JP2012148686A - Air flow separation suppression structure of moving body - Google Patents

Air flow separation suppression structure of moving body Download PDF

Info

Publication number
JP2012148686A
JP2012148686A JP2011009204A JP2011009204A JP2012148686A JP 2012148686 A JP2012148686 A JP 2012148686A JP 2011009204 A JP2011009204 A JP 2011009204A JP 2011009204 A JP2011009204 A JP 2011009204A JP 2012148686 A JP2012148686 A JP 2012148686A
Authority
JP
Japan
Prior art keywords
air flow
moving body
vehicle
separation
suppressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011009204A
Other languages
Japanese (ja)
Other versions
JP5818443B2 (en
Inventor
Yutaka Sakuma
豊 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2011009204A priority Critical patent/JP5818443B2/en
Publication of JP2012148686A publication Critical patent/JP2012148686A/en
Application granted granted Critical
Publication of JP5818443B2 publication Critical patent/JP5818443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

PROBLEM TO BE SOLVED: To provide an air flow separation suppression structure of a moving body that suppresses separation of an air flow from the head of the moving body by a simple structure.SOLUTION: A separation suppression part 6 guides an air flow F from the vehicle-body end surface 3a of a vehicle 2 to the vehicle-body side surfaces 3b, 3c and the vehicle-body upper surface 3d of the vehicle 2, thereby suppressing separation of the air flow F from the head of the vehicle 2. When the vehicle 2 travels in the X axis direction, the air flow F toward the vehicle-body end surface 3a collides with a guide part 9 and the air flow F, having collided with the guide part is guided to the separation suppression part 6 by the guide part 9. Thus, the air flow F is guided from the vehicle-body end surface 3a to the vehicle-body side surfaces 3b, 3c and the vehicle-body upper surface 3d and the air flow F flows along the surfaces of the vehicle-body side surfaces 3b, 3c and the vehicle-body upper surface 3d. As a result, this structure suppresses an increase in the apparent cross-sectional area of the head of the vehicle 2 and reduces a pressure variation occurring when the vehicle 2 runs into a tunnel or the like.

Description

この発明は、移動体が移動するときにこの移動体の先頭部からの気流のはく離を抑制する移動体の気流はく離抑制構造に関する。   The present invention relates to an air flow separation suppressing structure of a moving body that suppresses the separation of the air flow from the leading portion of the moving body when the moving body moves.

従来の鉄道車両は、車両走行時に車体側方における空気流の発生を抑制するために、先頭車両の妻面の両側部に車体中心側に向かって湾曲する板状部材を備えている(例えば、特許文献1参照)。このような従来の鉄道車両では、先頭車両の妻面に衝突した気流を板状部材によって車体の上方及び下方に分離して導くことによって、車両走行時に車体側方に発生する気流を抑制し、プラットホーム上に発生する列車風を低減している。   Conventional railcars are provided with plate-like members that are curved toward the center of the vehicle body on both sides of the front face of the leading vehicle in order to suppress the occurrence of airflow on the side of the vehicle body when the vehicle is running (for example, Patent Document 1). In such a conventional railway vehicle, the airflow that collides with the front face of the leading vehicle is separated and guided to the upper and lower parts of the vehicle body by the plate-like member, thereby suppressing the airflow generated on the side of the vehicle body during vehicle travel, Train wind generated on the platform is reduced.

特開2003-246265号公報JP 2003-246265 A

高速列車がトンネル入口側坑口に突入するとトンネル内に圧縮波が発生する。この圧縮波はトンネル内を伝播する。そして、圧縮波が出口側坑口に到達した時、パルス状の圧力波であるトンネル微気圧が外部へ放出される。一方、圧縮波は坑口や列車端で反射しトンネル内を往復し、列車に圧力変動を及ぼす。圧力変動は、車内におけるいわゆる「耳つん」現象などの原因となる。これらの現象には、列車突入時に形成される圧縮波の圧力の大きさ、および、圧力勾配(圧力の変化時間)が主に関係すると考えられる。   When a high-speed train enters the tunnel entrance side tunnel, a compression wave is generated in the tunnel. This compression wave propagates through the tunnel. Then, when the compression wave reaches the exit-side wellhead, tunnel micro-pressure, which is a pulsed pressure wave, is released to the outside. On the other hand, the compression wave is reflected at the tunnel entrance and the train end and reciprocates in the tunnel, causing pressure fluctuation on the train. The pressure fluctuation causes a so-called “ear-dropping” phenomenon in the vehicle. It is considered that these phenomena are mainly related to the magnitude of the pressure of the compression wave formed when the train enters and the pressure gradient (pressure change time).

近年、車両性能の向上や線形改良により在来線でも高速化が進み、特に先頭部端部に丸みのほとんど無い切妻型列車のトンネル突入時に形成される圧縮波について、その圧力の大きさおよび圧力勾配が増大する傾向にある。これらの増大の主原因は、列車の切妻型先頭部からの流れのはく離による見かけの車両断面積増大が考えられている。この圧縮波の圧力の大きさおよび圧力勾配が増大するのに伴い、耳つん、トンネル微気圧波などが増大する傾向にある。一方、先頭部からの流れのはく離が大きくなると、列車の空気抵抗も増大するという問題もあることが分かっている。   In recent years, the speed of conventional lines has increased due to improvements in vehicle performance and linear improvements, especially for the compression waves formed when entering a tunnel of a gable train with almost no roundness at the end of the head. The gradient tends to increase. The main cause of these increases is thought to be an increase in the apparent vehicle cross-sectional area due to the separation of the flow from the gable head of the train. As the magnitude of the pressure of the compression wave and the pressure gradient increase, there is a tendency for the earloin, tunnel micro-pressure wave, etc. to increase. On the other hand, it has been found that there is a problem that the air resistance of the train increases as the flow separation from the head increases.

しかし、従来の鉄道車両では、プラットホーム上に発生する列車風の低減を目的としており、先頭車両の妻面に衝突した気流を板状部材によって車体の上方及び下方に導くと、車体の上面及び下面で気流がはく離するおそれがある。その結果、従来の鉄道車両では、列車風を低減することは可能であっても、トンネル微気圧波が発生してしまう問題点がある。   However, in the conventional railway vehicle, the purpose is to reduce the train wind generated on the platform. When the airflow colliding with the front face of the leading vehicle is guided upward and downward by the plate member, the upper and lower surfaces of the vehicle body There is a risk that the air current will peel off. As a result, the conventional railway vehicle has a problem that a tunnel micro-pressure wave is generated even though the train wind can be reduced.

この発明の課題は、簡単な構造によって移動体の先頭部からの気流のはく離を抑制することができる移動体の気流はく離抑制構造を提供することである。   An object of the present invention is to provide an air flow separation suppressing structure of a moving body that can suppress the separation of the air flow from the leading portion of the moving body with a simple structure.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図1、図2、図4、図5(B)、図6、図7、図9、図10(B)、図12、図13(B)、図15、図16(B)、図18、図19(B)、図21及び図22(B)に示すように、移動体(2)が移動するときにこの移動体の先頭部からの気流(F)のはく離を抑制する移動体の気流はく離抑制構造であって、前記移動体の前面(3a)からこの移動体の側面(3b,3c)に前記気流を導くことによって、この移動体の先頭部からの気流のはく離を抑制するはく離抑制部(6)と、前記移動体の前面に向かう気流を前記はく離抑制部に導く誘導部(9)とを備える移動体の気流はく離抑制構造(5)である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
The invention of claim 1 is shown in FIGS. 1, 2, 4, 5 (B), 6, 7, 9, 10 (B), 12, 13 (B), 15, FIG. 16 (B), FIG. 18, FIG. 19 (B), FIG. 21 and FIG. 22 (B), when the moving body (2) moves, the airflow (F) from the head of the moving body The structure of the present invention is a structure for suppressing the separation of airflow from a moving body that suppresses the separation, and guides the airflow from the front surface (3a) of the moving body to the side surfaces (3b, 3c) of the moving body. It is an air flow separation suppressing structure (5) of a moving body including a separation suppressing portion (6) that suppresses air flow separation and a guide portion (9) that guides an air flow toward the front surface of the moving body to the separation suppressing portion.

請求項2の発明は、請求項1に記載の移動体の気流はく離抑制構造において、図4、図5(B)、図9、図10(B)、図12、図13(B)、図15、図16(B)、図18、図19(B)、図21及び図22(B)に示すように、前記誘導部は、前記移動体の前面よりも前側で前記気流を衝突させてこの衝突した気流を前記はく離抑制部に導くことを特徴とする移動体の気流はく離抑制構造である。   According to a second aspect of the present invention, there is provided an airflow separation suppressing structure for a moving body according to the first aspect, wherein FIG. 4, FIG. 5 (B), FIG. 9, FIG. 10 (B), FIG. 15, FIG. 16 (B), FIG. 18, FIG. 19 (B), FIG. 21 and FIG. 22 (B), the guide portion causes the airflow to collide with the front side of the front surface of the moving body. The airflow separation suppressing structure of the moving body is characterized in that the collided airflow is guided to the separation suppressing unit.

請求項3の発明は、請求項1又は請求項2に記載の移動体の気流はく離抑制構造において、図4、図9、図12、図15、図18及び図21に示すように、前記誘導部は、前記移動体の前面の側縁部(3g,3h)に沿ってこの前面から突出することを特徴とする移動体の気流はく離抑制構造である。   According to a third aspect of the present invention, in the structure for suppressing air flow separation of the moving body according to the first or second aspect, as shown in FIGS. 4, 9, 12, 15, 18, and 21, the induction The portion protrudes from the front surface along the side edge (3g, 3h) of the front surface of the moving body, and is a structure for suppressing air flow separation of the moving body.

請求項4の発明は、請求項1から請求項3までのいずれか1項に記載の移動体の気流はく離抑制構造において、図5(B)、図10(B)、図13(B)、図16(B)、図19(B)及び図22(B)に示すように、前記誘導部は、前記移動体の前面前方からこの移動体の前面の側縁部(3g,3h)に向かって傾斜する傾斜面(3a)を備えることを特徴とする移動体の気流はく離抑制構造である。   The invention of claim 4 is the structure for suppressing air flow separation of the moving body according to any one of claims 1 to 3, wherein FIG. 5 (B), FIG. 10 (B), FIG. 13 (B), As shown in FIGS. 16 (B), 19 (B) and 22 (B), the guiding portion is directed from the front front of the moving body to the side edge (3g, 3h) of the front surface of the moving body. The structure is provided with an inclined surface (3a) that is inclined and has a structure for suppressing air flow separation of a moving body.

請求項5の発明は、請求項4に記載の移動体の気流はく離抑制構造において、前記誘導部は、水平面で切断したときの断面形状が山形であることを特徴とする移動体の気流はく離抑制構造である。   According to a fifth aspect of the present invention, there is provided a structure for suppressing air flow separation of a moving body according to claim 4, wherein the guiding portion has a mountain shape when cut along a horizontal plane. It is a structure.

請求項6の発明は、請求項1から請求項5までのいずれか1項に記載の移動体の気流はく離抑制構造において、図4、図5(B)、図12、図13(B)、図18及び図19(B)に示すように、前記はく離抑制部は、前記移動体の側面と内側フィン部(7a)との間の間隙部(Δ11)に前記気流を通過させるととともに、この内側フィン部と外側フィン部(7b)との間の間隙部(Δ12)に前記気流を通過させるルーバー部(7A)を備えることを特徴とする移動体の気流はく離抑制構造である。 The invention of claim 6 is the structure for suppressing air flow separation of the moving body according to any one of claims 1 to 5, wherein FIG. 4, FIG. 5 (B), FIG. 12, FIG. 13 (B), As shown in FIG. 18 and FIG. 19 (B), the separation suppressing portion allows the air flow to pass through a gap (Δ 11 ) between the side surface of the movable body and the inner fin portion (7a), and The airflow separation suppressing structure of the moving body includes a louver portion (7A) that allows the airflow to pass through a gap portion (Δ 12 ) between the inner fin portion and the outer fin portion (7b).

請求項7の発明は、請求項6に記載の移動体の気流はく離抑制構造において、前記内側フィン部及び前記外側フィン部は、前記移動体の前面側に湾曲する湾曲面(7h,7j)を備えることを特徴とする移動体の気流はく離抑制構造である。   According to a seventh aspect of the present invention, in the structure for suppressing air flow separation of the movable body according to the sixth aspect, the inner fin portion and the outer fin portion have curved surfaces (7h, 7j) that are curved toward the front side of the movable body. The airflow separation suppressing structure of the moving body is characterized by comprising.

請求項8の発明は、請求項1から請求項7までのずれか1項に記載の移動体の気流はく離抑制構造において、図9、図10(B)、図15、図16(B)、図21及び図22(B)に示すように、前記はく離抑制部は、前記移動体の側面との間の間隙部(Δ2)に前記気流を通過させるフィン部(10A)を備えることを特徴とする移動体の気流はく離抑制構造である。 The invention according to claim 8 is the structure for suppressing air flow separation of the moving body according to any one of claims 1 to 7, wherein FIG. 9, FIG. 10 (B), FIG. 15, FIG. As shown in FIGS. 21 and 22 (B), the separation suppressing portion includes a fin portion (10A) that allows the air flow to pass through a gap portion (Δ 2 ) between the side surface of the movable body. The airflow separation suppressing structure of the moving body is as follows.

請求項9の発明は、請求項8に記載の移動体の気流はく離抑制構造において、前記フィン部は、前記移動体の前面側に湾曲する湾曲面(10h)を備えることを特徴とする移動体の気流はく離抑制構造である。   A ninth aspect of the present invention is the airflow separation suppressing structure of the movable body according to the eighth aspect, wherein the fin portion includes a curved surface (10h) that is curved toward the front side of the movable body. This is a structure that suppresses air separation.

請求項10の発明は、図1〜図3、図5(A)、図6〜図8、図10(A)、図11、図13(A)、図14、図16(A)、図17、図19(A)、図20及び図22(A)に示すように、移動体(2)が移動するときにこの移動体の先頭部からの気流(F)のはく離を抑制する移動体の気流はく離抑制構造であって、前記移動体の前面(3a)からこの移動体の上面(3d)に前記気流を導くことによって、この移動体の先頭部からの気流のはく離を抑制するはく離抑制部(6)と、前記移動体の前面に向かう気流を前記はく離抑制部に導く誘導部(9)とを備える移動体の気流はく離抑制構造(5)である。   The invention of claim 10 is the same as that shown in FIGS. 1 to 3, 5 (A), 6 to 8, 10 (A), 11, 13 (A), 14, 16 (A), FIG. 17, as shown in FIG. 19A, FIG. 20 and FIG. 22A, the moving body that suppresses the separation of the airflow (F) from the leading portion of the moving body (2) when the moving body (2) moves. The air flow separation suppressing structure of the mobile body is configured to suppress the separation of the air flow from the leading portion of the mobile body by guiding the air stream from the front surface (3a) of the mobile body to the upper surface (3d) of the mobile body. An air flow separation suppressing structure (5) of a moving body including a portion (6) and a guiding section (9) for guiding an air flow toward the front surface of the moving body to the separation suppressing portion.

請求項11の発明は、請求項10に記載の移動体の気流はく離抑制構造において、図3、図5(A)、図8、図10(A)、図11、図13(A)、図14、図16(A)、図17、図19(A)、図20及び図22(A)に示すように、前記誘導部は、前記移動体の前面よりも前側で前記気流を衝突させてこの衝突した気流を前記はく離抑制部に導くことを特徴とする移動体の気流はく離抑制構造である。   According to an eleventh aspect of the present invention, there is provided an air flow separation suppressing structure according to the tenth aspect of the present invention. FIG. 3, FIG. 5 (A), FIG. 8, FIG. 10 (A), FIG. 14, FIG. 16 (A), FIG. 17, FIG. 19 (A), FIG. 20 and FIG. 22 (A), the guide portion causes the airflow to collide with the front side of the front surface of the moving body. The airflow separation suppressing structure of the moving body is characterized in that the collided airflow is guided to the separation suppressing unit.

請求項12の発明は、請求項10又は請求項11に記載の移動体の気流はく離抑制構造において、前記誘導部は、前記移動体の前面の上縁部(3f)に沿ってこの前面から突出することを特徴とする移動体の気流はく離抑制構造である。   According to a twelfth aspect of the present invention, in the structure for suppressing air flow separation of the moving body according to the tenth or eleventh aspect, the guide portion projects from the front surface along the upper edge portion (3f) of the front surface of the moving body. This structure has a structure for suppressing air flow separation of a moving body.

