JP2012149345A - Amorphous carbon film laminated member and manufacturing method thereof - Google Patents

Amorphous carbon film laminated member and manufacturing method thereof Download PDF

Info

Publication number
JP2012149345A
JP2012149345A JP2011289599A JP2011289599A JP2012149345A JP 2012149345 A JP2012149345 A JP 2012149345A JP 2011289599 A JP2011289599 A JP 2011289599A JP 2011289599 A JP2011289599 A JP 2011289599A JP 2012149345 A JP2012149345 A JP 2012149345A
Authority
JP
Japan
Prior art keywords
amorphous carbon
carbon film
conductive
film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011289599A
Other languages
Japanese (ja)
Other versions
JP2012149345A5 (en
JP5886625B2 (en
Inventor
Kunihiko Shibusawa
邦彦 澁澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku Kogyo Co Ltd
Original Assignee
Taiyo Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku Kogyo Co Ltd filed Critical Taiyo Kagaku Kogyo Co Ltd
Priority to JP2011289599A priority Critical patent/JP5886625B2/en
Publication of JP2012149345A publication Critical patent/JP2012149345A/en
Publication of JP2012149345A5 publication Critical patent/JP2012149345A5/ja
Application granted granted Critical
Publication of JP5886625B2 publication Critical patent/JP5886625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amorphous carbon film laminated member which has a simple structure, can be manufactured at low cost, does not deteriorate wear resistance, and has high conductivity and high neutralizing property, and a manufacturing method for the same.SOLUTION: The amorphous carbon film laminated member has a discontinuous micro region 20 where conductive carbon fine particles are dispersed and fixed on a conductive substrate and a continuous region 30 where amorphous carbon films are piled up on the region other than the micro region 20 of the conductive substrate, wherein the surface of the micro region 20 consisting of the conductive carbon particles and the surface of the continuous region 30 consisting of the amorphous carbon films are made to be the same plane.

Description

本発明は、非晶質炭素膜積層部材及びその製造方法に関し、特に、導電性を向上させた非晶質炭素膜を基材への被覆材として用いた非晶質炭素膜積層部材及びその製造方法に関する。   The present invention relates to an amorphous carbon film laminated member and a method for producing the same, and in particular, an amorphous carbon film laminated member using an amorphous carbon film with improved conductivity as a coating material on a base material and the production thereof. Regarding the method.

非晶質炭素膜又はシリコン等を含む非晶質炭素膜(以下、これらをまとめて「非晶質炭素膜」という。)は、硬く耐摩耗性に優れ、摩擦係数が小さく、凝着防止性も有しており、基材の表面に高機能を付与することができ、小型部品の搬送用フィーダやキャリア、ハンドリング用のトレイなどを中心に、広い産業分野、用途で利用され始めている。   An amorphous carbon film or an amorphous carbon film containing silicon or the like (hereinafter collectively referred to as “amorphous carbon film”) is hard and excellent in wear resistance, has a small friction coefficient, and has an anti-adhesion property. In addition, it is possible to impart high functionality to the surface of the base material, and it has begun to be used in a wide range of industrial fields and applications, mainly for feeders and carriers for small parts, and trays for handling.

非晶質炭素膜は、膜厚などの成膜条件・原料ガスや後処理にも依存するが、その体積電気抵抗率は10〜1012Ω・cm程度であって、絶縁体より若干低い程度である。このため、非晶質炭素膜を前述の搬送用のフィーダやキャリア、ハンドリング用のトレイなどの被覆材として用いる際に、一般的な方法として基材上に非晶質炭素膜を薄く形成し、基材をアースすることにより、ワークが非晶質炭素膜と接触することで発生する静電気を、薄い非晶質炭素膜、さらには基材を通じてアースに除去し、基材上に被覆した非晶質炭素膜へのワークの静電気付着を防止しできていた。
しかし、非晶質炭素膜に接触し摺動する部品のサイズが、例えば0402型(縦幅0.4mm×横幅0.2mm×厚み0.2mm)のチップ抵抗や積層セラミックコンデンサ等の登場など微小化するに従い、従来の非晶質炭素膜の静電気除去能力では不十分となり、静電気による非晶質炭素膜表面への付着・残留などの現象が確認されるようになってきた。
今日では携帯型電子機器が多くなり、使用される部品もどんどん微小化している現状がある。このような状況において、微小部品の生産過程に於ける部品搬送、部品加工のための整列、保管等の工程で部品の貼り付きによる残留が発生することは、性能の異なる部品の異種性能ロットへの混入や、生産ロット間の混入によるトレサビリティーの消失などの問題を惹起させ、生産工程の品質管理に重大な問題を引き起こすようになってきた。
The amorphous carbon film depends on film formation conditions such as film thickness, raw material gas and post-treatment, but its volume electric resistivity is about 10 8 to 10 12 Ω · cm, which is slightly lower than the insulator. Degree. For this reason, when the amorphous carbon film is used as a coating material such as the above-mentioned feeder for transport and carrier, and a tray for handling, as a general method, the amorphous carbon film is formed thinly on the substrate, By grounding the base material, the static electricity generated when the workpiece comes into contact with the amorphous carbon film is removed through the thin amorphous carbon film and further through the base material. The workpiece was prevented from adhering to the carbonaceous film.
However, the size of the component that contacts and slides on the amorphous carbon film is very small, such as the appearance of chip resistors of 0402 type (vertical width 0.4 mm × width 0.2 mm × thickness 0.2 mm), multilayer ceramic capacitors, etc. As the size of the amorphous carbon film becomes smaller, the static eliminating ability of the conventional amorphous carbon film becomes insufficient, and the phenomenon such as adhesion / remaining on the surface of the amorphous carbon film due to static electricity has been confirmed.
Today, the number of portable electronic devices is increasing, and the components used are becoming increasingly smaller. In such a situation, residue due to sticking of parts in the process of parts transportation, alignment for parts processing, storage, etc. in the production process of micro parts can lead to different performance lots of parts with different performances. And problems such as loss of traceability due to mixing between production lots, causing serious problems in quality control of production processes.

また、非晶質炭素膜自体も、シリコンを含有する非晶質炭素膜など通常の非晶質炭素膜に比べて電気抵抗の若干大きいものが下地密着層として用いられる。或いは、非晶質炭素膜の耐久性を高めるため、より厚く膜を構成するようになってきている現状がある。   Also, the amorphous carbon film itself has a slightly higher electrical resistance than the normal amorphous carbon film such as an amorphous carbon film containing silicon, and is used as the base adhesion layer. Alternatively, in order to increase the durability of the amorphous carbon film, there is a current situation that the film is configured to be thicker.

一方、他の耐磨耗・凝着防止、低摩擦の表面処理として、いわゆる「導電性アルマイト」と称される、アルミニウム、またはアルミニウム合金の素材に陽極酸化処理をより薄めに行い、帯電量を抑制した10Ω・cm程度の体積電気抵抗率を有しているものも存在するが(特許文献1参照)、非晶質炭素膜のような優れた耐磨耗性や低摩擦性などの機能は発現できていない。 On the other hand, as another anti-wear / adhesion prevention and low-friction surface treatment, the so-called “conductive alumite”, an aluminum or aluminum alloy material, is subjected to a thinner anodic oxidation treatment to reduce the amount of charge. Some have a volume resistivity of about 10 6 Ω · cm suppressed (see Patent Document 1), but such as excellent wear resistance and low friction properties such as an amorphous carbon film. Function cannot be expressed.

特開2006−291259号公報JP 2006-291259 A

1990年代以降に登場した携帯電話やデジタルカメラなどの小型電子機器に使用される電子部品は、表面実装タイプ(チップ型)と呼ばれ、非常に小さい部品が用いられている。このようなチップ状電子部品は、チップ抵抗、チップLED、チップコンデンサなどと呼ばれ、大きさにより、分類されるが、現在ではさらに部品の小型化が進み、0603(縦幅0.6mm×横幅0.3mm×厚み0.3mm)、0402(縦幅0.4mm×横幅0.2mm×厚み0.2mm)、といった超小型、軽量部品、すなわち0.4〜0.1mg程度の搬送又は貯蔵ワークが登場してくると、従来に比較し、一層微弱な静電気でもワークの基材付着は発生しやすくなり、より小さな体積電気抵抗率を有する基材が要求されるようになってきた。
このような低い体積電気抵抗率を有する基材の要求は、電子部品に限定される訳ではなく、機械加工部品、粉体、その他多様なワーク、多様な産業分野に及んでいる。
加えて、特に電子部品においては静電気の蓄積によって部品故障が発生してしまうものも多い。さらには、電子部品の絶縁抵抗測定や静電容量測定、その他電気特性検査に供される電気的な接触端子(プローブ等)などは、その元来の用途用法上、低い電気抵抗率が要求されるものが多い。
そこで、各種基材に被覆される非晶質炭素膜の電気伝導性を向上させる工夫がより一層必要である。
Electronic components used in small electronic devices such as mobile phones and digital cameras that have appeared since the 1990s are called surface mount types (chip types), and very small components are used. Such chip-like electronic components are called chip resistors, chip LEDs, chip capacitors, etc., and are classified according to size, but at present, the size of the components is further reduced, and 0603 (length 0.6 mm × width) 0.3mm × thickness 0.3mm), 0402 (vertical width 0.4mm × width 0.2mm × thickness 0.2mm), ultra-compact and lightweight parts, that is, transport or storage work of about 0.4 to 0.1 mg Has appeared, the adhesion of the workpiece to the substrate is likely to occur even with weaker static electricity than in the past, and a substrate having a smaller volumetric electrical resistivity has been required.
The requirement for a substrate having such a low volume resistivity is not limited to electronic parts, but extends to machined parts, powders, various other workpieces, and various industrial fields.
In addition, particularly in electronic components, many component failures occur due to accumulation of static electricity. In addition, electrical contact terminals (probes, etc.) used for insulation resistance measurement, capacitance measurement, and other electrical property inspections of electronic components are required to have low electrical resistivity due to their original usage. There are many things.
Therefore, further improvements are needed to improve the electrical conductivity of the amorphous carbon film coated on various substrates.

本発明は、簡単な構成で、しかも安価に製造可能であり、微小電子部品などの搬送・整列・貯蔵において、耐摩耗性を損なわずに導電性、除電性の高い非晶質炭素膜積層部材及びその製造方法を提供することを目的とするものである。   The present invention is an amorphous carbon film laminated member that has a simple structure and can be manufactured at low cost, and has high conductivity and charge removal performance without losing wear resistance in transportation, alignment, and storage of microelectronic components and the like. And it aims at providing the manufacturing method.

