JP2012139756A - Method for manufacturing internal gear - Google Patents

Method for manufacturing internal gear Download PDF

Info

Publication number
JP2012139756A
JP2012139756A JP2010293123A JP2010293123A JP2012139756A JP 2012139756 A JP2012139756 A JP 2012139756A JP 2010293123 A JP2010293123 A JP 2010293123A JP 2010293123 A JP2010293123 A JP 2010293123A JP 2012139756 A JP2012139756 A JP 2012139756A
Authority
JP
Japan
Prior art keywords
residual stress
turning
amount
internal gear
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010293123A
Other languages
Japanese (ja)
Inventor
Kazutoshi Aida
和俊 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010293123A priority Critical patent/JP2012139756A/en
Publication of JP2012139756A publication Critical patent/JP2012139756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an internal gear having a highly accurate tooth surface shape by controlling a strain caused by a difference between a residual stress generated in lathe-turning an outer peripheral surface and a residual stress generated in machining an inner peripheral surface to form a tooth surface.SOLUTION: A method for manufacturing an internal gear includes: a rough blanking step S1 of applying a rough blanking; a finish lathe-turning step S2 of applying a finish lathe-turning to an outer periphery of a material to form the outer peripheral surface; a gear cutting step S3 of applying a gear cutting to an inner periphery of the material to which the finish lathe-turning is applied, to form the tooth surface; a heating step S4 of applying a heating to the material having the tooth surface formed in the inner periphery; and a grinding finish step S5 of applying a grinding finishing to the material after the heating. The method for manufacturing an internal gear further includes: a residual stress evaluation step S6 of evaluating the residual stress generated on the outer periphery side of the material to which the grinding finishing is applied; and a lathe-turning condition control step S7 of controlling lathe-turning conditions according to the level of an evaluation value of the residual stress obtained in the residual stress evaluation step S6 so that a subsequent residual stress to be generated by applying the grinding finishing on the outer periphery side of the material is reduced lower than the evaluation value.

Description

本発明は、内歯車の製造方法に関し、特に、非歯面側となる外周面を旋削加工する際の制御技術に関する。   The present invention relates to a method for manufacturing an internal gear, and more particularly, to a control technique for turning an outer peripheral surface on the non-tooth surface side.

内歯車は、筒状部もしくは環状部の内周に歯面を有するもので、例えば以下の工程を経て製作される。まず筒状部もしくは環状部の内周にギヤシェーパ加工、ブローチ加工等の歯切り加工(例えば、下記特許文献1を参照)、又は転造加工(例えば、下記特許文献2を参照)等を施して歯面を形成する。そして、浸炭、ガス窒化等の熱処理を施した後、外周面に仕上げ研削を施すことで上記内歯車が完成する。また、上記歯切り加工等を施す内歯車の素材には、下記特許文献2に記載のようにプレス成形されたものが用いられる場合の他、旋削加工で外周面を形成したものが用いられる場合もある。   The internal gear has a tooth surface on the inner periphery of the cylindrical portion or the annular portion, and is manufactured through the following steps, for example. First, gear shaper processing, broaching and other gear cutting processing (for example, refer to Patent Document 1 below), or rolling processing (for example, refer to Patent Document 2 below) or the like is performed on the inner periphery of the cylindrical portion or the annular portion. Tooth surface is formed. And after performing heat processing, such as carburizing and gas nitriding, the above-mentioned internal gear is completed by giving finish grinding to an outer peripheral surface. Moreover, as the material of the internal gear for performing the above-mentioned gear cutting, etc., in addition to the case where a press-molded one is used as described in Patent Document 2 below, the case where an outer peripheral surface is formed by turning is used. There is also.

特開2007−216236号公報JP 2007-216236 A 特開平5−96337号公報JP-A-5-96337

このように、内歯車製品では、耐摩耗性の向上を図るため、歯面を成形した後に熱処理加工を施しているが、上記熱処理は一般に500℃〜900℃と高温であるため、熱処理により素材の内部応力が解放され、及び変態時に生じる応力により歯車に歪みが生じることがある。これは、歯車の外周面を例えば旋削加工で形成する場合、素材の外周に旋削刃(チップ)を押し当てながら素材を削り取るために、素材の外周側に所定の残留応力が発生する一方で、歯切り等の歯面成形加工により歯面側(内周側)にも所定の残留応力が発生し、これら残留応力の差が、上記熱処理後に歪みとして現れるためである。この種の歪みは、使用時(歯車噛み合い時)における異音発生の原因となるため、これを極力取り除く必要があるが、その一方で、近年では、この種の内歯車を組み込んだ機器に対する小型化、軽量化の要求が高まっており、内歯車に対しても薄肉化が推進されている現状がある。そのため、今まで以上に、上記熱処理後の歪みが完成品に反映されやすい、との問題がある。   As described above, in the internal gear product, in order to improve the wear resistance, the heat treatment is performed after the tooth surface is formed. However, the heat treatment is generally performed at a high temperature of 500 ° C to 900 ° C. The internal stress of the gear is released, and the gear may be distorted by the stress generated during the transformation. This is because, when the outer peripheral surface of the gear is formed by turning, for example, a predetermined residual stress is generated on the outer peripheral side of the material in order to scrape the material while pressing a turning blade (chip) on the outer periphery of the material. This is because a predetermined residual stress is also generated on the tooth surface side (inner peripheral side) by tooth surface molding such as gear cutting, and the difference between these residual stresses appears as strain after the heat treatment. This type of distortion causes abnormal noise during use (gear meshing), so it is necessary to remove it as much as possible. On the other hand, in recent years, it has become more compact for devices incorporating this type of internal gear. There is an increasing demand for reduction in weight and weight, and there is a current situation that thinning of internal gears is being promoted. Therefore, there is a problem that the distortion after the heat treatment is more easily reflected in the finished product than ever.

以上の事情に鑑み、外周面の旋削加工時に生じる残留応力と、内周面の歯面形成加工時に生じる残留応力の差に起因する歪みの発生を抑えて、高精度な歯面形状を有する内歯車を製造することを、本発明により解決すべき技術的課題とする。   In view of the above circumstances, the inner surface has a highly accurate tooth surface shape by suppressing the occurrence of distortion due to the difference between the residual stress generated during turning of the outer peripheral surface and the residual stress generated during tooth surface forming processing of the inner peripheral surface. Manufacturing a gear is a technical problem to be solved by the present invention.