請求項13の発明は、請求項10から請求項12までのいずれか1項に記載の移動体の気流はく離抑制構造において、図5(A)、図10(A)、図13(A)、図16(A)、図19(A)及び図22(A)に示すように、前記誘導部は、前記移動体の前面前方からこの移動体の前面の上縁部に向かって傾斜する傾斜面(9a)を備えることを特徴とする移動体の気流はく離抑制構造である。   The invention of claim 13 is the structure for suppressing air flow separation of the moving body according to any one of claims 10 to 12, wherein FIG. 5 (A), FIG. 10 (A), FIG. 13 (A), As shown in FIG. 16 (A), FIG. 19 (A) and FIG. 22 (A), the guide portion is an inclined surface that inclines from the front surface of the moving body toward the upper edge of the front surface of the moving body. (9a) is a structure for suppressing air flow separation of a moving body.

請求項14の発明は、請求項10から請求項12までのいずれか1項に記載の移動体の気流はく離抑制構造において、前記誘導部は、垂直面で切断したときの断面形状が山形であること特徴とする移動体の気流はく離抑制構造である。   According to a fourteenth aspect of the present invention, in the structure for suppressing air flow separation of the moving body according to any one of the tenth to twelfth aspects, the guiding portion has a mountain shape when the guide portion is cut along a vertical plane. This structure has a structure for suppressing air flow separation of the moving body.

請求項15の発明は、請求項10から請求項14までのいずれか1項に記載の移動体の気流はく離抑制構造において、図5(A)、図13(A)及び図19(A)に示すように、前記はく離抑制部は、前記移動体の上面と内側フィン部(7d)との間の間隙部(Δ11)に前記気流を通過させるととともに、この内側フィン部と外側フィン部(7e)との間の間隙部(Δ12)に前記気流を通過させるルーバー部(7B)を備えることを特徴とする移動体の気流はく離抑制構造である。 According to a fifteenth aspect of the present invention, there is provided an airflow separation inhibiting structure for a moving body according to any one of the tenth to fourteenth aspects of the present invention, as shown in FIGS. 5 (A), 13 (A) and 19 (A). As shown in the figure, the delamination suppressing portion allows the air flow to pass through a gap (Δ 11 ) between the upper surface of the movable body and the inner fin portion (7d), and the inner fin portion and the outer fin portion ( 7e), a louver portion (7B) that allows the air flow to pass through a gap portion (Δ 12 ) between the moving body and the air separation device.

請求項16の発明は、請求項15に記載の移動体の気流はく離抑制構造において、前記内側フィン部及び前記外側フィン部は、前記移動体の前面側に湾曲する湾曲面(7h,7j)を備えることを特徴とする移動体の気流はく離抑制構造である。   According to a sixteenth aspect of the present invention, in the structure for suppressing air flow separation of the moving body according to the fifteenth aspect, the inner fin portion and the outer fin portion have curved surfaces (7h, 7j) that are curved toward the front side of the moving body. The airflow separation suppressing structure of the moving body is characterized by comprising.

請求項17の発明は、請求項10から請求項16までのずれか1項に記載の移動体の気流はく離抑制構造において、図10(A)、図16(A)及び図22(A)に示すように、前記はく離抑制部は、前記移動体の上面との間の間隙部(Δ2)に前記気流を通過させるフィン部(10B)を備えることを特徴とする移動体の気流はく離抑制構造である。 The invention according to claim 17 is the structure for suppressing air flow separation of the moving body according to any one of claims 10 to 16, which is shown in FIGS. 10 (A), 16 (A) and 22 (A). As shown in the figure, the separation preventing portion includes a fin portion (10B) that allows the air current to pass through a gap portion (Δ 2 ) between the separation member and the upper surface of the moving member. It is.

請求項18の発明は、請求項17に記載の移動体の気流はく離抑制構造において、前記フィン部は、前記移動体の前面側に湾曲する湾曲面(10h)を備えることを特徴とする移動体の気流はく離抑制構造である。   According to an eighteenth aspect of the present invention, in the structure for suppressing air flow separation of the movable body according to the seventeenth aspect, the fin portion includes a curved surface (10h) that is curved toward the front side of the movable body. This is a structure that suppresses air separation.

請求項19の発明は、請求項1から請求項18までのずれか1項に記載の移動体の気流はく離抑制構造において、図1〜図22に示すように、前記移動体は、この移動体の前面が切妻形状であることを特徴とする移動体の気流はく離抑制構造である。   According to a nineteenth aspect of the present invention, there is provided an air flow separation inhibiting structure according to any one of the first to eighteenth aspects of the present invention, as shown in FIGS. The front surface of the moving body has a gable shape, and is a structure for suppressing air flow separation of a moving body.

この発明によると、簡単な構造によって移動体の先頭部からの気流のはく離を抑制することができる。   According to the present invention, it is possible to suppress separation of the airflow from the leading portion of the moving body with a simple structure.

この発明の第1実施形態に係る移動体の気流はく離抑制構造を概略的に示す斜視図である。It is a perspective view which shows roughly the air flow separation suppression structure of the moving body which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る移動体の気流はく離抑制構造を概略的に示す正面図である。It is a front view which shows roughly the air flow separation suppression structure of the moving body which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る移動体の気流はく離抑制構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る移動体の気流はく離抑制構造を概略的に示す横断面図である。It is a cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る移動体の気流はく離抑制構造の誘導部の断面図であり、(A)は図3のVA部分を拡大して示す横断面図であり、(B)は図4のVB部分を拡大して示す縦断面図である。It is sectional drawing of the guidance | induction part of the air flow separation suppression structure of the moving body which concerns on 1st Embodiment of this invention, (A) is a cross-sectional view which expands and shows the VA part of FIG. 3, (B) is a figure. It is a longitudinal cross-sectional view which expands and shows the VB part of 4. FIG. この発明の第2実施形態に係る移動体の気流はく離抑制構造を概略的に示す斜視図である。It is a perspective view which shows roughly the air flow separation suppression structure of the moving body which concerns on 2nd Embodiment of this invention. この発明の第2実施形態に係る移動体の気流はく離抑制構造を概略的に示す正面図である。It is a front view which shows roughly the air flow separation suppression structure of the moving body which concerns on 2nd Embodiment of this invention. この発明の第2実施形態に係る移動体の気流はく離抑制構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 2nd Embodiment of this invention. この発明の第2実施形態に係る移動体の気流はく離抑制構造を概略的に示す横断面図である。It is a cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 2nd Embodiment of this invention. この発明の第2実施形態に係る移動体の気流はく離抑制構造の誘導部の断面図であり、(A)は図8のXA部分を拡大して示す横断面図であり、(B)は図9のXB部分を拡大して示す縦断面図である。It is sectional drawing of the guidance | induction part of the air flow separation suppression structure of the moving body which concerns on 2nd Embodiment of this invention, (A) is a cross-sectional view which expands and shows the XA part of FIG. 8, (B) is a figure. It is a longitudinal cross-sectional view which expands and shows the XB part of 9. FIG. この発明の第3実施形態に係る移動体の気流はく離抑制構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 3rd Embodiment of this invention. この発明の第3実施形態に係る移動体の気流はく離抑制構造を概略的に示す横断面図である。It is a cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 3rd Embodiment of this invention. この発明の第3実施形態に係る移動体の気流はく離抑制構造の誘導部の断面図であり、(A)は図11のXIIA部分を拡大して示す横断面図であり、(B)は図12のXIIB部分を拡大して示す縦断面図である。It is sectional drawing of the induction | guidance | derivation part of the air flow separation suppression structure of the mobile body which concerns on 3rd Embodiment of this invention, (A) is a cross-sectional view which expands and shows the XIIA part of FIG. 11, (B) is a figure. It is a longitudinal cross-sectional view which expands and shows 12 XIIB parts. この発明の第4実施形態に係る移動体の気流はく離抑制構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 4th Embodiment of this invention. この発明の第4実施形態に係る移動体の気流はく離抑制構造を概略的に示す横断面図である。It is a cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 4th Embodiment of this invention. この発明の第4実施形態に係る移動体の気流はく離抑制構造の誘導部の断面図であり、(A)は図14のXVIA部分を拡大して示す横断面図であり、(B)は図15のXVIB部分を拡大して示す縦断面図である。It is sectional drawing of the induction | guidance | derivation part of the air flow separation suppression structure of the mobile body which concerns on 4th Embodiment of this invention, (A) is a cross-sectional view which expands and shows the XVIA part of FIG. 14, (B) is a figure. It is a longitudinal cross-sectional view which expands and shows 15 XVIB parts. この発明の第5実施形態に係る移動体の気流はく離抑制構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 5th Embodiment of this invention. この発明の第5実施形態に係る移動体の気流はく離抑制構造を概略的に示す横断面図である。It is a cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 5th Embodiment of this invention. この発明の第5実施形態に係る移動体の気流はく離抑制構造の誘導部の断面図であり、(A)は図17のXVIIIA部分を拡大して示す横断面図であり、(B)は図18のXVIIIB部分を拡大して示す縦断面図である。It is sectional drawing of the induction | guidance | derivation part of the airflow separation suppression structure of the moving body which concerns on 5th Embodiment of this invention, (A) is a cross-sectional view which expands and shows the XVIIIA part of FIG. 17, (B) is a figure. It is a longitudinal cross-sectional view which expands and shows 18 XVIIIB part. この発明の第6実施形態に係る移動体の気流はく離抑制構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 6th Embodiment of this invention. この発明の第6実施形態に係る移動体の気流はく離抑制構造を概略的に示す横断面図である。It is a cross-sectional view which shows roughly the air flow separation suppression structure of the moving body which concerns on 6th Embodiment of this invention. この発明の第6実施形態に係る移動体の気流はく離抑制構造の誘導部の断面図であり、(A)は図20のXXIIA部分を拡大して示す横断面図であり、(B)は図21のXXIIB部分を拡大して示す縦断面図である。It is sectional drawing of the induction | guidance | derivation part of the airflow separation suppression structure of the moving body which concerns on 6th Embodiment of this invention, (A) is a cross-sectional view which expands and shows the XXIIA part of FIG. 20, (B) is a figure. It is a longitudinal cross-sectional view which expands and shows the XXIIB part of 21. この発明の第6実施形態に係る移動体の気流はく離抑制構造の誘導部の断面図であり、(A)は傾斜面の断面形状が小三角形である場合の断面図であり、(B)は傾斜面の断面形状が半小三角形である場合の断面図であり、(C)は傾斜面の断面形状が小V字型である場合の断面図である。It is sectional drawing of the guidance | induction part of the air flow separation suppression structure of the mobile body which concerns on 6th Embodiment of this invention, (A) is sectional drawing in case the cross-sectional shape of an inclined surface is a small triangle, (B) is It is sectional drawing in case the cross-sectional shape of an inclined surface is a semi-small triangle, (C) is sectional drawing in case the cross-sectional shape of an inclined surface is a small V shape. 風洞試験に使用した風洞試験装置の構成図であり、(A)は側面図であり、(B)は平面図であり、(C)は(B)のXXIV-XXIVC線で切断した状態を示す断面図である。It is a block diagram of the wind tunnel test apparatus used for the wind tunnel test, (A) is a side view, (B) is a top view, (C) shows the state cut | disconnected by the XXIV-XXIVC line of (B). It is sectional drawing. 風洞試験に使用した模型車両の外観図であり、(A)は一部を破断して示す平面図であり、(B)は一部を破断して示す側面図であり、(C)は正面図である。It is an external view of the model vehicle used for the wind tunnel test, (A) is a plan view showing partly broken, (B) is a side view showing partly broken, (C) is a front view FIG. ルーバー部及び誘導部がある場合の風洞試験の結果を示す斜視図である。It is a perspective view which shows the result of a wind tunnel test in case there is a louver part and a guidance part. ルーバー部及び誘導部がない場合の風洞試験の結果を示す斜視図である。It is a perspective view which shows the result of a wind tunnel test in case there is no louver part and a guidance | induction part.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1〜図4に示す軌道1は、車両2が走行する通路(線路)であり、車両2の車輪4aを案内する一対のレール1aなどを備えている。車両2は、軌道1に沿って走行する移動体であり、電車、気動車又は機関車などの鉄道車両である。車両2は、図1〜図4に示す車体3と、図3に示す台車4と、図1〜図5に示す気流はく離抑制構造5などを備えている。図1〜図4に示す車両2は、列車の運転制御をするための運転室を備える切妻型先頭部(角先頭部)の先頭車両である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
The track 1 shown in FIGS. 1 to 4 is a passage (track) on which the vehicle 2 travels, and includes a pair of rails 1 a that guide the wheels 4 a of the vehicle 2. The vehicle 2 is a moving body that travels along the track 1 and is a railway vehicle such as a train, a train, or a locomotive. The vehicle 2 includes a vehicle body 3 shown in FIGS. 1 to 4, a carriage 4 shown in FIG. 3, an airflow separation suppressing structure 5 shown in FIGS. 1 to 5, and the like. The vehicle 2 shown in FIGS. 1 to 4 is a gable-type leading portion (corner leading portion) leading vehicle having a cab for controlling the operation of a train.

車体3は、乗客を積載し輸送するための構造物である。車体3は、図1〜図4に示す車体端面(車体前面)3aと、図2及び図4に示す車体側面3b,3cと、図1〜図3に示す車体上面3dと、図3に示す車体底面3eと、図3に示す上縁部3fと、図4に示す側縁部3g,3hなどを備えている。図1〜図4に示す車体端面3aは、車両2の妻構え(前構体)を構成する外板(妻板)であり先頭車両の先頭部である。車体端面3aは、量産が容易で低コストの切妻形状であり、妻板が平面であり側板と直角に形成されている。図1及び図2に示す車体端面3aは、車両2が中間車両として連結されたときに、前後の車両間を乗客及び乗務員が移動するときに使用する妻入口3iと、乗務員が前方を看視するために運転室前面に形成された前面窓(前面窓ガラス)3jなどを備えている。図4に示す車体側面3b,3cは、車両2の側構え(側構体)を構成する外板(側板)であり、図1に示すように乗務員が車外を看視するための側窓(側面窓ガラス)3kと、乗務員が乗降するときに使用する側出入口3mなどを備えている。図1〜図3に示す車体上面3dは、車両2の屋根構え(屋根構体)を構成する外板(屋根板)であり、車室内を空気調和するための空気調和装置などの屋根上機器が設置される。図3に示す車体底面3eは、車両2の床構造を構成する外板であり台車4などの走行装置が設置されている。図3に示す上縁部3fは、車体端面3aと車体上面3dとが交わる部分であり、車体端面3aと車体上面3dとが略直角に接合している。図4に示す側縁部3g,3hは、車体端面3aと車体側面3b,3cとが交わる部分であり、車体端面3aと車体上面3dとが略直角に接合している。図3に示す台車4は、車体3を支持して軌道1上を走行する走行装置(走り装置)であり、レール1aと転がり接触する車輪4aなどを備えている。   The vehicle body 3 is a structure for loading and transporting passengers. The vehicle body 3 includes a vehicle body end surface (vehicle body front surface) 3a shown in FIGS. 1 to 4, vehicle body side surfaces 3b and 3c shown in FIGS. 2 and 4, a vehicle body upper surface 3d shown in FIGS. The vehicle body includes a bottom surface 3e, an upper edge portion 3f shown in FIG. 3, side edge portions 3g and 3h shown in FIG. The vehicle body end surface 3a shown in FIGS. 1 to 4 is an outer plate (face plate) that constitutes the wife's stance (front structure) of the vehicle 2, and is the front portion of the leading vehicle. The vehicle body end surface 3a has a gable shape that is easy to mass-produce and has a low cost, and has a gable plate that is flat and formed at right angles to the side plate. The vehicle body end surface 3a shown in FIG. 1 and FIG. 2 is a wife entrance 3i that is used when passengers and crew move between the front and rear vehicles when the vehicle 2 is connected as an intermediate vehicle, and the crew watches the front. For this purpose, a front window (front window glass) 3j formed on the front surface of the cab is provided. The vehicle body side surfaces 3b and 3c shown in FIG. 4 are outer plates (side plates) constituting the side stance (side structure) of the vehicle 2, and as shown in FIG. 1, side windows (side surfaces) for the crew to watch the outside of the vehicle. Window glass) 3k, and a side entrance 3m used when a crew member gets on and off. The vehicle body upper surface 3d shown in FIGS. 1 to 3 is an outer plate (roof plate) that constitutes the roof structure (roof structure) of the vehicle 2, and an on-roof device such as an air conditioner for air-conditioning the vehicle interior. Installed. A vehicle body bottom surface 3e shown in FIG. 3 is an outer plate constituting the floor structure of the vehicle 2, and a traveling device such as a carriage 4 is installed. The upper edge 3f shown in FIG. 3 is a portion where the vehicle body end surface 3a and the vehicle body upper surface 3d intersect, and the vehicle body end surface 3a and the vehicle body upper surface 3d are joined at a substantially right angle. The side edge portions 3g and 3h shown in FIG. 4 are portions where the vehicle body end surface 3a and the vehicle body side surfaces 3b and 3c intersect, and the vehicle body end surface 3a and the vehicle body upper surface 3d are joined at a substantially right angle. The cart 4 shown in FIG. 3 is a traveling device (running device) that supports the vehicle body 3 and travels on the track 1, and includes wheels 4a that are in rolling contact with the rail 1a.