そこで、本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、以下のような手段を確立した。すなわち、導電性基材上の表面に被覆される非晶質炭素膜部分と、基材にアースされた10Ω・cmより低い体積電気抵抗率を有する導電性炭素微粒子が「飛び飛びの部分」の状態で表面に存在する部分とを設けることにより、小型部品などのワークの静電気を帯びる少なくとも一部分が、ワークの移動経路含め、上記導電物質と接点を取ることが可能となり、当該接点を通じて通電、除電が可能となることを見出した。また、この飛び飛びに配置される導電性物質が、非晶質炭素膜と同様に低摩擦係数や、軟質金属凝着防止性を有しており、非晶質炭素膜本来の機能を損なうことがないことも判明した。 Therefore, as a result of intensive studies to achieve the above object, the present inventors have established the following means. That is, the amorphous carbon film portion coated on the surface of the conductive base material and the conductive carbon fine particles having a volume electric resistivity lower than 10 6 Ω · cm grounded on the base material are “flying portions”. By providing a portion that exists on the surface in the state, at least a portion of the work such as a small part that is charged with static electricity can take contact with the conductive material, including the movement path of the work, We found that static elimination is possible. In addition, the conductive material disposed in the jump has a low coefficient of friction and an anti-soft metal adhesion prevention property as in the case of the amorphous carbon film, which may impair the original function of the amorphous carbon film. It also turned out not to be.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]導電性基材上に導電性炭素微粒子が分散固定されてなる非連続な微小領域と、導電性基板上の該領域以外に堆積された非晶質炭素膜からなる連続した領域とを有し、前記の導電性炭素粒子からなる微小領域の表面と、前記の非晶質炭素膜からなる連続した領域の表面とが、同一平面をなしている非晶質炭素膜積層部材。
[2]前記導電性炭素粒子が、カーボングラファイト又はカーボンブラックからなる上記[1]の非晶質炭素膜積層部材。
[3]前記非晶質炭素膜を最上層とする、部品搬送用部材、部品整列用部材又は部品保管用部材であることを特徴とする上記[1]又は[2]の非晶質炭素膜積層部材。
[4](1)導電性基材上に、導電性炭素微粒子を前記の微小領域のみに分散固定する工程と、(2)該導電性炭素微粒子が固定された基板の表面に非晶質炭素を堆積させる工程と、(3)該非晶質炭素膜の表面と導電性炭素微粒子の表面とが同一平面となるように平坦化する工程をこの順に含むことを特徴とする上記[1]〜[3]のいずれかの非晶質炭素膜積層部材の製造方法。
[5]前記(1)の工程を、導電性基板上に、所定の開口を有するメッシュ又はスクリーン版を配置し、その上から、導電性炭素粒子を含有する塗布剤を噴霧することにより行うことを特徴とする上記[4]の非晶質炭素膜積層部材の製造方法。
[6](1´)導電性基板上の、前記微小領域以外の領域に非晶質炭素を堆積させる工程と、(2´)導電性基板上の、非晶質炭素が堆積されていない前記微小領域に導電性炭素微粒子を固定させる工程と、(3´)該非晶質炭素膜の表面と導電性炭素微粒子の表面とが同一平面となるように平坦化する工程をこの順に含むことを特徴とする上記[1]〜[3]のいずれかの非晶質炭素膜積層部材の製造方法。
[7]前記(1´)の工程を、導電性基板上に所定の開口を有するマスクを配置し、その上から、マスキング材料を塗布、または噴霧して、マスクのネガパターン状にマスキング材料による保護膜を形成した後、マスクを外して、導電性基板表面に非晶質炭素膜を堆積させ、その後、マスキング材料による保護膜部分及び該保護膜上に成膜された非晶質炭素膜を剥離することにより行うことを特徴とする上記[6]の非晶質炭素膜積層部材の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A discontinuous minute region in which conductive carbon fine particles are dispersed and fixed on a conductive substrate, and a continuous region made of an amorphous carbon film deposited on the conductive substrate other than the region. And an amorphous carbon film laminated member in which the surface of the minute region made of the conductive carbon particles and the surface of the continuous region made of the amorphous carbon film are in the same plane.
[2] The amorphous carbon film laminated member according to [1], wherein the conductive carbon particles are made of carbon graphite or carbon black.
[3] The amorphous carbon film according to [1] or [2], wherein the amorphous carbon film is a component transporting member, a component aligning member, or a component storage member having the amorphous carbon film as an uppermost layer. Laminated member.
[4] (1) A step of dispersing and fixing conductive carbon fine particles only on the minute regions on a conductive base material, and (2) amorphous carbon on the surface of the substrate on which the conductive carbon fine particles are fixed. And (3) the step of planarizing the surface of the amorphous carbon film and the surface of the conductive carbon fine particles to be in the same plane in this order. 3] The method for producing an amorphous carbon film laminated member according to any one of 3).
[5] The step (1) is performed by disposing a mesh or screen plate having a predetermined opening on a conductive substrate and spraying a coating agent containing conductive carbon particles thereon. [4] The method for producing an amorphous carbon film laminated member according to [4] above.
[6] (1 ′) a step of depositing amorphous carbon on a region other than the minute region on the conductive substrate; and (2 ′) the amorphous carbon not deposited on the conductive substrate. A step of fixing conductive carbon fine particles in a minute region; and (3 ′) a step of flattening the surface of the amorphous carbon film and the surface of the conductive carbon fine particles to be in the same plane. The method for producing an amorphous carbon film laminated member according to any one of [1] to [3] above.
[7] In the step (1 ′), a mask having a predetermined opening is disposed on a conductive substrate, and a masking material is applied or sprayed thereon to form a negative pattern on the mask with the masking material. After forming the protective film, the mask is removed, an amorphous carbon film is deposited on the surface of the conductive substrate, and then the protective film portion made of a masking material and the amorphous carbon film formed on the protective film are removed. The method for producing an amorphous carbon film laminated member according to the above [6], which is performed by peeling.

本発明によれば、静電気の除電効果を保持し、被搬送・整列・貯蔵等摩擦の生じるワークの接触による静電気による付着を起さず、かつ、硬く耐摩耗性に優れ、摩擦係数の少ない表面状態を形成できる。このため、部品の搬送用フィーダやキャリア、ハンドリング用のトレイなどに帯電防止機能、耐磨耗性、耐凝着性を同時に付与できる。   According to the present invention, a surface that retains static elimination effects of static electricity, does not cause adhesion due to static electricity due to contact of workpieces that generate friction such as being conveyed, aligned, and stored, is hard, has excellent wear resistance, and has a low friction coefficient A state can be formed. For this reason, it is possible to simultaneously impart an antistatic function, wear resistance, and adhesion resistance to a feeder for conveying parts, a carrier, a tray for handling, and the like.

本発明の非晶質炭素膜積層部材を模式的に記載した断面図Sectional drawing which described the amorphous carbon film laminated member of this invention typically 本発明の非晶質炭素膜積層部材と微小電子部品の電極との関係を模式的に記載した平面図The top view which described typically the relationship between the amorphous carbon film laminated member of this invention, and the electrode of a microelectronic component グラファイトの微粒子を含有するスプレー塗布剤を噴霧したステンレス鋼SUS304 2B材表面を観察した、倍率30倍の写真(右側のほぼ半分:金属メッシュで被覆されていない部分、左側のほぼ半分:金属メッシュで被覆された部分)。The surface of the stainless steel SUS304 2B sprayed with a spray coating agent containing fine particles of graphite was observed at a magnification of 30 times (almost half on the right side: part not covered with the metal mesh, almost half on the left side: with the metal mesh Coated part). 図2(a)の、倍率150倍の写真Photo at 150x magnification in Fig. 2 (a) ステンレス鋼SUS304 2B材表面を金属メッシュで被覆された表面部分(実施例1用)の状態を観察した、CCD拡大写真(非晶質炭素膜表面を焦点としたもの、倍率2000倍)CCD magnified photograph (focusing on the surface of the amorphous carbon film, magnification 2000 times) observing the state of the surface portion (for Example 1) where the surface of the stainless steel SUS304 2B was coated with a metal mesh 図3(a)の、グラファイトを焦点としたCCD拡大写真(倍率2000倍)Fig. 3 (a) CCD magnified photo focusing on graphite (2000x magnification) ステンレス鋼SUS304 2B材表面に金属メッシュで被覆されていない部分にグラファイトを形成し、その表面に非晶質炭素膜を形成した状態を観察した、倍率500倍のCCD拡大写真A magnified CCD image at a magnification of 500 times, observing a state in which graphite is formed on the surface of the stainless steel SUS304 2B material not covered with a metal mesh and an amorphous carbon film is formed on the surface. 図4(a)の、倍率2000倍の写真Photo at 2000x magnification in Fig. 4 (a) ステンレス鋼SUS304 2B材表面に金属メッシュで被覆して、グラファイトを形成し、その表面に非晶質炭素膜を形成し、その表面を不織布により表面が覆われたバレンで平面を均すように乾拭きした後の本発明の実施例1の表面状態を確認した倍率500倍のCCD写真The surface of stainless steel SUS304 2B is coated with a metal mesh to form graphite, an amorphous carbon film is formed on the surface, and the surface is wiped dry so that the surface is smoothed with valene covered with a nonwoven fabric. CCD photograph of magnification 500 times confirming the surface state of Example 1 of the present invention after 図5(a)の、倍率2000倍の写真Photo at 2000x magnification in Fig. 5 (a) 非晶質炭素膜のみが形成された比較例の非晶質炭素膜積層部材の摩擦磨耗試験の結果を示す図The figure which shows the result of the friction abrasion test of the amorphous carbon film laminated member of the comparative example in which only the amorphous carbon film was formed 非晶質炭素膜のみが形成された比較例の非晶質炭素膜積層部材の摩擦磨耗試験のボールの軌跡のCCD写真CCD photograph of the locus of the ball in the frictional wear test of the comparative amorphous carbon film laminated member in which only the amorphous carbon film was formed 本発明の実施例1の摩擦磨耗試験の結果を示す図The figure which shows the result of the friction abrasion test of Example 1 of this invention 本発明の実施例1の摩擦磨耗試験のボールの軌跡のCCD写真CCD photograph of ball trajectory of frictional wear test of Example 1 of the present invention 本発明の実施例1の摩擦磨耗試験のボールの軌跡上に点在するグラファイト部分のCCD拡大写真CCD magnified photograph of graphite portions scattered on the trajectory of the ball in the frictional wear test of Example 1 of the present invention 本発明の実施例3のグラファイトの微粒子を含有するスプレー塗布剤を噴霧した後の表面を観察したCCD拡大写真CCD enlarged photograph observing the surface after spraying the spray coating agent containing fine particles of graphite of Example 3 of the present invention 本発明の実施例3の超音波洗浄した後の非晶質炭素膜を形成した表面状態を観察したCCD拡大写真CCD enlarged photograph observing the surface state on which the amorphous carbon film after ultrasonic cleaning of Example 3 of the present invention was formed 実施例における、4端子法による電気抵抗の測定の概要を示す図The figure which shows the outline | summary of the measurement of the electrical resistance by a 4-terminal method in an Example.

