JP2012148932A - Method for manufacturing hexagonal boron nitride sintered body, and hexagonal boron nitride sintered body - Google Patents

Method for manufacturing hexagonal boron nitride sintered body, and hexagonal boron nitride sintered body Download PDF

Info

Publication number
JP2012148932A
JP2012148932A JP2011009211A JP2011009211A JP2012148932A JP 2012148932 A JP2012148932 A JP 2012148932A JP 2011009211 A JP2011009211 A JP 2011009211A JP 2011009211 A JP2011009211 A JP 2011009211A JP 2012148932 A JP2012148932 A JP 2012148932A
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
sintered body
sintering
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011009211A
Other languages
Japanese (ja)
Other versions
JP5648178B2 (en
Inventor
Teruya Hashii
光弥 橋井
Hiroyuki Yamada
博行 山田
Masaichi Kume
正市 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011009211A priority Critical patent/JP5648178B2/en
Publication of JP2012148932A publication Critical patent/JP2012148932A/en
Application granted granted Critical
Publication of JP5648178B2 publication Critical patent/JP5648178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hexagonal boron nitride sintered body which can be sintered at a low temperature; and to provide a method for manufacturing the same.SOLUTION: A hexagonal boron nitride powder containing oxygen not only on the surface of the powder but also insde thereof is pressure formed to make a preformed body (preformation step), and the preformed body is sintered in a non-oxidizing gas or in vaccum at ≥600°C and <1,100°C (sintering step).

Description

本発明は、600〜1100℃という低い温度で焼結することが可能な六方晶系窒化ホウ素焼結体の製造方法及び六方晶系窒化ホウ素焼結体に関する。   The present invention relates to a method for producing a hexagonal boron nitride sintered body capable of being sintered at a low temperature of 600 to 1100 ° C. and a hexagonal boron nitride sintered body.

六方晶系窒化ホウ素(h−BN)は、周期表におけるIIIb属の元素であるホウ素(B)と、Vb属の元素である窒素(N)から構成されている。これらの構成元素は、IVb属の炭素(C)の直前及び直後に位置しており、黒鉛に類似の結晶構造を有する。例えば、六方晶系窒化ホウ素のc面内は強固なπ結合で結びついている一方、c軸方向は結合力の弱いファンデル・ワールス結合で結びついているため、板状結晶で劈開面を有している。また、黒鉛と同様、高融点であると同時に、潤滑性、離形性、機械加工性及び耐食性に優れた特性を有している。その一方、六方晶系窒化ホウ素は黒鉛と異なり、電気絶縁性が高く、約1000℃まで耐酸化性を有する。こうした特長を生かして、金属溶融るつぼ、潤滑材、高周波電気絶縁材、製鋼用ノズル、保護管、セッター等に利用されている。   Hexagonal boron nitride (h-BN) is composed of boron (B) which is an element of group IIIb in the periodic table and nitrogen (N) which is an element of group Vb. These constituent elements are located immediately before and after the carbon (C) of group IVb and have a crystal structure similar to that of graphite. For example, the c-plane of hexagonal boron nitride is connected by a strong π bond, while the c-axis direction is connected by a van der Waals bond with a weak binding force, so that it has a cleavage plane with a plate-like crystal. ing. Further, like graphite, it has a high melting point, and at the same time has excellent properties such as lubricity, releasability, machinability and corrosion resistance. On the other hand, hexagonal boron nitride, unlike graphite, has high electrical insulation and oxidation resistance up to about 1000 ° C. Taking advantage of these features, it is used in metal melting crucibles, lubricants, high frequency electrical insulation materials, steelmaking nozzles, protective tubes, setters, and the like.

しかし、六方晶系窒化ホウ素は、高融点で且つ非酸化物であるため、焼成によって焼き固めることが非常に難しい(難焼成性)という問題点があった。また、バインダーの役割を担う焼結用助剤を用いて焼結させようとしても、濡れ性が悪いため溶融した焼結剤が六方晶系窒化ホウ素表面を濡らさず、焼結用助剤としての役割を充分に発揮することができないという問題もあった。さらには、高温下において酸素の存在下では、六方晶系窒化ホウ素が酸化ホウ素(B)に変化するという問題もあった。 However, since hexagonal boron nitride has a high melting point and is a non-oxide, it has a problem that it is very difficult to burn and harden by baking (difficult to burn). In addition, even when trying to sinter using a sintering aid that plays the role of a binder, the melted sintering agent does not wet the hexagonal boron nitride surface due to poor wettability, and as a sintering aid There was also a problem that the role could not be fully demonstrated. Furthermore, there is also a problem that hexagonal boron nitride changes to boron oxide (B 2 O 3 ) in the presence of oxygen at a high temperature.

こうした問題点を解決するため、次のような方法で六方晶系窒化ホウ素の焼結が行われている。すなわち、真空中やアルゴン雰囲気中や窒素雰囲気中(一般には窒素雰囲気中)で、ホットプレス装置等を用いて1500〜2300℃という高温下、10MPaを超える圧力で焼結させる方法である。   In order to solve these problems, hexagonal boron nitride is sintered by the following method. That is, it is a method of sintering in a vacuum, an argon atmosphere, or a nitrogen atmosphere (generally in a nitrogen atmosphere) using a hot press apparatus or the like at a high temperature of 1500 to 2300 ° C. and a pressure exceeding 10 MPa.

