JP2012141635A - Carrier powder for electrophotographic developer, and electrophotographic developer containing the same - Google Patents

Carrier powder for electrophotographic developer, and electrophotographic developer containing the same Download PDF

Info

Publication number
JP2012141635A
JP2012141635A JP2012068089A JP2012068089A JP2012141635A JP 2012141635 A JP2012141635 A JP 2012141635A JP 2012068089 A JP2012068089 A JP 2012068089A JP 2012068089 A JP2012068089 A JP 2012068089A JP 2012141635 A JP2012141635 A JP 2012141635A
Authority
JP
Japan
Prior art keywords
carrier
powder
electrophotographic developer
carrier powder
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012068089A
Other languages
Japanese (ja)
Other versions
JP5499372B2 (en
Inventor
Yoshiaki Aiki
良明 相木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2012068089A priority Critical patent/JP5499372B2/en
Publication of JP2012141635A publication Critical patent/JP2012141635A/en
Application granted granted Critical
Publication of JP5499372B2 publication Critical patent/JP5499372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of image characteristics and more particularly carrier scattering increasingly actualized by progress of an electrophotographic developing machine.SOLUTION: An internal pore rate of carrier particles used for electrophotographic developer is lowered and thereby magnetic force per particle is kept high. A start of the magnetic force on a low magnetic field side is raised and thereby holding force of a magnetic brush formed by carrier powder is improved and carrier scattering is suppressed.

Description

本発明は、電子写真現像剤に用いられる電子写真現像剤用キャリア粉および当該キャリア粉を含む電子写真現像剤に関する。   The present invention relates to a carrier powder for an electrophotographic developer used in an electrophotographic developer and an electrophotographic developer containing the carrier powder.

電子写真現像の分野において、近年、高画質化、フルカラー化が進んでいる。当該高画質化、フルカラー化に伴い、電子写真現像剤に用いられるキャリア粉(以下、単に、キャリア粉と記載する場合がある。)への負荷が増大する傾向にある。そのため、このキャリア粉への負荷増大の結果と考えられる「キャリア飛散」の問題が顕在化してきた。このキャリア飛散とは、電子写真上に白筋等の画像欠陥が生じる現象である。当該画像欠陥は、電子写真現像機中の磁気スリーブ上で、前記キャリア粉により形成される磁気ブラシを形成するキャリア粉を構成するキャリア粒子同士の保持力が減退し、当該キャリア粉が感光体に飛散することに起因するものであると考えられている。
そこで、高画質化、フルカラー化した電子写真現像であっても、キャリア飛散を抑制できるキャリア粉が求められた。
In the field of electrophotographic development, in recent years, higher image quality and full color have been developed. With the increase in image quality and full color, the load on carrier powder used in electrophotographic developers (hereinafter sometimes simply referred to as carrier powder) tends to increase. For this reason, the problem of “carrier scattering”, which is considered to be a result of the increased load on the carrier powder, has become apparent. This carrier scattering is a phenomenon in which image defects such as white streaks occur on electrophotography. The image defect is caused by a decrease in the holding power of carrier particles constituting the carrier powder forming the magnetic brush formed by the carrier powder on the magnetic sleeve in the electrophotographic developing machine, and the carrier powder is applied to the photoreceptor. It is thought to be caused by scattering.
Accordingly, there has been a demand for a carrier powder that can suppress carrier scattering even in electrophotographic development with high image quality and full color.

例えば、特許文献1には、電子写真現像剤用キャリア粉を構成するキャリア粒子の断面において観察されるポアに関し、その90%以上が外径5μm以下のポアとして形成され、且つ、当該ポア部分の当該粒子断面全体に対する面積率(以下、内部ポア率と記載することがある。)が3〜30%の範囲にある芯材粒子を、少なくとも80%以上含有することにより、電気抵抗の印加電圧依存度の小さいキャリア粉が得られることができる旨、記載されている。   For example, in Patent Document 1, 90% or more of pores observed in the cross section of carrier particles constituting carrier powder for electrophotographic developer are formed as pores having an outer diameter of 5 μm or less, and By including at least 80% or more of core material particles having an area ratio (hereinafter sometimes referred to as internal pore ratio) in the range of 3 to 30% with respect to the entire cross section of the particles, the electric resistance depends on the applied voltage. It is described that a carrier powder having a small degree can be obtained.

特許第2950480号Japanese Patent No. 2950480

特許文献1にはキャリア粒子のポア率を調整することにより、当該キャリア粉において電気抵抗の印加電圧依存性が調整可能となり、高濃度でカブリのない鮮明画像が形成できる旨、記載されている。しかし、本発明者らの検討によれば、電子写真の高画質化、フルカラー化、を想定した条件下においては、例え、特許文献1に記載のキャリア粉を用いた電子写真現像剤を用いてもキャリア飛散が発生するという問題があった。   Patent Document 1 describes that by adjusting the pore ratio of carrier particles, the applied voltage dependence of electric resistance can be adjusted in the carrier powder, and a clear image with high density and no fog can be formed. However, according to the study by the present inventors, under conditions assuming high image quality and full color of electrophotography, for example, an electrophotographic developer using carrier powder described in Patent Document 1 is used. However, there was a problem that carrier scattering occurred.

上述の現状より、本発明の目的は、高画質化、フルカラー化する電子写真現像機に使用しても、耐キャリア飛散特性を発揮する電子写真現像剤用キャリア粉およびその製造方法、並びに当該キャリア粉を含む電子写真現像剤を提供することである。   In view of the above-described situation, the object of the present invention is to provide carrier powder for an electrophotographic developer that exhibits anti-carrier scattering characteristics even when used in an electrophotographic developing machine that achieves high image quality and full color, a method for producing the same, and the carrier. It is to provide an electrophotographic developer containing powder.

本発明者らは、従来の技術に係るキャリア粉を、高画質化、フルカラー化を想定した条件下においたとき、キャリア飛散が発生するという問題の原因について検討を行った。その検討の結果、当該キャリア粉において、飽和磁化や1kA/m×10/4πといった高磁場(以下、それぞれ、σs、σ1kと記載する場合がある。)における磁力の立ち上がり、さらに、200A/m×10/4π、100A/m×10/4πといった低磁場(以下、それぞれ、σ200、σ100と記載する場合がある。)における磁力の立ち上がり特性が重要なことに想到した。 The present inventors have examined the cause of the problem that carrier scattering occurs when the carrier powder according to the prior art is placed under conditions assuming high image quality and full color. As a result of the investigation, in the carrier powder, the rising of magnetic force in a high magnetic field (hereinafter sometimes referred to as σs and σ1k, respectively) such as saturation magnetization and 1 kA / m × 10 3 / 4π, and further 200 A / m. The inventors have conceived that the rising characteristics of magnetic force in a low magnetic field (hereinafter sometimes referred to as σ200 and σ100, respectively) such as × 10 3 / 4π and 100 A / m × 10 3 / 4π are important.

ここで本発明者らは、さらに検討を続け、当該キャリア粉を構成するキャリア粒子において、内部ポア率を所定値以下に低減することで、σs、σ1k、さらには、σ100、σ200といった低磁場における磁力の立ち上がり特性が向上したキャリア粉となることを見出した。さらに、当該所定値以下まで内部ポア率を低減したキャリア粒子を含むキャリア粉を、高い生産性をもって製造できる製造方法にも想到し、本発明を完成した。   Here, the present inventors continue further investigation, and in the carrier particles constituting the carrier powder, by reducing the internal pore ratio to a predetermined value or less, σs, σ1k, and further in a low magnetic field such as σ100, σ200 The present inventors have found that the carrier powder has improved magnetic rising characteristics. Furthermore, the present invention was completed by conceiving a manufacturing method capable of manufacturing carrier powder containing carrier particles whose internal pore ratio is reduced to the predetermined value or less with high productivity.