以下、本発明の非晶質炭素膜積層部材について、図を用いて説明する。
図1は、本発明の非晶質炭素膜積層部材を模式的に記載した図であり、(a)は、その断面図であり、(b)は、微小電子部品の電極と点在する導電性炭素微粒子との関係が分かるように示した平面図であって、本発明の非晶質炭素膜積層部材における、導電性炭素微粒子が分散固定されてなる非連続な微小領域の露出表面を示している。図中、10は、導電性基材、20は、導電性炭素微粒子が分散固定されてなる非連続な微小領域、30は、非晶質炭素膜からなる連続した領域、40は、積層セラミックコンデンサ、40aは、積層セラミックコンデンサの両端部側に形成された電極、をそれぞれ示している。
Hereinafter, the amorphous carbon film laminated member of this invention is demonstrated using figures.
1A and 1B are diagrams schematically showing an amorphous carbon film laminated member according to the present invention, FIG. 1A is a cross-sectional view thereof, and FIG. 1B is a diagram showing conductivity dispersed with electrodes of a microelectronic component. FIG. 3 is a plan view showing the relationship with conductive carbon fine particles, and shows an exposed surface of a discontinuous minute region in which conductive carbon fine particles are dispersed and fixed in the amorphous carbon film laminated member of the present invention. ing. In the figure, 10 is a conductive substrate, 20 is a discontinuous minute region in which conductive carbon fine particles are dispersed and fixed, 30 is a continuous region made of an amorphous carbon film, and 40 is a multilayer ceramic capacitor. , 40a respectively indicate electrodes formed on both ends of the multilayer ceramic capacitor.

図1(a)の断面図に示されるように、本発明の非晶質炭素膜積層部材は、導電性基材(10)上に導電性炭素微粒子が分散固定されてなる非連続な微小領域(20)と、導電性基板(10)上の該領域以外に堆積された非晶質炭素膜からなる連続した領域(30)とを有し、前記の導電性炭素微粒子からなる微小領域(20)の表面と、前記の非晶質炭素からなる連続した領域(30)の表面とが、同一平面をなしているものである。
図1(a)に示されているように、本発明の非晶質炭素膜積層部材において、導電性炭素微粒子の微小領域(20)の下側は、導電性基材(10)上に接触している、または電気的導通が確保されていることが重要である。
As shown in the sectional view of FIG. 1 (a), the amorphous carbon film laminated member of the present invention is a discontinuous minute region in which conductive carbon fine particles are dispersed and fixed on a conductive substrate (10). (20) and a continuous region (30) made of an amorphous carbon film deposited in addition to the region on the conductive substrate (10), and a micro region (20) made of the conductive carbon fine particles. ) And the surface of the continuous region (30) made of amorphous carbon are in the same plane.
As shown in FIG. 1A, in the amorphous carbon film laminated member of the present invention, the lower side of the fine region (20) of the conductive carbon fine particles is in contact with the conductive base material (10). It is important that the electrical connection is ensured.

また、導電性炭素微粒子が分散固定されてなる非連続な微小領域(20)の露出表面は、微小電子部品などの搬送・整列・貯蔵において、例えば、微小電子部品の両端部側に形成された電極幅と同等か、それより狭い範囲の間隔で点在していることが最も好ましい。特に、微小領域(20)が電極幅と同等か、それより狭い範囲の間隔で点在していると、徐電アース回路ができる。このことによって、微小電子部品に帯電した静電気がアース側に流れ、微小電子部品に帯電した静電気の徐電が可能になる。
図1(b)では、0402型の積層セラミックコンデンサ(40)を搬送する部材として用いる例を示している。該図に示すとおり、非連続な微小領域(20)の露出表面は、200μmの範囲内で、耐磨耗性が損なわれない範囲の比表面積に収まっていることが好ましい。
このように、本発明の非晶質炭素膜積層部材における非連続な微小領域(20)の露出表面は、扱う微小電子部品などの大きさによって、変化させることができる。また、扱う微小電子部品を共用する場合、最も微小の電子部品の大きさに合わせておけば良い。
Further, the exposed surface of the discontinuous minute region (20) in which the conductive carbon fine particles are dispersed and fixed is formed, for example, on both end sides of the minute electronic component in transportation, alignment, and storage of the minute electronic component. Most preferably, it is interspersed at intervals in the range equal to or narrower than the electrode width. In particular, if the minute regions (20) are scattered at intervals equal to or narrower than the electrode width, a slow earthing circuit can be formed. As a result, static electricity charged in the minute electronic component flows to the ground side, and the static electricity charged in the minute electronic component can be gradually reduced.
FIG. 1B shows an example in which a 0402 type multilayer ceramic capacitor (40) is used as a conveying member. As shown in the figure, the exposed surface of the discontinuous minute region (20) is preferably within a specific surface area within a range of 200 μm so that the wear resistance is not impaired.
Thus, the exposed surface of the discontinuous minute region (20) in the amorphous carbon film laminated member of the present invention can be changed depending on the size of the minute electronic component to be handled. In addition, when sharing a minute electronic component to be handled, it is only necessary to match the size of the smallest electronic component.

本発明において、導電性基板(10)は、ステンレス鋼(SUS)、あるいは鉄、銅、アルミニウムなどの金属やそれらの合金等、またはそれらへの金属めっき被覆物、導電性(制電性)のゴムや樹脂(ゴムや樹脂に導電性の材料を混煉するなどしたもの)、炭素素材などの材料が、用いられ、用途に応じて適宜選択して用いられる。
また、導電性基板には、その表面に直接、導電性炭素微粒子が固定され、且つ非晶質炭素膜が堆積されていても良いが、導電性を有するものであれば、接着層などの中間層を有するものであってもよい。
In the present invention, the conductive substrate (10) is made of stainless steel (SUS), a metal such as iron, copper, or aluminum, or an alloy thereof, or a metal plating coating on them, or a conductive (antistatic) material. A material such as rubber, resin (rubber or resin mixed with a conductive material), carbon material, or the like is used, and is appropriately selected depending on the application.
In addition, conductive carbon fine particles may be directly fixed on the surface of the conductive substrate, and an amorphous carbon film may be deposited on the conductive substrate. It may have a layer.

本発明の一実施形態にかかる導電性炭素微粒子としては、グラファイトやカーボンブラックなどの微粒子を用いることができる。導電性炭素微粒子は、本発明の趣旨に反しない範囲で任意に選定できる。以下に述べる非晶質炭素膜を堆積した際に、導電性炭素微粒子の一部又はその集合体の一部が、該非晶質炭素膜に埋没せずに、露出し得る程度の大きさのものが用いられ、好ましくは、該微粒子の直径は、100nm〜11μmである。また、導電性炭素微粒子の形状は特に限定されず、必ずしも粒状である必要はなく、例えばカーボンナノチューブのように螺旋状のものなどでも良い。   As the conductive carbon fine particles according to one embodiment of the present invention, fine particles such as graphite and carbon black can be used. The conductive carbon fine particles can be arbitrarily selected within a range not contrary to the gist of the present invention. When depositing the amorphous carbon film described below, a part of the conductive carbon fine particles or a part of the aggregate thereof is of a size that can be exposed without being buried in the amorphous carbon film. Preferably, the diameter of the fine particles is 100 nm to 11 μm. Further, the shape of the conductive carbon fine particles is not particularly limited, and is not necessarily granular, and may be a spiral shape such as a carbon nanotube.

本発明の一実施形態にかかる非晶質炭素膜(a−C:H膜)は、前記基板上に直接、或いは、他の層を介して形成されるものであって、炭素(c)及び水素(H)を主成分とするものである。また、本発明の他の実施形態においては、これに、必要に応じて、ケイ素(Si)、酸素(O)、窒素(N)、の各元素を単独で、或いは組み合わせて含有させることにより、非晶質炭素膜に官能基を付与することもできる。
当該膜中にSiを含有する場合、その含有量は概ね1〜45原子%、好ましくは4〜30原子%であり、当該膜中に酸素を含有する場合、その含有量は概ね0.1〜50原子%、好ましくは4〜40原子%であり、当該膜中に窒素を含有する場合、その含有量は0.1〜20原子%、好ましくは、0.5〜15原子%である。
また、本発明の一実施形態にかかるa−C:H膜の膜厚は特に限定されないが、少なくとも50nm〜10μmであるのが好ましく、更に好ましくは0.5〜3μmである。50nmより薄い膜になると膜の連続性がなくなり、10μmより厚くなると膜の応力剥離が起こるようになるため、この範囲内にするのが好ましい。成膜時間や安定性を考慮すると、0.5〜3μmの範囲にするのが、本発明の適用に最適である。
An amorphous carbon film (aC: H film) according to an embodiment of the present invention is formed directly on the substrate or via another layer, and includes carbon (c) and It is mainly composed of hydrogen (H). In another embodiment of the present invention, if necessary, by containing each element of silicon (Si), oxygen (O), nitrogen (N) alone or in combination, Functional groups can also be added to the amorphous carbon film.
When Si is contained in the film, the content is generally 1 to 45 atomic%, preferably 4 to 30 atomic%. When oxygen is contained in the film, the content is generally 0.1 to The content is 50 atomic%, preferably 4 to 40 atomic%. When nitrogen is contained in the film, the content is 0.1 to 20 atomic%, preferably 0.5 to 15 atomic%.
The thickness of the aC: H film according to one embodiment of the present invention is not particularly limited, but is preferably at least 50 nm to 10 μm, more preferably 0.5 to 3 μm. When the film is thinner than 50 nm, the continuity of the film is lost, and when the film is thicker than 10 μm, stress peeling of the film occurs. Considering the film formation time and stability, the range of 0.5 to 3 μm is optimal for application of the present invention.

以下、前記の非晶質炭素膜積層部材の製造方法について、代表的な方法を説明する。
第一の方法は、(1)導電性基材上に、導電性炭素微粒子を前記の微小領域のみに分散固定する工程と、(2)該導電性炭素微粒子が固定された基板の表面に非晶質炭素を堆積させる工程と、(3)該非晶質炭素膜の表面と導電性炭素微粒子の表面とが同一平面となるように平坦化する工程とからなる方法である。
Hereinafter, typical methods for manufacturing the amorphous carbon film laminated member will be described.
The first method includes (1) a step of dispersing and fixing conductive carbon fine particles only on the fine regions on a conductive base material, and (2) non-deposition on the surface of the substrate on which the conductive carbon fine particles are fixed. This is a method comprising a step of depositing crystalline carbon and a step of (3) flattening the surface of the amorphous carbon film and the surface of the conductive carbon fine particles to be in the same plane.

前記(1)の導電性基材上に、導電性炭素微粒子を前記の微小領域のみに固定する方法は、特に限定されないが、例えば、該基板上に、所定の開口を有するメッシュ又はスクリーン版を配置し、その上から、導電性炭素粒子を含有するスプレー塗布剤などを噴霧する等の方法が挙げられる。
使用されるスクリーン又はメッシュの開口の大きさは、10〜500μmであり、また、用いられるスクリーン又はメッシュの材質は、被接触物である微小部品等の形状に応じた必要間隔で、飛び飛びの開口パターンを有していれば良く、ステンレス鋼(SUS)、あるいはNi、銅、アルミニウムその他の金属やそれらの合金、また、乳剤やポリエステルその他の樹脂、ゴム、紙、セルロースや合成繊維、無機材料等、素材は特に限定されない。スプレー塗布剤などを噴霧し、塗布材が十分乾燥し、初期の導電性炭素粒子と基材の密着が取れた段階で、導電性微粒子と基材の接触をより確実にする為、バレンなどで導電性炭素粒子をその上部から基材方向に軽く圧縮することも可能である。
The method for fixing the conductive carbon fine particles only to the minute regions on the conductive base material of (1) is not particularly limited. For example, a mesh or screen plate having a predetermined opening is formed on the substrate. The method of arrange | positioning and spraying the spray coating agent containing an electroconductive carbon particle etc. from there is mentioned.
The size of the opening of the screen or mesh to be used is 10 to 500 μm, and the material of the screen or mesh to be used is a flying opening at a necessary interval according to the shape of the micropart that is a contacted object. It only needs to have a pattern, stainless steel (SUS), Ni, copper, aluminum and other metals and their alloys, emulsion, polyester and other resins, rubber, paper, cellulose, synthetic fibers, inorganic materials, etc. The material is not particularly limited. In order to make the contact between the conductive fine particles and the substrate more reliable at the stage where the coating material is sprayed and the coating material is sufficiently dried and the initial conductive carbon particles are in close contact with the substrate. It is also possible to lightly compress the conductive carbon particles from the upper part toward the base material.