前記課題の解決は、本発明に係る内歯車の製造方法により達成される。すなわち、この製造方法は、素材の外周に旋削加工を施すことで外周面を形成すると共に、素材の内周に歯面を形成した内歯車の製造方法であって、旋削加工を施した素材の外周側に生じる残留応力を評価する残留応力評価工程と、残留応力評価工程で得た残留応力の評価値の大きさに応じて、次に旋削加工を施す素材の外周側に生じる残留応力が評価値より小さくなるよう、旋削加工条件を調整する旋削条件調整工程とを具備した点をもって特徴付けられる。   The solution to the above problem is achieved by the method for manufacturing an internal gear according to the present invention. That is, this manufacturing method is a method for manufacturing an internal gear in which an outer peripheral surface is formed by turning the outer periphery of the material and a tooth surface is formed on the inner periphery of the material. Residual stress generated on the outer peripheral side of the material to be turned next is evaluated according to the residual stress evaluation process for evaluating the residual stress generated on the outer peripheral side, and the magnitude of the residual stress evaluation value obtained in the residual stress evaluation process It is characterized by having a turning condition adjusting step for adjusting the turning condition so as to be smaller than the value.

このように、本発明は、歯面に比べて加工が容易で加工の自由度も高い素材外周面の旋削加工に着目し、次に旋削加工を施す素材の外周側に生じる残留応力が、既に旋削加工を施した素材における残留応力の評価値よりも小さくなるように、旋削加工条件を調整したことを特徴とするものである。すなわち、素材内周への歯面形成は各種歯切りや転造により行われるため、歯面形成により素材の内周側に生じる残留応力は比較的安定するのに対し、素材外周面を旋削加工で形成する場合には、旋削加工に使用されるチップ等の旋削刃が歯面形成加工に使用される加工具に比べて容易に磨耗を生じる。その結果、素材の外周側に生じる残留応力が旋削加工の継続実施に伴い変化し、素材の内外周間での残留応力の差が増大することが分かった。本願発明は、このような事情に鑑み成されたもので、まず旋削加工を施した素材の外周側に生じる残留応力を評価し、評価した残留応力が例えば所定の値(しきい値)を超えている場合、次に旋削加工を施す素材の外周側に生じる残留応力が上記残留応力の評価値よりも小さくなるように、旋削加工時の条件を調整する。これにより、旋削加工により素材の外周側に生じる残留応力と、歯面形成の際に内周側に生じる残留応力との差を小さくして、熱処理を施した後の歪み量を低減することができる。従って、歯面を含めて寸法精度及び形状精度に優れた内歯車を製造することができ、上記歪みに起因する不良率を低減することができる。また、高精度に内歯車を製造できるので、更なる薄肉化を図ることも可能となる。   Thus, the present invention pays attention to the turning of the outer peripheral surface of the material which is easy to process and has a high degree of freedom of processing compared to the tooth surface, and the residual stress generated on the outer peripheral side of the material to be turned next is already It is characterized by adjusting the turning conditions so as to be smaller than the evaluation value of the residual stress in the material subjected to the turning process. In other words, because the tooth surface is formed on the inner circumference of the material by various gear cutting and rolling, the residual stress generated on the inner circumference side of the material due to the tooth surface formation is relatively stable, while the outer circumference of the material is turned In this case, a turning blade such as a tip used for turning process is easily worn compared to a processing tool used for tooth surface forming process. As a result, it was found that the residual stress generated on the outer peripheral side of the material changes as the turning process continues, and the difference in residual stress between the inner and outer periphery of the material increases. The present invention has been made in view of such circumstances. First, the residual stress generated on the outer peripheral side of the turned material is evaluated, and the evaluated residual stress exceeds, for example, a predetermined value (threshold). In this case, the conditions at the time of turning are adjusted so that the residual stress generated on the outer peripheral side of the material to be turned next is smaller than the evaluation value of the residual stress. As a result, the difference between the residual stress generated on the outer peripheral side of the material by turning and the residual stress generated on the inner peripheral side during tooth surface formation can be reduced, and the amount of strain after heat treatment can be reduced. it can. Therefore, an internal gear excellent in dimensional accuracy and shape accuracy including the tooth surface can be manufactured, and a defect rate due to the distortion can be reduced. Moreover, since the internal gear can be manufactured with high accuracy, it is possible to further reduce the thickness.

また、本発明に係る内歯車の製造方法において、残留応力評価工程は、旋削加工に使用される旋削刃の磨耗量と残留応力との相関を予め取得する相関取得工程と、旋削加工を施した素材の外径を測定する外径測定工程と、外径測定工程で得た外径測定値から旋削刃の磨耗量を推定する磨耗量推定工程とを有し、磨耗量推定工程で得た磨耗量と、磨耗量と残留応力との相関とに基づき外周側の残留応力を評価するものであってもよい。   Further, in the method for manufacturing an internal gear according to the present invention, the residual stress evaluation step includes a correlation acquisition step of acquiring in advance a correlation between the wear amount of the turning blade used for the turning and the residual stress, and turning. Wear obtained in the wear amount estimation process, including an outer diameter measurement step for measuring the outer diameter of the material and a wear amount estimation step for estimating the wear amount of the turning blade from the outer diameter measurement value obtained in the outer diameter measurement step. The residual stress on the outer peripheral side may be evaluated based on the amount and the correlation between the wear amount and the residual stress.