即ち、課題を解決するための第1の手段は、
キャリア粒子によって構成される電子写真現像剤用キャリア粉であって、
キャリア粒子は、一般式:MO・Fe(但し、Mは金属元素である。)で標記され、
内部ポア率が3%未満のキャリア粒子の個数比率が70%以上である、ことを特徴とする電子写真現像剤用キャリア粉である。
That is, the first means for solving the problem is:
A carrier powder for an electrophotographic developer composed of carrier particles,
The carrier particles are represented by the general formula: MO · Fe 2 O 3 (where M is a metal element),
The carrier powder for an electrophotographic developer is characterized in that the number ratio of carrier particles having an internal pore ratio of less than 3% is 70% or more.

第2の手段は、
内部ポア率が10%以上のキャリア粒子の個数比率が20%以下である、ことを特徴とする第1の手段に記載の電子写真現像剤用キャリア粉である。
The second means is
The carrier powder for an electrophotographic developer according to the first means, wherein the number ratio of carrier particles having an internal pore ratio of 10% or more is 20% or less.

第3の手段は、
飽和磁化が87Am/kg以上である、ことを特徴とする第1または第2の手段に記載の電子写真現像剤用キャリア粉である。
The third means is
The carrier powder for an electrophotographic developer according to the first or second means, wherein the saturation magnetization is 87 Am 2 / kg or more.

第4の手段は、
磁場200A/m×10/4πにおける磁力が、18Am/kg以上あることを特徴とする第1から第3の手段のいずれかに記載の電子写真現像剤用キャリア粉である。
The fourth means is
The carrier powder for an electrophotographic developer according to any one of the first to third means, wherein the magnetic force at a magnetic field of 200 A / m × 10 3 / 4π is 18 Am 2 / kg or more.

第5の手段は、
第1から第4の手段のいずれかに記載の電子写真現像剤用キャリアの製造方法であって、
M元素を含む原料とFeとの混合物のスラリーを3回以上湿式粉砕した後、造粒し、得られた造粒粉を、窒素雰囲気下で800℃〜1000℃に加熱して仮焼し、次に、1100℃〜1300℃に加熱して焼成し、得られた焼成物を粉砕することを特徴とする電子写真現像剤用キャリア粉の製造方法である。
The fifth means is
A method for producing a carrier for an electrophotographic developer according to any one of the first to fourth means,
A slurry of a mixture of a raw material containing M element and Fe 2 O 3 is wet pulverized three times or more, then granulated, and the resulting granulated powder is temporarily heated to 800 ° C. to 1000 ° C. in a nitrogen atmosphere. It is a method for producing a carrier powder for an electrophotographic developer, characterized in that it is fired and then heated to 1100 ° C. to 1300 ° C. and fired, and the fired product obtained is pulverized.

第6の手段は、
第1から第4の手段のいずれかに記載の電子写真現像剤用キャリアの製造方法であって、
所定量のM元素を含む原料と、Feとの混合物を粉砕し粉砕物を製造する工程と、
当該粉砕物へ、水、バインダー、分散剤を加えてスラリーとし、当該スラリーを3回以上湿式粉砕し、湿式粉砕されたスラリーを製造する工程と、
当該湿式粉砕されたスラリーから造粒粉を製造する工程と、
当該造粒粉を、窒素雰囲気下で800℃〜1000℃に加熱して仮焼し、仮焼品を製造する工程と、
当該仮焼品を、1100℃〜1300℃に加熱して焼成し、焼成物を製造する工程と、
当該焼成物を粉砕し、さらに、非磁性成分を除去する工程と、を有することを特徴とする電子写真現像剤用キャリア粉の製造方法である。
The sixth means is
A method for producing a carrier for an electrophotographic developer according to any one of the first to fourth means,
A step of pulverizing a mixture of a raw material containing a predetermined amount of M element and Fe 2 O 3 to produce a pulverized product,
Adding water, a binder, and a dispersant to the pulverized product to form a slurry, wet-pulverizing the slurry three times or more, and producing a wet-pulverized slurry;
Producing granulated powder from the wet-pulverized slurry;
The granulated powder is heated to 800 ° C. to 1000 ° C. in a nitrogen atmosphere and calcined to produce a calcined product,
The calcined product is heated to 1100 ° C. to 1300 ° C. and fired to produce a fired product,
And a step of pulverizing the fired product and further removing the non-magnetic component.

第7の手段は、
第1から第4の手段のいずれかに記載の電子写真現像剤用キャリア粉と、トナーとを含むことを特徴とする電子写真現像剤である。
The seventh means is
An electrophotographic developer comprising the carrier powder for an electrophotographic developer according to any one of the first to fourth means and a toner.

本発明に係る電子写真現像剤用のキャリア粉は、高磁場においても低磁場においても磁力の立ち上がりが高い為、当該キャリア粉で形成される磁気ブラシの保持力が向上する結果、たとえ、電子写真現像機が高画質化、フルカラー化しても、耐キャリア飛散特性を有する電子写真現像剤に含まれるキャリア粒子がキャリア飛散を起こすことを抑制することが出来た。   Since the carrier powder for an electrophotographic developer according to the present invention has a high magnetic force rise in both high and low magnetic fields, the holding power of the magnetic brush formed with the carrier powder is improved. Even when the developing machine has high image quality and full color, the carrier particles contained in the electrophotographic developer having carrier scattering resistance can be prevented from causing carrier scattering.

本発明に係るキャリア粒子の切断面のSIM像(倍率:1000倍)である。It is a SIM image (magnification: 1000 times) of the cut surface of the carrier particles according to the present invention.

図1は、後述する実施例1に係る一般式:MO・Fe(但し、Mは金属元素である。)で標記されるキャリア粉に含まれるキャリア粒子の、断面のSIM(走査イオン顕微鏡)写真(倍率:1000倍)である。
具体的には、実施例1に係るキャリア粒子を、集束イオンビーム試料加工装置(FIB:日本電子製JEM−9310FIB)を用い、当該キャリア粒子において、一番大きな断面積が得られると思われる切断面をいくつかカットし、その中で一番大きい断面積を得ることができた面を切断面とした。そして当該切断面をSIMにて観察した際の写真(以下、当該SIM写真をSIM像という場合がある。)を図1に示す。当該SIMによる観察の結果、本実施の形態に係るキャリア粒子の内部には、外径が5μm以下のポアが点在していることが確認された。
FIG. 1 is a cross-sectional SIM (scanning ion) of carrier particles contained in a carrier powder represented by a general formula: MO.Fe 2 O 3 (where M is a metal element) according to Example 1 described later. (Microscope) photograph (magnification: 1000 times).
Specifically, the carrier particles according to Example 1 are cut using a focused ion beam sample processing apparatus (FIB: JEM-9310FIB manufactured by JEOL Ltd.), and the carrier particles are considered to have the largest cross-sectional area. Several surfaces were cut, and the surface where the largest cross-sectional area was obtained was taken as the cut surface. FIG. 1 shows a photograph of the cut surface observed with a SIM (hereinafter, the SIM photograph may be referred to as a SIM image). As a result of observation by the SIM, it was confirmed that pores having an outer diameter of 5 μm or less were scattered inside the carrier particles according to the present embodiment.