図1〜図5に示す気流はく離抑制構造5は、車両2が走行するときにこの車両2の先頭部からの気流Fのはく離を抑制する構造である。気流はく離抑制構造5は、図1〜図5に示すように、車体端面3aに衝突した気流Fを車体側面3b,3c及び車体上面3dに導くことによって、気流Fのはく離を抑制して車両2の空気抵抗を低減するとともに、車両2の先頭部の見かけの車両断面積が増大するのを抑制して、トンネル微気圧波の発生を低減する。気流はく離抑制構造5は、車両2のトンネル突入時に発生するトンネル内の圧力変動を抑制し、車体3に作用する繰り返し荷重によって発生する車体構造疲労を低減するとともに、気圧変動に起因して車体3内の乗客に発生する耳の不快感や違和感である耳つん現象を低減する。気流はく離抑制構造5は、図1〜図5に示すはく離抑制部6と誘導部9などを備えている。   The airflow separation suppressing structure 5 shown in FIGS. 1 to 5 is a structure that suppresses the separation of the airflow F from the leading portion of the vehicle 2 when the vehicle 2 travels. As shown in FIGS. 1 to 5, the airflow separation suppressing structure 5 guides the airflow F colliding with the vehicle body end surface 3 a to the vehicle body side surfaces 3 b and 3 c and the vehicle body upper surface 3 d, thereby suppressing the separation of the airflow F and the vehicle 2. The air resistance of the vehicle 2 is reduced, and the increase in the apparent vehicle cross-sectional area of the leading portion of the vehicle 2 is suppressed, thereby reducing the generation of tunnel micro-pressure waves. The airflow separation suppressing structure 5 suppresses pressure fluctuations in the tunnel that occur when the vehicle 2 enters the tunnel, reduces vehicle body structural fatigue caused by repeated loads acting on the vehicle body 3, and causes the vehicle body 3 due to atmospheric pressure fluctuations. This reduces the phenomenon of ear discomfort, which is an uncomfortable feeling and an uncomfortable feeling in the passengers. The airflow separation suppressing structure 5 includes a separation suppressing unit 6 and a guiding unit 9 shown in FIGS.

図1〜図5に示すはく離抑制部6は、車両2の車体端面3aからこの車両2の車体側面3b,3c及び車体上面3dに気流Fを導くことによって、この車両2の先頭部からの気流Fのはく離を抑制する部分である。はく離抑制部6は、図1及び図2に示すように、車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車体端面3aの上側及び両側に配置されており、車両2に着脱自在に装着可能である。はく離抑制部6は、例えば、トンネル区間の多い線区で車両2を運用する場合や、中間車両として編成中に組み込まれていた車両2が列車の切り離しによって先頭車両となる場合などには車両2に装着される。一方、はく離抑制部6は、例えば、トンネル区間の少ない線区で車両2を運用する場合や、車両2が中間車両として編成中に組み込まれる場合などには取り外される。はく離抑制部6は、例えば、アルミニウム、ステンレスなどの金属、アクリル樹脂などの合成樹脂、繊維強化プラスチック(FRP) 又は硬質ゴムなどによって形成されている。はく離抑制部6は、直線軌道又は曲線軌道上で車両2が静止したときに、この車両2の断面形状の外郭線が越えてはならない上下左右の限界(車両限界)内に配置されている。はく離抑制部6は、図1〜図5に示すように、ルーバー部7A,7Bと、図5に示す支持部8A,8Bなどを備えている。   1 to 5 guides the airflow F from the vehicle body end surface 3a of the vehicle 2 to the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d of the vehicle 2 so that the airflow from the head portion of the vehicle 2 can be obtained. This is the part that suppresses the separation of F. As shown in FIGS. 1 and 2, the peeling suppressing portion 6 is disposed on the upper side and both sides of the vehicle body end surface 3 a along the upper edge portion 3 f and the side edge portions 3 g and 3 h of the vehicle body end surface 3 a. It can be detachably attached to. For example, when the vehicle 2 is operated in a line section with many tunnel sections, or when the vehicle 2 incorporated during formation as an intermediate vehicle becomes the leading vehicle by separating the train, the separation suppressing unit 6 It is attached to. On the other hand, the separation suppressing unit 6 is removed, for example, when the vehicle 2 is operated in a line section with few tunnel sections, or when the vehicle 2 is incorporated as an intermediate vehicle during formation. The peeling suppressing portion 6 is formed of, for example, a metal such as aluminum or stainless steel, a synthetic resin such as an acrylic resin, fiber reinforced plastic (FRP), or hard rubber. The delamination suppressing unit 6 is disposed within the upper, lower, left, and right limits (vehicle limits) that should not exceed the outline of the cross-sectional shape of the vehicle 2 when the vehicle 2 is stationary on a straight or curved track. As shown in FIGS. 1 to 5, the peeling prevention unit 6 includes louver portions 7 </ b> A and 7 </ b> B and support portions 8 </ b> A and 8 </ b> B shown in FIG. 5.

図1、図2、図4及び図5(B)に示すルーバー部7Aは、車体側面3b,3cと内側フィン部7aとの間の間隙部Δ11に気流Fを通過させるとともに、内側フィン部7aと外側フィン部7bとの間の間隙部Δ12に気流Fを通過させる部分である。図1〜図3及び図5(A)に示すルーバー部7Bは、車体上面3dと内側フィン部7aとの間の間隙部Δ11に気流Fを通過させるとともに、内側フィン部7aと外側フィン部7bとの間の間隙部Δ12に気流Fを通過させる部分である。図1及び図2に示すように、ルーバー部7Aは車体端面3aの側縁部3g,3hに配置されており、ルーバー部7Bは車体端面3aの上縁部3fに配置されている。ルーバー部7Aは、車体端面3aの側縁部3g,3hに沿って2つに分割されて配置されており、車体3の腰部と側部とにそれぞれ対応して配置されている。ルーバー部7Bは、車体端面3aの上縁部3fに沿って3つに分割されて配置されており、車体3の両肩部及び中央部にそれぞれ対応して配置されている。ルーバー部7Aは、図5(B)に示す内側フィン部7aと、外側フィン部7bと、図1及び図2に示す透過部7cなどを備えている。ルーバー部7Bは、図5(A)に示す内側フィン部7dと、外側フィン部7eと、図1及び図2に示す透過部7fなどを備えている。図5(B)に示すルーバー部7Aは、図5(A)に示すルーバー部7Bとは異なり、車両限界内で比較的余裕のない外側フィン部7bの先端部を短縮し、車両限界内で比較的余裕のあるこの内側フィン部7aの先端部を延長して、気流Fのはく離抑制効果を向上させている。 1, 2, louver portion 7A shown in FIGS. 4 and FIG. 5 (B) is a vehicle body side 3b, together with the passing air flow F in the gap delta 11 between 3c and the inner fin portion 7a, the inner fin portions 7a and a portion which passes the airflow F into the gap portion delta 12 between the outer fin portion 7b. Louver portion 7B shown in FIGS. 1 to 3 and FIG. 5 (A), together with the passing air flow F in the gap delta 11 between the vehicle body upper surface 3d and the inner fin portion 7a, the inner fin portion 7a and the outer fin portion is a portion which passes the airflow F into the gap portion delta 12 between 7b. As shown in FIGS. 1 and 2, the louver portion 7A is disposed on the side edge portions 3g and 3h of the vehicle body end surface 3a, and the louver portion 7B is disposed on the upper edge portion 3f of the vehicle body end surface 3a. The louver portion 7A is divided into two along the side edge portions 3g and 3h of the vehicle body end surface 3a, and is arranged corresponding to the waist and side portions of the vehicle body 3, respectively. The louver portion 7B is divided into three pieces along the upper edge portion 3f of the vehicle body end surface 3a, and is arranged corresponding to both shoulder portions and the central portion of the vehicle body 3, respectively. The louver portion 7A includes an inner fin portion 7a shown in FIG. 5B, an outer fin portion 7b, a transmission portion 7c shown in FIGS. The louver portion 7B includes an inner fin portion 7d, an outer fin portion 7e shown in FIG. 5A, a transmission portion 7f shown in FIGS. Unlike the louver portion 7B shown in FIG. 5 (A), the louver portion 7A shown in FIG. 5 (B) shortens the front end portion of the outer fin portion 7b that has a relatively small margin within the vehicle limit, and within the vehicle limit. The distal end portion of the inner fin portion 7a having a relatively large margin is extended to improve the effect of suppressing the separation of the air flow F.

図1〜図5に示す内側フィン部7a,7dは、気流Fの向きを変える部分である。図4に示すように内側フィン部7aは、車体3と外側フィン部7bとの間に配置されており、図3に示すように内側フィン部7dは車体3と外側フィン部7eとの間に配置されている。内側フィン部7aは、図5(B)に示すように、車体端面3a側に湾曲する凹状湾曲面7g及び凸状湾曲面7hと、この凹状湾曲面7g及び凸状湾曲面7hの先端部から延びる平面7m,7nとを備える羽根板状の部材である。内側フィン部7aは、後端部から先端部に向かって車体端面3a側に湾曲する湾曲板(曲面板)部分と、この湾曲板部分から先端部に向かって伸びる平面板(平板)部分とによって一体に形成されている。内側フィン部7aは、車両2と対向する側の表面に凹状湾曲面7gとこの凹状湾曲面7gと連続する平面7mとを備えており、車両2と対向する側とは反対側の表面に凸状湾曲面7hとこの凸状湾曲面7hと連続する平面7nとを備えている。内側フィン部7dは、図5(A)に示すように、図5(B)に示す内側フィン部7aと同様の羽根板状の部材であり、車体端面3a側に湾曲する凹状湾曲面7g及び凸状湾曲面7hを備えているが、内側フィン部7aとは異なり平面7m,7nを備えていない。内側フィン部7a,7dは、外側フィン部7b,7eよりも長く形成されており、内側フィン部7aは内側フィン部7dとは異なり湾曲板部分の先端に平面板部分を延長したような形状に形成されている。内側フィン部7a,7dの先端部は、車体端面3a側に湾曲しており、車体端面3aよりも僅かに前方に突出している。内側フィン部7a,7dの後端部は、車体側面3b,3c側及び車体上面3d側に湾曲してこれらの表面と略平行に形成されており、これらの表面よりも僅かに突出している。   The inner fin portions 7 a and 7 d shown in FIGS. 1 to 5 are portions that change the direction of the airflow F. As shown in FIG. 4, the inner fin portion 7a is disposed between the vehicle body 3 and the outer fin portion 7b. As shown in FIG. 3, the inner fin portion 7d is disposed between the vehicle body 3 and the outer fin portion 7e. Is arranged. As shown in FIG. 5B, the inner fin portion 7a is formed from a concave curved surface 7g and a convex curved surface 7h that are curved toward the vehicle body end surface 3a, and from the tip of the concave curved surface 7g and the convex curved surface 7h. It is a blade-shaped member provided with the extended planes 7m and 7n. The inner fin portion 7a includes a curved plate (curved plate) portion that curves toward the vehicle body end surface 3a from the rear end portion toward the tip portion, and a flat plate (flat plate) portion that extends from the curved plate portion toward the tip portion. It is integrally formed. The inner fin portion 7a has a concave curved surface 7g on the surface facing the vehicle 2 and a flat surface 7m continuous with the concave curved surface 7g, and is convex on the surface opposite to the side facing the vehicle 2. A curved surface 7h and a flat surface 7n continuous with the convex curved surface 7h. As shown in FIG. 5A, the inner fin portion 7d is a blade-like member similar to the inner fin portion 7a shown in FIG. 5B, and has a concave curved surface 7g that curves toward the vehicle body end surface 3a side. Unlike the inner fin portion 7a, the convex curved surface 7h is not provided with the flat surfaces 7m and 7n. The inner fin portions 7a and 7d are formed longer than the outer fin portions 7b and 7e. Unlike the inner fin portion 7d, the inner fin portion 7a has a shape in which a flat plate portion is extended at the tip of the curved plate portion. Is formed. The front end portions of the inner fin portions 7a and 7d are curved toward the vehicle body end surface 3a, and protrude slightly forward from the vehicle body end surface 3a. The rear end portions of the inner fin portions 7a and 7d are curved toward the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d side, are formed substantially parallel to these surfaces, and slightly protrude from these surfaces.

図1〜図5に示す外側フィン部7b,7eは、内側フィン部7a,7dとの間で気流Fの向きを変える部分であり、図1及び図3〜図5に示すように内側フィン部7aの外側に所定の間隔をあけて配置されている。外側フィン部7b,7eは、図5に示すように、内側フィン部7a,7dと同様の羽根板状の部材であり、車体端面3a側に湾曲する凹状湾曲面7i及び凸状湾曲面7jを備えているが、内側フィン部7aとは異なり先端部が平面に形成されていない。外側フィン部7b,7eは、内側フィン部7a,7dと対向する側の表面に凹状湾曲面7iを備え、内側フィン部7a,7dと対向する側とは反対側の表面に凸状湾曲面7jを備えている。外側フィン部7b,7eの先端部は、車体端面3a側に湾曲しており、内側フィン部7a,7dの先端部よりも僅かに前方に突出している。外側フィン部7b,7eの後端部は、内側フィン部7aに沿って湾曲しており、この内側フィン部7a,7dの後端部よりも僅かに前方に突出している。   The outer fin portions 7b and 7e shown in FIGS. 1 to 5 are portions that change the direction of the air flow F between the inner fin portions 7a and 7d. As shown in FIGS. 1 and 3 to 5, the inner fin portions It is arranged outside the 7a with a predetermined interval. As shown in FIG. 5, the outer fin portions 7b and 7e are blade-like members similar to the inner fin portions 7a and 7d, and have a concave curved surface 7i and a convex curved surface 7j that are curved toward the vehicle body end surface 3a. However, unlike the inner fin portion 7a, the tip portion is not formed flat. The outer fin portions 7b and 7e have a concave curved surface 7i on the surface facing the inner fin portions 7a and 7d, and a convex curved surface 7j on the surface opposite to the side facing the inner fin portions 7a and 7d. It has. The front end portions of the outer fin portions 7b and 7e are curved toward the vehicle body end surface 3a, and slightly protrude forward from the front end portions of the inner fin portions 7a and 7d. The rear end portions of the outer fin portions 7b and 7e are curved along the inner fin portion 7a, and slightly protrude forward from the rear end portions of the inner fin portions 7a and 7d.

図1〜図3に示す透過部7c,7fは、車両2の運転者が外部を看視するための部分である。透過部7c,7fは、車両2の運転室内の乗務員が外部を看視可能なように、図1及び図2に示す前面窓3j及び側窓3kと対向する部分に形成されている。透過部7c,7fは、図1に示すように、ルーバー部7A,7Bが運転者の視界を遮らないように、運転者の視界領域内に形成された透明又は半透明な部分であり、図3に示すように透過部7cは内側フィン部7aの一部に形成されており、透過部7fは外側フィン部7bの一部に形成されている。透過部7c,7fは、例えば、ポリカーボネートなどの合成樹脂又は強化ガラスなどによって形成されている。   The transmission parts 7c and 7f shown in FIGS. 1 to 3 are parts for the driver of the vehicle 2 to watch the outside. The transmission parts 7c and 7f are formed in portions facing the front window 3j and the side window 3k shown in FIGS. 1 and 2 so that crew members in the cab of the vehicle 2 can see the outside. As shown in FIG. 1, the transmission parts 7c and 7f are transparent or translucent parts formed in the driver's field of view so that the louver parts 7A and 7B do not block the driver's field of view. 3, the transmission part 7c is formed in a part of the inner fin part 7a, and the transmission part 7f is formed in a part of the outer fin part 7b. The transmission parts 7c and 7f are made of, for example, a synthetic resin such as polycarbonate or tempered glass.