素材の外周側に生じる残留応力の評価手段としては、X線回析等で残留応力を直接計測する手段もあるが、上記一連の工程が製造ライン上に配されることを考慮すると、上記直接計測手段は採用し難い(対応する計測装置を製造ラインに組込み難い)。ここで、旋削加工に使用される旋削刃の磨耗状態は、この旋削刃で旋削加工を受けた素材の外径を測定することで間接的に評価できる点に着目し、素材の外径を測定することで外周側の残留応力を評価するようにした。すなわち、まず旋削加工を施した素材の外径を測定し、測定した値から旋削刃の磨耗量を推定する。この場合、外径測定値と切削開始当初の外径測定値との差(増加量)が旋削刃の磨耗量に相当する。既に旋削刃の磨耗量を評価して、旋削刃の切り込み量を調整している場合には、その調整量も加味(積算)して現時点での磨耗量を推定する。そして、推定した磨耗量と、先に取得しておいた磨耗量と残留応力との相関とを照らし合わせることで、磨耗量に対応する外周側の残留応力を評価することができる。この手段によれば、素材の外径を測定するだけで足りるので、測定作業も容易であり、また測定に要する設備も小さくて済む。   As a means for evaluating the residual stress generated on the outer peripheral side of the material, there is also a means for directly measuring the residual stress by X-ray diffraction or the like, but considering that the series of steps are arranged on the production line, the direct stress It is difficult to adopt measurement means (it is difficult to incorporate the corresponding measurement device into the production line). Here, pay attention to the fact that the wear state of the turning blade used for turning can be indirectly evaluated by measuring the outer diameter of the material subjected to turning with this turning blade, and the outer diameter of the material is measured. By doing so, the residual stress on the outer peripheral side was evaluated. That is, first, the outer diameter of the material subjected to turning is measured, and the amount of wear of the turning blade is estimated from the measured value. In this case, the difference (increase) between the measured outer diameter and the measured outer diameter at the beginning of cutting corresponds to the amount of wear of the turning blade. If the turning amount of the turning blade has already been evaluated and the turning amount of the turning blade has been adjusted, the amount of adjustment is also taken into account (accumulated) to estimate the current amount of wear. Then, the residual stress on the outer peripheral side corresponding to the wear amount can be evaluated by comparing the estimated wear amount with the correlation between the previously obtained wear amount and the residual stress. According to this means, it is only necessary to measure the outer diameter of the material, so that the measurement work is easy and the equipment required for the measurement is small.

また、本発明に係る内歯車の製造方法において、旋削条件調整工程は、旋削加工時の送り量ないし回転速度の調整量と、その際の残留応力の低減量との関係を予め取得する工程を有し、残留応力評価工程で得た残留応力の評価値、および送り量ないし回転速度の調整量とその際の残留応力の低減量との関係に基づき、旋削加工時の送り量ないし回転速度を調整するものであってもよい。   Further, in the method for manufacturing an internal gear according to the present invention, the turning condition adjusting step includes a step of acquiring in advance a relationship between a feed amount or a rotation speed adjustment amount during turning and a residual stress reduction amount at that time. Based on the residual stress evaluation value obtained in the residual stress evaluation process, and the relationship between the feed amount or rotation speed adjustment amount and the residual stress reduction amount at that time, the feed amount or rotation speed during turning is determined. You may adjust.

このように、旋削加工条件の調整パラメータとして、送り量ないし回転速度を採用し、かつ、予めこれらパラメータの調整量とその際の残留応力の低減量との関係を取得しておく。そして、残留応力評価工程で得た残留応力の評価値の大きさに応じて、残留応力の低減量を設定し、この低減量に対応する送り量ないし回転速度の調整量(通常は低減量)を設定する。これにより、次に旋削加工を行う素材の外周側に生じる残留応力を確実かつ自動的に制御することができ、熱処理に起因して完成品に生じる歪みを問題ないレベルにまで抑制することが可能となる。特に、上述のように、素材の外径測定値から残留応力を評価する手段を採用する場合には、実質的に素材の外径を測定して、旋削加工時の送り量ないし回転速度を調整するだけで素材外周側の残留応力を制御することができるので、作業効率の点でも優れている。   As described above, the feed amount or the rotational speed is adopted as the adjustment parameter of the turning processing conditions, and the relationship between the adjustment amount of these parameters and the reduction amount of the residual stress at that time is acquired in advance. Then, a residual stress reduction amount is set according to the magnitude of the residual stress evaluation value obtained in the residual stress evaluation step, and a feed amount or a rotational speed adjustment amount corresponding to this reduction amount (usually a reduction amount). Set. This makes it possible to reliably and automatically control the residual stress that occurs on the outer periphery of the material to be turned next, and to suppress distortion that occurs in the finished product due to heat treatment to a level that does not cause any problems. It becomes. In particular, as described above, when adopting a means to evaluate the residual stress from the measured outer diameter of the material, the outer diameter of the material is substantially measured to adjust the feed amount or rotational speed during turning. Since the residual stress on the outer peripheral side of the material can be controlled simply by doing, it is excellent in terms of work efficiency.

以上のように、本発明によれば、外周面の旋削加工時に生じる残留応力と、内周面の歯面形成加工時に生じる残留応力の差に起因する歪みの発生を抑えて、高精度な歯面形状を有する内歯車を製造することができる。   As described above, according to the present invention, it is possible to suppress the occurrence of distortion caused by the difference between the residual stress generated during the turning process of the outer peripheral surface and the residual stress generated during the tooth surface forming process of the inner peripheral surface, thereby achieving a highly accurate tooth. An internal gear having a surface shape can be manufactured.

本発明の一実施形態に係る内歯車の製造方法の全体の流れを示すフローチャートである。It is a flowchart which shows the whole flow of the manufacturing method of the internal gear which concerns on one Embodiment of this invention. 図1に示すフローチャートの要部を詳細に説明するためのフローチャートである。It is a flowchart for demonstrating in detail the principal part of the flowchart shown in FIG. 本発明に係る製造方法で製造される内歯車の一例を示す斜視図である。It is a perspective view which shows an example of the internal gear manufactured with the manufacturing method which concerns on this invention. 旋削加工工程を概念的に説明するための側面図である。It is a side view for demonstrating a turning process process notionally. 旋削刃の磨耗量と、その際の素材外周側の残留応力との関係を示すグラフである。It is a graph which shows the relationship between the amount of wear of a turning blade, and the residual stress of the raw material outer periphery side in that case. 磨耗量と切り込み量との関係を示すグラフである。It is a graph which shows the relationship between the amount of wear and the amount of cutting. 磨耗量と送り量との関係を示すグラフである。It is a graph which shows the relationship between abrasion amount and feed amount.

以下、本発明に係る内歯車の製造方法の一実施形態を図1〜図7を参照して説明する。   Hereinafter, an embodiment of a method for manufacturing an internal gear according to the present invention will be described with reference to FIGS.