そして、当該写真へ市販の画像解析ソフト(オリンパス製analySISFIVE)を適用し、当該キャリア粒子の断面積におけるポアの占める面積の比率を「内部ポア率」として算出したところ、0.69〜2.1%であった。   Then, commercially available image analysis software (analysisFIVE made by Olympus) was applied to the photograph, and the ratio of the area occupied by pores in the cross-sectional area of the carrier particles was calculated as “internal pore ratio”. 0.69 to 2.1 %Met.

ここで、本発明者らが各種のキャリア粉試料を製造し、当該各試料の内部ポア率を測定した結果、当該各試料において所定の内部ポア率を有するキャリア粒子の存在比率と、当該各試料との磁気特性との関係を見出した。さらに、これら所定の内部ポア率を有するキャリア粒子の存在比率や磁気特性と、当該キャリア粉試料から製造した電子写真現像剤試料が発揮する画像特性との関係も見出した。   Here, as a result of manufacturing various carrier powder samples by the present inventors and measuring the internal pore ratio of each sample, the abundance ratio of carrier particles having a predetermined internal pore ratio in each sample and the respective samples And found the relationship with magnetic properties. Furthermore, the present inventors have found a relationship between the abundance ratio and magnetic characteristics of carrier particles having a predetermined internal pore ratio and image characteristics exhibited by an electrophotographic developer sample produced from the carrier powder sample.

それに拠れば、内部ポア率が3%未満のキャリア粒子の個数比率が70%以上であり、且つ、内部ポア率が10%以上のキャリア粒子の個数比率が20%以下であるとき、当該キャリア粒子を含むキャリア粉の磁気特性を評価したところ、飽和磁化σsは87.2〜92.2Am/kg、σ1kは73.6〜74.8Am/kg、σ100は0.76〜1.03Am/kg、σ200は18.5〜20.2Am/kgであった。 Accordingly, when the number ratio of carrier particles having an internal pore ratio of less than 3% is 70% or more and the number ratio of carrier particles having an internal pore ratio of 10% or more is 20% or less, the carrier particles As a result, the saturation magnetization σs is 87.2 to 92.2 Am 2 / kg, σ1k is 73.6 to 74.8 Am 2 / kg, and σ100 is 0.76 to 1.03 Am 2. / Kg and σ200 were 18.5 to 20.2 Am 2 / kg.

以上のことから、本実施の形態に係るキャリア粒子は内部ポア率が低く、σs、σ1K、σ100、σ200の値が高いことが判明した。そして、当該当該キャリア粒子を含むキャリア粉を電子写真現像剤として使用した場合、特にキャリア飛散特性が優れていることも判明した。具体的には、キャリア粉の内部ポア率が1%以下の粒子を65%以上含有するキャリア粉であれば、その磁気特性が、σ100が0.7Am/kg以上であり、σ200が17Am/kg以上となる。さらに、当該キャリア粒子の粒径を30μm以下と小粒径化してもキャリア飛散が抑制され、電子写真現像機が、高画質化、フルカラー化した場合であっても、良好な画像特性を発揮するキャリア粉を得ることができた。 From the above, it has been found that the carrier particles according to the present embodiment have a low internal pore ratio and high values of σs, σ1K, σ100, and σ200. It was also found that when the carrier powder containing the carrier particles is used as an electrophotographic developer, the carrier scattering characteristics are particularly excellent. Specifically, if the carrier powder contains 65% or more of particles having an internal pore ratio of 1% or less, the magnetic properties are σ100 is 0.7 Am 2 / kg or more, and σ200 is 17 Am 2. / Kg or more. Furthermore, even when the particle size of the carrier particles is reduced to 30 μm or less, carrier scattering is suppressed, and even when the electrophotographic developing machine is improved in image quality and full color, it exhibits good image characteristics. Carrier powder could be obtained.

次に、本発明に係るキャリア粉の製造方法について説明する。
[秤量・混合]
本発明に係るキャリア粉が含むキャリア粒子に用いられる磁性酸化物(ソフトフェライトであることが好ましい。)は、一般式:MO・Feであらわされる。ここでMとは、例えば、Fe、Mn、Mg等の金属である。当該Fe、Mn、Mg等の金属は、単独使用も可能だが、混合組成とすることで、キャリア粒子における磁気的特性の制御可能範囲が広くなることから好ましい構成である。
Next, the method for producing carrier powder according to the present invention will be described.
[Weighing and mixing]
The magnetic oxide (preferably soft ferrite) used for the carrier particles contained in the carrier powder according to the present invention is represented by the general formula: MO · Fe 2 O 3 . Here, M is a metal such as Fe, Mn, or Mg. The metals such as Fe, Mn, and Mg can be used alone, but a mixed composition is preferable because the controllable range of magnetic properties in the carrier particles is widened.

ここで、FeであればFeが好適に使用できる。Mの原料として、M元素の含有量(純度)がより高い化合物を用いることが望ましく、好ましくは、70質量%以上である化合物を用いると良い。MnであればMnが好適に使用できるが、これに限られることなくMnCO等も使用可能であり、MgであればMg(OH)が好適に使用でき、さらにMgCOも好適に使用できる。
これらの原料の配合比を、該磁性酸化物の目的組成と一致させて秤量、混合して、金属原料混合物を得る。
Here, Fe 2 O 3 can be suitably used for Fe. As the raw material of M, it is desirable to use a compound having a higher content (purity) of M element, and it is preferable to use a compound of 70% by mass or more. If Mn, Mn 3 O 4 can be preferably used, but not limited to this, MnCO 3 or the like can be used, and Mg can be preferably used Mg (OH) 2 , and MgCO 3 is also preferable. Can be used for
The mixing ratio of these raw materials is matched with the target composition of the magnetic oxide and weighed and mixed to obtain a metal raw material mixture.

[粉砕・造粒]
秤量・混合したMおよびFeの金属原料混合物を、振動ミル等の粉砕機中に導入し、粒径2μm〜0.2μm、好ましくは粒径0.5μmに粉砕する。次いで、この粉砕物へ、水、バインダー0.5〜2wt%、分散剤0.5〜2wt%を加えることで、固形分濃度が50〜90wt%のスラリーとし、該スラリーをボールミル等で湿式粉砕する。ここで、バインダーとしては、ポリビニルアルコール等が好ましく、分散剤としては、ポリカルボン酸アンモニウム系等が好ましい。
ここで、当該湿式粉砕の回数を増やすことにより、造粒時の粒子密度が向上し、焼成時の内部ポアの抑制に寄与する。従って、その回数は3回以上、好ましくは5回程度繰り返す。
[Crushing and granulation]
The mixed metal raw material mixture of M and Fe, which is weighed and mixed, is introduced into a pulverizer such as a vibration mill, and pulverized to a particle size of 2 μm to 0.2 μm, preferably 0.5 μm. Next, water, binder 0.5 to 2 wt%, and dispersant 0.5 to 2 wt% are added to the pulverized product to obtain a slurry having a solid content concentration of 50 to 90 wt%, and the slurry is wet pulverized with a ball mill or the like. To do. Here, polyvinyl alcohol or the like is preferable as the binder, and ammonium polycarboxylate or the like is preferable as the dispersant.
Here, by increasing the number of wet pulverizations, the particle density at the time of granulation is improved, which contributes to the suppression of internal pores at the time of firing. Therefore, the number of times is repeated 3 times or more, preferably about 5 times.