しかし、この方法は、次のような問題があり、製造が困難で且つ製造コストが高いものとなっていた。
(1)加圧状態で焼成するため、炉内にホットプレス機構を備える必要があり、気密性を保ちつつ油圧等の駆動によりプレスラムや型・パンチ等で試料を加圧する構造とする必要がある。
(2)ホットプレス装置が高温まで耐える構造とする必要があるために、高温耐久性のある材料を用いるのみならず、加熱に多大なエネルギー(一般には電力)が必要であると同時に、さらに炉の保護のために充分な冷却機構と膨大な量の冷却水も必要である。
(3)ホットプレスで焼成するという制約から、大型品や複雑な形状の物品の作製が極めて困難である。また、このように大変過酷な製造条件であるため環境負荷が非常に大きい。
However, this method has the following problems, and is difficult to manufacture and high in manufacturing cost.
(1) Since firing is performed in a pressurized state, it is necessary to provide a hot press mechanism in the furnace, and it is necessary to have a structure in which the sample is pressurized with a press ram, mold, punch, or the like by hydraulic driving while maintaining airtightness. .
(2) Since it is necessary for the hot press device to have a structure that can withstand high temperatures, not only materials with high temperature durability are used, but also a large amount of energy (generally electric power) is required for heating, and at the same time, a furnace A sufficient cooling mechanism and an enormous amount of cooling water are also required for protection.
(3) Due to the restriction of firing with a hot press, it is extremely difficult to produce large-sized products and articles with complicated shapes. In addition, since the production conditions are very severe, the environmental load is very large.

従って、六方晶系窒化ホウ素の焼結体の製造のためには、製造装置もランニングコストも非常に大きなものとなり、製品自身も非常に高価なものとならざるを得なかった。このため、上記のようにユニークな特性を有するにもかかわらず、必然的にその用途も極めて限られたものとなっていた。さらに、高温で焼成しなければならないことから、環境負荷が非常に大きいため、環境負荷低減に向けての対策も講じる必要があった。   Therefore, in order to manufacture a sintered body of hexagonal boron nitride, the manufacturing apparatus and running cost become very large, and the product itself has to be very expensive. For this reason, in spite of having a unique characteristic as described above, its use is inevitably limited. Furthermore, since it must be baked at a high temperature, the environmental load is very large, and it was necessary to take measures to reduce the environmental load.

こうしたホットプレスによる加圧焼成法の問題点を解決し、製造コストを低下させるとともに、大型品や複雑形状品の作製の製造を容易にするために、様々な常圧焼成法が提案されている(特許文献1〜6参照)。   Various atmospheric pressure firing methods have been proposed in order to solve the problems of the pressure firing method by hot pressing, reduce the manufacturing cost, and facilitate the production of large-sized products and complex-shaped products. (See Patent Documents 1 to 6).

例えば、特許文献1では、SiO2を窒化ホウ素の焼結用助剤として添加した場合に、還元雰囲気中でSiO2が還元されてSiOとして揮散するという欠点を改良するために、これらの系にさらにB23を添加することにより問題解決を図っている。 For example, in Patent Document 1, the addition of SiO 2 as an auxiliary sintering of boron nitride, in order to SiO 2 to improve the drawback of volatilization of SiO is reduced in a reducing atmosphere, these systems Further, the problem is solved by adding B 2 O 3 .

また、特許文献2では、窒化ホウ素に結合剤として無水硼酸(B23)や窒化アルミニウム(AlN)を用いる際、アルミニウムと珪素の混合粉末、またはこれらの合金粉末等を窒化ホウ素と混合して、窒素気流中又は窒素を主として含む微酸化性雰囲気中で焼成する方法が記載されている。この方法によれば、高温電気特性の低下や溶融物に対する耐食性の劣化が防止され、さらには、AlNを用いた場合の成形体の機械的強度の低下や溶融物に対する耐食性の不足といった問題点が解決できると述べられている。 Further, in Patent Document 2, when boric anhydride (B 2 O 3 ) or aluminum nitride (AlN) is used as a binder for boron nitride, a mixed powder of aluminum and silicon or an alloy powder thereof is mixed with boron nitride. A method of firing in a nitrogen stream or in a slightly oxidizing atmosphere mainly containing nitrogen is described. According to this method, deterioration of high-temperature electrical characteristics and deterioration of corrosion resistance against the melt are prevented, and further, there are problems such as reduction in mechanical strength of the molded body and lack of corrosion resistance against the melt when AlN is used. It is stated that it can be solved.

さらに特許文献3では、焼成前の成形段階で、可能な限り高密度な成形体を作り、低膨張率のモールド内にて不活性雰囲気中で焼成するという、六方晶系窒化ホウ素の焼結方法が記載されている。この方法によれば、無加圧で焼成する場合にサンプルが焼成中に膨張するために緻密化しないという欠点を解決することができると記載されている   Further, in Patent Document 3, a hexagonal boron nitride sintering method in which a molded body having a density as high as possible is formed in a molding stage before firing, and firing is performed in an inert atmosphere in a low expansion coefficient mold. Is described. According to this method, it is described that the disadvantage that the sample does not become densified because the sample expands during firing when firing without pressure is described.

また、特許文献4では、相手材(焼結用助剤や結合剤)を多量に添加することにより、六方晶系窒化ホウ素の焼成性を向上させ、機械的強度の向上を図っている。さらには、原料粒度、焼結用助剤の種類と量、焼成温度を制御することによって、窒化ホウ素の高温安定性を改善し、実用に耐える特性を有するものとすることが図られている。   Further, in Patent Document 4, the calcinability of hexagonal boron nitride is improved by adding a large amount of a counterpart material (sintering aid or binder) to improve mechanical strength. Furthermore, by controlling the raw material particle size, the type and amount of the sintering aid, and the firing temperature, it is intended to improve the high temperature stability of boron nitride and to have practically usable characteristics.

さらに、特許文献5では、アルカリ土類金属硼酸塩を適量含有させ、非酸化性雰囲気において常圧で焼成することにより、大型形状品や複雑形状品を安価に製造することが図られている。   Furthermore, Patent Document 5 attempts to produce large-sized products and complex-shaped products at low cost by containing an appropriate amount of an alkaline earth metal borate and firing it at normal pressure in a non-oxidizing atmosphere.

また、特許文献6では、窒化ホウ素を主体とする焼成体中に炭素及び炭化ホウ素を分散含有させるということにより、常圧焼成法による焼成体が高温度で強度低下特に耐熱衝撃性が低下するという問題の解決を図っている。   Further, in Patent Document 6, it is said that carbon and boron carbide are dispersed and contained in a fired body mainly composed of boron nitride, so that the fired body by the normal pressure firing method has a lower strength at a high temperature, particularly a thermal shock resistance. We are trying to solve the problem.