本発明の一実施形態に係る内歯車の製造方法は、図1に示すように、完成品の外形に概ね即した形状を形成するための荒ブランク加工を施す荒ブランク加工工程S1と、素材の外周に仕上げ旋削加工を施して外周面を形成する仕上げ旋削加工工程S2と、仕上げ旋削加工を施した素材の内周に歯切り加工を施し、歯面を形成する歯切り加工工程S3と、内周に歯面を形成した素材に熱処理を施す熱処理工程S4と、熱処理後の素材に研削仕上げ加工を施す研削仕上げ工程S5とを具備する。これらの工程S1〜S5を経ることにより、内歯車が完成する。   As shown in FIG. 1, the method for manufacturing an internal gear according to an embodiment of the present invention includes a rough blank processing step S <b> 1 for performing a rough blank processing for forming a shape substantially conforming to the outer shape of a finished product, A finishing turning process S2 in which the outer periphery is finished to form an outer peripheral surface, a gear cutting process S3 in which the inner periphery of the material subjected to the finishing turning is subjected to gear cutting to form a tooth surface, The heat treatment process S4 which heat-processes the raw material which formed the tooth surface in the periphery, and the grinding finishing process S5 which grind-finishes the raw material after heat processing are comprised. The internal gear is completed through these steps S1 to S5.

ここで、例えば図3に示すように、完成品としての内歯車1は、この実施形態では、一端側に底部を設けた筒状部2と、筒状部2の底部から回転軸方向に伸びるボス部3とを一体に有する。また、非歯面側となる筒状部2の外周面4は旋削加工(仕上げ旋削加工)で形成されると共に、筒状部2の内周には歯面5が形成されている。   Here, for example, as shown in FIG. 3, the internal gear 1 as a finished product extends in the rotational axis direction from the cylindrical portion 2 provided with a bottom portion on one end side and the bottom portion of the cylindrical portion 2 in this embodiment. It has the boss | hub part 3 integrally. Further, the outer peripheral surface 4 of the cylindrical portion 2 on the non-tooth surface side is formed by turning (finishing turning), and a tooth surface 5 is formed on the inner periphery of the cylindrical portion 2.

また、この製造方法は、図1に示すように、旋削加工(仕上げ旋削加工)を施した素材の外周側に生じる残留応力を評価する残留応力評価工程S6と、残留応力評価工程S6で得た残留応力の評価値の大きさに応じて、次に旋削加工(仕上げ旋削加工)を施す素材の外周側に生じる残留応力が上記評価値より小さくなるよう、旋削加工条件を調整する旋削条件調整工程S7とを具備する。この実施形態では、所定回数ごとに、旋削加工を施した素材に対して上記残留応力の評価を行うと共に、評価した残留応力の値に応じて、旋削加工条件を調整するようになっている。以下、仕上げ旋削加工工程S2と残留応力評価工程S6、および旋削条件調整工程S7について詳細に説明する。   Further, as shown in FIG. 1, this manufacturing method was obtained in a residual stress evaluation step S6 for evaluating residual stress generated on the outer peripheral side of a material subjected to turning (finish turning), and a residual stress evaluation step S6. Turning condition adjustment process for adjusting the turning conditions so that the residual stress generated on the outer periphery of the material to be subjected to the next turning (finish turning) is smaller than the above evaluation value according to the magnitude of the evaluation value of the residual stress S7. In this embodiment, the residual stress is evaluated for a material subjected to turning every predetermined number of times, and turning conditions are adjusted according to the value of the evaluated residual stress. Hereinafter, the finishing turning process S2, the residual stress evaluation process S6, and the turning condition adjusting process S7 will be described in detail.

仕上げ旋削加工工程S2における旋削加工(仕上げ旋削加工)は、図4に示すように、荒ブランク加工工程S1において概ね完成品に等しい外形形状に加工された素材11のうち、筒状部対応領域12の外周に旋削加工(仕上げ旋削加工)を施すことで、外周面14を形成する加工である。詳述すると、素材11のボス部対応領域13を回転駆動部22に取り付けた複数のチャック21で把持すると共に、筒状部対応領域12の外周側に旋削刃23を配置する。そして、チャック21で素材11を同軸に保持した状態の回転駆動部22を所定の回転速度Vtで回転させると共に、切り込み量Cdが所定の深さとなるように旋削刃23を筒状部対応領域12の内径側に所定量移動させ、然る後、所定の送り量Vsで旋削刃23を回転軸に対して平行にかつ筒状部対応領域12からボス部対応領域13に向けて移動させる。これにより、素材11の外周に旋削加工(仕上げ旋削加工)が施され、所定の外径を有する筒状部対応領域12の外周面14が形成される。なお、素材11(回転駆動部22)の回転速度Vtや、旋削刃23の移動速度(送り量Vs)は図示しない制御部によって任意に制御できるように構成されている。 As shown in FIG. 4, the turning process (finish turning process) in the finishing turning process S <b> 2 includes a cylindrical portion corresponding region 12 in the raw material 11 processed into an outer shape substantially equal to the finished product in the rough blanking process S <b> 1. In this process, the outer peripheral surface 14 is formed by performing a turning process (finish turning process) on the outer periphery. More specifically, the boss portion corresponding region 13 of the material 11 is gripped by a plurality of chucks 21 attached to the rotation drive unit 22, and a turning blade 23 is disposed on the outer peripheral side of the cylindrical portion corresponding region 12. Then, to rotate the rotary drive unit 22 of the state of holding the blank 11 coaxially chuck 21 at a predetermined rotational speed V t, depth of cut Cd tubular portion corresponding region turning blade 23 so that a predetermined depth is moved by a predetermined amount on the inner diameter side of 12, thereafter, it is moved toward parallel to and from the tubular portion corresponding region 12 to the boss portion corresponding region 13 of the turning blade 23 with respect to the rotation axis by a predetermined feed amount V s . Thereby, turning (finish turning) is performed on the outer periphery of the material 11, and the outer peripheral surface 14 of the cylindrical part corresponding | compatible area | region 12 which has a predetermined | prescribed outer diameter is formed. The rotation speed V t of the material 11 (rotation drive unit 22) and the moving speed (feed amount V s ) of the turning blade 23 can be arbitrarily controlled by a control unit (not shown).