造粒工程では、当該湿式粉砕されたスラリーを噴霧乾燥機に導入して温度100℃〜300℃の熱風中に噴霧して乾燥させ、粒径10μm〜200μmの造粒粉を得る。得られた造粒粉は、製品最終粒径を考慮して、それに外れる粗粒および微粉を、振動ふるいで除外して粒度調整する。詳細な理由は後述するが、製品最終粒径は20μm以上、50μm以下であることが好ましいことから、当該造粒粉の粒径は10μm〜100μmに調整しておくことが好ましい。   In the granulation step, the wet-pulverized slurry is introduced into a spray dryer and sprayed into hot air having a temperature of 100 ° C. to 300 ° C. to dry, thereby obtaining granulated powder having a particle size of 10 μm to 200 μm. In the obtained granulated powder, the final particle size of the product is taken into consideration, and coarse particles and fine powders that deviate from the granulated powder are excluded with a vibration sieve to adjust the particle size. Although the detailed reason will be described later, since the final particle size of the product is preferably 20 μm or more and 50 μm or less, the particle size of the granulated powder is preferably adjusted to 10 μm to 100 μm.

[仮焼]
粒度調整された造粒粉を、800℃〜1000℃に加熱した炉に投入し、窒素雰囲気下で1時間〜5時間、好ましくは3時間、仮焼して仮焼品とする。このとき、窒素雰囲気下で仮焼することで、キャリア粒子内部のポア発生量を削減できる。
[Calcination]
The granulated powder whose particle size has been adjusted is put into a furnace heated to 800 ° C. to 1000 ° C., and calcined in a nitrogen atmosphere for 1 hour to 5 hours, preferably 3 hours to obtain a calcined product. At this time, the amount of pores generated inside the carrier particles can be reduced by calcination in a nitrogen atmosphere.

[焼成]
次に、該仮焼品を、1100℃〜1300℃に加熱した炉に投入し3時間〜30時間、焼成してフェライト化し焼成物とする。当該焼成時の雰囲気は、金属原料Mの種類により適宜選択される。例えば、金属原料MがFeまたはFeとMn(モル比100:0〜50:50)の場合は窒素雰囲気が求められる。金属原料Mが、Fe、Mn、Mgの場合は、窒素雰囲気またはO分圧を1〜5%、好ましくは3%に調整した酸素分圧調整雰囲気が好ましい。一方、金属原料Mが、FeとMnとMgとの混合物である場合であって、Mgのモル比が30%を超える場合は大気雰囲気でもよい。
[Baking]
Next, the calcined product is put into a furnace heated to 1100 ° C. to 1300 ° C. and fired for 3 hours to 30 hours to be ferritized into a fired product. The atmosphere at the time of firing is appropriately selected depending on the type of the metal raw material M. For example, when the metal raw material M is Fe or Fe and Mn (molar ratio 100: 0 to 50:50), a nitrogen atmosphere is required. When the metal raw material M is Fe, Mn, or Mg, a nitrogen atmosphere or an oxygen partial pressure adjustment atmosphere in which the O 2 partial pressure is adjusted to 1 to 5%, preferably 3% is preferable. On the other hand, when the metal raw material M is a mixture of Fe, Mn, and Mg and the molar ratio of Mg exceeds 30%, the atmosphere may be an air atmosphere.

[解砕、分級]
得られた焼成物をハンマーミル解粒等で粗粉砕し、次に、当該粗粉砕物を気流分級機で1次分級した。この1次分級物を、さらに振動ふるいまたは超音波ふるいにて粒度をそろえた後、磁場選鉱機にかけ、非磁性成分を除去して、本発明に係る電子写真現像剤用キャリア粉を製造した。
ここで、キャリア粒子の最終粒径は10μm以上、50μm以下であることが好ましく、より好ましくは10μm以上、30μm以下である。これは当該最終粒径が10μm以上であれば、小粒径用に設計され製造されたトナーと組み合わせて、高画質を得ることのできる電子写真現像剤を製造することが出来るからである。一方、当該最終粒径が50μm以下、より好ましくは30μm以下であれば、当該キャリア粒子のトナー保持能力が高く保たれる。そしてトナー保持能力が高く保たれることで、現像される電子写真においてトナー飛散が抑制され、カブリが少ない、優れた画像を得ることができるからである。
以上のように、当該キャリア粉と、適宜な粒径を有するトナーとを混合することで電子写真現像剤を製造することができる。
[Disintegration, classification]
The obtained fired product was coarsely pulverized by hammer mill pulverization or the like, and then the coarsely pulverized product was primarily classified by an air classifier. The primary classified product was further adjusted in particle size using a vibration sieve or an ultrasonic sieve, and then applied to a magnetic field separator to remove non-magnetic components to produce a carrier powder for an electrophotographic developer according to the present invention.
Here, the final particle size of the carrier particles is preferably 10 μm or more and 50 μm or less, more preferably 10 μm or more and 30 μm or less. This is because when the final particle size is 10 μm or more, an electrophotographic developer capable of obtaining high image quality can be manufactured in combination with a toner designed and manufactured for a small particle size. On the other hand, if the final particle size is 50 μm or less, more preferably 30 μm or less, the toner retention ability of the carrier particles is kept high. In addition, since the toner holding ability is kept high, toner scattering is suppressed in an electrophotographic image to be developed, and an excellent image with less fog can be obtained.
As described above, an electrophotographic developer can be produced by mixing the carrier powder and a toner having an appropriate particle size.

以下、実施例に基づいて、本発明をより具体的に説明する。
(実施例1)
キャリア粉の原料として、微粉砕したFeとMnとを準備し、モル比でFe:Mn=55:45となるように秤量した。この際、Mn原料は,Mn元素の含有量(純度)として70質量%以上のものを準備し、予め、振動ミル等の破砕処理により、個数平均粒径0.6μmに調整しておいたものを使用した。
一方、水中へ分散剤(ポリカルボン酸アンモニウム系分散剤)を1.5wt%、湿潤剤(サンノプコ(株)製、SNウェット980)を0.05wt%、バインダー(ポリビニルアルコール)を0.02wt%添加したものを準備し、ここへ、先程秤量したFeおよびMnを投入・攪拌し、濃度70wt%のスラリーを得た。
当該スラリーを湿式ボールミルにて湿式粉砕し、この当該湿式粉砕操作を3回繰り返し行った。当該湿式粉砕物をさらに攪拌した後、スプレードライヤーにて噴霧し、粒径10μm〜100μmの乾燥造粒品を製造した。
当該乾燥造粒品から、網目75μmの篩網を用いて粗粒を分離した後、当該造粒品を窒素雰囲気下で900℃に加熱して3時間仮焼し、その後、1180℃、窒素雰囲気下で5時間焼成し、フェライト化させて焼成品を得た。
このフェライト化した焼成品をハンマーミルで解砕し、次に、風力分級機を用いて微粉を除去し、さらに網目37μmの振動ふるいで粒度調整し、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model9320−X100)により測定した個数平均粒径(D50)が、25.4μmである実施例1に係るキャリア芯材を得た。(尚、以下に記載する各実施例および各比較例においても、同様の方法で個数平均粒径(D50)を測定した。)
Hereinafter, based on an Example, this invention is demonstrated more concretely.
Example 1
Finely pulverized Fe 2 O 3 and Mn 3 O 4 were prepared as carrier powder materials, and weighed so that the molar ratio was Fe 2 O 3 : Mn 3 O 4 = 55: 45. At this time, the Mn 3 O 4 raw material is prepared with a Mn element content (purity) of 70% by mass or more, and previously adjusted to a number average particle size of 0.6 μm by crushing treatment such as a vibration mill. I used what I had.
On the other hand, 1.5 wt% dispersant (ammonium polycarboxylate dispersant) in water, 0.05 wt% wetting agent (manufactured by San Nopco Co., Ltd., SN wet 980), 0.02 wt% binder (polyvinyl alcohol) What was added was prepared, and Fe 2 O 3 and Mn 3 O 4 weighed previously were added and stirred therein to obtain a slurry having a concentration of 70 wt%.
The slurry was wet pulverized with a wet ball mill, and the wet pulverization operation was repeated three times. The wet pulverized product was further stirred and then sprayed with a spray dryer to produce a dry granulated product having a particle size of 10 μm to 100 μm.
After separating coarse particles from the dried granulated product using a sieve mesh having a mesh size of 75 μm, the granulated product is calcined for 3 hours by heating to 900 ° C. in a nitrogen atmosphere, and then 1180 ° C., nitrogen atmosphere The product was fired for 5 hours under the condition of being ferritized to obtain a fired product.
This ferritized fired product is crushed with a hammer mill, then fine particles are removed using an air classifier, and the particle size is adjusted with a vibrating screen having a mesh size of 37 μm. A laser diffraction particle size distribution measuring device (Nikkiso Co., Ltd.) A carrier core material according to Example 1 having a number average particle diameter (D50) measured by Microtrak, Model 9320-X100) of 25.4 μm was obtained. (The number average particle diameter (D50) was also measured in the same manner in each of the examples and comparative examples described below.)