特公昭47−38047号公報Japanese Patent Publication No. 47-38047 特公昭48−43648号公報Japanese Patent Publication No. 48-43648 特開昭61−132563号公報Japanese Patent Application Laid-Open No. 61-132563 特開昭63 −303862号公報JP-A 63-303862 特許第2614874号公報Japanese Patent No. 2614874 特開2001−146477号公報JP 2001-146477 A

しかし、上記特許文献1〜6の六方晶系窒化ホウ素の焼成方法では、焼成温度が1,200〜2,100℃と極めて高い温度であった。このため、エネルギーの消費量が多くなり、ランニングコストが高価となり、生産効率も良くなく、製品の価格が高価となり、且つ環境負荷の低減も実現できなかった。   However, in the method for firing hexagonal boron nitride described in Patent Documents 1 to 6, the firing temperature was as extremely high as 1,200 to 2,100 ° C. For this reason, the amount of energy consumption is increased, the running cost is expensive, the production efficiency is not good, the price of the product is expensive, and the environmental load cannot be reduced.

本発明は、上記従来の実情に鑑みてなされたものであり、常圧下での焼成が可能であって、低温で焼結することが可能な六方晶系窒化ホウ素焼結体及びその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional circumstances, and provides a hexagonal boron nitride sintered body that can be fired under normal pressure and can be sintered at a low temperature, and a method for producing the same. It is intended to provide.

本発明者らは、上記従来の課題を解決するため、六方晶系窒化ホウ素の焼結助剤として酸化ホウ素を添加することを考えた。これは、酸化ホウ素が長石等他の焼結助剤よりも融点が低く、焼結温度を低くすることが予想されたからである。ところが、予想に反し、六方晶系窒化ホウ素と酸化ホウ素とを混合してプレ成形し、これを非酸化雰囲気中で焼結しようとしても焼結は困難であった。発明者らはこの焼結失敗について検討を重ねた結果、次の理由により十分な結果が得られなかったのではないかと考えた。   In order to solve the above-described conventional problems, the present inventors considered adding boron oxide as a sintering aid for hexagonal boron nitride. This is because boron oxide has a lower melting point than other sintering aids such as feldspar and is expected to lower the sintering temperature. However, contrary to expectations, it was difficult to sinter even if hexagonal boron nitride and boron oxide were mixed and pre-molded and sintered in a non-oxidizing atmosphere. As a result of repeated studies on this sintering failure, the inventors thought that sufficient results could not be obtained for the following reason.

すなわち、六方晶系窒化ホウ素と酸化ホウ素とを混合しても、酸化ホウ素は均質に分散されず、あるいは、六方晶系窒化ホウ素の粒子が混合時に破砕されて破断面が現れた場合において、その破断面には酸化ホウ素が存在しないことから濡れ性が悪く、これが焼結を困難としている理由であると推定した。   That is, even when hexagonal boron nitride and boron oxide are mixed, boron oxide is not homogeneously dispersed, or when hexagonal boron nitride particles are crushed during mixing and a fracture surface appears. It was estimated that the wettability was poor because there was no boron oxide on the fracture surface, and this was the reason why sintering was difficult.

そして、さらに研究を重ねた結果、焼結に用いる六方晶系窒化ホウ素からなる粉体の各粒子の表面のみならず内部にも酸素が含まれている場合(すなわち、1粒の六方晶系窒化ホウ素の結晶粒子に、酸化ホウ素が内部まで分散して存在している場合)には、特に焼結助剤を用いなくても、焼結が低温で可能であることを見出し、本発明を完成するに至った。   As a result of further research, oxygen is contained not only in the surface of each particle of the hexagonal boron nitride powder used for sintering (that is, one grain of hexagonal nitride). In the case where boron oxide is dispersed in the inside of boron crystal particles), it was found that sintering can be performed at a low temperature without using a sintering aid, and the present invention was completed. It came to do.

すなわち、本発明の六方晶系窒化ホウ素焼結体の製造方法は、六方晶系窒化ホウ素を非酸化性ガス雰囲気中又は真空中において焼結する窒化ホウ素焼結体の製造方法であって、原料となる六方晶系窒化ホウ素粉体の各粒子には表面のみならず内部にも酸素が含まれており、焼結温度は600℃以上1100℃未満であることを特徴とする。   That is, the method for producing a hexagonal boron nitride sintered body of the present invention is a method for producing a boron nitride sintered body in which hexagonal boron nitride is sintered in a non-oxidizing gas atmosphere or in vacuum, Each particle of the hexagonal boron nitride powder to be used contains oxygen not only on the surface but also inside, and the sintering temperature is 600 ° C. or higher and lower than 1100 ° C.

本発明の六方晶系窒化ホウ素焼結体の製造方法では、焼結が非酸化性ガス雰囲気中又は真空中において行われるため、六方晶系窒化ホウ素の酸化を防止することができる。ここで、非酸化性ガスとは、焼結時に窒化ホウ素と反応しないガスをいい、アルゴンガスやヘリウムガス等の希ガスの他、窒素ガスも含む。
また、原料となる六方晶系窒化ホウ素粉体の各粒子には表面のみならず内部にも酸素が含まれているため(すなわち、六方晶系窒化ホウ素粉体を構成する各粒子において、酸化ホウ素が内部まで分散して存在しているため)、焼結助剤を用いなくても、六方晶系窒化ホウ素粉体の各粒子には表面のみならず内部にも存在する酸化ホウ素が焼結材の役割を果たし、六方晶系窒化ホウ素の一粒の粒子内部においても焼結効果が得られ、その結果、ホットプレスを用いなくても、焼結前にプレ成形しておくだけで焼結が可能となる。また、酸化ホウ素の融点は480℃と低いため、600℃以上1100℃未満という低温での六方晶系窒化ホウ素の焼結が可能となる。
In the method for producing a hexagonal boron nitride sintered body according to the present invention, since sintering is performed in a non-oxidizing gas atmosphere or in a vacuum, oxidation of the hexagonal boron nitride can be prevented. Here, the non-oxidizing gas refers to a gas that does not react with boron nitride at the time of sintering, and includes nitrogen gas in addition to rare gas such as argon gas and helium gas.
Further, since each particle of the hexagonal boron nitride powder as a raw material contains oxygen not only on the surface but also inside (that is, in each particle constituting the hexagonal boron nitride powder, boron oxide Even if no sintering aid is used, each particle of hexagonal boron nitride powder has boron oxide present not only on the surface but also inside the sintered material. Sintering effect is also obtained inside one grain of hexagonal boron nitride. As a result, it is possible to sinter just by pre-molding before sintering without using a hot press. It becomes possible. Further, since the melting point of boron oxide is as low as 480 ° C., hexagonal boron nitride can be sintered at a low temperature of 600 ° C. or higher and lower than 1100 ° C.