前記(2)の非晶質炭素膜を堆積する方法についても、PVD法やCVD法等、特に限定されないが、反応ガスにより成膜する方法のプラズマCVD法を用いる方法が好ましい。また、本発明のa−C:H膜の製造に用いるプラズマCVD法としては、高周波放電を用いる高周波プラズマCVD法や、直流放電を利用する直流プラズマCVD法、マイクロ波放電を利用するマイクロ波プラズマCVD法などが挙げられるが、ガスを原料とするプラズマ装置であればいずれでもかまわない。なお、成膜する際の基材温度、ガス濃度、圧力、時間などの条件は、作製する非晶質炭素膜の組成、膜厚に応じて、公知の方法で適宜設定される。   The method (2) for depositing the amorphous carbon film is not particularly limited, such as a PVD method or a CVD method, but a method using a plasma CVD method of forming a film with a reactive gas is preferable. The plasma CVD method used for the production of the aC: H film of the present invention includes a high frequency plasma CVD method using a high frequency discharge, a direct current plasma CVD method using a direct current discharge, and a microwave plasma using a microwave discharge. Although CVD method etc. are mentioned, any may be sufficient if it is a plasma apparatus using gas as a raw material. Note that conditions such as a substrate temperature, a gas concentration, a pressure, and a time during film formation are appropriately set by a known method according to the composition and film thickness of the amorphous carbon film to be formed.

前記(3)の工程は、工具を用いて行うことも可能であるが、非晶質炭素膜が耐摩耗性に優れているが、導電性炭素微粒子は摩擦に対して脆弱であること、及び非晶質炭素膜と導電性炭素微粒子とは密着性に優れていることから、これらの表面を、不織布などで表面が覆われたバレンを用い、乾拭きするなどの簡単な手法により行うことができる。   Although the step (3) can be performed using a tool, the amorphous carbon film is excellent in wear resistance, but the conductive carbon fine particles are vulnerable to friction, and Since the amorphous carbon film and the conductive carbon fine particles are excellent in adhesion, it is possible to carry out these surfaces by a simple method such as wiping with valene whose surface is covered with a nonwoven fabric or the like. .

第二の方法は、(1´)導電性基板上の、前記の微小領域以外の領域に非晶質炭素を堆積させる工程と、(2´)導電性基板上の、非晶質炭素が堆積されていない微小領域に導電性炭素微粒子を固定させる工程と、(3´)該非晶質炭素膜の表面と導電性炭素微粒子の表面とが同一平面となるように平坦化する工程とからなる方法である。   The second method consists of (1 ′) depositing amorphous carbon in a region other than the above-described microregion on the conductive substrate, and (2 ′) depositing amorphous carbon on the conductive substrate. A method comprising: fixing conductive carbon fine particles in an unfinished microscopic area; and (3 ′) flattening the surface of the amorphous carbon film and the surface of the conductive carbon fine particles to be in the same plane. It is.

前記(1´)の導電性基板上の前記の微小領域以外の領域に非晶質炭素を堆積させる方法は、特に限定されないが、例えば、導電性基板上にマスクやメッシュを配置し、その上から水性の塗料等のスキング材料を噴霧して、マスクやメッシュのネガパターン状にマスキング材料による保護膜を形成した後に、マスクやメッシュを外して、基板表面に非晶質炭素膜を堆積させる方法が挙げられる。この手法によれば、その後、超音波洗浄などによって水性塗料部分及び該塗料上に成膜された非晶質炭素膜を剥離することで、マスクやメッシュと同じ様なパターンを有する非晶質炭素膜を得ることができる。   The method for depositing amorphous carbon in the region other than the minute region on the conductive substrate (1 ′) is not particularly limited. For example, a mask or mesh is disposed on the conductive substrate, A spraying material such as water-based paint is sprayed to form a protective film with a masking material in a mask or mesh negative pattern, and then the mask or mesh is removed to deposit an amorphous carbon film on the substrate surface Is mentioned. According to this technique, the amorphous carbon film having a pattern similar to that of a mask or mesh is then removed by peeling off the aqueous paint portion and the amorphous carbon film formed on the paint by ultrasonic cleaning or the like. A membrane can be obtained.

前記(2´)の工程は、このパターン状の非晶質炭素膜が形成された基板に対して、前記の(1)の工程と同様に、上から、導電性炭素粒子を含有するスプレー塗布剤などを噴霧する等の方法により、非晶質炭素膜が形成されていない領域に導電性炭素微粒子を固定することで行われる。
その後の前記(3´)の工程は、前記(3)の工程と同様である。
In the step (2 ′), spray coating containing conductive carbon particles is applied to the substrate on which the patterned amorphous carbon film has been formed from the top in the same manner as in the step (1). This is performed by fixing the conductive carbon fine particles in a region where the amorphous carbon film is not formed by a method such as spraying an agent.
The subsequent step (3 ′) is the same as the step (3).

以上の第一の方法及び第二の方法は、いずれも、非晶質炭素膜と導電性炭素微粒子とが密着性に優れている点、及び非晶質炭素膜と導電性炭素微粒子の硬さ(脆さ)の違いを利用したものであって、導電性基板上に、導電性炭素微粒子からなる非連続な微小領域と、非晶質炭素膜からなる連続した領域と、を有し、それらの面が同一平面となる積層部材を製造するのに適した方法である。   Both the first method and the second method described above are excellent in adhesion between the amorphous carbon film and the conductive carbon fine particles, and the hardness of the amorphous carbon film and the conductive carbon fine particles. (Brittleness) difference, having a discontinuous minute region made of conductive carbon fine particles and a continuous region made of amorphous carbon film on a conductive substrate, This is a method suitable for manufacturing a laminated member having the same plane.

また、第一の方法及び第二の方法ともにスプレー噴霧等により所望の被覆パターンを形成しており、使用されるスクリーン、マスクやメッシュなどの被覆物が、対象基材上に完全に密着していなくても、被覆物が基材表面から浮いた部分においてもスプレー噴霧材料の回りこみが比較的少ないので、プラズマ成膜プロセス時の被覆のように基材と被覆物との僅かな浮きから生じる隙間にプラズマが回り込んで膜を形成し、被覆物のパターンの転写に欠陥が生じる等の問題を考慮する必要が少ない。基材表面にうねりを伴うもの、浅い溝などを伴うものにも適用が可能である。
また、スプレー噴霧物ではパターン転写時に加熱を伴わないため、被覆物と基材の熱線膨張係数の相違によるパターンの位置ズレを起こすことも無い。
さらに、スプレー塗布は、真空プロセスではなく、開放された常圧の空間で実施されるので、例えば立体形状を有する基材の任意の面、部分を選択的に、該面に最も適切で必要なパターンの被覆で、任意の方向から順次表面処理行うことが可能となる。
In addition, both the first method and the second method form a desired coating pattern by spraying or the like, and the covering such as a screen, a mask, or a mesh used is completely adhered to the target substrate. Even without the coating, the spray spray material has relatively little wraparound even in the part where the coating floats from the substrate surface, resulting in slight floating between the substrate and the coating as in the coating during the plasma deposition process. There is little need to consider problems such as plasma flowing into the gap to form a film and defects in transfer of the coating pattern. The present invention can also be applied to a substrate with undulations or shallow grooves.
Further, since spray spray does not involve heating during pattern transfer, there is no occurrence of pattern misalignment due to the difference in the coefficient of thermal expansion between the coating and the substrate.
Furthermore, since spray application is performed in an open atmospheric pressure space, not a vacuum process, for example, any surface or part of a substrate having a three-dimensional shape is selectively selected and most suitable for the surface. By covering the pattern, it is possible to sequentially perform surface treatment from an arbitrary direction.

さらに、本発明の製造方法は、めっきのように溶液の中でパターンニングが行われるものでもないため、溶液中に浸漬できない基材、また、一般的に酸性やアルカリ性を示すめっき液のような溶液に耐性を持たない基材でもパターンニングが容易に可能である。さらに、電解めっきのように基材に電圧を印加することが必要な場合、基材はめっきに要求されるレベルの導電性が必要であるが、スプレー方式では、基材の導電性を選ばない。   Furthermore, since the manufacturing method of the present invention is not subjected to patterning in a solution like plating, a substrate that cannot be immersed in a solution, or a plating solution that generally shows acidity or alkalinity. Patterning is easily possible even with a substrate that does not have resistance to the solution. Furthermore, when it is necessary to apply a voltage to the substrate as in the case of electrolytic plating, the substrate needs to have a level of conductivity required for plating, but the conductivity of the substrate is not selected in the spray method. .

以下、本発明について、実施例及び比較例を用いて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
(実施例1、2)
1)基材上への非晶質炭素膜の形成
試料として、四角形の板状ステンレス鋼(オーステナイト系)SUS304 2B材 幅20mm×長さ80mm 厚さ0.6mmの試料を準備した。
上記試料を平置きした後、試料の縦方向に半分だけ被覆されるように、ステンレス鋼SUS製の#60金属メッシュ(線径0.12mm、目開0.3mm)を、試料面上に配置し、グラファイトの微粒子を含有するスプレー塗布剤(株式会社オーテック製、商品名:ブラックルブ、電気伝導率:10−3Ω・cm)を噴霧した。この試料を15分間、室温で自然乾燥させた後、金属メッシュを除去し、ホットプレート上にて約200℃で10分間加熱した。
Hereinafter, the present invention will be described using examples and comparative examples. However, the present invention is not limited to these examples.
(Examples 1 and 2)
1) Formation of Amorphous Carbon Film on Substrate As a sample, a square plate-like stainless steel (austenite) SUS304 2B material having a width of 20 mm × length of 80 mm and a thickness of 0.6 mm was prepared.
After the sample is placed flat, a # 60 metal mesh (wire diameter 0.12 mm, mesh size 0.3 mm) made of stainless steel SUS is placed on the sample surface so that only half of the sample is covered in the vertical direction. Then, a spray coating agent containing graphite fine particles (manufactured by Autech Co., Ltd., trade name: Black Lube, electric conductivity: 10 −3 Ω · cm) was sprayed. The sample was naturally dried at room temperature for 15 minutes, and then the metal mesh was removed and heated on a hot plate at about 200 ° C. for 10 minutes.