残留応力評価工程S6は、この実施形態では、図2に示すように、仕上げ旋削加工工程S2で使用される旋削刃23(図4を参照)の磨耗量と、旋削加工(仕上げ旋削加工)により素材11の外周側に生じる残留応力との相関を予め取得する相関取得工程S61と、旋削加工(仕上げ旋削加工)を施した素材11の筒状部対応領域12の外径を測定する外径測定工程S62と、外径測定工程62で得た外径測定値から旋削刃23の磨耗量を推定する磨耗量推定工程63と、磨耗量推定工程63で得た磨耗量と、相関取得工程S61で取得した磨耗量と残留応力との相関とに基づき上記外周側の残留応力を算出する残留応力算出工程S64とで構成される。   In this embodiment, as shown in FIG. 2, the residual stress evaluation step S6 is performed by the amount of wear of the turning blade 23 (see FIG. 4) used in the finishing turning step S2 and turning (finishing turning). A correlation acquisition step S61 for acquiring in advance a correlation with the residual stress generated on the outer peripheral side of the material 11, and an outer diameter measurement for measuring the outer diameter of the cylindrical portion corresponding region 12 of the material 11 subjected to turning (finish turning). In step S62, the wear amount estimation step 63 for estimating the wear amount of the turning blade 23 from the outer diameter measurement value obtained in the outer diameter measurement step 62, the wear amount obtained in the wear amount estimation step 63, and the correlation acquisition step S61. It comprises a residual stress calculating step S64 for calculating the residual stress on the outer peripheral side based on the acquired correlation between the amount of wear and the residual stress.

相関取得工程S61では、実際に旋削刃23の使用開始時からの磨耗量を例えばノギスや変位センサなどで直接的、又は間接的に測定すると共に、各計測時の素材11の外周側に生じた残留応力を例えばX線回析や、熱処理後の外径との差分算出などで直接的、又は間接的に測定し、データベース化することで、例えば図5に示すような磨耗量と残留応力との相関図を作成する。ここで、同図に示すグラフの縦軸は残留応力の大きさを示しており、正の側が圧縮応力、負の側が引張り応力に属するものとする。なお、同図に示すように、この際に取得したデータから近似直線(もしくは近似曲線)を求めておくことで、残留応力算出工程S64において、推定した磨耗量から対応する残留応力を迅速かつ自動的に算出することが可能となる。   In the correlation acquisition step S61, the actual wear amount from the start of use of the turning blade 23 is measured directly or indirectly using, for example, a caliper or a displacement sensor, and is generated on the outer peripheral side of the material 11 during each measurement. For example, by measuring the residual stress directly or indirectly by X-ray diffraction or calculating the difference from the outer diameter after heat treatment, and creating a database, for example, the amount of wear and the residual stress as shown in FIG. Create a correlation diagram. Here, the vertical axis of the graph shown in the figure indicates the magnitude of the residual stress, and the positive side belongs to the compressive stress and the negative side belongs to the tensile stress. As shown in the figure, by calculating an approximate straight line (or approximate curve) from the data acquired at this time, the corresponding residual stress is quickly and automatically calculated from the estimated wear amount in the residual stress calculation step S64. Can be calculated automatically.

外径測定工程S62では、実際に旋削加工を施した素材11の筒状部対応領域12の外径を上記と同様の手段で直接的、又は間接的に測定する。この測定は、所定回数おきに(例えば100回おきに)実施する。   In the outer diameter measuring step S62, the outer diameter of the cylindrical portion corresponding region 12 of the material 11 that has actually been turned is directly or indirectly measured by the same means as described above. This measurement is performed every predetermined number of times (for example, every 100 times).

磨耗量推定工程S63では、外径測定工程S62で得た外径測定値から、その時点の旋削刃23の磨耗量を推定する。ここで、所定回数の旋削加工(仕上げ旋削加工)を施したときの旋削刃23の磨耗量は、所定回数目の旋削加工(仕上げ旋削加工)を施した素材11の外径測定値から、1回目の旋削加工(仕上げ旋削加工)を施した素材11の外径(言い換えると、1回目の旋削加工時における旋削後の外径設定値)を減じた値に等しいとみなせるため、所定回数目の旋削加工を施した素材11の外径測定値と1回目の旋削加工時における素材11の外径設定値との差分をその時点の旋削刃23の磨耗量と推定する。また、既に、旋削刃23の使用開始時から、この旋削刃23の切り込み量Cdを1又は複数回補正している場合には、その補正量(の総積算量)を加えた値をその時点の旋削刃23の磨耗量と推定する。 In the wear amount estimation step S63, the wear amount of the turning blade 23 at that time is estimated from the outer diameter measurement value obtained in the outer diameter measurement step S62. Here, the amount of wear of the turning blade 23 when a predetermined number of times of turning (finishing turning) is applied is 1 from the measured outer diameter of the material 11 subjected to the predetermined number of times of turning (finishing turning). Since it can be regarded as being equal to a value obtained by subtracting the outer diameter (in other words, the outer diameter setting value after turning in the first turning process) of the material 11 subjected to the second turning process (finish turning process), the predetermined number of times The difference between the measured outer diameter of the material 11 subjected to the turning and the outer diameter setting value of the material 11 at the first turning is estimated as the wear amount of the turning blade 23 at that time. If the cutting amount C d of the turning blade 23 has already been corrected one or more times since the start of use of the turning blade 23, the value obtained by adding the correction amount (total integrated amount thereof) The amount of wear of the turning blade 23 at the time is estimated.

旋削条件調整工程S7は、旋削加工(仕上げ旋削加工)時における旋削刃23の送り量Vsの調整量と、その際の素材11外周側の残留応力の低減量との関係を予め取得する応力低減データ取得工程S71と、残留応力評価工程S6で得た残留応力の評価値、および応力低減データ取得工程S71で得た送り量Vsの調整量とその際の残留応力の低減量との関係に基づき、送り量Vsの調整量を設定する調整量設定工程S72とで構成される。 The turning condition adjusting step S7 is a stress that acquires in advance the relationship between the adjustment amount of the feed amount V s of the turning blade 23 at the time of turning (finish turning) and the reduction amount of the residual stress on the outer peripheral side of the material 11 at that time. Relationship between the reduction data acquisition step S71, the evaluation value of the residual stress obtained in the residual stress evaluation step S6, and the adjustment amount of the feed amount V s obtained in the stress reduction data acquisition step S71 and the reduction amount of the residual stress at that time based on, and a adjustment amount setting step S72 of setting the adjustment amount of feed amount V s.