六方晶系窒化ホウ素の内部に酸素が含まれているか否かを調べる方法としては、オージェ電子分光分析におけるイオンミリング法を用いた深さ方向の測定によって、確認することができる。発明者らは、この方法により、SiO換算で300nmの深さにおいて酸素の存在が確認された六方晶系窒化ホウ素を用いて焼結体を製造することにより、焼結体の相対密度が高くなり、機械的強度も優れたものとなることを確認している。さらに好ましいのは600nmの深さにおいて酸素の存在が確認される六方晶系窒化ホウ素であり、最も好ましいのは900nmの深さにおいて酸素の存在が確認される六方晶系窒化ホウ素である。 As a method for examining whether or not oxygen is contained in the hexagonal boron nitride, it can be confirmed by measuring in the depth direction using an ion milling method in Auger electron spectroscopy. By this method, the inventors manufactured a sintered body using hexagonal boron nitride in which the presence of oxygen was confirmed at a depth of 300 nm in terms of SiO 2 , thereby increasing the relative density of the sintered body. It has been confirmed that the mechanical strength is excellent. Further preferred is hexagonal boron nitride in which the presence of oxygen is confirmed at a depth of 600 nm, and most preferred is hexagonal boron nitride in which the presence of oxygen is confirmed at a depth of 900 nm.

また、六方晶系窒化ホウ素の酸素含有量は10重量%以上であることが好ましい。   The oxygen content of the hexagonal boron nitride is preferably 10% by weight or more.

本発明の六方晶系窒化ホウ素焼結体の製造方法では、まずプレ成形工程として、粒子の表面のみならず内部にも酸素が含まれている六方晶系窒化ホウ素粉末を圧力成形してプレ成形体とし、さらに焼結工程として、非酸化性ガス雰囲気中又は真空中において600℃以上1100℃未満で焼結する。   In the method for producing a hexagonal boron nitride sintered body of the present invention, as a pre-molding step, hexagonal boron nitride powder containing oxygen not only on the surface but also inside the particles is pressure-molded and pre-molded. As a sintering process, sintering is performed at 600 ° C. or higher and lower than 1100 ° C. in a non-oxidizing gas atmosphere or vacuum.

原料となる六方晶系窒化ホウ素の平均粒径は10μm以下とされていることが好ましい。平均粒径を10μm以下まで細かくすれば、焼結体が緻密となり、機械的強度の高い焼結体をより低い温度で得ることができるからである。   The average particle size of the hexagonal boron nitride as the raw material is preferably 10 μm or less. This is because if the average particle size is reduced to 10 μm or less, the sintered body becomes dense and a sintered body having high mechanical strength can be obtained at a lower temperature.

本発明において、焼結工程では、特に圧力をかけなくても、焼結を行うことができる。このため、ホットプレス装置等の複雑な装置を用意しなくてもよく、製造装置の設備費が低廉化し、ひいては製造コストを低廉化することができる。   In the present invention, in the sintering step, the sintering can be performed without particularly applying pressure. For this reason, it is not necessary to prepare a complicated apparatus such as a hot press apparatus, the equipment cost of the manufacturing apparatus can be reduced, and the manufacturing cost can be reduced.

発明者らは、本発明の六方晶系窒化ホウ素焼結体の製造方法により、相対密度が60%以上の焼結体が得られることを確認している。また、得られた焼結体の走査型電子顕微鏡による観察から、焼結体中の六方晶系窒化ホウ素の結晶は、非板状の形態をなすことを確認している。   The inventors have confirmed that a sintered body having a relative density of 60% or more can be obtained by the method for producing a hexagonal boron nitride sintered body of the present invention. Further, from observation of the obtained sintered body with a scanning electron microscope, it has been confirmed that the hexagonal boron nitride crystals in the sintered body have a non-plate-like form.

以上のように、本発明によれば、相対密度が高く、機械的強度の優れた六方晶系窒化ホウ素焼結体を600℃以上1000℃以下という低い温度で製造することができる。製造コスト及び環境負荷を低く抑えることができる。
また、ホットプレスのような加圧焼成を必要としないので、低コストでしかも大型形状品や複雑形状品を容易、且つ生産効率良く製造することができる。
As described above, according to the present invention, a hexagonal boron nitride sintered body having a high relative density and excellent mechanical strength can be produced at a low temperature of 600 ° C. or more and 1000 ° C. or less. Manufacturing cost and environmental load can be kept low.
In addition, since pressure firing like hot pressing is not required, large-sized products and complex-shaped products can be manufactured easily and efficiently with low cost.

実施例1及び実施例2で使用した窒化ホウ素粉末粒子のオージェ電子分光測定による深さ方向の元素分析結果である。It is the elemental analysis result of the depth direction by the Auger electron spectroscopy measurement of the boron nitride powder particle used in Example 1 and Example 2. 実施例1及び実施例2の焼成体の外観写真である。3 is an external appearance photograph of fired bodies of Example 1 and Example 2. 実施例1及び実施例2の焼成体の破断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a fracture surface of fired bodies of Example 1 and Example 2. FIG. 実施例1及び実施例2の焼成体及び原料のXRD測定のチャートである。It is a chart of the XRD measurement of the sintered body and raw material of Example 1 and Example 2. 比較例1及び比較例2で使用した窒化ホウ素粉末粒子のオージェ電子分光測定による深さ方向の元素分析結果である。It is the elemental analysis result of the depth direction by the Auger electron spectroscopy measurement of the boron nitride powder particle used in the comparative example 1 and the comparative example 2. 比較例1及び比較例2の焼成体の外観写真である。3 is an external appearance photograph of fired bodies of Comparative Example 1 and Comparative Example 2. 比較例1及び比較例2の焼成体の破断面の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of fractured surfaces of fired bodies of Comparative Examples 1 and 2. FIG. 比較例1及び比較例2の焼成体及び原料のXRD測定のチャートである。3 is a chart of XRD measurement of fired bodies and raw materials of Comparative Example 1 and Comparative Example 2.

本発明に使用する六方晶系窒化ホウ素は、六方晶系窒化ホウ素粒子の表面のみならず内部にも分布してなる(すなわち、六方晶系窒化ホウ素の結晶粒子の内部にまで酸化ホウ素が分散して存在している)六方晶系窒化ホウ素であれば、特に制限はない。具体的には、例えば市販品としては、六方晶系窒化ホウ素(有限会社オクトム製、商品名:SFM、BNとしての純度40重量%、Bを57重量%含有)が挙げられる。六方晶系窒化ホウ素粉末粒子表面の酸素の存在の有無についてはオージェ電子分光測定によって確認できる。またその内部の酸素の存在については、その窒化ホウ素粒子の観察面をイオンエッチング装置によりエッチングを行うことにより粉体粒子内部の測定を行うことができる。 The hexagonal boron nitride used in the present invention is distributed not only on the surface of the hexagonal boron nitride particles but also inside (that is, boron oxide is dispersed inside the hexagonal boron nitride crystal particles). The hexagonal boron nitride is not particularly limited. Specifically, for example, a commercially available product includes hexagonal boron nitride (manufactured by Octom Co., Ltd., trade name: SFM, purity of 40% by weight as BN, and 57% by weight of B 2 O 3 ). The presence or absence of oxygen on the surface of the hexagonal boron nitride powder particles can be confirmed by Auger electron spectroscopy. As for the presence of oxygen inside, the inside of the powder particles can be measured by etching the observation surface of the boron nitride particles with an ion etching apparatus.

また、本発明に使用する六方晶系窒化ホウ素は、表面のみならず各粒子の内部まで酸素が存在するため、解砕・粉砕して生じる新生面にも酸素が分布している。このため、酸化処理を特に施さなくても、濡れ性が良好であることが特徴である。解砕・粉砕処理を行なう場合の方法については、得に制限は無いが、湿式が好ましい。ただし、湿式における媒体として水を用いると、窒化ホウ素に含まれている酸化ホウ素(B)が水に溶出するため、水を含む媒体は避けるべきである。好ましくは、エタノールやイソプロピルアルコール等の有機溶媒中で行う。また解砕・粉砕処理に用いるボールミルは、5mm以下のアルミナ製ボールを用いた遊星ボールミルによる処理が好適であるがこれに制限するものではない。 Further, since hexagonal boron nitride used in the present invention has oxygen not only on the surface but also inside each particle, oxygen is also distributed on the new surface produced by crushing and grinding. For this reason, the wettability is good even if the oxidation treatment is not particularly performed. There is no limitation on the method for performing the crushing / pulverizing treatment, but wet method is preferable. However, when water is used as a wet medium, boron oxide (B 2 O 3 ) contained in boron nitride elutes into water, and therefore a medium containing water should be avoided. Preferably, it is carried out in an organic solvent such as ethanol or isopropyl alcohol. The ball mill used for the crushing / pulverizing treatment is preferably a planetary ball mill using an alumina ball of 5 mm or less, but is not limited thereto.

以下に、本発明の実施例について詳細に説明する。
(実施例1)
実施例1では、原料として、六方晶系窒化ホウ素粉末(有限会社オクトム製、商品名:SFM、BNとしての純度40重量%、Bを57重量%含有)を用いた。この窒化ホウ素粉末は、蛍光X線による定量分析では、酸素含有量は25重量%であった。また、オージェ電子分光測定により、この六方晶系窒化ホウ素の深さ方向の元素分析を行った。その結果を図1に示す。図1において200eV、410eV及び540eV付近にあるピークがそれぞれホウ素(B)、窒素(N)及び酸素(O)のピークに相当する。また、イオンエッチングする前の測定結果(すなわちB、N及びOの各プロファイルにおいて、最も手前側のプロファイル)が粒子表面での分析結果である。さらに、イオンエッチング装置によりSiO換算で30nm/1分となるような条件(イオンガンの加速電圧は3kV、イオン生成用のエミッション電流は20mA)で10分間ずつ粉末粒子を表面からエッチングを行って削り取り、粉末内部の分析も行った。その結果、少なくともSiO換算で900nmまでは、相当量の酸素原子が存在していることが分かった。
Hereinafter, examples of the present invention will be described in detail.
Example 1
In Example 1, hexagonal boron nitride powder (manufactured by Octom Co., Ltd., trade name: SFM, purity of 40% by weight as BN, 57% by weight of B 2 O 3 ) was used as a raw material. This boron nitride powder had an oxygen content of 25% by weight in a quantitative analysis by fluorescent X-ray. Further, elemental analysis of the hexagonal boron nitride in the depth direction was performed by Auger electron spectroscopy. The result is shown in FIG. In FIG. 1, peaks near 200 eV, 410 eV, and 540 eV correspond to peaks of boron (B), nitrogen (N), and oxygen (O), respectively. In addition, the measurement result before ion etching (that is, the most front profile in each of the B, N, and O profiles) is the analysis result on the particle surface. Further, the powder particles are etched and removed from the surface for 10 minutes every 10 minutes under the conditions that the ion etching apparatus is 30 nm / 1 minute in terms of SiO 2 (the acceleration voltage of the ion gun is 3 kV and the emission current for generating ions is 20 mA). The powder was also analyzed. As a result, it was found that a considerable amount of oxygen atoms existed at least up to 900 nm in terms of SiO 2 .

<プレ成形工程>
次に、直径約16mm、厚さ約7mmの円筒形の金型に上記六方晶系窒化ホウ素粉末を充填し、CIP(Cold Isostatic Press)を用いて200MPaでプレ成形体を作製した。
<Pre-molding process>
Next, the hexagonal boron nitride powder was filled in a cylindrical mold having a diameter of about 16 mm and a thickness of about 7 mm, and a pre-molded body was produced at 200 MPa using CIP (Cold Isostatic Press).

<焼成工程>
このプレ成形体を窒素雰囲気中、昇温速度5℃/分で昇温し,1000℃で1時間保持して焼成した。その後、炉冷して六方晶系窒化ホウ素焼結体を得た。
<Baking process>
This pre-molded body was fired in a nitrogen atmosphere at a heating rate of 5 ° C./min and held at 1000 ° C. for 1 hour. Thereafter, the furnace was cooled to obtain a hexagonal boron nitride sintered body.

(実施例2)
実施例2では、焼成工程における焼成温度を800℃とした。その他については実施例1と同じであり、説明を省略する。
(Example 2)
In Example 2, the firing temperature in the firing step was 800 ° C. Others are the same as those in the first embodiment, and a description thereof will be omitted.

−評 価−
(外観観察及び走査電子顕微鏡による観察)
こうして得られた実施例1及び実施例2の六方晶系窒化ホウ素焼成体の外観写真を図2に示す。また、それらの破断面の走査型電子顕微鏡写真を図3に示す。図2及び図3から、実施例1及び実施例2の六方晶系窒化ホウ素焼結体は、均質な窒化ホウ素焼結体が得られていることが分かる。なお、図3に示す破断面には、通常の六方晶系窒化ホウ素において観察される板状結晶が認められなかった。これは、実施例1及び実施例2において用いた六方晶系窒化ホウ素は、酸化ホウ素が粒子内部にまで存在することに起因するものと推定される。そして、粒子内部にまで存在する酸化ホウ素が焼結助剤の役割を示して、800℃、1000℃といった低い温度での焼結を可能としているものと考えられる。
-Evaluation-
(Appearance observation and observation by scanning electron microscope)
The appearance photograph of the hexagonal boron nitride fired bodies obtained in Example 1 and Example 2 is shown in FIG. Moreover, the scanning electron micrograph of those fracture surfaces is shown in FIG. 2 and 3, it can be seen that the hexagonal boron nitride sintered bodies of Examples 1 and 2 are homogeneous boron nitride sintered bodies. In the fracture surface shown in FIG. 3, plate-like crystals observed in normal hexagonal boron nitride were not observed. This is presumed that the hexagonal boron nitride used in Example 1 and Example 2 is caused by the presence of boron oxide even inside the particles. And it is thought that the boron oxide which exists even inside a particle | grain shows the role of a sintering auxiliary agent, and enables sintering at low temperature, such as 800 degreeC and 1000 degreeC.

(相対密度及び曲げ強度)
実施例1及び実施例2の窒化ホウ素焼結体の密度を焼結体の寸法及び重量から算出した。なお、理論密度は2.27g/cmとした。さらに、3点曲げ強度も測定した。結果を表1に示す。
(Relative density and bending strength)
The density of the boron nitride sintered bodies of Example 1 and Example 2 was calculated from the size and weight of the sintered body. The theoretical density was 2.27 g / cm 3 . Furthermore, the three-point bending strength was also measured. The results are shown in Table 1.

表1に示すように、実施例1及び実施例2ともに相対密度は60%を超えており、また、曲げ強度も実施例1で13.5MPa、実施例2で19.0MPaという高い値を示した。このような高強度の窒化ホウ素焼結体が得られた理由は、原料として使用した窒化ホウ素に含まれている酸化ホウ素が、焼結助剤として機能したものと考えられる。ただし、酸化ホウ素の粉末と高純度の窒化ホウ素の粉末との混合物を焼結させても、このような高強度の焼結体は得られなかった。このことから、焼結には、表面のみならず各粒子の内部にも酸素が含まれている六方晶系窒化ホウ素粉体を用いなければならないことが分かった。   As shown in Table 1, the relative density of both Example 1 and Example 2 exceeded 60%, and the bending strength was as high as 13.5 MPa in Example 1 and 19.0 MPa in Example 2. It was. The reason why such a high-strength boron nitride sintered body was obtained is considered that boron oxide contained in boron nitride used as a raw material functioned as a sintering aid. However, even when a mixture of boron oxide powder and high-purity boron nitride powder was sintered, such a high-strength sintered body could not be obtained. From this, it was found that hexagonal boron nitride powder containing oxygen not only on the surface but also inside each particle must be used for sintering.

(XRD測定)
実施例1及び実施例2の六方晶系窒化ホウ素焼結体のXRDを測定した。その結果図4に示すように、どちらの焼結体も、六方晶系窒化ホウ素の回折ピークが明瞭に認められた。
(XRD measurement)
XRD of the hexagonal boron nitride sintered bodies of Example 1 and Example 2 was measured. As a result, as shown in FIG. 4, the diffraction peak of hexagonal boron nitride was clearly recognized in both sintered bodies.

(比較例1)
比較例1では、「純度99%の六方晶系窒化ホウ素粉末(昭和電工製 UHP)」を用いた。その他の条件については実施例1と同様にして1000℃で焼結を行った。
(Comparative Example 1)
In Comparative Example 1, “99% purity hexagonal boron nitride powder (UHP manufactured by Showa Denko)” was used. Other conditions were the same as in Example 1 and sintering was performed at 1000 ° C.

比較例1で用いた純度99重量%の六方晶系窒化ホウ素粉末のオージェ電子分光測定を行い、深さ方向の元素分析を行った。その結果を図8に示す。図8において184eV及び405eV付近にあるピークがそれぞれホウ素(B)及び窒素(N)のピークに相当する。また、酸素は存在していれば540eV付近に出現するはずであるが、認められなかった。イオンエッチングする前の測定結果(すなわちB、N及びOの各プロファイルにおいて、最も手前側のプロファイル)が粒子表面での分析結果である。さらに、イオンエッチング装置によりSiO換算で30nm/1分となるような条件(イオンガンの加速電圧は3kV、イオン生成用のエミッション電流は20mA)で10分間ずつ粉末粒子を表面からエッチングを行って削り取り、粉末内部の分析も行った。その結果、表面から少なくともSiO換算で900nmまでは、酸素原子がほとんど検出されなかった。 Auger electron spectroscopy measurement was performed on the hexagonal boron nitride powder having a purity of 99% by weight used in Comparative Example 1, and elemental analysis in the depth direction was performed. The result is shown in FIG. In FIG. 8, peaks around 184 eV and 405 eV correspond to peaks of boron (B) and nitrogen (N), respectively. In addition, oxygen should appear in the vicinity of 540 eV if present, but was not recognized. The measurement result before ion etching (that is, the frontmost profile in each of the B, N, and O profiles) is the analysis result on the particle surface. Further, the powder particles are etched and removed from the surface for 10 minutes every 10 minutes under the conditions that the ion etching apparatus is 30 nm / 1 minute in terms of SiO 2 (the acceleration voltage of the ion gun is 3 kV and the emission current for generating ions is 20 mA). The powder was also analyzed. As a result, oxygen atoms were hardly detected from the surface to at least 900 nm in terms of SiO 2 .

(比較例2)
比較例2では、「純度99%の六方晶系窒化ホウ素粉末(昭和電工製 UHP)」を用いた。その他の条件については実施例2と同様にして800℃で焼結を行った。
(Comparative Example 2)
In Comparative Example 2, “99% purity hexagonal boron nitride powder (UHP manufactured by Showa Denko)” was used. Other conditions were the same as in Example 2 and sintering was performed at 800 ° C.

−評 価−
(外観観察及び走査電子顕微鏡による観察)
こうして得られた比較例1及び比較例2の焼結体の外観写真を図9に示す。また、それらの破断面の走査型電子顕微鏡写真を図10に示す。これらの図から、比較例3及び比較例4の六方晶系窒化ホウ素焼結体は、一応、均質な窒化ホウ素焼結体が得られていることが分かる。また、図10の破断面から、通常の六方晶系窒化ホウ素において観察される、板状結晶が認められた。
-Evaluation-
(Appearance observation and observation by scanning electron microscope)
An appearance photograph of the sintered bodies of Comparative Examples 1 and 2 thus obtained is shown in FIG. Moreover, the scanning electron micrograph of those fracture surfaces is shown in FIG. From these figures, it can be seen that the hexagonal boron nitride sintered bodies of Comparative Example 3 and Comparative Example 4 have a uniform boron nitride sintered body. Further, from the fracture surface of FIG. 10, plate-like crystals observed in normal hexagonal boron nitride were observed.

(相対密度及び曲げ強度)
比較例1及び比較例2の窒化ホウ素焼結体の密度を焼結体の寸法及び重量から算出するとともに、3点曲げによる試験を行った。理論密度は2.27g/cmとした。結果を表2に示す。
(Relative density and bending strength)
The density of the boron nitride sintered bodies of Comparative Examples 1 and 2 was calculated from the dimensions and weight of the sintered bodies, and a test by three-point bending was performed. The theoretical density was 2.27 g / cm 3 . The results are shown in Table 2.

表2より、窒化ホウ素の融点より低い温度で相対密度60%以上の焼結体を調製することができるものの、曲げ強度は実施例1〜実施例4と比較して低いことが分かった。これは、原料としての高純度六方晶系窒化ホウ素には、焼結助剤として機能する酸化ホウ素がほとんど存在しなかったためと考えられる。   From Table 2, although it was possible to prepare a sintered body having a relative density of 60% or higher at a temperature lower than the melting point of boron nitride, it was found that the bending strength was lower than that of Examples 1 to 4. This is presumably because the high-purity hexagonal boron nitride as the raw material had almost no boron oxide functioning as a sintering aid.

(XRD測定)
また、比較例1及び比較例2の六方晶系窒化ホウ素焼結体のXRDを測定した。その結果図11に示すように、どちらの焼結体も、六方晶系窒化ホウ素の回折ピークが明瞭に認められた。
(XRD measurement)
Further, XRD of the hexagonal boron nitride sintered bodies of Comparative Example 1 and Comparative Example 2 was measured. As a result, as shown in FIG. 11, the diffraction peak of hexagonal boron nitride was clearly recognized in both sintered bodies.

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

本発明の方法によれば、六方晶系窒化ホウ素基焼成体を従来の方法に比べて低温で製造することができ、潤滑材、電気絶縁材、耐熱材等の部材に用いることができる。   According to the method of the present invention, a hexagonal boron nitride-based fired body can be produced at a lower temperature than conventional methods, and can be used for members such as a lubricant, an electrical insulating material, and a heat-resistant material.

Claims (7)