図2は、得られた試料の表面を観察した写真〔(a):倍率30倍、(b):倍率150倍〕であって、それぞれの写真の右側が、金属メッシュにて被覆されていない部分、左側が、被覆された部分である。
金属メッシュで被覆された部分は、特に、粒径1μm以上のグラファイト微粒子或いは粒子の二次粒子が、試料の表面に点在している状態が観察できた。また、金属メッシュにて被覆されていない部分は、グラファイトが連続面として試料表面を覆い、試料表面が露出していないことが確認できた。
該試料において、金属メッシュを被覆して、表面にグラファイトを点在させた試料部分を実施例1用試料とした。また、金属メッシュにて被覆せず、グラファイトが連続的に試料表面を覆っている部分を比較例1用試料とした。
さらに、別途、表面にグラファイト含有塗布剤を噴霧していない状態の実施例1、比較例1作成に使用したものと同じ試料を準備し、これを比較例2用試料とした。
FIG. 2 is a photograph [(a): magnification 30 times, (b): magnification 150 times) of the surface of the obtained sample, and the right side of each photograph is not covered with a metal mesh. The part, the left side is the covered part.
In the portion covered with the metal mesh, it was particularly possible to observe a state where graphite fine particles having a particle diameter of 1 μm or more or secondary particles were scattered on the surface of the sample. Further, it was confirmed that the portion not covered with the metal mesh covered the sample surface as a continuous surface with graphite, and the sample surface was not exposed.
In the sample, a sample portion coated with a metal mesh and interspersed with graphite on the surface was used as a sample for Example 1. Moreover, the part which is not coat | covered with a metal mesh and the graphite has covered the sample surface continuously was made into the sample for the comparative example 1. FIG.
Further, separately, the same sample as that used in the preparation of Example 1 and Comparative Example 1 in a state where no graphite-containing coating agent was sprayed on the surface was prepared, and this was used as a sample for Comparative Example 2.

実施例1用試料及び比較例1、2用試料に対して同時に、非晶質炭素膜を下記条件で成膜し、実施例1、比較例1及び比較例2の各試料とした。
・成膜装置:高圧DCパルスプラズマCVD装置
・真空度:7×10−4Pa
・原料ガス:トリメチルシラン 流量:30SCCM ガス圧:2Pa
・印加電圧:−4kVまで
・膜厚:500nm
At the same time, an amorphous carbon film was formed on the sample for Example 1 and the samples for Comparative Examples 1 and 2 under the following conditions to obtain samples of Example 1, Comparative Example 1 and Comparative Example 2.
・ Film forming device: High-pressure DC pulse plasma CVD device ・ Vacuum degree: 7 × 10 −4 Pa
・ Raw material gas: Trimethylsilane Flow rate: 30 SCCM Gas pressure: 2 Pa
・ Applied voltage: up to -4 kV ・ Film thickness: 500 nm

プラズマCVD法の場合、基材に付着した異物により異常放電が多発し、所定の印加電圧の印加に至らない場合や、異常放電により、電源回路に多大な損傷を負わせることが起こるが、今回の非晶質炭素膜の成膜時に、事前に噴霧したグラファイトに起因する異常放電は発生しなかった。これは、グラファイトが電気の良導体であるからと推定できる。   In the case of the plasma CVD method, abnormal discharge frequently occurs due to foreign matters adhering to the base material, and when the predetermined applied voltage is not applied or abnormal power discharge causes a great damage to the power supply circuit. When the amorphous carbon film was formed, abnormal discharge due to graphite sprayed in advance did not occur. This can be estimated because graphite is a good conductor of electricity.

以下に成膜した後の各試料のCCD拡大写真を示す。
先ず、図3は、実施例1用試料の金属メッシュにて被覆した部分の状態を観察したCCD拡大写真を示すものである((a)倍率500倍、(b)倍率2000倍)。これらの写真から、特にグラファイトの周辺へ影響を与えること無く、非晶質炭素膜が成膜されていることがわかる。
また、図4に、比較例1用試料の金属メッシュにて被覆しない部分の状態を観察したCCD拡大写真を示す((a)倍率500倍、(b)倍率2000倍)。図4から、基材を覆うように全面にグラファイト膜が存在することが確認でき。その上に非晶質炭素膜が成膜されたと推定できる。
The CCD enlarged photograph of each sample after film-forming is shown below.
First, FIG. 3 shows a CCD enlarged photograph in which the state of the portion covered with the metal mesh of the sample for Example 1 is observed ((a) magnification 500 times, (b) magnification 2000 times). From these photographs, it can be seen that an amorphous carbon film is formed without particularly affecting the periphery of the graphite.
Further, FIG. 4 shows a CCD enlarged photograph in which the state of the portion not covered with the metal mesh of the sample for Comparative Example 1 is observed ((a) magnification 500 times, (b) magnification 2000 times). From FIG. 4, it can be confirmed that a graphite film is present on the entire surface so as to cover the substrate. It can be estimated that an amorphous carbon film was formed thereon.

2)不織布バレンによる乾拭
非晶質炭素膜形成後、実施例1用試料の表面と比較例1用試料の表面を、不織布にて全面が覆われたバレンを使用して乾拭きし、その表面状態を確認した。拭き取りに使用したバレンの不織布の摩擦面からは黒い粉状のものが観察され、形成した非晶質炭素膜に埋没することなく非晶質炭素膜表層表面(水平面)より上に凸となった部分のグラファイトがバレンにより非晶質炭素膜表層表面と水平面になるまでの部分が摩滅され、平坦化していることが確認された。
図5は、実施例1用試料の金属メッシュにて被覆した部分の状態を観察したCCD拡大写真である〔(a)倍率500倍、(b)倍率2000倍〕。
2) Dry wiping with non-woven fabric valene After the formation of the amorphous carbon film, the surface of the sample for Example 1 and the surface of the sample for Comparative Example 1 were wiped dry using valene that was entirely covered with non-woven fabric. Checked the condition. A black powdery form was observed from the friction surface of the non-woven fabric of valene used for wiping, and it was convex above the surface of the amorphous carbon film (horizontal plane) without being embedded in the formed amorphous carbon film. It was confirmed that the portion of graphite up to the surface of the surface of the amorphous carbon film and the horizontal plane was worn and flattened by valene.
FIG. 5 is a CCD magnified photograph observing the state of the portion covered with the metal mesh of the sample for Example 1 ((a) magnification 500 times, (b) magnification 2000 times).

実施例1の試料である図5の写真からわかるように、金属メッシュにて被覆した部分においては、基材表層に固定され、非晶質炭素膜の上部に突出していたグラファイトは、硬度が低いため、不織布バレンの空拭きで簡単に摩滅し、非晶質炭素膜の膜平面の水準までグラファイトが削られている。しかし、それ以上の非晶質炭素膜中に根ざした部分については、物理摩擦からの攻撃を周囲の硬い非晶質炭素膜が保護しているため、写真からはグラファイトが塗布されていた部分の基材が裸で露出した部分は確認できず、グラファイトの少なくとも一部がスプレー塗布した状態で基材上に残っているのが確認できた。   As can be seen from the photograph of FIG. 5 which is a sample of Example 1, in the portion covered with the metal mesh, the graphite fixed to the substrate surface layer and protruding above the amorphous carbon film has low hardness. Therefore, it is easily worn away by wiping the non-woven fabric valene, and the graphite is cut to the level of the film plane of the amorphous carbon film. However, for the part rooted in the amorphous carbon film beyond that, since the hard amorphous carbon film around protects the attack from physical friction, the photograph shows the part where graphite was applied. It was not possible to confirm the bare and exposed portion of the base material, and it was confirmed that at least a part of the graphite remained on the base material in a sprayed state.

以上のことから、基材との導電性を確保する為に塗布された導電性であるグラファイトの突起部を覆うように絶縁性に近い非晶質炭素膜が形成されてしまっても、その基材としてのグラファイト粒子自体が柔らかいため、グラファイト粒子は削り取られ、グラファイトの表面を一時的に成膜時に覆った非晶質炭素膜は前記バレン等による平坦化時に破壊され、再度導電性のグラファイト成分自体が表面に露出できるような状態になり、当該グラファイトは塗布時の基材と接触しているため、非晶質炭素膜表層の接触物は、グラファイトの部分を通じて基材との電気的な導通を取ることが可能になることが判明した。   From the above, even if an amorphous carbon film close to insulation is formed so as to cover the protrusions of graphite that is applied to ensure conductivity with the base material, Since the graphite particles themselves are soft, the graphite particles are scraped off, and the amorphous carbon film that temporarily covers the surface of the graphite during film formation is destroyed when flattened with the valene or the like, and again becomes a conductive graphite component. Since the graphite itself is exposed to the surface and the graphite is in contact with the base material at the time of application, the contact object of the amorphous carbon film surface layer is electrically connected to the base material through the graphite portion. Turned out to be possible to take.

次いで、実施例1と同様に作成した試料(グラファイトを点在させ非晶質炭素膜を形成しバレンで表面を擦ったもの)、幅20mm×長さ20mmサイズのものの電気抵抗を4端子法により測定した。
特に実施例1のような部分的に導電性のグラファイトが点在する試料の電気抵抗を計測するため、また、測定用の金属端子が薄膜である非晶質炭素膜を基材側に貫通しないよう、実施例1の試料表面との電気抵抗測定接触部には本来の被測定物との接触部である金属製端子部分表層に、導電性ゴム((株)JSRマイクロテック製ショートゴム、幅10mm×長さ16mm×厚さ1.35mm)を設けた。図11にその概要を示す。
Next, the electrical resistance of a sample prepared in the same manner as in Example 1 (one in which graphite was scattered and an amorphous carbon film was formed and the surface was rubbed with valene), a width of 20 mm × length of 20 mm, was measured by a four-terminal method. It was measured.
In particular, in order to measure the electrical resistance of a sample interspersed with partially conductive graphite as in Example 1, the metal terminal for measurement does not penetrate through the amorphous carbon film, which is a thin film, to the substrate side. As described above, the electrical resistance measurement contact portion with the sample surface of Example 1 has a conductive rubber (short rubber made by JSR Microtech Co., Ltd., width) on the metal terminal portion surface layer which is the contact portion with the original object to be measured. 10 mm × length 16 mm × thickness 1.35 mm). The outline is shown in FIG.