図5(B)に示す支持部8Aは、内側フィン部7a及び外側フィン部7bを車体3に支持する部分であり、図5(A)に示す支持部8Bは内側フィン部7d及び外側フィン部7eを車体3に支持する部分である。支持部8A,8Bは、図5に示すように、内側フィン部7a,7d及び外側フィン部7b,7eの長さ方向に所定の間隔をあけて複数配置されており、内側フィン部7a,7dと外側フィン部7b,7eとを連結するとともに、この外側フィン部7b,7eと車体3とを連結する。支持部8A,8Bは、上流側及び下流側の端部に丸みが付与されて両面が平坦な板状の部材であり、図示しないボルト又はねじなどの締結部材によって車体3に着脱自在に固定されている。   The support portion 8A shown in FIG. 5B is a portion that supports the inner fin portion 7a and the outer fin portion 7b on the vehicle body 3, and the support portion 8B shown in FIG. 5A is an inner fin portion 7d and an outer fin portion. 7e is a portion that supports the vehicle body 3. As shown in FIG. 5, a plurality of support portions 8A and 8B are arranged at predetermined intervals in the length direction of the inner fin portions 7a and 7d and the outer fin portions 7b and 7e, and the inner fin portions 7a and 7d. Are connected to the outer fin portions 7b and 7e, and the outer fin portions 7b and 7e are connected to the vehicle body 3. The support portions 8A and 8B are plate-like members with rounded ends on the upstream and downstream ends and flat on both sides, and are detachably fixed to the vehicle body 3 by fastening members such as bolts or screws (not shown). ing.

図1〜図5に示す誘導部9は、車両2の車体端面3aに向かう気流Fをはく離抑制部6に導く部分である。誘導部9は、車両2の車体端面3aよりも前側で気流Fを衝突させてこの衝突した気流Fをはく離抑制部6に導く。誘導部9は、図3〜図5に示すように、この誘導部9に衝突した気流Fがルーバー部7Aの内側フィン部7aとこの誘導部9との間の間隙部に向かうように、この衝突した気流Fを誘導する。誘導部9は、図1〜図4に示すように、車両2の車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車体端面3aから突出している。誘導部9は、車両2の車体端面3aに幅Wd1で配置されており、図1〜図3及び図5に示すようにこの車体端面3aから高さHd1だけ突出している。誘導部9は、図1、図3及び図5に示すように、この誘導部9に衝突した気流Fの向きを変えてこの衝突した気流Fをはく離抑制部6に誘導する。誘導部9は、図3〜図5に示すように、底面が略二等辺三角形状の柱状体の側面を車体端面3aに接合させるように配置した前面突起部である。誘導部9は、図1〜図4に示すように、車両2の長さ方向(X軸方向)にこの誘導部9の高さ方向が一致し、車両2の左右方向(Y軸方向)及び上下方向(Z軸方向)にこの誘導部9の幅方向が一致するように配置されている。誘導部9は、図3〜図5に示す傾斜面9a,9bと、先端部9cと、外側縁部9dと、内側縁部9eなどを備えている。 1 to 5 is a portion that guides the airflow F toward the vehicle body end surface 3a of the vehicle 2 to the separation suppressing unit 6. The guide unit 9 causes the air flow F to collide with the front side of the vehicle body end surface 3 a of the vehicle 2 and guides the collided air flow F to the separation suppressing unit 6. As shown in FIG. 3 to FIG. 5, the guide portion 9 is arranged so that the airflow F that has collided with the guide portion 9 is directed toward the gap between the inner fin portion 7 a of the louver portion 7 A and the guide portion 9. The collision air current F is guided. As shown in FIGS. 1 to 4, the guide portion 9 protrudes from the vehicle body end surface 3 a along the upper edge portion 3 f and the side edge portions 3 g and 3 h of the vehicle body end surface 3 a of the vehicle 2. The guide portion 9 is disposed on the vehicle body end surface 3a of the vehicle 2 with a width W d1 , and protrudes from the vehicle body end surface 3a by a height H d1 as shown in FIGS. 1 to 3 and 5. As shown in FIGS. 1, 3, and 5, the guiding unit 9 changes the direction of the airflow F that has collided with the guiding unit 9 and guides the collided airflow F to the separation suppressing unit 6. As shown in FIGS. 3 to 5, the guide portion 9 is a front projection that is arranged so that the side surface of a columnar body having a substantially isosceles triangular bottom surface is joined to the vehicle body end surface 3 a. As shown in FIGS. 1 to 4, the guide portion 9 has a height direction of the guide portion 9 that matches the length direction (X-axis direction) of the vehicle 2, and the left-right direction (Y-axis direction) of the vehicle 2 and It arrange | positions so that the width direction of this guidance | induction part 9 may correspond with an up-down direction (Z-axis direction). The guide portion 9 includes inclined surfaces 9a and 9b, a tip end portion 9c, an outer edge portion 9d, an inner edge portion 9e, and the like shown in FIGS.

図3〜図5に示す傾斜面9aは、車両2の車体端面3aの前方からこの車両2の車体端面3aの上縁部3f及び側縁部3g,3hに向かって傾斜する部分である。傾斜面9bは、車両2の車体端面3aの前方から傾斜面9aとは反対側に向かって傾斜する部分である。傾斜面9a,9bは、図1及び図2に示すように、略均一な幅Wd1及び高さHd1の長板状の部材であり、表面が円弧面又は平坦面に形成されており、曲率半径の大きな凸状に湾曲する曲面又は略一定角度で傾斜する平面である。傾斜面9a,9bは、図3〜図5に示すように、垂直面及び水平面で切断したときの断面形状が山形であり、同一形状の2つの直角三角形の短辺同士を接合した大三角形である。傾斜面9a,9bは、車体端面3aの上縁部3f及び側縁部3g,3hに沿って連続して幅Wd1及び高さHd1で形成されている。傾斜面9a,9bは、幅Wd1が50 mm未満であるとはく離抑制部6に気流Fを誘導する効果が低減し、この幅Wd1が300mmを越えると大型化してしまうため、この幅Wd1が50〜300mmの範囲内に設定されている。傾斜面9a,9bは、高さHd1が20mm未満であるとはく離抑制部6に気流Fを誘導する効果が低減し、この高さHd1が100mmを越えると車両2の車両限界を超えてしまうため、この高さHd1が20〜100mmの範囲内に設定されている。 The inclined surface 9a shown in FIGS. 3 to 5 is a portion inclined from the front of the vehicle body end surface 3a of the vehicle 2 toward the upper edge portion 3f and the side edge portions 3g, 3h of the vehicle body end surface 3a of the vehicle 2. The inclined surface 9b is a portion that is inclined from the front of the vehicle body end surface 3a of the vehicle 2 toward the side opposite to the inclined surface 9a. Inclined surfaces 9a, 9b, as shown in FIGS. 1 and 2, a long plate-like member having a substantially uniform width W d1 and a height H d1, and the surface is formed in an arc face or a flat surface, A curved surface curved in a convex shape with a large curvature radius or a plane inclined at a substantially constant angle. As shown in FIGS. 3 to 5, the inclined surfaces 9a and 9b are large triangles in which the cross-sectional shape when cut along the vertical plane and the horizontal plane is a mountain shape, and the short sides of two right-angled triangles having the same shape are joined together. is there. The inclined surfaces 9a and 9b are continuously formed with a width W d1 and a height H d1 along the upper edge portion 3f and the side edge portions 3g and 3h of the vehicle body end surface 3a. If the width W d1 is less than 50 mm, the inclined surfaces 9a and 9b have a reduced effect of inducing the air flow F to the separation suppressing portion 6, and the width W d1 exceeds 300 mm. d1 is set within the range of 50 to 300 mm. If the height H d1 is less than 20 mm, the inclined surfaces 9 a and 9 b reduce the effect of inducing the air flow F to the separation suppressing portion 6, and if the height H d1 exceeds 100 mm, it exceeds the vehicle limit of the vehicle 2. Therefore, the height H d1 is set within a range of 20 to 100 mm.

図5に示す先端部9cは、傾斜面9a,9bの頂部である。先端部9cは、傾斜面9aと傾斜面9bとが交わる部分に形成されており、この傾斜面9a,9bと連続し滑らかに接合している。先端部9cは、垂直面及び水平面で切断したときの断面形状が円形、楕円形又は鈍角状に形成されている。外側縁部9dは、車体端面3aの上縁部3f及び側縁部3g,3hと接合する部分である。外側縁部9dは、傾斜面9aの外側端部に形成されており、上縁部3f及び側縁部3g,3hと一致している。外側縁部9dは、図3及び図4に示すように、上縁部3f及び側縁部3g,3hとの間に段差部が形成されないように、車両2の車体側面3b,3c及び車体上面3dと同一高さ(面一)でこの車体側面3b,3c及び車体上面3dと連続し滑らかに接合している。内側縁部9eは、車両2の車体端面3aと接合する部分であり、傾斜面9bの内側端部に形成されている。   The tip portion 9c shown in FIG. 5 is the top of the inclined surfaces 9a and 9b. The front end portion 9c is formed at a portion where the inclined surface 9a and the inclined surface 9b intersect, and is continuous and smoothly joined to the inclined surfaces 9a and 9b. The distal end portion 9c has a circular, elliptical, or obtuse angle in cross section when cut along a vertical plane and a horizontal plane. The outer edge portion 9d is a portion joined to the upper edge portion 3f and the side edge portions 3g and 3h of the vehicle body end surface 3a. The outer edge 9d is formed at the outer end of the inclined surface 9a and coincides with the upper edge 3f and the side edges 3g and 3h. As shown in FIGS. 3 and 4, the outer edge portion 9 d is formed on the vehicle body side surfaces 3 b and 3 c and the vehicle body upper surface so that no stepped portion is formed between the upper edge portion 3 f and the side edge portions 3 g and 3 h. The vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d are continuously and smoothly joined at the same height (level) as 3d. The inner edge portion 9e is a portion joined to the vehicle body end surface 3a of the vehicle 2, and is formed at the inner end portion of the inclined surface 9b.

次に、この発明の第1実施形態に係る移動体の気流はく離抑制構造の作用を説明する。
例えば、図1〜図5に示すはく離抑制部6及び誘導部9が存在しない状態で車両2がX軸方向に走行すると、車体端面3aに衝突した気流Fがこの車体端面3aの上縁部3f及び側縁部3g,3hからはく離して、車体側面3b,3c及び車体上面3dの前端部から車両2の進行方向後側(下流側)に離れた位置でこのはく離した気流Fが再付着する。このため、車体端面3aからの気流Fのはく離によって車両2の先頭部の見かけの断面積が増加し、トンネルなどの固定構造物内に車両2が突入するときに発生する圧力変動が増大する。
Next, the operation of the air flow separation suppressing structure of the moving body according to the first embodiment of the present invention will be described.
For example, when the vehicle 2 travels in the X-axis direction without the separation suppressing unit 6 and the guide unit 9 shown in FIGS. 1 to 5, the airflow F that has collided with the vehicle body end surface 3 a becomes the upper edge portion 3 f of the vehicle body end surface 3 a. The airflow F separated from the front edge portions of the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d is separated from the side edge portions 3g and 3h and repositioned at the rear side (downstream side) of the vehicle 2 in the traveling direction. . For this reason, the apparent cross-sectional area of the leading portion of the vehicle 2 increases due to the separation of the air flow F from the vehicle body end surface 3a, and the pressure fluctuation generated when the vehicle 2 enters the fixed structure such as a tunnel increases.

一方、図1〜図5に示すはく離抑制部6及び誘導部9が存在する状態で車両2がX軸方向に走行すると、車体端面3aに衝突した気流Fが誘導部9によってはく離抑制部6に導かれるとともに、この誘導部9に衝突した気流Fもこの誘導部9によってはく離抑制部6に導かれる。誘導部9によってはく離抑制部6に気流Fが導かれると、車体側面3b,3c及び車体上面3dと内側フィン部7a,7dとの間の間隙部Δ11を気流Fが通過するとともに、内側フィン部7a,7dと外側フィン部7b,7eとの間の間隙部Δ12を気流Fが通過する。このため、車体端面3aから車体側面3b,3c及び車体上面3dに気流Fが導かれて、これらの表面に沿って気流Fが流れる。気流Fが車体端面3aに衝突すると、車体端面3aに衝突した気流Fが誘導部9の傾斜面9bによって止められて、この車体端面3aの前方に圧力の高い領域が形成される。このため、この圧力の高い領域に衝突した気流Fが誘導部9の傾斜面9aによってはく離抑制部6に導かれてこの気流Fが車体端面3aからはく離するのが抑制される。その結果、車体端面3aに衝突した気流Fがはく離して車両2の先頭部の見かけの断面積が増大するのを抑制し、トンネルなどの固定構造物内に車両2が突入するときに発生する圧力変動が低減される。 On the other hand, when the vehicle 2 travels in the X-axis direction in the presence of the separation suppressing unit 6 and the guiding unit 9 shown in FIGS. 1 to 5, the airflow F that has collided with the vehicle body end surface 3 a is transferred to the separation suppressing unit 6 by the guiding unit 9. At the same time, the air flow F colliding with the guiding portion 9 is also guided to the separation suppressing portion 6 by the guiding portion 9. When the airflow F is guided to the peeling suppressing portion 6 by the induction unit 9, the vehicle body side 3b, 3c and the vehicle body upper surface 3d and the inner fin portion 7a, a gap delta 11 with the air flow F passes between 7d, inner fins parts 7a, 7d and the outer fin portion 7b, airflow F a gap delta 12 between the 7e passes. For this reason, the airflow F is guided from the vehicle body end surface 3a to the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d, and the airflow F flows along these surfaces. When the airflow F collides with the vehicle body end surface 3a, the airflow F that collides with the vehicle body end surface 3a is stopped by the inclined surface 9b of the guide portion 9, and a high pressure region is formed in front of the vehicle body end surface 3a. For this reason, the airflow F colliding with this high pressure region is guided to the separation suppressing portion 6 by the inclined surface 9a of the guiding portion 9, and the separation of the airflow F from the vehicle body end surface 3a is suppressed. As a result, the airflow F that has collided with the vehicle body end surface 3a is prevented from peeling off and the apparent cross-sectional area of the leading portion of the vehicle 2 is prevented from increasing, and this occurs when the vehicle 2 enters a fixed structure such as a tunnel. Pressure fluctuation is reduced.

この発明の第1実施形態に係る移動体の気流はく離抑制構造には、以下に記載するような効果がある。
(1) この第1実施形態では、車両2の車体端面3aからこの車両2の車体側面3b,3c及び車体上面3dに気流Fを導くことによって、この車両2の先頭部からの気流Fのはく離をはく離抑制部6が抑制し、この車体端面3aに向かう気流Fをこのはく離抑制部6に誘導部9が導く。このため、はく離抑制部6のみを設置しただけではこの車体端面3aからの気流Fのはく離を十分に抑制できないようなときに、誘導部9によって気流Fをはく離抑制部6に簡単に導くことができる。
The air flow separation suppressing structure of the moving body according to the first embodiment of the present invention has the following effects.
(1) In the first embodiment, the air flow F is separated from the head portion of the vehicle 2 by guiding the air flow F from the vehicle body end surface 3a of the vehicle 2 to the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d. The peeling suppression unit 6 suppresses, and the guide portion 9 guides the airflow F toward the vehicle body end surface 3 a to the peeling suppression unit 6. For this reason, when the separation of the airflow F from the vehicle body end surface 3a cannot be sufficiently suppressed only by installing only the separation suppressing unit 6, the airflow F can be easily guided to the separation suppressing unit 6 by the guide unit 9. it can.

(2) この第1実施形態では、車両2の車体端面3aよりも前側で気流Fを衝突させてこの衝突した気流Fをはく離抑制部6に誘導部9が導く。このため、車両2の車体端面3aに向かう気流Fをはく離抑制部6に簡単に導くことができ、この車体端面3aからの気流Fのはく離を抑制することができる。 (2) In the first embodiment, the air flow F collides with the front side of the vehicle body end surface 3 a of the vehicle 2, and the guiding unit 9 guides the collided air flow F to the separation suppressing unit 6. For this reason, the airflow F toward the vehicle body end surface 3a of the vehicle 2 can be easily guided to the separation suppressing unit 6, and the separation of the airflow F from the vehicle body end surface 3a can be suppressed.

(3) この第1実施形態では、車両2の車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車体端面3aから誘導部9が突出する。このため、誘導部9に気流Fを衝突させて、この衝突した気流Fをこの誘導部9によってはく離抑制部6に導き、車体側面3b,3c及び車体上面3dにこの衝突した気流Fを簡単に導くことができる。 (3) In the first embodiment, the guide portion 9 protrudes from the vehicle body end surface 3a along the upper edge portion 3f and the side edge portions 3g and 3h of the vehicle body end surface 3a of the vehicle 2. For this reason, the airflow F is caused to collide with the guiding portion 9, the collided airflow F is guided to the separation suppressing portion 6 by the guiding portion 9, and the airflow F that has collided with the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d can be easily obtained. Can lead.