このうち、応力低減データ取得工程S71では、例えば旋削刃23の送り量Vsの所定値からの低減量と、その際の残留応力の低減量との関連データを複数取得しておく。このデータ取得作業は、例えば異なる磨耗量ごとに取得しておいてもよい。 Among these, in the stress reduction data acquisition step S71, for example, a plurality of pieces of data related to the reduction amount from the predetermined value of the feed amount V s of the turning blade 23 and the reduction amount of the residual stress at that time are acquired. This data acquisition operation may be acquired for each different wear amount, for example.

また、調整量設定工程S72では、残留応力評価工程S6で得た残留応力の評価値の大きさに応じて、次に旋削加工(仕上げ旋削加工)を施す素材の外周側に生じる残留応力が上記評価値より小さくなるように、応力低減データ取得工程S71で得た送り量Vsの調整量とその際の残留応力の低減量との関連データに基づき、送り量Vsの調整量を設定する。 Further, in the adjustment amount setting step S72, the residual stress generated on the outer peripheral side of the material to be subjected to the next turning (finish turning) according to the magnitude of the evaluation value of the residual stress obtained in the residual stress evaluation step S6 is described above. The adjustment amount of the feed amount V s is set based on the relational data between the adjustment amount of the feed amount V s obtained in the stress reduction data acquisition step S71 and the reduction amount of the residual stress at that time so as to be smaller than the evaluation value. .

以下、本実施形態に係る内歯車の製造方法の一例を、旋削加工条件の調整作業を中心に説明する。   Hereinafter, an example of the method for manufacturing the internal gear according to the present embodiment will be described focusing on the adjustment of the turning process conditions.

まず、図1及び図4に示すように、荒ブランク加工を施して得た素材11の外周に旋削加工(仕上げ旋削加工)を施して外周面14を円筒面状に形成する(仕上げ旋削加工工程S2)。そして、旋削加工を施した素材11の内周に歯切り加工を施し、図3に示す歯面5を形成した後(歯切り加工工程S3)、浸炭、ガス窒化などの熱処理を施す(熱処理工程S4)。このようにして所定の熱処理を施した素材11に研削仕上げ加工を施すことで、外周面14をはじめとして素材11の外面が所定の面粗さ及び寸法に仕上げられる(研削仕上げ工程S5)。これにより、図3に示す内歯車1が完成する。   First, as shown in FIGS. 1 and 4, turning (finish turning) is performed on the outer periphery of the material 11 obtained by rough blanking to form the outer peripheral surface 14 into a cylindrical surface (finish turning process). S2). Then, gear cutting is performed on the inner periphery of the material 11 that has been turned to form the tooth surface 5 shown in FIG. 3 (gear cutting step S3), and then heat treatment such as carburization and gas nitriding is performed (heat treatment step). S4). By subjecting the material 11 that has been subjected to the predetermined heat treatment in this way to a grinding finish, the outer surface of the material 11 including the outer peripheral surface 14 is finished to a predetermined surface roughness and dimensions (grind finishing step S5). Thereby, the internal gear 1 shown in FIG. 3 is completed.

また、上記手順で内歯車の製造を開始してから所定回数おきに、旋削加工を施した素材11の外周側に生じる残留応力を評価する(残留応力評価工程S6)。言い換えると、未使用の旋削刃23を使用して旋削加工(仕上げ旋削加工)を開始してから所定回数おきに、旋削加工を施した素材11の外周側に生じる残留応力を評価する。ここでは、具体的に旋削加工を施した素材11の筒状部対応領域12の外径寸法を測定し(外径測定工程S62)、測定した値からその時点の旋削刃23の磨耗量を推定する。そして、推定した磨耗量と、相関取得工程S61でコンピュータ等に予めデータベース化しておいた磨耗量と残留応力との相関データとを照らし合わせることにより、推定した磨耗量に対応する残留応力を算出する(残留応力算出工程S64)。   Further, the residual stress generated on the outer peripheral side of the turned material 11 is evaluated every predetermined number of times after the production of the internal gear is started in the above procedure (residual stress evaluation step S6). In other words, the residual stress generated on the outer peripheral side of the turned material 11 is evaluated every predetermined number of times after the turning (finish turning) is started using the unused turning blade 23. Here, the outer diameter of the cylindrical portion corresponding region 12 of the material 11 that has been specifically turned is measured (outer diameter measuring step S62), and the wear amount of the turning blade 23 at that time is estimated from the measured value. To do. Then, the residual stress corresponding to the estimated wear amount is calculated by comparing the estimated wear amount with the correlation data between the wear amount and the residual stress previously stored in the computer or the like in the correlation acquisition step S61. (Residual stress calculation step S64).

このようにして外径測定値から素材11外周側の残留応力を評価できたら、旋削加工(仕上げ旋削加工)時の条件を調整する(旋削条件調整工程S7)。ここでは、図6に示すように、素材11の旋削加工後の外径寸法を当初設定値に合わせるべく、磨耗量推定工程S63で得た磨耗量W1の分だけ、旋削刃23の切り込み量Cdを増大する向きに補正する。また、残留応力評価工程S6で得た残留応力の評価値の大きさに応じて、次に旋削加工を施す素材の外周側に生じる残留応力が上記評価値より小さくなるように、応力低減データ取得工程S71で得た送り量Vsの調整量とその際の残留応力の低減量との関連データに基づき、送り量Vsの調整量を設定する(調整量設定工程S72)。この際、例えば図5に示すように、残留応力評価工程S6において得た残留応力の評価値が、予め設定した管理値(しきい値)σtを超えているか否かで、旋削加工条件(ここでは送り量Vs)の調整の要否を判定する。ここで、上記管理値σtは、旋削加工により素材11の外周側に生じた残留応力と、歯切り加工により素材11の歯面5形成側(内周側)に生じた残留応力との差が、上記熱処理後に歪みとして現れた場合に、当該製品の寸法公差(形状公差)を満たす上限値として設定されたものである。従って、例えば上記残留応力の評価値が管理値σtよりも小さい場合には、切り込み量Cd以外の旋削条件を維持する(変更しない)。図6や図7でいえば、磨耗量W1の場合に当る。 When the residual stress on the outer peripheral side of the material 11 can be evaluated from the measured outer diameter in this way, the conditions during turning (finish turning) are adjusted (turning condition adjusting step S7). Here, as shown in FIG. 6, in order to match the outer diameter dimension of the material 11 after turning to the initial set value, the amount of cutting of the turning blade 23 by the amount of wear W 1 obtained in the wear amount estimation step S63. correction in the direction of increasing the C d. In addition, according to the magnitude of the residual stress evaluation value obtained in the residual stress evaluation step S6, stress reduction data acquisition is performed so that the residual stress generated on the outer peripheral side of the material to be turned next is smaller than the above evaluation value. Based on the related data of the adjustment amount of the feed amount V s obtained in step S71 and the reduction amount of the residual stress at that time, the adjustment amount of the feed amount V s is set (adjustment amount setting step S72). At this time, for example, as shown in FIG. 5, depending on whether or not the residual stress evaluation value obtained in the residual stress evaluation step S 6 exceeds a preset management value (threshold value) σ t , turning conditions ( Here, it is determined whether or not adjustment of the feed amount V s ) is necessary. Here, the management value σ t is a difference between the residual stress generated on the outer peripheral side of the material 11 by turning and the residual stress generated on the tooth surface 5 formation side (inner peripheral side) of the material 11 by gear cutting. Is set as an upper limit value that satisfies the dimensional tolerance (shape tolerance) of the product when it appears as strain after the heat treatment. Therefore, for example, when the evaluation value of the residual stress is smaller than the control value σ t , turning conditions other than the cutting depth C d are maintained (not changed). In FIG. 6 and FIG. 7, this is the case with the wear amount W 1 .