被測定物は前記の実施例1と同様の条件にて作成した試料、幅20mm×長さ20mmサイズのものを、測定機下側に位置する接触部である導電性ゴム上に、実施例1試料の膜の形成されていない「裏面」側を接触させセット(実施例1試料の膜の形成されていない「裏面」側が下側の導電性ゴムに接触する配置)、上側の導電性ゴムを可動ステージにより下降させ、実施例1の試料の膜を形成した被測定物の面を上側の導電性ゴムで挟む形で測定を行った。
本測定では、本来得たい被測定物の電気抵抗以外に、
・導電性ゴムと被測定物の接触抵抗
・導電性ゴムの抵抗
・金属電極と導電性ゴムの接触抵抗
・金属電極の抵抗
・リード線と金属電極の接触抵抗
・リード線の抵抗
といったものが発生し、測定値に影響を及ぼす可能性がある。これらの影響を排除する為電気抵抗は4端子法により測定している。抵抗測定器はAgilent社製34420Aを使用した。
上記方法で実施例1と同様の試料の電気抵抗を5回計測した平均抵抗値は、2.92Ωであり、基材と非晶質炭素膜表面の電気的導通が確保されていることが確認できた。
An object to be measured is a sample prepared under the same conditions as in Example 1 above, a sample having a width of 20 mm and a length of 20 mm on the conductive rubber which is a contact portion located on the lower side of the measuring instrument. Set the “back surface” side on which the sample film is not formed in contact (Example 1 arrangement where the “back surface” side on which the sample film is not formed contacts the lower conductive rubber), and set the upper conductive rubber The measurement was carried out in such a manner that the surface of the object to be measured on which the sample film of Example 1 was formed was sandwiched between the upper conductive rubbers by being lowered by the movable stage.
In this measurement, in addition to the electrical resistance of the object to be measured,
-Contact resistance between conductive rubber and object to be measured-Resistance of conductive rubber-Contact resistance between metal electrode and conductive rubber-Resistance of metal electrode-Contact resistance between lead wire and metal electrode-Resistance of lead wire occurs May affect the measured value. In order to eliminate these effects, the electrical resistance is measured by the 4-terminal method. As a resistance measuring instrument, 34420A manufactured by Agilent was used.
The average resistance value obtained by measuring the electrical resistance of the sample similar to Example 1 by the above method 5 times was 2.92Ω, and it was confirmed that the electrical continuity between the substrate and the amorphous carbon film surface was ensured. did it.

一方、比較例1の金属メッシュにて被覆しない部分においては、基材と非晶質炭素膜の間に、グラファイトの面となった層が介在し、非晶質炭素膜の密着は、当該グラファイト層の基材密着力に依存する関係となり、基材と物理的にのみ密着しており、モース硬度が1〜2と柔らかいグラファイト層は、非晶質炭素膜を通じて加えられる摩擦力によって簡単に基材から剥離してしまっているのが確認できた。   On the other hand, in the portion that is not covered with the metal mesh of Comparative Example 1, a layer serving as a graphite surface is interposed between the base material and the amorphous carbon film, and the adhesion of the amorphous carbon film is related to the graphite. The soft graphite layer with a Mohs hardness of 1-2, which is in physical contact with the base material only, depends on the frictional force applied through the amorphous carbon film. It was confirmed that it was peeled off from the material.

以上のことから、基材表面にグラファイト部分が点在し、このグラファイト部分が周囲の非晶質炭素膜に守られるように存在していることが重要であるといえる。   From the above, it can be said that it is important that the graphite surface is scattered on the surface of the base material so that the graphite portion is protected by the surrounding amorphous carbon film.

3)摩擦摩耗試験
以上の説明において、グラファイト部分が点在し、このグラファイト部分を取り囲む周囲の非晶質炭素膜の構造が工業的に実施できるのかを試すため、新東科学製、摩擦磨耗試験装置トライボギアHHS-2000を用いて、摩擦磨耗試験を実施した。摩擦磨耗試験の実験条件として、荷重は20gと100gとの2点間の傾斜加圧で実施した。また、試験雰囲気は、大気中とし、圧子移動速度は5mm/秒であり、圧子移動距離は、20mm、サンプリンググレートは、25Hzまでとした。試料及びその他の条件は、以下に記述する。
3) Friction and abrasion test In the above description, in order to test whether the structure of the surrounding amorphous carbon film surrounding the graphite part can be industrially implemented, Shinto Kagaku made a friction and abrasion test. A frictional wear test was performed using the equipment Tribogear HHS-2000. As an experimental condition for the frictional wear test, the load was applied by inclined pressurization between two points of 20 g and 100 g. The test atmosphere was air, the indenter moving speed was 5 mm / second, the indenter moving distance was 20 mm, and the sampling rate was up to 25 Hz. Samples and other conditions are described below.

摩擦磨耗試験の結果を示す。
試料は、実施例1の試料と、ステンレス鋼SUSの試料に非晶質炭素膜のみ成膜した比較例2の試料の2種とし、それぞれについて上記の条件で摩擦磨耗試験を行った。
The result of a friction abrasion test is shown.
Two types of samples, the sample of Example 1 and the sample of Comparative Example 2 in which only an amorphous carbon film was formed on a sample of stainless steel SUS, were subjected to a frictional wear test under the above conditions.

図6(a)に比較例2の摩擦磨耗試験の結果を示す。
比較例2のステンレス鋼SUS304の試料に非晶質炭素膜のみをコートしたものは、5往復付近から摩擦係数が0.5μ程度まで上昇するが、その後は安定し、右肩にやや低下傾向で100往復が終了している。
また、図6(b)に示す摩擦摩耗試験のボールの軌跡のCCD写真(倍率500倍)の観察によると、ボールの軌跡も変色はあるが、基材であるステンレス鋼SUS表面は露出していない。
FIG. 6A shows the result of the frictional wear test of Comparative Example 2.
The sample of the stainless steel SUS304 of Comparative Example 2 coated with only an amorphous carbon film increases the friction coefficient from about 5 reciprocations to about 0.5μ, but then stabilizes and tends to decrease slightly on the right shoulder. 100 round trips have been completed.
Moreover, according to the CCD photograph (magnification 500 times) of the ball trajectory of the frictional wear test shown in FIG. 6B, the ball trajectory is also discolored, but the surface of the stainless steel SUS as the base material is exposed. Absent.

図7(a)に本発明の実施例1の試料の摩擦摩耗試験の結果を示す。
実施例1の試料は、前述の比較例2の試料の通常の非晶質炭素膜の成膜分と同等の摩擦係数で安定していることが確認できる。
この結果より、基材上に非晶質炭素膜と供に分散させたグラファイトが、摩擦・磨耗用途においても、その導電性の付与と引き換えに非晶質炭素膜固有の特徴である耐磨耗性や低摩擦係数をもつことを犠牲にしていないことが確認できる。
また、図7(b)に示す摩擦摩耗試験のボールの軌跡のCCD写真(倍率500倍)の観察によると、ボールの軌跡も基材であるステンレス鋼SUSの表面等は露出していないことが確認できる。
図8に、実施例1の試料の摩擦摩耗試験のボールの軌跡上に点在するグラファイト部分のCCD拡大写真(倍率5000倍)を示す。ボールの軌跡上に存在するグラファイト部分についても、剥離、特にグラファイト部分のみの抜け、剥離が生じている部分は観察できない。
FIG. 7 (a) shows the result of the friction and wear test of the sample of Example 1 of the present invention.
It can be confirmed that the sample of Example 1 is stable with a friction coefficient equivalent to that of the normal amorphous carbon film formed in the sample of Comparative Example 2 described above.
As a result, the graphite dispersed together with the amorphous carbon film on the base material is wear resistant, which is a characteristic characteristic of the amorphous carbon film in exchange for imparting conductivity even in friction and wear applications. It can be confirmed that it is not at the expense of having the property and the low coefficient of friction.
Further, according to the CCD photograph (500 times magnification) of the ball trajectory of the frictional wear test shown in FIG. 7B, it is found that the surface of the stainless steel SUS as the base material is not exposed. I can confirm.
FIG. 8 shows an enlarged CCD photograph (magnification 5000 times) of the graphite portions scattered on the locus of the ball in the frictional wear test of the sample of Example 1. As for the graphite portion existing on the trajectory of the ball, exfoliation, in particular, the portion where only the graphite portion is detached or exfoliated cannot be observed.

非晶質炭素膜表面上へのグラファイトの添加量は、非晶質炭素膜に行うマスキングの目開きや線径の大きさを制御することで所望のグラファイトの点在性や被膜面積などを変えることが可能である。   The amount of graphite added to the surface of the amorphous carbon film changes the interstitial area of the desired graphite, the coating area, etc. by controlling the opening of the masking and the wire diameter of the amorphous carbon film. It is possible.

4)静電気による微小電子部品貼り付き状況の評価
本発明の効果を確認するため、周囲にツバ状の部品搬送ガイド(壁)のある「丸盆」形状で、該ツバの内径80mmΦのステンレス鋼(SUS304)製鏡面仕上げ(Ra:0.05μm)の部品搬送用ボールフィーダーのワークの搬送面(ツバの内側、内径80mmΦ部分)に、下記の方法にてグラファイトの点在構造を持った非晶質炭素膜を作成した。
4) Evaluation of the state of sticking of minute electronic parts due to static electricity In order to confirm the effect of the present invention, a stainless steel (with a round tray) shape having a flange-shaped component conveyance guide (wall) around the inner diameter of the flange (80 mmΦ). (SUS304) A mirror-finished (Ra: 0.05 μm) part-feeding ball feeder workpiece amorphous surface with graphite interspersed by the following method on the workpiece conveyance surface (inside of flange, inner diameter 80 mmφ) A carbon film was created.

実施例1と同様の試料として、まず、該フィーダーに、ステンレス鋼SUS製の#60金属メッシュ(線径0.12mm、目開0.3mm)を、試料の上部前面に接触した形で金属メッシュを被覆し、グラファイト微粒子を含有するスプレー塗布剤(株式会社オーテック製、商品名:ブラックルブ)を噴霧した。
本試料を15分間、室温で自然乾燥させた後、金属メッシュを除去しホットプレート上にて約170℃で10分間加熱した。これを、実施例2の基材とする。
次に、比較例2と同様の比較用試料として、実施例2と同じ内径80mmΦのステンレス鋼(SUS304)製鏡面仕上げ(Ra:0.05μm)部品搬送用フィーダを準備し、比較例3の基材とする。
As a sample similar to Example 1, first, a stainless steel SUS # 60 metal mesh (wire diameter: 0.12 mm, mesh size: 0.3 mm) was first contacted with the feeder in a form in contact with the upper front surface of the sample. A spray coating agent (manufactured by Autech Co., Ltd., trade name: Black Lub) containing fine graphite particles was sprayed.
The sample was naturally dried at room temperature for 15 minutes, and then the metal mesh was removed and heated on a hot plate at about 170 ° C. for 10 minutes. This is the base material of Example 2.
Next, as a comparative sample similar to Comparative Example 2, a feeder for conveying a mirror finished (Ra: 0.05 μm) part made of stainless steel (SUS304) having the same inner diameter of 80 mm as in Example 2 was prepared. Use wood.