次に、シリコーン系樹脂(商品名:KR251、信越化学製)を、トルエンに50重量%溶解してなるコーティング樹脂溶液を準備した。そして、実施例1に係るキャリア芯材と当該樹脂溶液とを重量比で、芯材:樹脂溶液=9.1:0.9の割合にて撹拌機に導入し、樹脂溶液にキャリア芯材を3時間浸漬しながら150℃〜250℃にて加熱撹拌した。この結果、実施例1に係るキャリア芯材には、当該樹脂が芯材重量に対し1.0重量%の割合でコーティングされた。この樹脂コートされたキャリア芯材を熱風循環式加熱装置に設置し、250℃で5時間加熱を行い、当該樹脂コートを硬化させてキャリア粉試料1を得た。   Next, a coating resin solution prepared by dissolving 50% by weight of a silicone resin (trade name: KR251, manufactured by Shin-Etsu Chemical Co., Ltd.) in toluene was prepared. And the carrier core material which concerns on Example 1 and the said resin solution are introduce | transduced into a stirrer in the ratio of core material: resin solution = 9.1: 0.9 by weight ratio, and carrier core material is put into a resin solution. The mixture was heated and stirred at 150 ° C. to 250 ° C. while being immersed for 3 hours. As a result, the carrier core material according to Example 1 was coated with the resin at a ratio of 1.0% by weight with respect to the core material weight. The carrier core material coated with the resin was placed in a hot air circulation type heating device, heated at 250 ° C. for 5 hours, and the resin coat was cured to obtain a carrier powder sample 1.

得られたキャリア試料1の内部ポア観察結果を図1に記載した。使用原料の種類、使用原料の組成比、M元素(Mn)原料の純度と粒径、スラリーを湿式ボールミルにて湿式粉砕した回数、仮焼の際の雰囲気について表1に記載した。製造されたキャリア粉試料1において、所定の内部ポア率(0〜0.5%、0.5〜1%、1〜1.5%、1.5〜2%、2〜2.5%、2.5〜3%、3〜5%、5〜10%、〜20%、〜30%、〜50%)を有するキャリア粒子の存在比率を表2に、磁気特性測定結果を表3に記載した。
ここで、図1はキャリア粉試料1に係るフェライト粒子を、集束イオンビーム試料加工装置を用い、当該キャリア粒子において、一番大きな断面積をえることができると思われる切断面をいくつかカットし、その中で一番大きい断面積を得ることができた面を切断面とし、現れた切断面をSIMにて観察した写真(SIM像)(倍率:1000倍)である。当該写真データへ、上述した市販の画像解析ソフトを適用し、当該キャリア粒子の断面積におけるポアの占める面積の比率を「内部ポア率」として算出したところ、0.69%であった。
尚、当該内部ポア率の算出の際、当該キャリア粉体全体の平均値を得る為、当該キャリア粒子の60粒子当りの平均値をもって、当該キャリア粒子の内部ポア率とした。
The results of the internal pore observation of the obtained carrier sample 1 are shown in FIG. Table 1 shows the types of raw materials used, the composition ratio of the raw materials used, the purity and particle size of the M element (Mn) raw material, the number of times the slurry was wet pulverized by a wet ball mill, and the atmosphere during calcination. In the produced carrier powder sample 1, a predetermined internal pore ratio (0 to 0.5%, 0.5 to 1%, 1 to 1.5%, 1.5 to 2%, 2 to 2.5%, Table 2 shows the abundance ratio of carrier particles having 2.5 to 3%, 3 to 5%, 5 to 10%, ˜20%, ˜30%, and ˜50%, and Table 3 shows the magnetic property measurement results. did.
Here, FIG. 1 shows that the ferrite particles according to the carrier powder sample 1 are cut by using a focused ion beam sample processing apparatus, and by cutting some cut surfaces that are considered to be able to obtain the largest cross-sectional area in the carrier particles. FIG. 5 is a photograph (SIM image) (magnification: 1000 times) of the surface where the largest cross-sectional area was obtained as a cut surface, and the cut surface that appeared was observed with a SIM. The commercially available image analysis software described above was applied to the photographic data, and the ratio of the area occupied by pores in the cross-sectional area of the carrier particles was calculated as the “internal pore ratio”, which was 0.69%.
In calculating the internal pore ratio, in order to obtain the average value of the entire carrier powder, the average value per 60 particles of the carrier particles was used as the internal pore ratio of the carrier particles.

さらに、キャリア粉試料1を、粒径1μm程度の市販トナーとを混合して、現像剤試料1を製造した。所定のデジタル反転現像方式を採用する40枚機を評価機として使用し、当該現像剤試料1の初期画像を評価し、その結果を表4に記載した。キャリア飛散はみられず良好であり、耐スペント性も良好であり、画像濃度は適正であり、カブリ濃度はなく、細線再現性も良好で、画質も良好であった。
尚、表4の実施例1〜3、比較例1〜3の評価において、◎は非常に良好なレベルを示し、○は良好なレベルを示し、×は実用上使用不可能なレベルを示す。
Furthermore, the developer powder 1 was manufactured by mixing the carrier powder sample 1 with a commercially available toner having a particle diameter of about 1 μm. A 40-sheet machine employing a predetermined digital reversal development method was used as an evaluator, the initial image of the developer sample 1 was evaluated, and the results are shown in Table 4. Carrier scattering was not observed and good, the spent resistance was good, the image density was appropriate, there was no fog density, fine line reproducibility was good, and the image quality was good.
In the evaluation of Examples 1 to 3 and Comparative Examples 1 to 3 in Table 4, “◎” indicates a very good level, “○” indicates a good level, and “×” indicates a practically unusable level.

(実施例2)
実施例1のキャリア粉の製造工程において、キャリア粉の原料としてFeとMnモル比をFe:Mn=60:40となるように秤量して使用した以外は、実施例1と同様の条件にて、個数平均粒径D50が26.2μmである実施例2に係るキャリア芯材を得、さらにキャリア粉試料2を得た。
(Example 2)
In the carrier powder manufacturing process of Example 1, Fe 2 O 3 and Mn 3 O 4 molar ratio were weighed and used so as to be Fe 2 O 3 : Mn 3 O 4 = 60: 40 as a raw material for carrier powder. The carrier core material according to Example 2 having a number average particle diameter D50 of 26.2 μm was obtained under the same conditions as in Example 1, and a carrier powder sample 2 was further obtained.