これに対して、上記残留応力の評価値が管理値σtよりも大きい場合には、応力低減データ取得工程S71で得た送り量Vsの調整量とその際の残留応力の低減量との関連データに基づき、次に旋削加工(仕上げ旋削加工)を行う素材11の外周側に生じる残留応力が所定の値以下となるよう、送り量Vsを小さくする。例えば、素材11外周側の残留応力が圧縮側から引張り側となるように(図5を参照)、送り量Vsの減少量を設定する。図6や図7でいえば、磨耗量W2,W3の場合に当たる。これにより、次に旋削加工を施した素材11の外周側に生じる残留応力を小さくして、熱処理工程S4後に生じる歪みを許容可能な程度に抑えることができる。従って、歯面5を有する筒状部2の薄肉化が促進された場合にあっても、定期的に素材11の外径を測定し、適切に旋削加工条件を調整するだけで、具体的には切り込み量Cdと送り量Vsを調整するだけで、歯面5を含めて寸法精度及び形状精度に優れた内歯車1を製造することが可能となる。 On the other hand, when the evaluation value of the residual stress is larger than the control value σ t , the adjustment amount of the feed amount V s obtained in the stress reduction data acquisition step S71 and the reduction amount of the residual stress at that time Based on the related data, the feed amount V s is reduced so that the residual stress generated on the outer peripheral side of the material 11 to be subsequently turned (finished turning) is equal to or less than a predetermined value. For example, the amount of decrease in the feed amount V s is set so that the residual stress on the outer peripheral side of the material 11 changes from the compression side to the tension side (see FIG. 5). In FIG. 6 and FIG. 7, this corresponds to the case of wear amounts W 2 and W 3 . Thereby, the residual stress which arises on the outer peripheral side of the raw material 11 which performed the turning process next can be made small, and the distortion which arises after heat processing process S4 can be restrained to an acceptable level. Therefore, even when the thinning of the cylindrical portion 2 having the tooth surface 5 is promoted, the outer diameter of the material 11 is periodically measured and the turning conditions are adjusted appropriately. Can adjust the cutting amount C d and the feed amount V s to produce the internal gear 1 including the tooth surface 5 and excellent in dimensional accuracy and shape accuracy.

なお、上記実施形態では、旋削条件調整工程S7において、旋削刃23の送り量Vsを調整パラメータとした場合を説明したが、もちろんこれ以外のパラメータ、例えば回転速度Vtや切り込み回数などを調整パラメータとすることも可能である。あるいは、上記2以上のパラメータ(例えば送り量Vsと回転速度Vt)を調整パラメータとすることも可能である。なお、この場合には、応力低減データ取得工程S71において、上記調整パラメータの調整量(増減量)と、その際の残留応力の低減量との関連データを取得しておく必要がある。 In the above embodiment, the case where the feed amount V s of the turning blade 23 is used as an adjustment parameter in the turning condition adjusting step S7 has been described. Of course, other parameters such as the rotational speed V t and the number of cuttings are adjusted. It can also be a parameter. Alternatively, the two or more parameters (for example, the feed amount V s and the rotation speed V t ) can be used as adjustment parameters. In this case, in the stress reduction data acquisition step S71, it is necessary to acquire related data between the adjustment amount (increase / decrease amount) of the adjustment parameter and the residual stress reduction amount at that time.

また、上記実施形態では、旋削加工を施した素材11の外径を測定し、測定した値から旋削刃23の磨耗量を推定する場合を説明したが、外径の測定を省略して、旋削刃23の磨耗量を測定するようにしても構わない。この場合、残留応力評価工程S6は、磨耗量と残留応力との相関取得工程S61と、磨耗量測定工程と、残留応力算出工程S64とで構成される。   Moreover, although the said embodiment measured the outer diameter of the raw material 11 which performed the turning process, and demonstrated the case where the amount of wear of the turning blade 23 was estimated from the measured value, the measurement of an outer diameter was abbreviate | omitted and turned. The amount of wear of the blade 23 may be measured. In this case, the residual stress evaluation step S6 includes a correlation acquisition step S61 between the wear amount and the residual stress, a wear amount measurement step, and a residual stress calculation step S64.

また、以上の説明では、素材11の内周に歯面5を形成するための加工手段として、ギヤシェーパ加工やブローチ加工等の歯切り加工を例示したが、もちろん転造等の塑性加工を採用した場合にも、本願発明を適用することは可能である。   In the above description, gear cutting processing such as gear shaper processing and broaching processing is illustrated as a processing means for forming the tooth surface 5 on the inner periphery of the material 11, but of course plastic processing such as rolling is adopted. Even in this case, it is possible to apply the present invention.