実施例2及び比較例3の基材に対して同時に非晶質炭素膜を下記条件にて成膜した。
・成膜装置:高圧DCパルスプラズマCVD装置
・真空度:7×10−4Pa
・原料ガス:アセチレン 流量:30SCCM ガス圧:2Pa
・印加電圧:−4kVまで
・膜厚:500nm
An amorphous carbon film was simultaneously formed on the base materials of Example 2 and Comparative Example 3 under the following conditions.
・ Film forming device: High-pressure DC pulse plasma CVD device ・ Vacuum degree: 7 × 10 −4 Pa
・ Raw material gas: Acetylene Flow rate: 30 SCCM Gas pressure: 2 Pa
・ Applied voltage: up to -4 kV ・ Film thickness: 500 nm

上記の非晶質炭素膜を形成後、実施例2の基材(グラファイト微粒子を点在させた後に非晶質炭素膜を形成したフィーダ)表面をバレンにて摩擦した後(実施例2)、室温25℃、湿度25%の環境下にて実施例2を、圧電体で振動する振動搬送装置にセットし、0402形状の基板実装用に外部電極端子の周面および端面がSnめっきで仕上げられた積層チップセラミック積層コンデンサ20個を25rpmで10分間回転搬送させた後、取り外して実施例2の非晶質炭素膜の面が90゜の傾斜(垂直)になるよう配設し、フィーダ上に静電気付着する0402形状の積層セラミックコンデンサの付着残留している部品数を数えた。
その結果、実施例2のフィーダ表面に積層セラミックコンデンサ付着は認められなかった。
上記と同様の方法で比較例3(非晶質炭素膜を形成したもの)についても積層セラミックコンデンサ20個を25rpmで10分間回転搬送させた後、取り外して非晶質炭素膜の面が90゜の傾斜(垂直)になるよう配設し、フィーダ上に静電気付着する0402形状の積層セラミックコンデンサの付着残留している部品数を数えた。比較例3の非晶質炭素膜を塗布したのみのフィーダ表面には14個の部品付着が確認できた。
連続して、0402形状の積層セラミックコンデンサ(約0.1mg)20個を25rpmにて回転させ、3万回転時点にてフィーダ表面の状態を観察した。
実施例2には0402形状のコンデンサの静電気付着、および積層セラミックコンデンサ電極からのSnめっき(酸化スズ)による凝着付着は確認されなかった。
上記の評価結果から、基材上に非晶質炭素膜と供に形成される分散したグラファイト部分は、静電気除去、凝着物発生による部品張り付き防止に必要充分な電気伝導性、耐凝着防止性を保持しているのが確認できる。
After forming the above amorphous carbon film, after rubbing the surface of the base material of Example 2 (feeder in which the amorphous carbon film was formed after being interspersed with graphite fine particles) with valene (Example 2), Example 2 was set in a vibration transfer device that vibrates with a piezoelectric body in an environment of room temperature 25 ° C. and humidity 25%, and the peripheral surface and end surface of the external electrode terminal were finished by Sn plating for mounting a 0402-shaped substrate. 20 multilayer chip ceramic multilayer capacitors were rotated and conveyed at 25 rpm for 10 minutes, then removed and arranged so that the surface of the amorphous carbon film of Example 2 was inclined at 90 ° (vertical), and on the feeder. The number of remaining parts of the 0402-shaped multilayer ceramic capacitor to which static electricity adheres was counted.
As a result, adhesion of the multilayer ceramic capacitor was not recognized on the feeder surface of Example 2.
In Comparative Example 3 (in which an amorphous carbon film was formed) in the same manner as described above, 20 multilayer ceramic capacitors were rotated and conveyed at 25 rpm for 10 minutes, then removed and the surface of the amorphous carbon film was 90 °. The number of the remaining parts of the 0402-shaped multilayer ceramic capacitor adhering to the static electricity on the feeder was counted. The adhesion of 14 parts could be confirmed on the surface of the feeder where only the amorphous carbon film of Comparative Example 3 was applied.
Continuously, 20 0402-shaped multilayer ceramic capacitors (about 0.1 mg) were rotated at 25 rpm, and the state of the feeder surface was observed at 30,000 rpm.
In Example 2, no electrostatic adhesion of the 0402-shaped capacitor and adhesion due to Sn plating (tin oxide) from the multilayer ceramic capacitor electrode were confirmed.
From the above evaluation results, the dispersed graphite part formed together with the amorphous carbon film on the base material has sufficient electrical conductivity and anti-adhesion properties necessary for static electricity removal and prevention of component sticking due to the generation of adhesions. Can be confirmed.

(実施例3)
0402形状の積層セラミックコンデンサ(縦幅0.4mm×横幅0.2mm×厚み0.2mm)の投影面積の一番大きい立体面が完全に収容されない大きさの線径を持つマスクとして、フォトマスクでパターニングされ、エッチングで開口処理させ作成したメシュ格子状のステンレス鋼SUS304製マスク、開口200μm、線径100μm、板厚50μmを準備した。
四角形で縦10cm、横10cm、厚さ5mmのアルミニウム合金(A2017)製で一部に切削加工にて凹状のスリット加工が円弧状に施された部品搬送用フィーダーのスリット含むワークの搬送面に、上記マスクを固定し、水性の塗料スプレー(大日本塗料製 サンデーペイント水性スプレー白)で塗料を噴霧した。
塗料のスプレー噴霧後ステンレス鋼SUSマスクを外すと、マスクのネガパターン状に塗料パターンがフィーダ表面上に確認できた。また、スリット底部にも飛び飛びの塗料パターンが確認できた。
(Example 3)
A photomask is used as a mask having a wire diameter that does not completely accommodate the three-dimensional surface having the largest projected area of a 0402-shaped multilayer ceramic capacitor (vertical width 0.4 mm × width 0.2 mm × thickness 0.2 mm). A mask made of meshed stainless steel SUS304, which was patterned and processed by opening by etching, was prepared with an opening of 200 μm, a wire diameter of 100 μm, and a plate thickness of 50 μm.
On the conveyance surface of the workpiece including the slit of the component conveyance feeder, which is made of an aluminum alloy (A2017) having a rectangular shape of 10 cm in length, 10 cm in width, and 5 mm in thickness, and a concave slit processing is performed in a circular arc shape in part by cutting. The mask was fixed, and the paint was sprayed with an aqueous paint spray (Sunday Paint aqueous spray white made by Dainippon Paint).
When the stainless steel SUS mask was removed after spraying the paint, the paint pattern was confirmed on the feeder surface in the negative pattern of the mask. In addition, a flying paint pattern was confirmed at the bottom of the slit.

充分に塗料を乾燥させた後、得られたフィーダを、比較例用としてのアルミニウム合金A2017のみからなるフィーダー(比較例4の基材)と共に、高圧DCパルスプラズマCVD成膜装置に投入した。
非晶質炭素膜の成膜条件は、真空度、1×10−3Paに減圧し、アルゴンガスプラズマで5分間クリーニングを行った後、シリコンを含む非晶質炭素膜中間層、及び、アセチレンガス原料による非晶質炭素膜を、ガス圧2Pa、ガス流量40SCCM、印加電圧―5Kvにて計40分間成膜を行った。
After sufficiently drying the coating material, the obtained feeder was put into a high-pressure DC pulse plasma CVD film forming apparatus together with a feeder (base material of Comparative Example 4) made only of aluminum alloy A2017 as a comparative example.
The amorphous carbon film was formed under the following conditions: vacuum, reduced pressure to 1 × 10 −3 Pa, cleaning with argon gas plasma for 5 minutes, amorphous carbon film intermediate layer containing silicon, and acetylene An amorphous carbon film made of a gas raw material was formed at a gas pressure of 2 Pa, a gas flow rate of 40 SCCM, and an applied voltage of −5 Kv for a total of 40 minutes.

成膜後、パターン状に塗料を塗布した上記のフィーダ表面を確認すると、塗料の付着していないポジパターン部分に非晶質炭素膜が隙間を埋めるように綺麗に成膜されているのが確認できた。
図9に、表面を観察したCCD拡大写真を示す。
After film formation, when the above feeder surface with paint applied in a pattern is confirmed, it is confirmed that the amorphous carbon film is neatly formed so as to fill the gap in the positive pattern part where the paint is not attached. did it.
FIG. 9 shows a CCD magnified photograph observing the surface.

次いで、実施例3の非晶質炭素膜形成面をIPA(イソプロピルアルコール)を含ませた不織布にて拭き取りを行った後、超音波洗浄器にIPAを投入し、上記のフィーダを15分間超音波洗浄し、塗料部分、および塗料上に成膜された非晶質炭素膜を、フィーダから剥離した。ステンレス鋼SUSマスクと同様の格子状の非晶質炭素膜と、アルミニウム合金A2017フィーダのむき出しの素地が確認できた。通常、金属基材上に成膜した非晶質炭素膜は15分間程度のIPAによる超音波洗浄等では基材から剥離することはないが、スプレーされた塗料膜上に成膜された非晶質炭素膜は金属基材とは直接密着されていないため、拭き取りやIPAによる超音波洗浄で簡単に剥離除去することが可能であり、この方法は、連続した面状の非晶質炭素膜成膜後、その一部を剥離して非晶質炭素膜のない基材が露出した部分を作成する方法に比べて簡便であり、生産性も高い。
図10に、表面を観察したCCD拡大写真を示す。図中、白い部分が基材のアルミニウム合金であり、黒い部分が非晶質炭素膜である。
Next, after the surface on which the amorphous carbon film was formed in Example 3 was wiped with a non-woven fabric containing IPA (isopropyl alcohol), IPA was put into an ultrasonic cleaner, and the above-mentioned feeder was ultrasonicated for 15 minutes. After washing, the paint portion and the amorphous carbon film formed on the paint were peeled from the feeder. The same lattice-like amorphous carbon film as that of the stainless steel SUS mask and the bare substrate of the aluminum alloy A2017 feeder were confirmed. Normally, an amorphous carbon film formed on a metal substrate does not peel off from the substrate by ultrasonic cleaning with IPA for about 15 minutes, but the amorphous film formed on the sprayed paint film Since the carbonaceous film is not in direct contact with the metal substrate, it can be easily peeled and removed by wiping or ultrasonic cleaning with IPA. After film formation, it is simpler and more productive than a method in which a part of the film is peeled off to form a part where a substrate without an amorphous carbon film is exposed.
FIG. 10 shows an enlarged CCD photograph of the surface observed. In the figure, the white part is the aluminum alloy of the base material, and the black part is the amorphous carbon film.

次に、上記のフィーダに、前述のグラファイトを含有するスプレー塗布剤(株式会社オーテック製、商品名:ブラックルブ)を全面塗布し、10分間室温で乾燥させた後、ホットプレート上にて170℃で10分間加熱した。
グラファイトのスプレーが十分固化したのを確認し、その表面を不織布で擦り、ネガパターン(写真の白い部分)に封止したグラファイトのみを残し、非晶質炭素膜上(写真の黒い部分)のグラファイトを除去した非晶質炭素膜とグラファイトの複合体を作成した。これを、実施例3のフィーダーとする。
Next, a spray coating agent containing the above graphite (manufactured by Autech Co., Ltd., trade name: Black Lub) is applied onto the feeder, and dried at room temperature for 10 minutes, and then 170 ° C. on a hot plate. For 10 minutes.
Confirm that the graphite spray has solidified sufficiently, rub the surface with a non-woven fabric, leave only the graphite sealed in the negative pattern (white part of the photo), and the graphite on the amorphous carbon film (black part of the photo) A composite of an amorphous carbon film and graphite from which carbon was removed was prepared. This is the feeder of Example 3.