六方晶系窒化ホウ素を非酸化性ガス雰囲気中又は真空中において焼結する窒化ホウ素焼結体の製造方法であって、原料となる六方晶系窒化ホウ素粉体の各粒子には表面のみならず内部にも酸素が含まれており、焼結温度は600℃以上1100℃未満であることを特徴とする六方晶系窒化ホウ素焼結体の製造方法。   A method for producing a boron nitride sintered body in which hexagonal boron nitride is sintered in a non-oxidizing gas atmosphere or in a vacuum, and each particle of hexagonal boron nitride powder as a raw material is not only a surface. A method for producing a hexagonal boron nitride sintered body characterized in that oxygen is contained therein and the sintering temperature is 600 ° C. or higher and lower than 1100 ° C. 前記六方晶系窒化ホウ素からなる粉体の粒子は、オージェ電子分光分析におけるイオンミリング法を用いた深さ方向の測定において、SiO換算で少なくとも300nmの深さまでは酸素の存在が確認されることを特徴とする請求項1記載の六方晶系窒化ホウ素焼結体の製造方法。 The presence of oxygen is confirmed at the depth of at least 300 nm in terms of SiO 2 in the measurement of the depth direction using the ion milling method in Auger electron spectroscopic analysis in the particles of the hexagonal boron nitride powder. The method for producing a hexagonal boron nitride sintered body according to claim 1. 前記六方晶系窒化ホウ素の酸素含有量は10重量%以上であることを特徴とする請求項1又は2記載の六方晶系窒化ホウ素焼結体の製造方法。   The method for producing a hexagonal boron nitride sintered body according to claim 1 or 2, wherein the hexagonal boron nitride has an oxygen content of 10 wt% or more. 粒子の表面のみならず内部にも酸素が含まれている六方晶系窒化ホウ素粉末を圧力成形してプレ成形体とするプレ成形工程と、
該プレ成形体を非酸化性ガス雰囲気中又は真空中において600℃以上1100℃未満で焼結する焼結工程と、
を有することを特徴とする請求項1乃至3のいずれか1項記載の六方晶系窒化ホウ素焼結体の製造方法。
A pre-molding step for pressure-molding hexagonal boron nitride powder containing oxygen not only in the surface of the particles but also in the interior,
A sintering step of sintering the pre-molded body in a non-oxidizing gas atmosphere or in a vacuum at 600 ° C. or higher and lower than 1100 ° C .;
The method for producing a hexagonal boron nitride sintered body according to any one of claims 1 to 3, wherein:
前記焼結工程は、圧力をかけることなく焼結を行なうことを特徴とする請求項3又は4に記載の六方晶系窒化ホウ素焼結体の製造方法。   The method for producing a hexagonal boron nitride sintered body according to claim 3 or 4, wherein the sintering step performs sintering without applying pressure. 請求項1乃至5のいずれか1項記載の製造方法で製造されており、相対密度が60%以上であることを特徴とする六方晶系窒化ホウ素焼結体。   A hexagonal boron nitride sintered body manufactured by the manufacturing method according to claim 1 and having a relative density of 60% or more. 請求項1乃至6のいずれか1項記載の製造方法で製造されており、焼結体中の六方晶系窒化ホウ素の結晶が非板状の形態をなすことを特徴とする六方晶系窒化ホウ素焼結体。   A hexagonal boron nitride produced by the production method according to any one of claims 1 to 6, wherein the hexagonal boron nitride crystals in the sintered body have a non-plate-like form. Sintered body.
JP2011009211A 2011-01-19 2011-01-19 Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body Active JP5648178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009211A JP5648178B2 (en) 2011-01-19 2011-01-19 Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009211A JP5648178B2 (en) 2011-01-19 2011-01-19 Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body

Publications (2)

Publication Number Publication Date
JP2012148932A true JP2012148932A (en) 2012-08-09
JP5648178B2 JP5648178B2 (en) 2015-01-07

Family

ID=46791599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009211A Active JP5648178B2 (en) 2011-01-19 2011-01-19 Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP5648178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141609A (en) * 2015-02-04 2016-08-08 住友電気工業株式会社 Cubic boron nitride polycrystalline material, cutting tool, abrasion-resistant tool, grinding tool, and production method of cubic boron nitride polycrystalline material
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042951A (en) * 2008-08-12 2010-02-25 Nagoya City Method for producing hexagonal boron nitride sintered compact, and hexagonal boron nitride sintered compact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042951A (en) * 2008-08-12 2010-02-25 Nagoya City Method for producing hexagonal boron nitride sintered compact, and hexagonal boron nitride sintered compact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141609A (en) * 2015-02-04 2016-08-08 住友電気工業株式会社 Cubic boron nitride polycrystalline material, cutting tool, abrasion-resistant tool, grinding tool, and production method of cubic boron nitride polycrystalline material
WO2016125548A1 (en) * 2015-02-04 2016-08-11 住友電気工業株式会社 Cubic boron nitride polycrystalline body, cutting tool, abrasion resistant tool, grinding tool and method for producing cubic boron nitride polycrystalline body
CN107207363A (en) * 2015-02-04 2017-09-26 住友电气工业株式会社 Cubic boron nitride polycrystalline material, cutting element, wear resistant tools, milling tool and the method for manufacturing cubic boron nitride polycrystalline material
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material
CN107207363B (en) * 2015-02-04 2020-10-16 住友电气工业株式会社 Cubic boron nitride polycrystalline material, cutting tool, wear-resistant tool, abrasive tool, and method for producing cubic boron nitride polycrystalline material
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal

Also Published As

Publication number Publication date
JP5648178B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
Zhang et al. Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB2 ceramics
JP5231823B2 (en) Polycrystalline MgO sintered body, method for producing the same, and MgO target for sputtering
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
JP2007197229A (en) High-thermal conductive silicon nitride substrate and method of manufacturing the same
Yang et al. Comparative study of fluoride and non-fluoride additives in high thermal conductive silicon nitride ceramics fabricated by spark plasma sintering and post-sintering heat treatment
WO2012153645A1 (en) METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
KR102270157B1 (en) Aluminum oxynitride ceramic heater and method for preparing the same
Yang et al. Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics
JP2002097005A (en) Silicon nitride-based powder and its manufacturing method, silicon nitride-based sintered compact and its manufacturing method, and circuit board
Toksoy et al. Densification and characterization of rapid carbothermal synthesized boron carbide
JP5648178B2 (en) Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body
Zhang et al. Synthesis and characterization of spark plasma sintered Ti3SiC2/Pb composites
WO2010113555A1 (en) Silicon nitride-based composite ceramic and process for producing same
US7833922B2 (en) Method of forming aluminum oxynitride material and bodies formed by such methods
JP2007191339A (en) Hexagonal boron nitride sintered compact and its manufacturing method
JP5728684B2 (en) Free-cutting ceramics and manufacturing method thereof
Bahrami et al. Effect of the alfa content on the mechanical properties of Si3N4/BAS composite by spark plasma sintering
JP5130599B2 (en) Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP2000277815A (en) Thermoelectric material containing dispersed short thin metallic wires and its manufacture
JP4883499B2 (en) Boron nitride fired body and method for producing the same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
Zhou et al. Fabrication of bulk nano-SiC via in-situ reaction of core–shell structural SiC@ C with Si using high pressure high temperature sintering method
Koroglu et al. Densification Behavior, Microstructural Development and Mechanical Properties of Spark Plasma Sintered α/β-Silicon Nitride Ceramics with Different Rare Earth Oxide Additives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5648178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250