実施例1と同様に、得られたキャリア粉試料2の使用原料の種類、使用原料の組成比、M元素(Mn)原料の純度と粒径、スラリーを湿式ボールミルにて湿式粉砕した回数、仮焼の際の雰囲気について表1に、製造されたキャリア粉試料2における所定の内部ポア率を有するキャリア粒子の存在比率を表2に、磁気特性測定結果を表3に記載した。   As in Example 1, the type of raw material used, the composition ratio of the raw material used, the purity and particle size of the M element (Mn) raw material, the number of times the slurry was wet crushed with a wet ball mill, Table 1 shows the atmosphere during firing, Table 2 shows the abundance ratio of carrier particles having a predetermined internal pore ratio in the produced carrier powder sample 2, and Table 3 shows the magnetic property measurement results.

さらに、実施例1と同様に現像剤試料2を製造した。所定のデジタル反転現像方式を採用する40枚機を評価機とし、現像剤試料2を使用して、初期画像を評価し、その結果を表4に記載した。キャリア飛散、耐スペント性、画像濃度、カブリ濃度、細線再現性とも良好であり、画質も良好であった。   Further, a developer sample 2 was produced in the same manner as in Example 1. A 40-sheet machine employing a predetermined digital reversal development system was used as an evaluation machine, and an initial image was evaluated using developer sample 2. The results are shown in Table 4. Carrier scattering, spent resistance, image density, fog density, fine line reproducibility were good, and image quality was good.

(実施例3)
実施例1のキャリア粉の製造工程において、キャリア粉の原料としてFeとMnモル比をFe:Mn=65:35となるように秤量して使用した以外は、実施例1と同様の条件にて、個数平均粒径D50が26.6μmである実施例3に係るキャリア芯材を得、さらにキャリア粉試料3を得た。
(Example 3)
In the carrier powder production process of Example 1, Fe 2 O 3 and Mn 3 O 4 molar ratio were weighed and used so as to be Fe 2 O 3 : Mn 3 O 4 = 65: 35 as a carrier powder raw material. The carrier core material according to Example 3 having a number average particle diameter D50 of 26.6 μm was obtained under the same conditions as in Example 1, and a carrier powder sample 3 was further obtained.

実施例1と同様に、得られたキャリア粉試料3の使用原料の種類、使用原料の組成比、M元素(Mn)原料の純度と粒径、スラリーを湿式ボールミルにて湿式粉砕した回数、仮焼の際の雰囲気について表1に、製造されたキャリア粉試料3における所定の内部ポア率を有するキャリア粒子の存在比率を表2に、磁気特性測定結果を表3に記載した。   As in Example 1, the type of raw material used, the composition ratio of the raw material used, the purity and particle size of the M element (Mn) raw material, the number of times the slurry was wet crushed with a wet ball mill, Table 1 shows the abundance of carrier particles having a predetermined internal pore ratio in the produced carrier powder sample 3, and Table 3 shows the magnetic property measurement results.

さらに、実施例1と同様に現像剤試料3を製造した。所定のデジタル反転現像方式を採用する40枚機を評価機とし、現像剤試料3を使用して、初期画像を評価し、その結果を表4に記載した。キャリア飛散、耐スペント性、画像濃度、カブリ濃度、細線再現性とも良好であり、画質も良好であった。   Further, a developer sample 3 was produced in the same manner as in Example 1. A 40-sheet machine employing a predetermined digital reversal development system was used as an evaluation machine, and the developer sample 3 was used to evaluate an initial image. The results are shown in Table 4. Carrier scattering, spent resistance, image density, fog density, fine line reproducibility were good, and image quality was good.

(比較例1)
キャリア粉の原料として、微粉砕したFeとMnとを準備し、モル比でFe:Mn=55:45となるように秤量した。この際、Mn原料は,Mn元素の含有量(純度)として68質量%のものを準備し、予め、振動ミル等の破砕処理により、個数平均粒径2.5μmに調整しておいたものを使用した。
一方、水中へ分散剤(ポリカルボン酸アンモニウム系分散剤)を1.5wt%、湿潤剤(サンノプコ(株)製、SNウェット980)を0.05wt%、バインダー(ポリビニルアルコール)を0.02wt%添加したものを準備し、ここへ先程、秤量したFeおよびMnを投入・攪拌し、濃度70wt%のスラリーを得た。
当該スラリーを湿式ボールミルにて1回湿式粉砕し、さらに攪拌した後、スプレードライヤーにて該スラリーを噴霧し、粒径10μm〜100μmの乾燥造粒品を製造した。
当該乾燥造粒品から、網目75μmの篩網を用いて粗粒を分離した後、当該造粒品を大気雰囲気下で900℃に加熱して仮焼し、その後、1180℃、窒素雰囲気下で5時間焼成し、フェライト化させて焼成品を得た。
このフェライト化した焼成品をハンマーミルで解砕し、風力分級機を用いて微粉を除去し、網目37μmの振動ふるいで粒度調整し、個数平均粒径D50が26.3μmである比較例1に係るキャリア芯材を得、さらにキャリア粉試料4を得た。
(Comparative Example 1)
Finely pulverized Fe 2 O 3 and Mn 3 O 4 were prepared as carrier powder materials, and weighed so that the molar ratio was Fe 2 O 3 : Mn 3 O 4 = 55: 45. At this time, the Mn 3 O 4 raw material was prepared with a Mn element content (purity) of 68% by mass, and was previously adjusted to a number average particle size of 2.5 μm by crushing treatment such as a vibration mill. We used what was.
On the other hand, 1.5 wt% dispersant (ammonium polycarboxylate dispersant) in water, 0.05 wt% wetting agent (manufactured by San Nopco Co., Ltd., SN wet 980), 0.02 wt% binder (polyvinyl alcohol) What was added was prepared, and the weighed Fe 2 O 3 and Mn 3 O 4 were added and stirred here to obtain a slurry with a concentration of 70 wt%.
The slurry was wet pulverized once with a wet ball mill and further stirred, and then the slurry was sprayed with a spray dryer to produce a dry granulated product having a particle size of 10 μm to 100 μm.
After separating coarse particles from the dried granulated product using a sieve mesh having a mesh size of 75 μm, the granulated product is calcined by heating to 900 ° C. in an air atmosphere, and then at 1180 ° C. in a nitrogen atmosphere. Firing was carried out for 5 hours and ferrite was obtained to obtain a fired product.
The ferritized fired product is crushed with a hammer mill, fine powder is removed using an air classifier, the particle size is adjusted with a vibrating screen having a mesh size of 37 μm, and the number average particle size D50 is 26.3 μm. The carrier core material which concerns was obtained, and also the carrier powder sample 4 was obtained.

実施例1と同様に、得られたキャリア粉試料4の使用原料の種類、使用原料の組成比、M元素(Mn)原料の純度と粒径、スラリーを湿式ボールミルにて湿式粉砕した回数、仮焼の際の雰囲気について表1に、製造されたキャリア粉試料4における所定の内部ポア率を有するキャリア粒子の存在比率を表2に、磁気特性測定結果を表3に記載した。   As in Example 1, the type of raw material used, the composition ratio of the raw material used, the purity and particle size of the M element (Mn) raw material, the number of times the slurry was wet crushed with a wet ball mill, Table 1 shows the abundance ratio of carrier particles having a predetermined internal pore ratio in the produced carrier powder sample 4 and Table 3 shows the magnetic property measurement results.