次に、室温25℃、湿度25%の環境下で、実施例3のフィーダーを、圧電体で振動する装置にセットした。このボールフィーダーに0402形状の基板実装用に外部電極端子の周面および端面がSnめっきで仕上げられたチップ状積層セラミックコンデンサ20個を、20rpmで10分間回転搬送させた後、取り外して非晶質炭素膜の面が90゜の傾斜(垂直)になるよう配設し、ボールフィーダー上に0402形状の積層セラミックコンデンサの付着残留している数を数えた。
また、比較用の非晶質炭素膜を塗布しただけの比較例4のフィーダについても、同様にして、ボールフィーダー上に静電気付着する0402の積層セラミックコンデンサの付着残留している数を数えた。
Next, the feeder of Example 3 was set in a device that vibrates with a piezoelectric body in an environment of room temperature of 25 ° C. and humidity of 25%. 20 chip-shaped multilayer ceramic capacitors whose peripheral surfaces and end faces of the external electrode terminals are finished by Sn plating for mounting on a 0402-shaped substrate are rotated and conveyed at 20 rpm for 10 minutes on this ball feeder, and then removed and amorphous. The surface of the carbon film was disposed so as to be inclined at 90 ° (perpendicular), and the number of remaining 0402-shaped multilayer ceramic capacitors on the ball feeder was counted.
Similarly, for the feeder of Comparative Example 4 to which only a comparative amorphous carbon film was applied, the number of remaining 0402 multilayer ceramic capacitors adhering to the static electricity on the ball feeder was counted.

その結果、実施例3においても実施例2と同様にフィーダ表面に部品の付着は認められなかった。これに対し、比較用の非晶質炭素膜を塗布したのみの比較例4のフィーダ表面には11個の部品の付着を確認した。
また、連続して、0402形状の積層セラミックコンデンサ20個を20rpmにて回転させ、1万回転時点にてフィーダ表面の状態を観察したが、実施例3のフィーダにおいては、0402形状の積層セラミックコンデンサの静電気付着および、Snめっき(酸化スズ)による凝着付着はなかった。
As a result, also in Example 3, as in Example 2, adhesion of parts was not recognized on the feeder surface. On the other hand, adhesion of 11 parts was confirmed on the feeder surface of Comparative Example 4 in which only a comparative amorphous carbon film was applied.
In addition, 20 0402 shaped multilayer ceramic capacitors were continuously rotated at 20 rpm, and the state of the feeder surface was observed at 10,000 revolutions. In the feeder of Example 3, the 0402 shaped multilayer ceramic capacitor was observed. There was no adhesion of static electricity or adhesion due to Sn plating (tin oxide).

上記の評価結果から、格子状非晶質炭素膜の間のアルミニウム合金の素地部分に形成されるグラファイト部分は、静電気除去、凝着物発生による部品張り付き防止に必要充分な電気伝導性、耐凝着防止性を保持しているのが確認できる。   From the above evaluation results, the graphite part formed in the base part of the aluminum alloy between the lattice-like amorphous carbon films has sufficient electrical conductivity and anti-adhesion necessary for static electricity removal and prevention of sticking of parts due to the generation of adhesions. It can be confirmed that the prevention property is maintained.

10:導電性基材
20:導電性炭素微粒子が分散固定されてなる非連続な微小領域
30:非晶質炭素膜からなる連続した領域
40:積層セラミックコンデンサ
40a:積層セラミックコンデンサの両端部側に形成された電極
10: Conductive base material 20: Discontinuous minute region in which conductive carbon fine particles are dispersed and fixed 30: Continuous region made of amorphous carbon film 40: Multilayer ceramic capacitor 40a: On both ends of the multilayer ceramic capacitor Formed electrode

Claims (7)

導電性基材上に導電性炭素微粒子が分散固定されてなる非連続な微小領域と、導電性基板上の該領域以外に堆積された非晶質炭素膜からなる連続した領域とを有し、前記の導電性炭素粒子からなる微小領域の表面と、前記の非晶質炭素膜からなる連続した領域の表面とが、同一平面をなしていることを特徴とする非晶質炭素膜積層部材。   A non-continuous minute region in which conductive carbon fine particles are dispersed and fixed on a conductive substrate, and a continuous region made of an amorphous carbon film deposited in addition to the region on the conductive substrate, The amorphous carbon film laminated member, wherein the surface of the minute region made of the conductive carbon particles and the surface of the continuous region made of the amorphous carbon film are in the same plane. 前記導電性炭素粒子が、カーボングラファイト又はカーボンブラックからなる請求項1に記載の非晶質炭素膜積層部材。   The amorphous carbon film laminated member according to claim 1, wherein the conductive carbon particles are made of carbon graphite or carbon black. 前記非晶質炭素膜を最上層とする、部品搬送用部材、部品整列用部材又は部品保管用部材であることを特徴とする請求項1又は2に記載の非晶質炭素膜積層部材。   3. The amorphous carbon film laminated member according to claim 1, wherein the amorphous carbon film is a component transporting member, a component aligning member, or a component storage member having the amorphous carbon film as an uppermost layer. (1)導電性基材上に、導電性炭素微粒子を前記の微小領域のみに分散固定する工程と、(2)該導電性炭素微粒子が固定された基板の表面に非晶質炭素を堆積させる工程と、(3)該非晶質炭素膜の表面と導電性炭素微粒子の表面とが同一平面となるように平坦化する工程をこの順に含むことを特徴とする請求項1〜3のいずれか1項に記載の非晶質炭素膜積層部材の製造方法。   (1) a step of dispersing and fixing conductive carbon fine particles only in the minute regions on a conductive base material; and (2) depositing amorphous carbon on the surface of the substrate on which the conductive carbon fine particles are fixed. 4. The method according to claim 1, further comprising: (3) a step of planarizing the surface of the amorphous carbon film and the surface of the conductive carbon fine particles to be in the same plane. The manufacturing method of the amorphous carbon film | membrane laminated member of item. 前記(1)の工程を、導電性基板上に、所定の開口を有するメッシュ又はスクリーン版を配置し、その上から、導電性炭素粒子を含有する塗布剤を噴霧することにより行うことを特徴とする請求項4に記載の非晶質炭素膜積層部材の製造方法。   The step (1) is performed by disposing a mesh or screen plate having a predetermined opening on a conductive substrate and spraying a coating agent containing conductive carbon particles thereon. The method for producing an amorphous carbon film laminated member according to claim 4. (1´)導電性基板上の、前記微小領域以外の領域に非晶質炭素を堆積させる工程と、(2´)導電性基板上の、非晶質炭素が堆積されていない前記微小領域に導電性炭素微粒子を固定させる工程と、(3´)該非晶質炭素膜の表面と導電性炭素微粒子の表面とが同一平面となるように平坦化する工程をこの順に含むことを特徴とする請求項1〜3のいずれか1項に記載の非晶質炭素膜積層部材の製造方法。   (1 ′) a step of depositing amorphous carbon in a region other than the minute region on the conductive substrate; and (2 ′) a step of depositing amorphous carbon on the conductive substrate on which the amorphous carbon is not deposited. A step of fixing conductive carbon fine particles and a step of (3 ′) flattening the surface of the amorphous carbon film and the surface of the conductive carbon fine particles to be in the same plane are included in this order. Item 4. The method for producing an amorphous carbon film laminated member according to any one of Items 1 to 3. 前記(1´)の工程を、導電性基板上に所定の開口を有するマスクを配置し、その上から、マスキング材料を塗布、または噴霧して、マスクのネガパターン状にマスキング材料による保護膜を形成した後、マスクを外して、導電性基板表面に非晶質炭素膜を堆積させ、その後、マスキング材料による保護膜部分及び該保護膜上に成膜された非晶質炭素膜を剥離することにより行うことを特徴とする請求項6に記載の非晶質炭素膜積層部材の製造方法。
In the step (1 ′), a mask having a predetermined opening is disposed on a conductive substrate, and a masking material is applied or sprayed thereon to form a protective film made of the masking material in the negative pattern of the mask. After forming, remove the mask, deposit an amorphous carbon film on the surface of the conductive substrate, and then peel off the protective film portion made of the masking material and the amorphous carbon film formed on the protective film. The method for producing an amorphous carbon film laminated member according to claim 6, wherein:
JP2011289599A 2010-12-29 2011-12-28 Amorphous carbon film laminated member and manufacturing method thereof Expired - Fee Related JP5886625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011289599A JP5886625B2 (en) 2010-12-29 2011-12-28 Amorphous carbon film laminated member and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010294422 2010-12-29
JP2010294422 2010-12-29
JP2011289599A JP5886625B2 (en) 2010-12-29 2011-12-28 Amorphous carbon film laminated member and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2012149345A true JP2012149345A (en) 2012-08-09
JP2012149345A5 JP2012149345A5 (en) 2015-03-05
JP5886625B2 JP5886625B2 (en) 2016-03-16

Family

ID=46791860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289599A Expired - Fee Related JP5886625B2 (en) 2010-12-29 2011-12-28 Amorphous carbon film laminated member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5886625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150060A (en) * 2016-02-26 2017-08-31 株式会社村田製作所 Vacuum equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009718A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Processing method of dlc film, and electrical contact structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009718A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Processing method of dlc film, and electrical contact structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150060A (en) * 2016-02-26 2017-08-31 株式会社村田製作所 Vacuum equipment
US10861683B2 (en) 2016-02-26 2020-12-08 Murata Manufacturing Co., Ltd. Vacuum device

Also Published As

Publication number Publication date
JP5886625B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5898437B2 (en) Amorphous carbon film laminated member and manufacturing method thereof
JP6395892B2 (en) Device coating method and device having nano-coating layer
JP6097701B2 (en) Thermal spray material and method for forming yttrium oxide coating
TWI556720B (en) Electromagnetic shielding gasket and method for making same
TW200938030A (en) Surface coating
US8088658B2 (en) Thin film capacitor and method of fabrication thereof
US20160056455A1 (en) Structure equipped with amorphous carbon film having electrically conductive part and containing silicon, and method for manufacturing same
GB2441659A (en) Electrostatic chuck
KR100654598B1 (en) ESD dissipative structural components
Kim et al. Large-sized sandpaper coated with solution-processed aluminum for a triboelectric nanogenerator with reliable durability
JP5886625B2 (en) Amorphous carbon film laminated member and manufacturing method thereof
TWI524822B (en) A metal foil having a resistive layer and a method for manufacturing the same
KR101825095B1 (en) Probe pin coated with carbon layer for semiconductor test device and method of fabricating the same
JP6199145B2 (en) Method for producing composite conductive particles
KR100296376B1 (en) Surface coating for insulative materials, method of obtaining it and its application to shielding insulative cases
US7377786B2 (en) Sliding contact assembly
Borra et al. Sn whisker growth mitigation by using NiO sublayers
JP6110533B2 (en) Amorphous carbon film laminated member and manufacturing method thereof
US20170367194A1 (en) Method for coating device and resulting device
TWI687527B (en) Surface treated copper foil and copper clad laminate
KR102500535B1 (en) Hybrid transparent conductive electrode
JP2010240863A (en) Transfer film for preventing electromagnetic interference
CN100411213C (en) Electrode for piezoelectric ceramic component and its preparation process
WO2013011949A1 (en) Heat-resistant electret material and condenser microphone
WO2024111533A1 (en) Wiring board and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160212

R150 Certificate of patent or registration of utility model

Ref document number: 5886625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees