稼働率が99.9%のシステム及び稼働率が99.99%のシステムをそれぞれ構成できる。しかしながら、使用期間が6年になると、予備電源部20の電池セル数をmmaxにしても稼働率は98.0%に留まる。 When m max = 100, as shown in Table 2, if the variance is large, a system with an operating rate of 99.9% and a system with an operating rate of 99.99% will be used for up to 5 years during reuse. Each can be configured. However, when the usage period is six years, the operation rate remains at 98.0% even if the number of battery cells of the standby power supply unit 20 is m max .

一方、分散が小さい場合、使用期間が7年までは稼働率が99.9%のシステム及び稼働率が99.99%のシステムをそれぞれ構成できる。しかしながら、8年前後で累積分布確率が急激に上昇するため、期間8年では稼働率は僅かに0.01%となる。
(第3実施例)実測されたサイクル−容量曲線を用いた組電池システムの構成の決定
第3実施例では、上記非特許文献3の図8(黒鉛負極)に記載されたサイクル−容量曲線を初期容量で規格化した場合の容量を凸関数(Q=1−k√t)と凹関数(Q=(1−st)1/2)でフィッティングする。
On the other hand, when the variance is small, a system with an operating rate of 99.9% and a system with an operating rate of 99.99% can be configured up to a usage period of 7 years. However, since the cumulative distribution probability suddenly increases around 8 years, the operation rate is only 0.01% in the period 8 years.
(Third embodiment) Determination of configuration of assembled battery system using measured cycle-capacity curve In the third embodiment, the cycle-capacity curve described in FIG. The capacity when normalized by the initial capacity is fitted with a convex function (Q = 1−k√t) and a concave function (Q = (1−st) 1/2 ).

最小2乗法で決定したパラメータの値は、k=0.008027,S=0.00107である。これらのグラフを図6に示す。   The parameter values determined by the method of least squares are k = 0.08027 and S = 0.00107. These graphs are shown in FIG.

全体的に凹関数にフィッティングする方が測定結果により近いため、以下では凹関数にフィッティングする(但し、Sの値が小さいため、図6では凹関数が直線のように見える)。   Since fitting to the concave function as a whole is closer to the measurement result, fitting to the concave function is performed below (however, since the value of S is small, the concave function looks like a straight line in FIG. 6).

上述したSの値が、標準偏差が0.2Sの正規分布となり、それが電池セル寿命のばらつきを与えていると仮定すると、上記式(11)−(12)からこの電池セルEcの故障の確率密度関数と累積分布が得られる。これを図7に示す。   Assuming that the value of S described above is a normal distribution with a standard deviation of 0.2 S, which gives a variation in battery cell life, the failure of this battery cell Ec is calculated from the above equations (11)-(12). Probability density function and cumulative distribution are obtained. This is shown in FIG.

ここでは、電池セルEcの初期容量を「1」とし、電池容量が0.75以下になったとき、該電池セルEcが故障したと見なせる(電池寿命)と設定した。   Here, the initial capacity of the battery cell Ec was set to “1”, and when the battery capacity became 0.75 or less, it was set that the battery cell Ec can be regarded as having failed (battery life).

累積分布からサイクル数が約400でほぼ半分のセルが“寿命”に到達していることが分かる。   It can be seen from the cumulative distribution that the number of cycles is about 400 and almost half of the cells have reached the “lifetime”.

主電源部10と予備電源部20とに同じ電池セルEcを用いると仮定し、主電源部10の電池セル数Mを100とし、稼働率Rが99、9%、または99.99%を満たすのに必要最小限の予備電源部20のセル数(mmin)を本発明によって求めた結果を表4に記載する。 Assuming that the same battery cell Ec is used for the main power supply unit 10 and the standby power supply unit 20, the number M of battery cells in the main power supply unit 10 is 100, and the operation rate R satisfies 99, 9%, or 99.99%. Table 4 shows the results obtained by the present invention for the minimum number of cells (m min ) of the standby power supply unit 20 required for the above.

Figure 2012150086
Figure 2012150086

max=100に設定すると、充放電サイクル数が350では、稼働確率が99.9%および99.99%のシステムを構成できる。 When m max = 100 is set, a system with an operation probability of 99.9% and 99.99% can be configured when the number of charge / discharge cycles is 350.

一方、充放電サイクル数が400になると、予備電源部20の電池セル数をmmaxに設定しても稼働率は89.48%に留まる。 On the other hand, when the number of charge / discharge cycles is 400, the operating rate remains 89.48% even if the number of battery cells of the standby power supply unit 20 is set to m max .

10 主電源部
20 予備電源部
100 測定データ解析部
110、210 データ入力部
120 W分布フィッティング部
130 R分布フィッティング部
200 システム構成設計部
220 故障確率計算部
230 稼働率計算部
300 表示部
DESCRIPTION OF SYMBOLS 10 Main power supply unit 20 Standby power supply unit 100 Measurement data analysis unit 110, 210 Data input unit 120 W distribution fitting unit 130 R distribution fitting unit 200 System configuration design unit 220 Failure probability calculation unit 230 Operation rate calculation unit 300 Display unit

Claims (7)

通常使用される、直列に接続された複数の電池セルを備える主電源部と、
前記主電源部の電池セルの故障時に該故障した電池セルに代わって使用される、直列に接続された複数の電池セルを備える予備電源部と、
を有する組電池システムの設計方法であって、
前記電池セル毎の電池容量を測定し、該電池セル毎の電池容量に基づいて前記電池セル毎の故障確率を求め、
前記電池セル毎の故障確率から、前記予備電源部の電池セル数を変化させたときの、前記組電池システムが正常に動作する確率である稼働率をそれぞれ求め、前記組電池システムに要求される稼働率を満たす前記予備電源部の電池セル数を決定する組電池システムの設計方法。
A main power supply unit comprising a plurality of battery cells connected in series, which is normally used;
A spare power supply unit comprising a plurality of battery cells connected in series, used in place of the failed battery cell when the battery cell of the main power supply unit fails,
A battery pack system design method comprising:
Measure the battery capacity for each battery cell, determine the failure probability for each battery cell based on the battery capacity for each battery cell,
From the failure probability for each battery cell, an operation rate that is a probability that the assembled battery system operates normally when the number of battery cells of the standby power supply unit is changed is obtained, and is required for the assembled battery system. A design method for an assembled battery system that determines the number of battery cells of the standby power supply unit that satisfies an operation rate.
前記故障確率を、ワイブル関数に従うとして求める請求項1記載の組電池システムの設計方法。   The method for designing an assembled battery system according to claim 1, wherein the failure probability is determined as following a Weibull function. 前記故障確率を、前記電池セルが、残存する電池容量が大きい領域にある場合は凸関数に従うとして求め、前記電池セルが、該電池セルに対する充放電サイクル数が多い領域にある場合は凹関数に従うとして求める請求項1または2記載の組電池システムの設計方法。   The failure probability is obtained by following a convex function when the battery cell is in a region where the remaining battery capacity is large, and following a concave function when the battery cell is in a region where the number of charge / discharge cycles for the battery cell is large. The design method of the assembled battery system of Claim 1 or 2 calculated | required as. 通常使用される、直列に接続された複数の電池セルを備える主電源部と、
前記主電源部の電池セルの故障時に該故障した電池セルに代わって使用される、直列に接続された複数の電池セルを備える予備電源部と、
を有する組電池システムの設計装置であって、
予め測定された前記電池セル毎の電池容量に基づいて前記電池セル毎の故障確率を求める故障確率計算部と、
前記電池セル毎の故障確率から、前記予備電源部の電池セル数を変化させたときの、前記組電池システムが正常に動作する確率である稼働率をそれぞれ求め、前記組電池システムに要求される稼働率を満たす前記予備電源部の電池セル数を決定する稼働率計算部と、
を有する組電池システムの設計装置。
A main power supply unit comprising a plurality of battery cells connected in series, which is normally used;
A spare power supply unit comprising a plurality of battery cells connected in series, used in place of the failed battery cell when the battery cell of the main power supply unit fails,
An apparatus for designing an assembled battery system having
A failure probability calculation unit for obtaining a failure probability for each battery cell based on the battery capacity of each battery cell measured in advance;
From the failure probability for each battery cell, an operation rate that is a probability that the assembled battery system operates normally when the number of battery cells of the standby power supply unit is changed is obtained, and is required for the assembled battery system. An operation rate calculation unit that determines the number of battery cells of the standby power supply unit that satisfies the operation rate;
An apparatus for designing an assembled battery system.
前記故障確率がワイブル関数に従うとして、該ワイブル関数のパラメータを決定し、決定したパラメータを前記故障確率計算部に供給するW分布フィッティング部を有する請求項4記載の組電池システムの設計装置。   The assembled battery system design device according to claim 4, further comprising a W distribution fitting unit that determines a parameter of the Weibull function and supplies the determined parameter to the failure probability calculation unit, assuming that the failure probability follows a Weibull function. 前記電池セルが、残存する電池容量が大きい領域にある場合は、前記故障確率が凸関数に従うとして、該凸関数のパラメータを決定し、前記電池セルが、該電池セルに対する充放電サイクル数が多い領域にある場合は、前記故障確率が凹関数に従うとして、該凹関数のパラメータを決定し、決定したパラメータを前記故障確率計算部に供給するR分布フィッティング部を有する請求項4または5記載の組電池システムの設計装置。   When the battery cell is in a region where the remaining battery capacity is large, assuming that the failure probability follows a convex function, the parameter of the convex function is determined, and the battery cell has a large number of charge / discharge cycles for the battery cell. 6. The group according to claim 4, further comprising an R distribution fitting unit that determines a parameter of the concave function and supplies the determined parameter to the failure probability calculation unit, assuming that the failure probability follows a concave function when in the region. Battery system design equipment. 通常使用される、直列に接続された複数の電池セルを備える主電源部と、
前記主電源部の電池セルの故障時に、該故障した電池セルに代わって使用される、直列に接続された複数の電池セルを備える予備電源部と、
前記電池セルに対応して直列に接続される複数の第1スイッチ及び前記電池セルに対応して並列に接続される複数の第2スイッチと、
初期状態時、前記主電源部の各電池セルに対応する前記第1スイッチをそれぞれ短絡させ、前記第2スイッチをそれぞれ開放させて前記主電源部の各電池セルを直列に接続させ、前記予備電源部の各電池セルに対応する前記第2スイッチをそれぞれ短絡させ、前記第1スイッチをそれぞれ開放させて前記予備電源部の各電池セルをバイパスさせ、所定の周期毎に前記電池セルが故障したか否かを判定し、前記主電源部の電池セルの故障を検出した場合、該故障と判定した電池セルに対応する第2スイッチを短絡させ、該電池セルに対応する対応する第1のスイッチを開放させて該電池セルをバイパスさせ、前記予備電源部のバイパスされた電池セルに対応する前記第1スイッチを短絡させ、該電池セルに対応する第2のスイッチを開放させて該電池セルを前記主電源部と直列に接続させる制御部と、
を有する組電池システム。
A main power supply unit comprising a plurality of battery cells connected in series, which is normally used;
When the battery cell of the main power supply unit fails, a spare power supply unit including a plurality of battery cells connected in series, used in place of the failed battery cell,
A plurality of first switches connected in series corresponding to the battery cells and a plurality of second switches connected in parallel corresponding to the battery cells;
In an initial state, the first switch corresponding to each battery cell of the main power supply unit is short-circuited, the second switch is opened, and the battery cells of the main power supply unit are connected in series, and the standby power supply Whether each of the second switches corresponding to each battery cell of the unit is short-circuited, and each of the battery cells of the standby power supply unit is bypassed by opening each of the first switches, and whether the battery cell has failed every predetermined period When the failure of the battery cell of the main power supply unit is detected, the second switch corresponding to the battery cell determined to be the failure is short-circuited, and the corresponding first switch corresponding to the battery cell is The battery cell is bypassed to open, the first switch corresponding to the bypassed battery cell of the standby power supply unit is short-circuited, and the second switch corresponding to the battery cell is opened. A control unit for connecting the battery cells in series with the main power supply unit,
An assembled battery system.
JP2011010897A 2011-01-21 2011-01-21 Assembled battery system designing method and apparatus for the same Pending JP2012150086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010897A JP2012150086A (en) 2011-01-21 2011-01-21 Assembled battery system designing method and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010897A JP2012150086A (en) 2011-01-21 2011-01-21 Assembled battery system designing method and apparatus for the same

Publications (1)

Publication Number Publication Date
JP2012150086A true JP2012150086A (en) 2012-08-09

Family

ID=46792449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010897A Pending JP2012150086A (en) 2011-01-21 2011-01-21 Assembled battery system designing method and apparatus for the same

Country Status (1)

Country Link
JP (1) JP2012150086A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063621A (en) * 2012-09-20 2014-04-10 Toshiba Corp Diagnostic apparatus and method
DE102013202280A1 (en) * 2013-02-13 2014-08-14 Robert Bosch Gmbh Method for controlling battery voltage of battery of motor vehicle, involves connecting battery cell with respective battery cell assigned average duty by central control signal and quality factors based central control signals adjustments
DE102014205911A1 (en) * 2014-03-31 2015-10-01 Robert Bosch Gmbh Electrochemical energy store and method for switching cells of an electrochemical energy store
CN105337327A (en) * 2014-08-07 2016-02-17 南京理工自动化研究院有限公司 N/M redundancy equilibrium strategy based power lithium battery management system
JP2016065748A (en) * 2014-09-24 2016-04-28 日本電気株式会社 Design device, design method and program
WO2016153215A1 (en) * 2015-03-24 2016-09-29 이승규 Fusible switch, battery control apparatus including same, and battery control method
JP2017034781A (en) * 2015-07-30 2017-02-09 国立大学法人電気通信大学 Storage battery management system, storage battery information server, charge/discharge control device and storage battery
KR20180026948A (en) * 2016-09-05 2018-03-14 주식회사 엘지화학 Power suplly circuit, and battery pack including the same
KR20180026947A (en) * 2016-09-05 2018-03-14 주식회사 엘지화학 Power supply circuit, and battery pack including the same
WO2021132913A1 (en) * 2019-12-24 2021-07-01 주식회사 엘지화학 Battery pack including cell switching device of parallel connection cells and cell switching method
CN114040858A (en) * 2019-05-24 2022-02-11 Avl李斯特有限公司 Battery device for vehicle
KR20220126010A (en) * 2021-03-08 2022-09-15 서창전기통신 주식회사 Power conversion system enabling to connect different-batteries
EP4043897A4 (en) * 2020-01-07 2022-11-30 LG Energy Solution, Ltd. Simulation system and data distribution method
KR20230025186A (en) * 2021-08-13 2023-02-21 호남대학교 산학협력단 Apparatus for maintaining battery cells

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063621A (en) * 2012-09-20 2014-04-10 Toshiba Corp Diagnostic apparatus and method
DE102013202280A1 (en) * 2013-02-13 2014-08-14 Robert Bosch Gmbh Method for controlling battery voltage of battery of motor vehicle, involves connecting battery cell with respective battery cell assigned average duty by central control signal and quality factors based central control signals adjustments
US10290905B2 (en) 2014-03-31 2019-05-14 Robert Bosch Gmbh Electrochemical energy accumulator and method for switching cells of an electrochemical energy accumulator
DE102014205911A1 (en) * 2014-03-31 2015-10-01 Robert Bosch Gmbh Electrochemical energy store and method for switching cells of an electrochemical energy store
CN105337327A (en) * 2014-08-07 2016-02-17 南京理工自动化研究院有限公司 N/M redundancy equilibrium strategy based power lithium battery management system
JP2016065748A (en) * 2014-09-24 2016-04-28 日本電気株式会社 Design device, design method and program
CN107431254A (en) * 2015-03-24 2017-12-01 李升揆 Fuse cutout and battery control device and control method
WO2016153215A1 (en) * 2015-03-24 2016-09-29 이승규 Fusible switch, battery control apparatus including same, and battery control method
US10998738B2 (en) 2015-03-24 2021-05-04 Seung Gyu Lee Fusible switch, battery control apparatus including same, and battery control method
JP2017034781A (en) * 2015-07-30 2017-02-09 国立大学法人電気通信大学 Storage battery management system, storage battery information server, charge/discharge control device and storage battery
KR20180026948A (en) * 2016-09-05 2018-03-14 주식회사 엘지화학 Power suplly circuit, and battery pack including the same
KR20180026947A (en) * 2016-09-05 2018-03-14 주식회사 엘지화학 Power supply circuit, and battery pack including the same
KR102610269B1 (en) * 2016-09-05 2023-12-04 주식회사 엘지에너지솔루션 Power supply circuit, and battery pack including the same
KR102610270B1 (en) * 2016-09-05 2023-12-04 주식회사 엘지에너지솔루션 Power suplly circuit, and battery pack including the same
CN114040858A (en) * 2019-05-24 2022-02-11 Avl李斯特有限公司 Battery device for vehicle
CN114040858B (en) * 2019-05-24 2024-01-26 Avl李斯特有限公司 Battery device for vehicle
WO2021132913A1 (en) * 2019-12-24 2021-07-01 주식회사 엘지화학 Battery pack including cell switching device of parallel connection cells and cell switching method
JP7376189B2 (en) 2020-01-07 2023-11-08 エルジー エナジー ソリューション リミテッド Simulation system and data distribution method
JP2023502622A (en) * 2020-01-07 2023-01-25 エルジー エナジー ソリューション リミテッド Simulation system and data distribution method
EP4043897A4 (en) * 2020-01-07 2022-11-30 LG Energy Solution, Ltd. Simulation system and data distribution method
KR102521665B1 (en) * 2021-03-08 2023-04-13 서창전기통신 주식회사 Power conversion system enabling to connect different-batteries
KR20220126010A (en) * 2021-03-08 2022-09-15 서창전기통신 주식회사 Power conversion system enabling to connect different-batteries
KR20230025186A (en) * 2021-08-13 2023-02-21 호남대학교 산학협력단 Apparatus for maintaining battery cells
KR102590031B1 (en) 2021-08-13 2023-10-17 호남대학교 산학협력단 Apparatus for maintaining battery cells

Similar Documents

Publication Publication Date Title
JP2012150086A (en) Assembled battery system designing method and apparatus for the same
CA2993505C (en) Storage-battery evaluation device, energy storage system, and storage-battery evaluation method
US8823325B2 (en) Method for checking and modulating battery capacity and power based on discharging/charging characteristics
Guo et al. Impact analysis of v2g services on ev battery degradation-a review
US9172259B2 (en) Apparatus for managing battery, and energy storage system
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
US11221367B2 (en) Evaluation device, energy storage system, evaluation method and non-transitory computer readable medium
US10254780B2 (en) Method and apparatus for distributing power in energy storage system
JP2015052590A (en) Battery pack, device having battery pack, and management method for battery pack
US20150377972A1 (en) Method for determining a state of charge and remaining operation life of a battery
JP2022503514A (en) Battery management device
WO2017158706A1 (en) Storage battery evaluation device, energy storage system and storage battery evaluation method
JP2011208966A (en) Remaining life estimation device, computer program thereof, and data processing method
CN103545564A (en) Charging battery unit and defect detecting method thereof
KR20150058172A (en) Accumulator operation control device, accumulator operation control method, and program
WO2020079978A1 (en) Battery management system, battery management method, and battery management program
KR102302760B1 (en) Intelligent power management system for preventing fire of energy storage system and degradation of battery performance
Zhao et al. Health condition assessment of satellite li-ion battery pack considering battery inconsistency and pack performance indicators
US20180198176A1 (en) Storage battery management system
KR20120119598A (en) Apparatus and method for estimating battery state and battery pack using it
KR20200112248A (en) Apparatus and method for controlling battery bank
KR101229940B1 (en) Module management system and method for medium and large sized batterys
KR20230050028A (en) Battery management system and method for battery monitoring thereof
KR101491460B1 (en) Active cell balancing method of battery and system thereof
CN102809728A (en) Method for evaluating life condition strength