さらに、実施例1と同様に現像剤試料4を製造した。所定のデジタル反転現像方式を採用する40枚機を評価機とし、現像剤試料4を使用して、初期画像を評価し、その結果を表4に記載した。耐スペント性、画像濃度、カブリ濃度、細線再現性は良好であったが、キャリア飛散は実用上使用不可能のレベルであり、画質も実用上使用不可能のレベルであった。   Further, a developer sample 4 was produced in the same manner as in Example 1. A 40-sheet machine employing a predetermined digital reversal development system was used as an evaluation machine, and a developer sample 4 was used to evaluate an initial image. The results are shown in Table 4. Spent resistance, image density, fog density, and fine line reproducibility were good, but carrier scattering was practically unusable and image quality was practically unusable.

(比較例2)
実施例4のキャリア粉の製造工程において、キャリア粉の原料としてFeとMnモル比をFe:Mn=50:50となるように秤量した。そして、造粒粉の仮焼成工程を省略し、すぐに本焼成を行った以外は、実施例1と同様の条件にて試料を製造し、個数平均粒径D50が35.2μmである比較例2に係るキャリア芯材を得、さらにキャリア粉試料5を得た。
(Comparative Example 2)
In the carrier powder production process of Example 4, the molar ratio of Fe 2 O 3 and Mn 3 O 4 as a raw material for the carrier powder was measured so that Fe 2 O 3 : Mn 3 O 4 = 50: 50. And the sample was manufactured on the same conditions as Example 1 except omitting the temporary baking process of granulated powder, and performing main baking immediately, and the number average particle diameter D50 is a comparative example which is 35.2 micrometers. 2 and a carrier powder sample 5 were obtained.

実施例1と同様に、使用原料の種類、使用原料の組成比、M元素(Mn)原料の純度と粒径、スラリーを湿式ボールミルにて湿式粉砕した回数について表1に、製造されたキャリア粉試料5における所定の内部ポア率を有するキャリア粒子の存在比率を表2に、磁気特性測定結果を表3に記載した。   As in Example 1, Table 1 shows the types of raw materials used, the composition ratio of the raw materials used, the purity and particle size of the M element (Mn) raw material, and the number of times the slurry was wet crushed by a wet ball mill. Table 2 shows the abundance ratio of carrier particles having a predetermined internal pore ratio in Sample 5, and Table 3 shows the magnetic property measurement results.

さらに、実施例1と同様に現像剤試料5を製造した。所定のデジタル反転現像方式を採用する40枚機を評価機とし、現像剤試料5を使用して、初期画像を評価し、その結果を表4に記載した。耐スペント性、画像濃度は良好であったが、キャリア飛散、カブリ濃度、細線再現性は実用上使用不可能のレベルであり、画質も実用上使用不可能のレベルであった。   Further, a developer sample 5 was produced in the same manner as in Example 1. A 40-sheet machine employing a predetermined digital reversal development system was used as an evaluation machine, and the developer sample 5 was used to evaluate an initial image. The results are shown in Table 4. Spent resistance and image density were good, but carrier scattering, fog density, and fine line reproducibility were practically unusable levels, and image quality was practically unusable.

(比較例3)
比較例2のキャリア粉の製造工程において、原料スラリーを湿式粉砕する工程を省略した以外は、比較例2と同様の条件にて製造を実施し、個数平均粒径D50が36.4μmである比較例3に係るキャリア芯材を得、さらにキャリア粉試料6を得た。
(Comparative Example 3)
In the carrier powder production process of Comparative Example 2, the production was carried out under the same conditions as in Comparative Example 2 except that the step of wet pulverizing the raw slurry was omitted, and the number average particle diameter D50 was 36.4 μm. A carrier core material according to Example 3 was obtained, and further a carrier powder sample 6 was obtained.

実施例1と同様に、使用原料の種類、使用原料の組成比、M元素(Mn)原料の純度と粒径について表1に、製造されたキャリア粉試料6における所定の内部ポア率を有するキャリア粒子の存在比率を表2に、磁気特性測定結果を表3に記載した。   As in Example 1, Table 1 shows the types of raw materials used, the composition ratios of the raw materials used, and the purity and particle size of the M element (Mn) raw material. The abundance ratio of the particles is shown in Table 2, and the magnetic property measurement results are shown in Table 3.

さらに、実施例1と同様に現像剤試料6を製造した。所定のデジタル反転現像方式を採用する40枚機を評価機とし、現像剤試料6を使用して、初期画像を評価し、その結果を表4に記載した。耐スペント性は良好であったが、キャリア飛散、画像濃度、カブリ濃度、細線再現性とも実用上使用不可能のレベルであり、画質も実用上、使用不可能のレベルであった。   Further, a developer sample 6 was produced in the same manner as in Example 1. A 40-sheet machine employing a predetermined digital reversal development system was used as an evaluation machine, and an initial image was evaluated using a developer sample 6. The results are shown in Table 4. Although the spent resistance was good, carrier scattering, image density, fog density, and fine line reproducibility were practically unusable levels, and image quality was practically unusable.

実施例1〜3および比較例1〜3の結果から、次のことが判明した。
本発明に係る製造方法により製造した試料1〜3はいずれも、内部ポア率が3%未満のキャリア粒子の個数比率が90%以上であり、内部ポア率が10%以上のキャリア粒子の個数比率が2%程度であった。
そして当該試料1〜3の飽和磁化は87.2Am/kg以上であった。さらにσ200は、18.5Am/kg以上であった。
この結果、当該試料1〜3とトナーとを混合して製造した現像剤試料1〜3を用いた場合、初期画像の評価結果において、キャリア飛散、耐スペント性、画像濃度、カブリ濃度、細線再現性とも良好であり、画質も良好であった。
From the results of Examples 1 to 3 and Comparative Examples 1 to 3, the following was found.
In Samples 1 to 3 manufactured by the manufacturing method according to the present invention, the number ratio of carrier particles having an internal pore ratio of less than 3% is 90% or more, and the number ratio of carrier particles having an internal pore ratio of 10% or more. Was about 2%.
And the saturation magnetization of the samples 1 to 3 was 87.2 Am 2 / kg or more. Furthermore, σ200 was 18.5 Am 2 / kg or more.
As a result, when developer samples 1 to 3 manufactured by mixing the samples 1 to 3 and toner are used, carrier scattering, spent resistance, image density, fog density, fine line reproduction are obtained in the initial image evaluation results. The image quality was also good.

これに対し、従来の技術に係る比較例1の試料4では、内部ポア率が3%未満のキャリア粒子の個数比率が70%未満であった。
この為、当該試料4の飽和磁化は83.2Am/kgであり、σ200は15.4Am/kgと、実施例1〜3より低かった。
この結果、当該試料4とトナーとを混合して製造した現像剤試料4を用いた、初期画像の評価結果において、キャリア飛散は実用上使用不可能のレベルであり、画質も実用上使用不可能のレベルであった。
On the other hand, in the sample 4 of Comparative Example 1 according to the conventional technique, the number ratio of carrier particles having an internal pore ratio of less than 3% was less than 70%.
Therefore, the saturation magnetization of Sample 4 was 83.2 Am 2 / kg, and σ200 was 15.4 Am 2 / kg, which was lower than those of Examples 1 to 3.
As a result, in the evaluation results of the initial image using the developer sample 4 produced by mixing the sample 4 and the toner, carrier scattering is practically unusable and the image quality is not practically usable. It was the level of.

さらに、従来の技術に係る比較例2、3の試料5、6では、内部ポア率が3%未満のキャリア粒子の個数比率が20%未満、内部ポア率が10%以上のキャリア粒子の個数比率が20%以上であった。
この結果、当該試料5、6とトナーとを混合して製造した現像剤試料5、6を用いた、初期画像の評価結果において、キャリア飛散、画像濃度、カブリ濃度、細線再現性とも実用上使用不可能のレベルであり、画質も実用上使用不可能のレベルであった。
Further, in Samples 5 and 6 of Comparative Examples 2 and 3 according to the prior art, the number ratio of carrier particles having an internal pore ratio of less than 3% is less than 20%, and the number ratio of carrier particles having an internal pore ratio of 10% or more. Was 20% or more.
As a result, carrier scattering, image density, fog density, and fine line reproducibility are practically used in the initial image evaluation results using the developer samples 5 and 6 produced by mixing the samples 5 and 6 and the toner. It was impossible and the image quality was practically unusable.

Claims (6)

キャリア粒子によって構成される電子写真現像剤用キャリア粉であって、
キャリア粒子は、一般式:MO・Fe(但し、Mは金属元素である。)で標記され、内部ポア率が3%未満のキャリア粒子の個数比率が70%以上であり、飽和磁化が87Am/kg以上であることを特徴とする電子写真現像剤用キャリア粉。
A carrier powder for an electrophotographic developer composed of carrier particles,
The carrier particles are represented by the general formula: MO.Fe 2 O 3 (where M is a metal element), the number ratio of carrier particles having an internal pore ratio of less than 3% is 70% or more, and saturation magnetization Is a carrier powder for an electrophotographic developer, wherein the carrier powder is 87 Am 2 / kg or more.
キャリア粒子の個数平均粒径が10μm以上、50μm以下であることを特徴とする請求項1に記載の電子写真現像剤用キャリア粉。   The carrier powder for an electrophotographic developer according to claim 1, wherein the number average particle diameter of the carrier particles is 10 µm or more and 50 µm or less. キャリア粒子の個数平均粒径が10μm以上、30μm以下であることを特徴とする請求項1に記載の電子写真現像剤用キャリア粉。   2. The carrier powder for an electrophotographic developer according to claim 1, wherein the number average particle diameter of the carrier particles is 10 μm or more and 30 μm or less. 内部ポア率が10%以上のキャリア粒子の個数比率が20%以下であることを特徴とする請求項1から3のいずれかに記載の電子写真現像剤用キャリア粉。   4. The carrier powder for an electrophotographic developer according to claim 1, wherein the number ratio of carrier particles having an internal pore ratio of 10% or more is 20% or less. 磁場200A/m×10/4πにおける磁力が、18Am/kg以上あることを特徴とする請求項1から4のいずれかに記載の電子写真現像剤用キャリア粉。 5. The carrier powder for an electrophotographic developer according to claim 1, wherein the magnetic force at a magnetic field of 200 A / m × 10 3 / 4π is 18 Am 2 / kg or more. 請求項1から5のいずれかに記載の電子写真現像剤用キャリア粉と、トナーとを含むことを特徴とする電子写真現像剤。   An electrophotographic developer comprising the carrier powder for an electrophotographic developer according to claim 1 and a toner.
JP2012068089A 2012-03-23 2012-03-23 Carrier powder for electrophotographic developer and electrophotographic developer containing the carrier powder Active JP5499372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068089A JP5499372B2 (en) 2012-03-23 2012-03-23 Carrier powder for electrophotographic developer and electrophotographic developer containing the carrier powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068089A JP5499372B2 (en) 2012-03-23 2012-03-23 Carrier powder for electrophotographic developer and electrophotographic developer containing the carrier powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006269603A Division JP5040024B2 (en) 2006-09-29 2006-09-29 Method for producing carrier powder for electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2012141635A true JP2012141635A (en) 2012-07-26
JP5499372B2 JP5499372B2 (en) 2014-05-21

Family

ID=46677909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068089A Active JP5499372B2 (en) 2012-03-23 2012-03-23 Carrier powder for electrophotographic developer and electrophotographic developer containing the carrier powder

Country Status (1)

Country Link
JP (1) JP5499372B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197134A (en) * 2013-03-29 2014-10-16 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, production method of the same, carrier for electrophotographic developer, and electrophotographic developer
JP2017062421A (en) * 2015-09-25 2017-03-30 富士ゼロックス株式会社 Image forming apparatus and process cartridge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130729A (en) * 1992-10-15 1994-05-13 Canon Inc Electrophotographic carrier
JP2950480B2 (en) * 1990-11-09 1999-09-20 三田工業株式会社 Carrier for developer
JP2003280281A (en) * 2002-03-27 2003-10-02 Toda Kogyo Corp Spheric ferrite particle, method for manufacturing the same, and electrophotographic developing carrier comprising the spheric ferrite particle
JP2005062658A (en) * 2003-08-19 2005-03-10 Ricoh Co Ltd Developing device and image forming apparatus
JP2007059124A (en) * 2005-08-23 2007-03-08 Victor Co Of Japan Ltd Display device
JP2007058124A (en) * 2005-08-26 2007-03-08 Fuji Xerox Co Ltd Electrostatic latent image developing carrier and developer for electrostatic latent image development

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950480B2 (en) * 1990-11-09 1999-09-20 三田工業株式会社 Carrier for developer
JPH06130729A (en) * 1992-10-15 1994-05-13 Canon Inc Electrophotographic carrier
JP2003280281A (en) * 2002-03-27 2003-10-02 Toda Kogyo Corp Spheric ferrite particle, method for manufacturing the same, and electrophotographic developing carrier comprising the spheric ferrite particle
JP2005062658A (en) * 2003-08-19 2005-03-10 Ricoh Co Ltd Developing device and image forming apparatus
JP2007059124A (en) * 2005-08-23 2007-03-08 Victor Co Of Japan Ltd Display device
JP2007058124A (en) * 2005-08-26 2007-03-08 Fuji Xerox Co Ltd Electrostatic latent image developing carrier and developer for electrostatic latent image development

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197134A (en) * 2013-03-29 2014-10-16 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, production method of the same, carrier for electrophotographic developer, and electrophotographic developer
JP2017062421A (en) * 2015-09-25 2017-03-30 富士ゼロックス株式会社 Image forming apparatus and process cartridge

Also Published As

Publication number Publication date
JP5499372B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4961571B2 (en) Manufacturing method of carrier core material
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
JP2008241742A (en) Carrier core material for electrophotographic developer and manufacturing method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP5040024B2 (en) Method for producing carrier powder for electrophotographic developer
JP2006323211A (en) Carrier for electrophotographic development, method for manufacturing same and electrophotographic developer
JP5314457B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
KR101468247B1 (en) Carrier core material for electrophotographic developing agent, process for producing the carrier core material, carrier for electrophotographic developing agent, and electrophotographic developing agent
US9164411B2 (en) Carrier core material for electrophotographic developer, method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
JP4963618B2 (en) Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
JP5499372B2 (en) Carrier powder for electrophotographic developer and electrophotographic developer containing the carrier powder
JP5921801B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP6154993B2 (en) Method for producing carrier core material for electrophotographic developer
JP2009237155A (en) Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2009086339A (en) Magnetic carrier core material for electrophotographic development, manufacturing method thereof, magnetic carrier, and electrophotographic developer
JP5930576B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP2010243783A (en) Magnetic particle, carrier core material, manufacturing method thereof, carrier, and electrophotographic developer
JP5114785B2 (en) Electrophotographic developer carrier, method for producing the same, and electrophotographic developer
JP2009122133A (en) Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2010085761A (en) Carrier core material for electrophotographic developer, method of manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
JP2010002519A (en) Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
EP2891925A1 (en) Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
WO2018147002A1 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
JP6494272B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2009036837A (en) Carrier for electrophotographic development and electrophotographic developer
JP2000233930A (en) Environmentally harmless high conductivity ferrite carrier core composition having magnetic moment adjustable over wide range and its particles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5499372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250