(4) この第1実施形態では、車両2の車体端面3aの前方からこの車体端面3aの上縁部3f及び側縁部3g,3hに向かって傾斜する傾斜面9aを誘導部9が備えている。このため、誘導部9に衝突した気流Fを傾斜面9aによってはく離抑制部6に簡単に導くことができる。その結果、車体端面3aから気流Fがはく離するのを抑制して、車両2の先頭部の見かけの断面積が増大するのを抑制し、トンネル微気圧波の発生を低減することができる。 (4) In the first embodiment, the guide portion 9 includes the inclined surface 9a that is inclined from the front of the vehicle body end surface 3a of the vehicle 2 toward the upper edge portion 3f and the side edge portions 3g, 3h of the vehicle body end surface 3a. Yes. For this reason, the airflow F which collided with the guidance | induction part 9 can be easily guide | induced to the peeling suppression part 6 by the inclined surface 9a. As a result, it is possible to suppress the separation of the air flow F from the vehicle body end surface 3a, to suppress an increase in the apparent cross-sectional area of the front portion of the vehicle 2, and to reduce the generation of tunnel micro-pressure waves.

(5) この第1実施形態では、水平面及び垂直面で切断したときの誘導部9の断面形状が山形である。このため、簡単な構造の誘導部9によって車体端面3aからの気流Fのはく離を抑制することができるとともに、車両2の外観が大きく変化することがなく車両2の美観が損ねられるのを防ぐことができる。 (5) In this 1st Embodiment, the cross-sectional shape of the guidance | induction part 9 when it cut | disconnects by a horizontal surface and a perpendicular surface is a mountain shape. For this reason, it is possible to suppress the separation of the air flow F from the vehicle body end surface 3a by the guide portion 9 having a simple structure, and to prevent the appearance of the vehicle 2 from being spoiled without greatly changing the appearance of the vehicle 2. Can do.

(6) この第1実施形態では、車両2の車体側面3b,3c及び車体上面3dと内側フィン部7aとの間の間隙部Δ11にルーバー部7A,7Bが気流Fを通過させるととともに、この内側フィン部7aと外側フィン部7bとの間の間隙部Δ12にこのルーバー部7A,7Bが気流Fを通過させる。このため、車体端面3aに衝突した気流Fがはく離するのを抑制して、車両2の空気抵抗を低減することができるとともに、車両2の先頭部の見かけの断面積が増大するのを抑制して、トンネル微気圧波の発生を低減することができる。また、車体3に作用する繰り返し荷重によって発生する車体構造疲労を低減することができるとともに、気圧変動に起因して車体3内の乗客に発生する耳つん現象を低減することができる。 (6) In the first embodiment, the vehicle body side 3b of the vehicle 2, the gap delta 11 louver portion 7A between 3c and the vehicle body upper surface 3d and the inner fin portion 7a, together with the 7B is passing airflow F, the louver portions 7A the gap delta 12 between the inner fin portion 7a and the outer fin portion 7b, 7B is to pass air flow F. For this reason, it is possible to reduce the air resistance of the vehicle 2 by suppressing the air flow F that has collided with the vehicle body end surface 3a, and to suppress an increase in the apparent cross-sectional area of the front portion of the vehicle 2. Thus, generation of tunnel micro-pressure waves can be reduced. In addition, it is possible to reduce vehicle body structural fatigue caused by repeated loads acting on the vehicle body 3, and to reduce the pinching phenomenon that occurs in passengers in the vehicle body 3 due to fluctuations in atmospheric pressure.

(7) この第1実施形態では、車両2の車体端面3a側に湾曲する凸状湾曲面7h,7iを内側フィン部7a及び外側フィン部7bが備えている。このため、誘導部9によって導かれた気流Fを凸状湾曲面7h,7iによって車体側面3b,3c及び車体上面3dに簡単に導くことができる。 (7) In the first embodiment, the inner fin portion 7a and the outer fin portion 7b are provided with convex curved surfaces 7h and 7i that are curved toward the vehicle body end surface 3a of the vehicle 2. For this reason, the airflow F guided by the guiding portion 9 can be easily guided to the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d by the convex curved surfaces 7h and 7i.

(8) この第1実施形態では、車両2の車体端面3aが切妻形状である。このため、車両2の車体端面3aが角断面先頭部の切妻形状であって、はく離抑制部6のみを設置しただけではこの車体端面3aからの気流Fのはく離を十分に抑制できないときに、誘導部9によって気流Fをはく離抑制部6に簡単に導くことができる。 (8) In the first embodiment, the vehicle body end surface 3a of the vehicle 2 has a gable shape. For this reason, when the vehicle body end surface 3a of the vehicle 2 has a gable shape at the head of the square cross section and only the separation suppressing portion 6 is installed, the separation of the air flow F from the vehicle body end surface 3a cannot be sufficiently suppressed. The air flow F can be easily guided to the separation suppressing unit 6 by the unit 9.

(第2実施形態)
以下では、図1〜図5に示す部分と同一の部分については、同一の番号を付して詳細な説明を省略する。
図6〜図10に示すはく離抑制部6は、フィン部10A,10Bと支持部11A,11Bなどを備えている。図6〜図8及び図10(B)に示すフィン部10Aは、車体側面3b,3cとの間の間隙部Δ2に気流Fを通過させる部分である。図6、図7、図9及び図10(A)に示すフィン部10Bは、車体上面3dとの間の間隙部Δ2に気流Fを通過させる部分である。フィン部10A,10Bは、図5に示す内側フィン部7a,7d及び外側フィン部7b,7eと同様の羽根板状の部材である。フィン部10Aは、図1〜図3に示す透過部7c,7dと同様の図6及び図7に示す透過部10cと、図5(B)に示す凹状湾曲面7g及び凸状湾曲面7hと同様の図10(B)に示す凹状湾曲面10g及び凸状湾曲面10hを備えている。フィン部10Bは、図5(A)に示す凹状湾曲面7g、凸状湾曲面7h及び平面7m,7nと同様の図10(A)に示す凹状湾曲面10g、凸状湾曲面10h及び平面10m,10nを備えている。フィン部10A,10Bの先端部は、図5に示すように、車体端面3a側に湾曲しており、車体端面3aよりも僅かに前方に突出している。フィン部10A,10Bの後端部は、車体側面3b,3c側及び車体上面3d側に湾曲してこれらの表面と略平行に形成されており、これらの表面よりも僅かに突出している。支持部11Aは、フィン部10Aを車体3に支持する部分であり、支持部11Bはフィン部10Bを車体3に支持する部分である。支持部11A,11Bは、図5に示す支持部8A,8Bと同様に、フィン部10A,10Bの長さ方向に所定の間隔をあけて複数配置されており、フィン部10A,10Bと車体3とを連結する。支持部11A,11Bは、上流側及び下流側の端部に丸みが付与されて両面が平坦な板状の部材であり、図示しないボルト又はねじなどの締結部材によって車体3に着脱自在に固定されている。
(Second Embodiment)
In the following, the same parts as those shown in FIGS. 1 to 5 are denoted by the same reference numerals and detailed description thereof is omitted.
6 to 10 includes fin portions 10A and 10B, support portions 11A and 11B, and the like. Fin portion 10A shown in FIGS. 6 to 8 and FIG. 10 (B), a portion passing the air flow F in the gap delta 2 between the vehicle body side surface 3b, 3c. 6, a fin portion 10B shown in FIG. 7, 9 and 10 (A) is a part which passes the airflow F in the gap delta 2 between the vehicle body upper surface 3d. The fin portions 10A and 10B are blade plate-like members similar to the inner fin portions 7a and 7d and the outer fin portions 7b and 7e shown in FIG. The fin portion 10A includes a transmissive portion 10c shown in FIGS. 6 and 7 similar to the transmissive portions 7c and 7d shown in FIGS. 1 to 3, a concave curved surface 7g and a convex curved surface 7h shown in FIG. A concave curved surface 10g and a convex curved surface 10h shown in FIG. The fin portion 10B has a concave curved surface 10g, a convex curved surface 10h, and a flat surface 10m shown in FIG. 10A similar to the concave curved surface 7g, the convex curved surface 7h, and the flat surfaces 7m, 7n shown in FIG. , 10n. As shown in FIG. 5, the tip portions of the fin portions 10A and 10B are curved toward the vehicle body end surface 3a, and slightly protrude forward from the vehicle body end surface 3a. The rear end portions of the fin portions 10A, 10B are curved toward the vehicle body side surfaces 3b, 3c and the vehicle body upper surface 3d side, are formed substantially parallel to these surfaces, and slightly protrude from these surfaces. The support portion 11A is a portion that supports the fin portion 10A on the vehicle body 3, and the support portion 11B is a portion that supports the fin portion 10B on the vehicle body 3. As with the support portions 8A and 8B shown in FIG. 5, the support portions 11A and 11B are arranged in a plurality at predetermined intervals in the length direction of the fin portions 10A and 10B, and the fin portions 10A and 10B and the vehicle body 3 are arranged. And The support portions 11A and 11B are plate-like members that are rounded at the upstream and downstream ends and are flat on both sides, and are detachably fixed to the vehicle body 3 by fastening members such as bolts or screws (not shown). ing.

次に、この発明の第2実施形態に係る移動体の気流はく離抑制構造の作用を説明する。
図6〜図9に示す状態で車両2がX軸方向に高速で走行すると、車体端面3aに衝突した気流Fが誘導部9によってはく離抑制部6に導かれるとともに、この誘導部9に衝突した気流Fもこの誘導部9によってはく離抑制部6に導かれる。誘導部9によってはく離抑制部6に気流Fが導かれると、車体側面3b,3c及び車体上面3dとフィン部10A,10Bとの間の間隙部Δ2を通過する。このため、車体端面3aから車体側面3b,3c及び車体上面3dに気流Fが導かれて、これらの表面に沿って気流Fが流れる。その結果、車体端面3aに衝突した気流Fがはく離して車両2の先頭部の見かけの断面積が増大するのを抑制し、トンネルなどの固定構造物内に車両2が突入するときに発生する圧力変動が低減される。
Next, the effect | action of the airflow separation suppression structure of the moving body which concerns on 2nd Embodiment of this invention is demonstrated.
When the vehicle 2 travels at a high speed in the X-axis direction in the state shown in FIGS. 6 to 9, the airflow F colliding with the vehicle body end surface 3 a is guided to the separation suppressing unit 6 by the guiding unit 9 and collides with the guiding unit 9. The air flow F is also guided to the separation suppressing unit 6 by the guide unit 9. When the airflow F is guided to the peeling suppressing portion 6 by the induction unit 9, it passes through the vehicle body side 3b, 3c and the vehicle body upper surface 3d and the fin portion 10A, the gap delta 2 between 10B. For this reason, the airflow F is guided from the vehicle body end surface 3a to the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d, and the airflow F flows along these surfaces. As a result, the airflow F that has collided with the vehicle body end surface 3a is prevented from peeling off and the apparent cross-sectional area of the leading portion of the vehicle 2 is prevented from increasing, and this occurs when the vehicle 2 enters a fixed structure such as a tunnel. Pressure fluctuation is reduced.

この発明の第2実施形態に係る移動体の気流はく離抑制構造には、第1実施形態効果に加えて、以下に記載するような効果がある。
(1) この第2実施形態では、車両2の車体側面3b,3c及び車体上面3dとの間の間隙部Δ2に気流Fを通過させるフィン部10A,10Bをはく離抑制部6が備えている。このため、図1〜図5に示す内側フィン部7a,7d及び外側フィン部7b,7eを備えるルーバー部7A,7Bに比べて、気流Fのはく離抑制効果を維持しつつはく離抑制部6の構造を簡単にすることができる。このため、例えば、一方の車両2と他方の車両2とが連結された状態で曲線を走行する場合に、一方の車両2側のはく離抑制部6と他方の車両2側のはく離抑制部6とが干渉するのを防ぐことができる。
In addition to the effects of the first embodiment, the airflow separation suppressing structure for a moving body according to the second embodiment of the present invention has the effects described below.
(1) In the second embodiment, a fin portion 10A to pass the airflow F, and 10B peeling suppressing portion 6 is provided with the gap delta 2 between the vehicle body side surface 3b, 3c and the vehicle body upper surface 3d of the vehicle 2 . Therefore, as compared with the louver portions 7A and 7B including the inner fin portions 7a and 7d and the outer fin portions 7b and 7e shown in FIGS. 1 to 5, the structure of the separation suppressing portion 6 while maintaining the separation suppressing effect of the air flow F. Can be easy. For this reason, for example, when traveling along a curve in a state where one vehicle 2 and the other vehicle 2 are connected, the separation suppressing unit 6 on one vehicle 2 side and the separation suppressing unit 6 on the other vehicle 2 side Can be prevented from interfering.

(2) この第2実施形態では、車両2の車体端面3aに湾曲する凸状湾曲面10hをフィン部10A,10Bが備えている。このため、誘導部9によって導かれた気流Fを凸状湾曲面10hによって車体側面3b,3c及び車体上面3dに簡単に導くことができる。 (2) In the second embodiment, the fin portions 10A and 10B are provided with convex curved surfaces 10h that are curved on the vehicle body end surface 3a of the vehicle 2. For this reason, the airflow F guided by the guiding portion 9 can be easily guided to the vehicle body side surfaces 3b and 3c and the vehicle body upper surface 3d by the convex curved surface 10h.

(第3実施形態)
図11〜図13に示す誘導部9は、ルーバー部7A,7Bと車体3との間に配置されている。誘導部9は、図11〜図13に示すように、車両2の車体端面3aに幅Wd2(例えばWd2=Wd1/2)で配置されており、この車体端面3aから高さHd1だけ突出している。図11〜図13に示す誘導部9は、図1〜図10に示す誘導部9と同様に、車両2の車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車両2の車体端面3aに幅Wd2で配置されており、この車体端面3aから高さHd1だけ突出している。誘導部9は、底面が略直角三角形状の柱状体の側面を車体端面3aに接合させるように配置した前面突起部である。誘導部9は、車両2の長さ方向(X軸方向)にこの誘導部9の高さ方向が一致し、車両2の左右方向(Y軸方向)及び上下方向(Z軸方向)にこの誘導部9の幅方向が一致するように配置されている。誘導部9は、図13に示すように、図5及び図10に示す誘導部9の傾斜面9bと内側縁部9eとを備えておらず、外側縁部9dとは反対側に車体端面3aに対して略垂直に形成された平坦面9fを備えている。誘導部9は、図11〜図13に示すように、水平面及び垂直面で切断したときの断面形状が山形であり、図5及び図10に示す誘導部9を先端部9cで1/2に切断したような半大三角形に形成されている。この第3実施形態には、第1実施形態及び第2実施形態と同様の効果がある。
(Third embodiment)
11 to 13 is arranged between the louver portions 7A and 7B and the vehicle body 3. As shown in FIGS. 11 to 13, the guide portion 9 is disposed on the vehicle body end surface 3 a of the vehicle 2 with a width W d2 (for example, W d2 = W d1 / 2), and has a height H d1 from the vehicle body end surface 3 a. Only protruding. The guiding part 9 shown in FIGS. 11 to 13 is similar to the guiding part 9 shown in FIGS. 1 to 10 in the vehicle 2 along the upper edge 3f and the side edges 3g and 3h of the vehicle body end surface 3a. The vehicle body end surface 3a is disposed with a width W d2 and protrudes from the vehicle body end surface 3a by a height H d1 . The guide portion 9 is a front projection that is arranged so that the side surface of the columnar body whose bottom surface is substantially a right triangle shape is joined to the vehicle body end surface 3a. The guiding portion 9 has a height direction of the guiding portion 9 that matches the length direction (X-axis direction) of the vehicle 2, and the guiding portion 9 is guided in the left-right direction (Y-axis direction) and the vertical direction (Z-axis direction) of the vehicle 2. It arrange | positions so that the width direction of the part 9 may correspond. As shown in FIG. 13, the guide portion 9 does not include the inclined surface 9b and the inner edge portion 9e of the guide portion 9 shown in FIGS. 5 and 10, and the vehicle body end surface 3a is on the opposite side of the outer edge portion 9d. Is provided with a flat surface 9f formed substantially perpendicular thereto. As shown in FIGS. 11 to 13, the guide portion 9 has a mountain shape in cross section when cut along a horizontal plane and a vertical plane, and the guide portion 9 shown in FIGS. 5 and 10 is halved at the tip end portion 9 c. It is formed in a semi-large triangle that is cut. The third embodiment has the same effects as the first embodiment and the second embodiment.

(第4実施形態)
図14〜図16に示す誘導部9は、図11〜図13に示す誘導部9と同一形状であり、図6〜図10に示すフィン部10A,10Bと車体3との間に配置されている。図14〜図16に示す誘導部9は、図11〜図13に示す誘導部9と同様に、車両2の車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車両2の車体端面3aに幅Wd2で配置されており、この車体端面3aから高さHd1だけ突出している。この第4実施形態には、第1実施形態〜第3実施形態と同様の効果がある。
(Fourth embodiment)
14 to 16 has the same shape as that of the guide portion 9 shown in FIGS. 11 to 13, and is arranged between the fin portions 10 </ b> A and 10 </ b> B and the vehicle body 3 shown in FIGS. 6 to 10. Yes. 14 to 16 is similar to the guide portion 9 shown in FIGS. 11 to 13 in that the vehicle 2 extends along the upper edge portion 3f and the side edge portions 3g and 3h of the vehicle body end surface 3a. The vehicle body end surface 3a is disposed with a width W d2 and protrudes from the vehicle body end surface 3a by a height H d1 . The fourth embodiment has the same effects as the first to third embodiments.

(第5実施形態)
図17〜図19に示す誘導部9は、ルーバー部7A,7Bと車体3との間に配置されている。誘導部9は、車両2の車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車両2の車体端面3aに幅Wd2で配置されており、この車体端面3aから高さHd1だけ突出している。誘導部9は、平板を鋭角に折り曲げて車体端面3aと接合する側の表面を平坦面に形成しこの車体端面3aと接合する側とは反対側の表面を傾斜面又は平坦面に形成した前面突起部である。傾斜面9aは、略均一な厚さ及び幅Wd2の長板状の曲面又は平面である。傾斜面9aは、図17及び図18に示すように、垂直面及び水平面で切断したときの断面形状が山形であり、略V字形の鋭角部の先端を上縁部3f及び側縁部3g,3hと一致させた大V字形である。傾斜面9aは、車体端面3aの上縁部3f及び側縁部3g,3hに沿って連続して幅Wd2及び高さHd1で形成されている。先端部9cは、傾斜面9aの上端部に形成されており、車体端面3aとの間に間隔をあけて配置されている。先端部9cは、垂直面及び水平面で切断したときの断面形状が円形又は楕円形に形成されており、空気抵抗を低減するための丸み部を備えている。この第5実施形態には、第1実施形態〜第4実施形態と同様の効果がある。
(Fifth embodiment)
17 to 19 is disposed between the louver portions 7A and 7B and the vehicle body 3. The guide portion 9 is disposed on the vehicle body end surface 3a of the vehicle 2 along the upper edge portion 3f and side edge portions 3g and 3h of the vehicle body end surface 3a with a width W d2 , and has a height from the vehicle body end surface 3a. Only H d1 protrudes. The guide portion 9 is a front surface in which a flat plate is bent at an acute angle to form a flat surface on the side joined to the vehicle body end surface 3a, and a surface opposite to the side joined to the vehicle body end surface 3a is formed on an inclined surface or a flat surface. It is a protrusion. The inclined surface 9a are substantially long plate-like curved surface or plane of a uniform thickness and width W d2. As shown in FIGS. 17 and 18, the inclined surface 9a has a mountain shape in cross section when cut by a vertical surface and a horizontal surface, and the tip of the substantially V-shaped acute angle portion has an upper edge portion 3f and side edge portions 3g, It is a large V-shape matched with 3h. The inclined surface 9a is formed with a width W d2 and a height H d1 continuously along the upper edge portion 3f and the side edge portions 3g, 3h of the vehicle body end surface 3a. The front end portion 9c is formed at the upper end portion of the inclined surface 9a, and is disposed with a space between the front end portion 9c and the vehicle body end surface 3a. The distal end portion 9c has a circular or oval cross-sectional shape when cut along a vertical plane and a horizontal plane, and includes a round portion for reducing air resistance. The fifth embodiment has the same effects as those of the first to fourth embodiments.

(第6実施形態)
図20〜図22に示す誘導部9は、図17〜図19に示す誘導部9と同一形状であり、図6〜図10に示すフィン部10A,10Bと車体3との間に配置されている。図20〜図22に示す誘導部9は、図17〜図19に示す誘導部9と同様に、車両2の車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車両2の車体端面3aに幅Wd2で配置されており、この車体端面3aから高さHd1だけ突出している。この第6実施形態には、第1実施形態〜第5実施形態と同様の効果がある。
(Sixth embodiment)
The guiding part 9 shown in FIGS. 20 to 22 has the same shape as the guiding part 9 shown in FIGS. 17 to 19 and is arranged between the fin parts 10A and 10B and the vehicle body 3 shown in FIGS. Yes. 20 to 22 is similar to the guide portion 9 shown in FIGS. 17 to 19 in that the vehicle 2 extends along the upper edge portion 3f and the side edge portions 3g and 3h of the vehicle body end surface 3a. The vehicle body end surface 3a is disposed with a width W d2 and protrudes from the vehicle body end surface 3a by a height H d1 . The sixth embodiment has the same effects as those of the first to fifth embodiments.

(第7実施形態)
図23に示す誘導部9は、図1〜図5、図11〜図13及び図17〜図19に示すルーバー部7A,7Bと車体3との間に配置されるとともに、図6〜図10、図14〜図16及び図20〜図22に示すフィン部10A,10Bと車体3との間に配置される。図23示す誘導部9は、図1〜図22に示す誘導部9と同様に、車両2の車体端面3aの上縁部3f及び側縁部3g,3hに沿ってこの車両2の車体端面3aに幅Wd!,Wd2で配置されており、この車体端面3aから高さHd2だけ突出している。
(Seventh embodiment)
23 is arranged between the louver portions 7A and 7B and the vehicle body 3 shown in FIGS. 1 to 5, FIGS. 11 to 13 and FIGS. 17 to 19, and FIGS. 14 to 16 and 20 to 22 are disposed between the fin portions 10A and 10B and the vehicle body 3. 23 is similar to the guide portion 9 shown in FIGS. 1 to 22, the vehicle body end surface 3 a of the vehicle 2 along the upper edge portion 3 f and the side edge portions 3 g and 3 h of the vehicle body end surface 3 a of the vehicle 2. And W d2 , W d2 , and protrudes from the end face 3a of the vehicle body by a height H d2 .

図23(A)に示す傾斜面9a,9bは、図5及び図10に示す傾斜面9a,9bと同一の幅Wd1であるが、図5及び図10に示す傾斜面9a,9bよりも高さHd2(例えばHd2=Hd1/2)が低い。図23(A)に示す傾斜面9a,9bは、図5及び図10に示す傾斜面9a,9bと同様に、表面が円弧面又は平坦面に形成されており、曲率半径の大きな凸状に湾曲する曲面又は略一定角度で傾斜する平面である。図23(A)に示す傾斜面9a,9bは、断面形状が山形であって同一形状の2つの直角三角形の短辺同士を接合した小三角形であり、図1〜図10に示す車体端面3aの上縁部3f及び側縁部3g,3hに沿って連続して幅Wd1及び高さHd2で形成されている。 The inclined surfaces 9a and 9b shown in FIG. 23 (A) have the same width Wd1 as the inclined surfaces 9a and 9b shown in FIGS. 5 and 10, but are more than the inclined surfaces 9a and 9b shown in FIGS. The height H d2 (eg, H d2 = H d1 / 2) is low. Like the inclined surfaces 9a and 9b shown in FIGS. 5 and 10, the inclined surfaces 9a and 9b shown in FIG. 23 (A) are formed into arcuate surfaces or flat surfaces, and have a convex shape with a large curvature radius. A curved surface or a plane inclined at a substantially constant angle. The inclined surfaces 9a and 9b shown in FIG. 23A are small triangles in which the cross-sectional shape is a mountain shape and the short sides of two right-angled triangles having the same shape are joined to each other, and the vehicle body end surface 3a shown in FIGS. The upper edge portion 3f and the side edge portions 3g and 3h are continuously formed with a width W d1 and a height H d2 .

図23(B)に示す傾斜面9aは、図13及び図16に示す傾斜面9aと同一の幅Wd2であるが、図13及び図16に示す傾斜面9aよりも高さHd2(例えばHd2=Hd1/2)が低い。図23(B)に示す傾斜面9aは、図23(A)に示す傾斜面9aと同一形状であり、図23(A)に示す誘導部9を先端部9cで1/2に切断したような半小三角形に形成されており、図11〜図16に示す車体端面3aの上縁部3f及び側縁部3g,3hに沿って連続して幅Wd2及び高さHd2で形成されている。 The inclined surface 9a shown in FIG. 23B has the same width W d2 as the inclined surface 9a shown in FIGS. 13 and 16, but has a height H d2 (for example, higher than the inclined surface 9a shown in FIGS. 13 and 16). H d2 = H d1 / 2) is low. The inclined surface 9a shown in FIG. 23 (B) has the same shape as the inclined surface 9a shown in FIG. 23 (A), and the guiding portion 9 shown in FIG. A semi-small triangle is formed with a width W d2 and a height H d2 continuously along the upper edge portion 3f and the side edge portions 3g, 3h of the vehicle body end surface 3a shown in FIGS. Yes.

図23(C)に示す傾斜面9aは、図19及び図22に示す傾斜面9aと同一の幅Wd2であるが、図19及び図22に示す傾斜面9aよりも高さHd2(例えばHd2=Hd1/2)が低い。図23(C)に示す傾斜面9aは、図23(A)及び図23(B)に示す傾斜面9aと同一形状であり、略V字形の鋭角部の先端を図17〜図22に示す上縁部3f及び側縁部3g,3hと一致させた小V字形であり、この上縁部3f及び側縁部3g,3hに沿って連続して幅Wd2及び高さHd2で形成されている。この第7実施形態には、第1実施形態〜第6実施形態と同様の効果がある。 The inclined surface 9a shown in FIG. 23C has the same width W d2 as the inclined surface 9a shown in FIGS. 19 and 22, but has a height H d2 (for example, higher than the inclined surface 9a shown in FIGS. 19 and 22). H d2 = H d1 / 2) is low. The inclined surface 9a shown in FIG. 23C has the same shape as the inclined surface 9a shown in FIGS. 23A and 23B, and the tip of the substantially V-shaped acute angle portion is shown in FIGS. It is a small V-shape matched with the upper edge portion 3f and the side edge portions 3g, 3h, and is continuously formed along the upper edge portion 3f and the side edge portions 3g, 3h with a width W d2 and a height H d2. ing. The seventh embodiment has the same effects as those of the first to sixth embodiments.

次に、この発明の実施例について説明する。
(風洞試験装置)
図24に示す風洞試験装置20は、模型車両30に向けて空気を流したときにこの模型車両30の表面の流れの様子を観察する装置である。風洞試験装置20は、空気を吹き出すノズル(吹出口)20aと、このノズル20aからの空気を模型車両30に流す密閉型測定部20bと、この密閉型測定部20bの床面20c上に模型車両30を支持する支柱20dと、密閉型測定部20bからの空気を吸い込む図示しない吸込部(コレクタ)などを備えている。この実験では、財団法人鉄道総合技術研究所の風洞技術センター(米原)内における密閉胴型の大型低騒音風洞試験装置を使用した。模型車両30は、断面が翼型形状の2本の支柱20dを利用して床面20cに固定した。図24(A)に示すように、ノズル20aの先端から車両先頭部30bまでの距離は1566mm、床面20cの表面から模型車両30の底面までの距離は229mm(実物のレール底面から車両底面までの距離に相当)であり、実験風速U=50m/sに設定した。模型車両30の幅W=560mmを代表長さとしたレイノルズ数Re=1.9×106(Re=UW/ν=50×0.56/(1.5×10-5)、空気の動粘性係数ν)である。図24(A)(B)に示すように、座標系は、車両先頭部30bの上端の幅方向の中心点を原点として、レール方向(流れ方向)をX軸、まくらぎ方向をY軸、これらの右手座標系で鉛直上方をZ軸として設定した。
Next, examples of the present invention will be described.
(Wind tunnel test equipment)
A wind tunnel test apparatus 20 shown in FIG. 24 is an apparatus for observing the flow of the surface of the model vehicle 30 when air is flowed toward the model vehicle 30. The wind tunnel testing apparatus 20 includes a nozzle (air outlet) 20a that blows out air, a sealed measurement unit 20b that flows air from the nozzle 20a to the model vehicle 30, and a model vehicle on the floor surface 20c of the sealed measurement unit 20b. 30 is provided with a support 20d that supports 30 and a suction unit (collector) (not shown) that sucks in air from the sealed measurement unit 20b. In this experiment, a large-sized, low-noise wind tunnel test device with a sealed body was used in the Wind Tunnel Technology Center (Yonehara) of the Railway Technical Research Institute. The model vehicle 30 was fixed to the floor surface 20c using two struts 20d having a wing-shaped cross section. As shown in FIG. 24A, the distance from the tip of the nozzle 20a to the vehicle head portion 30b is 1566 mm, and the distance from the surface of the floor surface 20c to the bottom surface of the model vehicle 30 is 229 mm (from the real rail bottom surface to the vehicle bottom surface). The experimental wind speed U was set to 50 m / s. The Reynolds number Re = 1.9 × 10 6 (Re = UW / ν = 50 × 0.56 / (1.5 × 10 −5 ), air kinematic viscosity coefficient ν) with the width W = 560 mm of the model vehicle 30 as a representative length. As shown in FIGS. 24A and 24B, the coordinate system uses the center point in the width direction at the upper end of the vehicle head portion 30b as the origin, the rail direction (flow direction) as the X axis, the sleeper direction as the Y axis, In these right-handed coordinate systems, the upper vertical direction was set as the Z axis.

(模型車両)
図24及び図25に示す模型車両30は、実際の鉄道車両を模擬(縮小)した大型風洞試験用模型車両である。模型車両30は、図24及び図25に示す車両本体部30aと、図24(C)に示す車両本体部30aに着脱自在に装着される車両先頭部30bと、図24及び図25に示すルーバー部30d,30eと、誘導部30fなどを備えている。模型車両30は、在来線型車両の5分の1縮尺模型であり、高さH=560mm、全長L=3920mmである。模型車両30は、車両断面が矩形であって、屋根面が完全にフラットな板であり、側面と屋根面が接続する部分が角であり、先頭部形状も角である。模型車両30は、1両であり、2本の支柱20dを除き、床下機器類は一切無くフラットである。図24及び図25に示す模型車両30は、図11〜図13に示すルーバー部7A,7Bと誘導部9とを備えている。ルーバー部30d,30eは、車両本体部30aの先頭部に着脱自在であり、図11〜図13に示すルーバー部7A,7Bに対応する。誘導部30fは、車両本体部30aの先頭部に着脱自在であり、図11〜図13に示す断面形状が大三角形の誘導部9に対応する。図25に示すルーバー高さh1は、模型車両30の車体側方(左右方向)におけるルーバー部30dの突出量である。ルーバー高さh2は、模型車両30の車体上方(上下方向)におけるルーバー部30eの突出量である。ルーバー高さh3は、模型車両30の車体前方(流れ方向(レールの長さ方向))におけるルーバー部30d,30eの突出量である。前面突起高さdは、模型車両30の車体前方(流れ方向(レールの長さ方向))における誘導部30fの突出量である。ルーバー部30d,30eは、ルーバー高さh1が3mm、ルーバー高さh2が7mm、ルーバー高さh3が33mmの1種類を作成し、誘導部30fは前面突起高さdが11mmの1種類を作成した。
(Model vehicle)
A model vehicle 30 shown in FIGS. 24 and 25 is a large wind tunnel test model vehicle simulating (reducing) an actual railway vehicle. The model vehicle 30 includes a vehicle main body 30a shown in FIGS. 24 and 25, a vehicle head 30b that is detachably attached to the vehicle main body 30a shown in FIG. 24C, and a louver shown in FIGS. The parts 30d and 30e, the guiding part 30f, and the like are provided. The model vehicle 30 is a 1/5 scale model of a conventional line type vehicle, and has a height H = 560 mm and an overall length L = 3920 mm. The model vehicle 30 has a rectangular vehicle cross section, a roof surface that is a completely flat plate, a portion where the side surface and the roof surface are connected is a corner, and a top shape is also a corner. The model vehicle 30 is one vehicle, and is flat without any underfloor equipment except for the two columns 20d. A model vehicle 30 shown in FIGS. 24 and 25 includes louver portions 7A and 7B and a guide portion 9 shown in FIGS. Louver portions 30d and 30e are detachable from the head portion of vehicle body portion 30a, and correspond to louver portions 7A and 7B shown in FIGS. The guide part 30f is detachable from the head part of the vehicle body part 30a, and the cross-sectional shape shown in FIGS. 11 to 13 corresponds to the guide part 9 having a large triangle. The louver height h 1 shown in FIG. 25 is the protruding amount of the louver portion 30 d on the side of the vehicle body of the model vehicle 30 (in the left-right direction). The louver height h 2 is the amount of protrusion of the louver portion 30e above the vehicle body (vertical direction) of the model vehicle 30. The louver height h 3 is the amount of protrusion of the louver portions 30d and 30e in the front of the model vehicle 30 (the flow direction (rail length direction)). The front projection height d is the amount of protrusion of the guide portion 30f in the front of the model vehicle 30 (flow direction (rail length direction)). The louver portions 30d and 30e are made of one type having a louver height h 1 of 3 mm, a louver height h 2 of 7 mm, and a louver height h 3 of 33 mm, and the guide portion 30f is a 1 having a front projection height d of 11 mm. Created a type.

(タフト法による可視化)
図24に示す風洞試験装置20に模型車両30を設置し風洞試験を実施した。風洞試験は、図24及び図25に示すルーバー部30d,30e及び誘導部30fを設置した場合と、ルーバー部30d,30e及び誘導部30fを設置しなかった場合とについてそれぞれ実施した。模型車両30の周りの流れの様子を調べるため、図24及び図25に示すようにタフト法による可視化を実施した。ここで、タフト法とは、物体表面の流れの様子を糸や毛糸などの気流糸を用いて観察し、流れの方向、はく離域及び不安定域などを可視化したものである。図24及び図25に示すタフト40は、綿糸#30であり、車体表面(屋根面及び側面)に接着剤で貼り付けた。図24(A)(B)及び図25(A)(B)に示すように、X軸方向には車両先頭部30bの先端から所定位置に1列目を貼り付け、所定のピッチで設置した。また、図24(A)及び図25(A)に示すように、Z軸方向には側面にそれぞれ5行分を貼り付けた。図24(B)及び図25(B)に示すように、Y軸方向には上面にそれぞれ6行分を貼り付けた。この実験では、タフト40の動きに応じて「はく離」、「はく離無し」の各領域を次のように定義した。「はく離」領域は、タフト40が流れと逆方向を向いている領域とし、「はく離無し」領域はタフト40が流れ方向(順方向)を向いている領域とした。流れは、「はく離」と「はく離無し」の間で「再付着」する。なお、全タフト40が順方向の場合であっても、タフト40が設置されていない車両先頭部30bの端部近傍で微小なはく離領域が存在する場合や3次元はく離の場合には、必ずしもはく離領域で逆流しているとは限らない場合が考えられる。しかし、この実験では、そのようなはく離領域は捉えることは困難なことから考慮せず、タフト40が順方向の場合は「はく離無し」とした。
(Visualization by tuft method)
The model vehicle 30 was installed in the wind tunnel test apparatus 20 shown in FIG. 24, and the wind tunnel test was implemented. The wind tunnel test was performed for the case where the louver portions 30d and 30e and the guide portion 30f shown in FIGS. 24 and 25 were installed, and the case where the louver portions 30d and 30e and the guide portion 30f were not installed, respectively. In order to investigate the flow around the model vehicle 30, visualization by a tuft method was performed as shown in FIGS. Here, the tuft method is a method in which the flow state on the surface of an object is observed using an air flow yarn such as a yarn or wool yarn, and the flow direction, separation region, unstable region, and the like are visualized. The tufts 40 shown in FIGS. 24 and 25 are cotton yarn # 30, and are attached to the vehicle body surface (roof surface and side surfaces) with an adhesive. As shown in FIGS. 24 (A), (B) and FIGS. 25 (A), (B), in the X-axis direction, the first row is pasted at a predetermined position from the front end of the vehicle head portion 30b and installed at a predetermined pitch. . In addition, as shown in FIGS. 24A and 25A, five rows were pasted on the side surfaces in the Z-axis direction. As shown in FIG. 24B and FIG. 25B, six rows were pasted on the upper surface in the Y-axis direction. In this experiment, the areas of “peel” and “no peel” were defined as follows according to the movement of the tuft 40. The “separation” region is a region where the tuft 40 faces in the opposite direction to the flow, and the “no separation” region is a region where the tuft 40 faces the flow direction (forward direction). The flow “reattaches” between “separation” and “no separation”. Even when all the tufts 40 are in the forward direction, the separation is not always necessary when there is a minute separation region near the end of the vehicle head portion 30b where the tufts 40 are not installed or in the case of three-dimensional separation. There may be a case where the region does not always flow backward. However, in this experiment, it was difficult to capture such a separation region, and it was determined that “no separation” when the tuft 40 was in the forward direction.

(空気抵抗測定装置)
図24(C)に示す空気抵抗測定装置50は、模型車両30に作用する空気抵抗を測定する装置であり、この模型車両30を固定した状態で密閉型測定部20bの床面20c下に設置されている。空気抵抗測定装置50は、ピラミッド天秤(島津製作所製 ピラミッド形ロードセル式六分力天秤)であり、模型車両30に作用する空気抵抗を測定する。この実験では、サンプリング周波数は10Hzであり、1回の収録で100個(10秒間)のデータを収録し、測定した空気抵抗FDから空気抵抗係数CDを算出した。ここで、空気抵抗係数CD=FD/(0.5ρU2車両)であり、空気抵抗FD(N)、空気密度ρ(kg/m3)、模型車両30の投影断面積A車両=0.56×0.56=0.3136(m2)である。
(Air resistance measuring device)
The air resistance measuring device 50 shown in FIG. 24C is a device that measures the air resistance acting on the model vehicle 30, and is installed below the floor 20c of the sealed measuring unit 20b with the model vehicle 30 fixed. Has been. The air resistance measuring device 50 is a pyramid balance (Pyramid load cell type six component balance made by Shimadzu Corporation), and measures the air resistance acting on the model vehicle 30. In this experiment, the sampling frequency is 10 Hz, and recorded data 100 in one recording (10 seconds) to calculate the drag coefficient C D from the measured air resistance F D. Here, the air resistance coefficient C D = F D /(0.5ρU 2 A vehicle ), the air resistance F D (N), the air density ρ (kg / m 3 ), and the projected sectional area A of the model vehicle 30 A vehicle = 0.56 × 0.56 = 0.3136 (m 2 ).

(実験結果)
実験では、図25に示すルーバー部30d,30e及び誘導部30fが車両限界内に納まるように実物の車体からの突出量がなるべく少なく、かつ、流れのはく離が効果的に抑制される在来線車両の上面形状を探した。表1は、流れのはく離抑制効果が高く車体表面からの突出量が小さい形状を代表的な実験結果として示す一覧表である。
(Experimental result)
In the experiment, conventional lines in which the amount of protrusion from the actual vehicle body is as small as possible and the flow separation is effectively suppressed so that the louver portions 30d and 30e and the guiding portion 30f shown in FIG. Looked for the top shape of the vehicle. Table 1 is a list showing typical experimental results of shapes having a high flow separation suppressing effect and a small protrusion amount from the vehicle body surface.

表1に示す「ルーバー+前面突起」は、図25に示すルーバー高さh1が3mm(実物換算サイズ17mm)であり、ルーバー高さh2が7mm(実物換算サイズ37mm)であり、ルーバー高さh3が33mm(実物換算サイズ165mm)であり、前面突起高さdが11mm(実物換算サイズ55mm)であり、前面突起幅wが35mm(実物換算サイズ175mm)である。図27に示すように、ルーバー部30d,30e及び誘導部30fがない場合には屋根面の先頭部から約9列目までのタフト40の多くが流れと逆方向を向いており、流れのはく離領域が9列目付近まで存在しており、先頭部付近で流れがはく離していることが確認された。一方、図26に示すように、ルーバー部30d,30e及び誘導部30fがある場合には屋根面の先頭部以降の全てのタフト40が流れ方向を向いており、ルーバー部30d,30e及び誘導部30fによって気流のはく離領域の大きさが効果的に抑制されることが確認された。また、表1に示すように、ルーバー部30d,30e及び誘導部30fがない場合の空気抵抗係数CDに比べて、ルーバー部30d,30e及び誘導部30fがある場合の空気抵抗係数CDが小さくなっており、ルーバー部30d,30e及び誘導部30fを設置することによって空気抵抗を低減可能なことが確認された。 The “louver + front protrusion” shown in Table 1 has a louver height h 1 shown in FIG. 25 of 3 mm (actual conversion size 17 mm), a louver height h 2 of 7 mm (actual conversion size 37 mm), and a louver height. The length h 3 is 33 mm (actual conversion size 165 mm), the front projection height d is 11 mm (actual conversion size 55 mm), and the front projection width w is 35 mm (actual conversion size 175 mm). As shown in FIG. 27, in the absence of the louver portions 30d and 30e and the guide portion 30f, most of the tufts 40 from the top of the roof surface to the ninth row are directed in the opposite direction to the flow, and the flow is separated. It was confirmed that the region existed up to the vicinity of the ninth row, and the flow was separated near the top. On the other hand, as shown in FIG. 26, when there are louver portions 30d and 30e and a guide portion 30f, all tufts 40 after the top portion of the roof surface face the flow direction, and the louver portions 30d and 30e and the guide portion It was confirmed that the size of the separation region of the airflow was effectively suppressed by 30f. Further, as shown in Table 1, the louver portion 30d, in comparison with the air resistance coefficient C D in the absence of 30e and the guiding section 30f, louver portion 30d, the air resistance coefficient C D when there is 30e and guiding section 30f It was confirmed that the air resistance can be reduced by installing the louver portions 30d and 30e and the guiding portion 30f.

(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、移動体が鉄道車両である場合を例に挙げて説明したが、自動車などの他の移動体についてもこの発明を適用することができる。また、この実施形態では、車体3の先頭部形状が切妻形状である場合を例に挙げて説明したが、先頭部形状が流線型の場合などについてもこの発明を適用することができる。さらに、この実施形態では、誘導部9を車体端面3aの上側及び両側に配置した場合を例に挙げて説明したが、車体端面3aの両側又は上側の少なくとも一方に誘導部9を配置することもできる。
(Other embodiments)
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the case where the moving body is a railway vehicle has been described as an example. However, the present invention can also be applied to other moving bodies such as automobiles. Further, in this embodiment, the case where the head portion shape of the vehicle body 3 is a gable shape has been described as an example, but the present invention can also be applied to the case where the head portion shape is a streamlined shape. Furthermore, in this embodiment, the case where the guide portions 9 are arranged on the upper side and both sides of the vehicle body end surface 3a has been described as an example. However, the guide portions 9 may be arranged on at least one of both sides or the upper side of the vehicle body end surface 3a. it can.

(2) この実施形態では、傾斜面9a,9bの断面形状が曲面又は平面である場合を例に挙げて説明したが、この傾斜面9a,9bの断面形状が円又は楕円の一部に形成したり、任意の丸み部に形成したり、一部を平坦面に形成し残部を曲面に形成したり、平板を複数箇所で折り曲げて形成した多角形に形成したりすることもできる。また、この実施形態では、誘導部9の断面形状が略二等辺三角形、略直角三角形又は略V字形である場合を例に挙げて説明したが、これらを任意に組み合わせることもできる。 (2) In this embodiment, the case where the cross-sectional shape of the inclined surfaces 9a and 9b is a curved surface or a plane has been described as an example. However, the cross-sectional shape of the inclined surfaces 9a and 9b is formed in a part of a circle or an ellipse. It can also be formed in any rounded part, partly formed on a flat surface and the remaining part formed on a curved surface, or formed into a polygon formed by bending a flat plate at a plurality of locations. Further, in this embodiment, the case where the cross-sectional shape of the guide portion 9 is a substantially isosceles triangle, a substantially right triangle, or a substantially V-shape has been described as an example, but these can be arbitrarily combined.

(3) この実施形態では、はく離抑制部6を車体端面3aの両側及び上側に配置した場合を例に挙げて説明したが、これらのいずれか一方を省略したり、はく離抑制部6を車体端面3aの下側に配置したり、はく離抑制部6を左右いずれか一方の側縁部に配置したりすることもできる。また、この実施形態では、ルーバー部7A,7B及びフィン部10A,10Bをはく離抑制部6が備える場合を例に挙げて説明したが、これらを任意に組み合わせることもできる。例えば、車体端面3aの両側にフィン部10Aを備えるはく離抑制部6を配置し、車体端面3aの上側にルーバー部7Bを備えるはく離抑制部6を配置することもできる。この場合には、車両限界が車体側面3b,3c側よりも車体上面3d側のほうが広いため、車体上面3d側のはく離抑制部6の形状を大きくすることができる。同様に、車体端面3aの両側及び上側のはく離抑制部6の一部がルーバー部7A,7Bを備え、残部がフィン部10A,10Bを備えるような構造にすることもできる。 (3) In this embodiment, the case where the separation suppressing unit 6 is disposed on both sides and the upper side of the vehicle body end surface 3a has been described as an example. However, either one of them is omitted or the separation suppressing unit 6 is disposed on the vehicle body end surface. It is also possible to dispose the lower part of 3a, or to dispose the separation suppressing part 6 on either the left or right side edge part. Further, in this embodiment, the case where the peeling suppressing unit 6 includes the louver portions 7A and 7B and the fin portions 10A and 10B has been described as an example, but these can be arbitrarily combined. For example, it is also possible to dispose the separation suppressing portion 6 including the fin portions 10A on both sides of the vehicle body end surface 3a and dispose the separation suppressing portion 6 including the louver portion 7B above the vehicle body end surface 3a. In this case, since the vehicle limit is wider on the vehicle body upper surface 3d side than the vehicle body side surfaces 3b and 3c side, the shape of the separation suppressing portion 6 on the vehicle body upper surface 3d side can be increased. Similarly, it is also possible to adopt a structure in which a part of the peeling prevention portion 6 on both sides and upper side of the vehicle body end surface 3a includes louver portions 7A and 7B and the remaining portion includes fin portions 10A and 10B.

(4) この実施形態では、ルーバー部7A,7B及びフィン部10A,10Bの表面形状が円弧状の板状部材である場合を例に挙げて説明したが、これらの表面形状が楕円形状、楕円形の一部、又は曲率を有する湾曲面状などの丸みを有する板状部材である場合についてもこの発明を適用することができる。また、この実施形態では、車両2の前側に他の車両2を連結可能な場合を例に挙げて説明したが、はく離抑制部6を柔軟な可撓性部材によって形成し、前側の車両2のはく離抑制部6の先端部と後側の車両2のはく離抑制部6の先端部とを突き合せて密着可能な構造にすることもできる。さらに、この実施形態では、はく離抑制部6の一部が透過部7c,7f,10cを備える場合を例に挙げて説明したが、はく離抑制部6の全部を透明又は半透明にすることもできる。 (4) In this embodiment, the case where the surface shapes of the louver portions 7A and 7B and the fin portions 10A and 10B are arc-shaped plate members has been described as an example. However, these surface shapes are elliptical and elliptical. The present invention can also be applied to the case of a plate member having a round shape such as a part of the shape or a curved surface having a curvature. Further, in this embodiment, the case where another vehicle 2 can be connected to the front side of the vehicle 2 has been described as an example. However, the separation suppressing unit 6 is formed of a flexible flexible member, and the front vehicle 2 It is also possible to make a structure in which the front end portion of the separation suppressing portion 6 and the front end portion of the separation suppressing portion 6 of the rear vehicle 2 are brought into close contact with each other. Furthermore, in this embodiment, the case where a part of the peeling suppression unit 6 includes the transmission parts 7c, 7f, and 10c has been described as an example, but the entire peeling suppression unit 6 may be transparent or translucent. .

(4) この実施形態では、内側フィン部7a,7d及び外側フィン部7b,7e並びにフィン部10Bが湾曲面を備える場合を例に挙げて説明したが、これらの一部が湾曲面を備え、残部が平面を備える場合や、これらが平板を複数箇所で折り曲げて形成した多角形である場合などについてもこの発明を適用することができる。また、この第1実施形態、第3実施形態及び第5実施形態では、ルーバー部7A,7Bの内側フィン部7a,7dと外側フィン部7b,7eとが異なる形状である場合を例に挙げて説明したが、両者を同一形状に形成することもできる。さらに、この第1実施形態、第3実施形態及び第5実施形態では、ルーバー部7Aの内側フィン部7aの先端部を平面板によって延長した場合を例に挙げて説明したが、ルーバー部7Bの内側フィン部7dの先端部を平面板によって延長したり、ルーバー部7Bのみの内側フィン部7dの先端部を平面板によって延長したりすることもできる。例えば、車体上面3d側の車両限界が狭いときには、ルーバー部7Bの内側フィン部7aの先端部を平面板によって延長することもできる。同様に、この第5実施形態では、内側フィン部7aの先端部を平面板によって延長する場合を例に挙げて説明したが、内側フィン部7d及び外側フィン部7b,7eの先端部を平面板によって延長したり、外側フィン部7b,7eのみの先端部を平面板によって延長したり、平面板に代えて湾曲板によって連続して同じ曲線半径で延長したりすることもできる。 (4) In this embodiment, the case where the inner fin portions 7a and 7d and the outer fin portions 7b and 7e and the fin portion 10B are provided with curved surfaces has been described as an example, but some of these include curved surfaces, The present invention can also be applied to the case where the remaining portion has a flat surface, or the case where these are polygons formed by bending a flat plate at a plurality of locations. In the first embodiment, the third embodiment, and the fifth embodiment, an example is given in which the inner fin portions 7a and 7d and the outer fin portions 7b and 7e of the louver portions 7A and 7B have different shapes. Although described, both can be formed in the same shape. Furthermore, in this 1st Embodiment, 3rd Embodiment, and 5th Embodiment, although the case where the front-end | tip part of the inner side fin part 7a of the louver part 7A was extended with the plane plate was mentioned as an example, The tip of the inner fin portion 7d can be extended with a flat plate, or the tip of the inner fin portion 7d with only the louver portion 7B can be extended with a flat plate. For example, when the vehicle limit on the vehicle body upper surface 3d side is narrow, the front end portion of the inner fin portion 7a of the louver portion 7B can be extended by a flat plate. Similarly, in the fifth embodiment, the case where the tip end portion of the inner fin portion 7a is extended by a flat plate has been described as an example. However, the tip portion of the inner fin portion 7d and the outer fin portions 7b and 7e is changed to a flat plate. It is also possible to extend the tip of only the outer fin portions 7b and 7e with a flat plate, or to continuously extend with the same curved radius by a curved plate instead of the flat plate.

1 軌道
2 車両(移動体)
3 車体
3a 車体端面(前面)
3b,3c 車体側面(側面)
3d 車体上面(上面)
3f 上縁部
3g,3h 傾斜部
4 台車
5 気流はく離抑制構造
6 はく離抑制部
7A,7B ルーバー部
7a,7d 内側フィン部
7b,7e 外側フィン部
7g,7i 凹状湾曲面
7h,7j 凸状湾曲面
7m,7n 平面
8A,8B 支持部
9 誘導部
9a,9b 傾斜面
9c 先端部
9d 外側縁部
9e 内側縁部
10A,10B フィン部
11A,11B 支持部
F 気流
Δ11,Δ12,Δ2 間隙部
d1,Wd2
d1,Hd2 高さ
X 移動方向(長さ方向)
Y 左右方向
Z 上下方向
1 track 2 vehicle (moving body)
3 Body 3a End face (front)
3b, 3c Body side (side)
3d Car body upper surface (upper surface)
3f Upper edge portion 3g, 3h Inclined portion 4 Carriage 5 Airflow separation suppression structure 6 Separation suppression portion 7A, 7B Louver portion 7a, 7d Inner fin portion 7b, 7e Outer fin portion 7g, 7i Concave curved surface 7h, 7j Convex curved surface 7m, 7n plane 8A, 8B support portion 9 guide portion 9a, 9b inclined surface 9c tip end portion 9d outer edge portion 9e inner edge portion 10A, 10B fin portion 11A, 11B support portion F air current Δ 11 , Δ 12 , Δ 2 gap portion W d1 , W d2 width H d1 , H d2 height X Movement direction (length direction)
Y Left-right direction Z Up-down direction

Claims (19)

移動体が移動するときにこの移動体の先頭部からの気流のはく離を抑制する移動体の気流はく離抑制構造であって、
前記移動体の前面からこの移動体の側面に前記気流を導くことによって、この移動体の先頭部からの気流のはく離を抑制するはく離抑制部と、
前記移動体の前面に向かう気流を前記はく離抑制部に導く誘導部と、
を備える移動体の気流はく離抑制構造。
When the moving body moves, the moving body has an air flow separation suppressing structure that suppresses the separation of the air flow from the leading portion of the moving body,
A delamination suppressing unit that suppresses the separation of the airflow from the leading portion of the moving body by guiding the airflow from the front surface of the moving body to the side surface of the moving body;
A guiding portion for guiding an air flow toward the front surface of the moving body to the separation suppressing portion;
A structure for suppressing air flow separation of a moving body.
請求項1に記載の移動体の気流はく離抑制構造において、
前記誘導部は、前記移動体の前面よりも前側で前記気流を衝突させてこの衝突した気流を前記はく離抑制部に導くこと、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to claim 1,
The guide unit causes the airflow to collide with the front side of the front surface of the moving body, and guides the collided airflow to the separation suppressing unit;
A structure that suppresses air flow separation of moving objects.
請求項1又は請求項2に記載の移動体の気流はく離抑制構造において、
前記誘導部は、前記移動体の前面の側縁部に沿ってこの前面から突出すること、
を特徴とする移動体の気流はく離抑制構造。
In the airflow separation suppressing structure of the moving body according to claim 1 or 2,
The guide part protrudes from the front surface along a side edge of the front surface of the movable body;
A structure that suppresses air flow separation of moving objects.
請求項1から請求項3までのいずれか1項に記載の移動体の気流はく離抑制構造において、
前記誘導部は、前記移動体の前面前方からこの移動体の前面の側縁部に向かって傾斜する傾斜面を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to any one of claims 1 to 3,
The guide portion includes an inclined surface that is inclined from the front side of the moving body toward a side edge of the front surface of the moving body;
A structure that suppresses air flow separation of moving objects.
請求項4に記載の移動体の気流はく離抑制構造において、
前記誘導部は、水平面で切断したときの断面形状が山形であること、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to claim 4,
The guide part has a mountain shape in cross section when cut along a horizontal plane,
A structure that suppresses air flow separation of moving objects.
請求項1から請求項5までのいずれか1項に記載の移動体の気流はく離抑制構造において、
前記はく離抑制部は、前記移動体の側面と内側フィン部との間の間隙部に前記気流を通過させるととともに、この内側フィン部と外側フィン部との間の間隙部に前記気流を通過させるルーバー部を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to any one of claims 1 to 5,
The separation suppressing unit allows the airflow to pass through a gap between the side surface of the movable body and the inner fin portion, and allows the airflow to pass through a gap between the inner fin portion and the outer fin portion. Having a louver part,
A structure that suppresses air flow separation of moving objects.
請求項6に記載の移動体の気流はく離抑制構造において、
前記内側フィン部及び前記外側フィン部は、前記移動体の前面側に湾曲する湾曲面を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to claim 6,
The inner fin portion and the outer fin portion each include a curved surface that curves toward the front side of the movable body;
A structure that suppresses air flow separation of moving objects.
請求項1から請求項7までのずれか1項に記載の移動体の気流はく離抑制構造において、
前記はく離抑制部は、前記移動体の側面との間の間隙部に前記気流を通過させるフィン部を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the structure for suppressing air flow separation of the moving body according to claim 1,
The peeling prevention unit includes a fin portion that allows the airflow to pass through a gap between the side surface of the movable body;
A structure that suppresses air flow separation of moving objects.
請求項8に記載の移動体の気流はく離抑制構造において、
前記フィン部は、前記移動体の前面側に湾曲する湾曲面を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to claim 8,
The fin portion includes a curved surface that curves toward the front surface side of the movable body;
A structure that suppresses air flow separation of moving objects.
移動体が移動するときにこの移動体の先頭部からの気流のはく離を抑制する移動体の気流はく離抑制構造であって、
前記移動体の前面からこの移動体の上面に前記気流を導くことによって、この移動体の先頭部からの気流のはく離を抑制するはく離抑制部と、
前記移動体の前面に向かう気流を前記はく離抑制部に導く誘導部と、
を備える移動体の気流はく離抑制構造。
When the moving body moves, the moving body has an air flow separation suppressing structure that suppresses the separation of the air flow from the leading portion of the moving body,
A delamination suppressing unit that suppresses the separation of the airflow from the leading portion of the moving body by guiding the airflow from the front surface of the moving body to the upper surface of the moving body;
A guiding portion for guiding an air flow toward the front surface of the moving body to the separation suppressing portion;
A structure for suppressing air flow separation of a moving body.
請求項10に記載の移動体の気流はく離抑制構造において、
前記誘導部は、前記移動体の前面よりも前側で前記気流を衝突させてこの衝突した気流を前記はく離抑制部に導くこと、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to claim 10,
The guide unit causes the airflow to collide with the front side of the front surface of the moving body, and guides the collided airflow to the separation suppressing unit;
A structure that suppresses air flow separation of moving objects.
請求項10又は請求項11に記載の移動体の気流はく離抑制構造において、
前記誘導部は、前記移動体の前面の上縁部に沿ってこの前面から突出すること、
を特徴とする移動体の気流はく離抑制構造。
In the structure for suppressing air flow separation of the moving body according to claim 10 or 11,
The guide part protrudes from the front surface along the upper edge of the front surface of the moving body;
A structure that suppresses air flow separation of moving objects.
請求項10から請求項12までのいずれか1項に記載の移動体の気流はく離抑制構造において、
前記誘導部は、前記移動体の前面前方からこの移動体の前面の上縁部に向かって傾斜する傾斜面を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the airflow separation inhibiting structure of the moving body according to any one of claims 10 to 12,
The guide unit includes an inclined surface that is inclined from the front side of the moving body toward the upper edge of the front side of the moving body;
A structure that suppresses air flow separation of moving objects.
請求項10から請求項12までのいずれか1項に記載の移動体の気流はく離抑制構造において、
前記誘導部は、垂直面で切断したときの断面形状が山形であること、
を特徴とする移動体の気流はく離抑制構造。
In the airflow separation inhibiting structure of the moving body according to any one of claims 10 to 12,
The guide part has a mountain shape in cross section when cut along a vertical plane,
A structure that suppresses air flow separation of moving objects.
請求項10から請求項14までのいずれか1項に記載の移動体の気流はく離抑制構造において、
前記はく離抑制部は、前記移動体の上面と内側フィン部との間の間隙部に前記気流を通過させるととともに、この内側フィン部と外側フィン部との間の間隙部に前記気流を通過させるルーバー部を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the airflow separation suppressing structure of the moving body according to any one of claims 10 to 14,
The separation suppressing unit allows the airflow to pass through a gap between the upper surface of the movable body and the inner fin portion, and allows the airflow to pass through a gap between the inner fin portion and the outer fin portion. Having a louver part,
A structure that suppresses air flow separation of moving objects.
請求項15に記載の移動体の気流はく離抑制構造において、
前記内側フィン部及び前記外側フィン部は、前記移動体の前面側に湾曲する湾曲面を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to claim 15,
The inner fin portion and the outer fin portion each include a curved surface that curves toward the front side of the movable body;
A structure that suppresses air flow separation of moving objects.
請求項10から請求項16までのずれか1項に記載の移動体の気流はく離抑制構造において、
前記はく離抑制部は、前記移動体の上面との間の間隙部に前記気流を通過させるフィン部を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the structure for suppressing air flow separation of the moving body according to any one of claims 10 to 16,
The peeling prevention unit includes a fin portion that allows the airflow to pass through a gap between the movable body and the upper surface;
A structure that suppresses air flow separation of moving objects.
請求項17に記載の移動体の気流はく離抑制構造において、
前記フィン部は、前記移動体の前面側に湾曲する湾曲面を備えること、
を特徴とする移動体の気流はく離抑制構造。
In the air flow separation suppressing structure of the moving body according to claim 17,
The fin portion includes a curved surface that curves toward the front surface side of the movable body;
A structure that suppresses air flow separation of moving objects.
請求項1から請求項18までのずれか1項に記載の移動体の気流はく離抑制構造において、
前記移動体は、この移動体の前面が切妻形状であること、
を特徴とする移動体の気流はく離抑制構造。
In the structure for suppressing air flow separation of the moving body according to claim 1,
The moving body has a gable shape on the front surface of the moving body,
A structure that suppresses air flow separation of moving objects.
JP2011009204A 2011-01-19 2011-01-19 Airflow separation prevention structure for railway vehicles Active JP5818443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009204A JP5818443B2 (en) 2011-01-19 2011-01-19 Airflow separation prevention structure for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009204A JP5818443B2 (en) 2011-01-19 2011-01-19 Airflow separation prevention structure for railway vehicles

Publications (2)

Publication Number Publication Date
JP2012148686A true JP2012148686A (en) 2012-08-09
JP5818443B2 JP5818443B2 (en) 2015-11-18

Family

ID=46791400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009204A Active JP5818443B2 (en) 2011-01-19 2011-01-19 Airflow separation prevention structure for railway vehicles

Country Status (1)

Country Link
JP (1) JP5818443B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120503A (en) * 2013-11-19 2015-07-02 株式会社ジェイアール西日本テクノス Vehicle falling prevention structure
JP5833217B1 (en) * 2014-12-12 2015-12-16 日本車輌製造株式会社 Railway vehicle
CN114056378A (en) * 2021-12-25 2022-02-18 冯静 Quick subway structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929369A (en) * 1973-03-19 1975-12-30 Blair Lefler Inc Air deflecting vane assembly for a vehicle
DE2511700A1 (en) * 1975-03-18 1976-09-30 Daimler Benz Ag Air drag reducer for lorry - has self inflating reeds along front side and top edges of load
JPS60110575A (en) * 1983-10-25 1985-06-17 ケズポンテイ バルト―エシユヒテルバンク アールテイー Method of reducing resistance to flow of main body arranged in flow and structure
JP2004196170A (en) * 2002-12-19 2004-07-15 Tokyu Car Corp Railway vehicle
JP2009132361A (en) * 2007-11-01 2009-06-18 Railway Technical Res Inst Air stream peeling-off suppression structure for movement body
JP2010228559A (en) * 2009-03-26 2010-10-14 Railway Technical Res Inst Air current separation restraining structure of moving body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929369A (en) * 1973-03-19 1975-12-30 Blair Lefler Inc Air deflecting vane assembly for a vehicle
DE2511700A1 (en) * 1975-03-18 1976-09-30 Daimler Benz Ag Air drag reducer for lorry - has self inflating reeds along front side and top edges of load
JPS60110575A (en) * 1983-10-25 1985-06-17 ケズポンテイ バルト―エシユヒテルバンク アールテイー Method of reducing resistance to flow of main body arranged in flow and structure
JP2004196170A (en) * 2002-12-19 2004-07-15 Tokyu Car Corp Railway vehicle
JP2009132361A (en) * 2007-11-01 2009-06-18 Railway Technical Res Inst Air stream peeling-off suppression structure for movement body
JP2010228559A (en) * 2009-03-26 2010-10-14 Railway Technical Res Inst Air current separation restraining structure of moving body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120503A (en) * 2013-11-19 2015-07-02 株式会社ジェイアール西日本テクノス Vehicle falling prevention structure
JP5833217B1 (en) * 2014-12-12 2015-12-16 日本車輌製造株式会社 Railway vehicle
CN114056378A (en) * 2021-12-25 2022-02-18 冯静 Quick subway structure

Also Published As

Publication number Publication date
JP5818443B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
CN108162995B (en) Air guide device and method for reducing air pressure difference resistance by using same
Yuan et al. Study of the unsteady aerodynamic performance of an inter-city train passing through a station in a tunnel
JP5818443B2 (en) Airflow separation prevention structure for railway vehicles
JP6601985B2 (en) Vehicle fall prevention structure
JP5253858B2 (en) Airflow separation prevention structure for railway vehicles
Rashidi et al. A review of recent studies on simulations for flow around high-speed trains
Puharić et al. Determination of braking force on the aerodynamic brake by numerical simulations
CN111071272B (en) Obstacle deflector with pit arranged at rear end of bottom and application thereof
JP5824295B2 (en) Railway vehicle with aerodynamic brake
JP2010228562A (en) Air current separation restraining structure of moving body
JP2011168158A (en) Air current peeling-off suppression structure of moving body
JP2010116075A (en) Multiple-car train
JP2012148687A (en) Air flow separation suppression structure of moving body
JP2009056942A (en) Ice and snow accretion preventing structure of moving body
JP2010228559A (en) Air current separation restraining structure of moving body
JP6330752B2 (en) Road structure and road structure provided with the same
JP5431201B2 (en) Airflow separation control structure for moving objects
JP2012148685A (en) Air flow separation suppression structure of moving body
Du et al. Aerodynamic response analysis of high-speed trains passing through high platforms under crosswind
KR101133784B1 (en) A device for reduction drag force of transportation vehicle
CN112810639A (en) Control device for reducing drag and noise of high-speed train
JP2019123406A (en) Railway vehicle
JP5833217B1 (en) Railway vehicle
KR101524010B1 (en) Bogie air dam
JP2004196170A (en) Railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20141106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141201

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150