また、以上の説明では、内歯車1として、底部を有する筒状部2とボス部3とからなるものを例にとって説明したが、本発明は、プラネタリギヤなど環状部からなるものはもちろん、種々の形態をなす内歯車に対して適用することが可能である、   In the above description, the internal gear 1 has been described by taking as an example a cylindrical portion 2 having a bottom portion and a boss portion 3. However, the present invention is not limited to an annular portion such as a planetary gear. It is possible to apply to internal gears that form

1 内歯車
2 筒状部
3 ボス部
4 外周面
5 歯面
11 素材
12 筒状部対応領域
13 ボス部対応領域
14 外周面
21 チャック
22 回転駆動部
23 旋削刃
d 切り込み量
s 送り量
t 回転速度
σt 管理値(しきい値)
DESCRIPTION OF SYMBOLS 1 Internal gear 2 Cylindrical part 3 Boss part 4 Outer peripheral surface 5 Tooth surface 11 Material 12 Cylindrical part corresponding | compatible area 13 Boss part corresponding | compatible area | region 14 Outer peripheral surface 21 Chuck 22 Rotation drive part 23 Turning blade C d Cutting amount V s Feed amount V t Rotational speed σ t Management value (threshold)

Claims (3)

素材の外周に旋削加工を施すことで外周面を形成すると共に、前記素材の内周に歯面を形成した内歯車の製造方法であって、
前記旋削加工を施した前記素材の外周側に生じる残留応力を評価する残留応力評価工程と、
前記残留応力評価工程で得た前記残留応力の評価値の大きさに応じて、次に旋削加工を施す前記素材の外周側に生じる残留応力が前記評価値より小さくなるよう、旋削加工条件を調整する旋削条件調整工程とを具備したことを特徴とする内歯車の製造方法。
A method of manufacturing an internal gear in which an outer peripheral surface is formed by turning the outer periphery of the material, and a tooth surface is formed on the inner periphery of the material,
A residual stress evaluation step for evaluating the residual stress generated on the outer peripheral side of the material subjected to the turning,
Turning conditions are adjusted so that the residual stress generated on the outer periphery of the material to be turned next is smaller than the evaluation value according to the evaluation value of the residual stress obtained in the residual stress evaluation step. And a turning condition adjusting step for manufacturing the internal gear.
前記残留応力評価工程は、
前記旋削加工に使用される旋削刃の磨耗量と前記残留応力との相関を予め取得する相関取得工程と、
前記旋削加工を施した前記素材の外径を測定する外径測定工程と、
前記外径測定工程で得た外径測定値から前記旋削刃の磨耗量を推定する磨耗量推定工程とを有し、
前記磨耗量推定工程で得た磨耗量と、前記磨耗量と前記残留応力との相関とに基づき前記外周側の残留応力を評価する請求項1に記載の内歯車の製造方法。
The residual stress evaluation step includes
A correlation obtaining step for obtaining in advance a correlation between the amount of wear of the turning blade used for the turning and the residual stress;
An outer diameter measuring step of measuring the outer diameter of the material subjected to the turning process;
A wear amount estimation step for estimating the wear amount of the turning blade from the outer diameter measurement value obtained in the outer diameter measurement step,
The method of manufacturing an internal gear according to claim 1, wherein the residual stress on the outer peripheral side is evaluated based on the wear amount obtained in the wear amount estimation step and the correlation between the wear amount and the residual stress.
前記旋削条件調整工程は、
前記旋削加工時の送り量ないし回転速度の調整量と、その際の前記残留応力の低減量との関係を予め取得する工程を有し、
前記残留応力評価工程で得た前記残留応力の評価値、および前記送り量ないし前記回転速度の調整量とその際の前記残留応力の低減量との関係に基づき、前記旋削加工時の送り量ないし回転速度を調整する請求項1又は2に記載の内歯車の製造方法。
The turning condition adjusting step includes
A step of acquiring in advance a relationship between a feed amount or a rotation speed adjustment amount during the turning and a reduction amount of the residual stress at that time;
Based on the evaluation value of the residual stress obtained in the residual stress evaluation step and the relationship between the feed amount or the adjustment amount of the rotational speed and the reduction amount of the residual stress at that time, the feed amount during the turning process or The manufacturing method of the internal gear of Claim 1 or 2 which adjusts a rotational speed.
JP2010293123A 2010-12-28 2010-12-28 Method for manufacturing internal gear Pending JP2012139756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293123A JP2012139756A (en) 2010-12-28 2010-12-28 Method for manufacturing internal gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293123A JP2012139756A (en) 2010-12-28 2010-12-28 Method for manufacturing internal gear

Publications (1)

Publication Number Publication Date
JP2012139756A true JP2012139756A (en) 2012-07-26

Family

ID=46676575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293123A Pending JP2012139756A (en) 2010-12-28 2010-12-28 Method for manufacturing internal gear

Country Status (1)

Country Link
JP (1) JP2012139756A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815992A (en) * 2015-05-06 2015-08-05 重庆江增船舶重工有限公司 Clamping and processing method for organic working medium generator shell
CN105562717A (en) * 2014-10-13 2016-05-11 沈阳黎明航空发动机(集团)有限责任公司 Numerical control turning method for large deep cavity structure of aircraft engine disc part
CN106112011A (en) * 2016-06-30 2016-11-16 广东技术师范学院 A kind of hot machining method and device of temperature-controllable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562717A (en) * 2014-10-13 2016-05-11 沈阳黎明航空发动机(集团)有限责任公司 Numerical control turning method for large deep cavity structure of aircraft engine disc part
CN104815992A (en) * 2015-05-06 2015-08-05 重庆江增船舶重工有限公司 Clamping and processing method for organic working medium generator shell
CN106112011A (en) * 2016-06-30 2016-11-16 广东技术师范学院 A kind of hot machining method and device of temperature-controllable
CN106112011B (en) * 2016-06-30 2019-03-01 广东技术师范学院 A kind of hot machining method and device of temperature-controllable

Similar Documents

Publication Publication Date Title
US20100242283A1 (en) Method for finishing a gear surface
CN107335868A (en) Method for carrying out tooth processing to instrument
CA3009619C (en) Method for manufacturing gear and gear manufactured by same method
JP2008258510A (en) Polish requirement management device for cmp device and method of managing polish requirement
US20210402495A1 (en) Method for manufacturing of gears
JP2012139756A (en) Method for manufacturing internal gear
JP2012096251A (en) Method of manufacturing gear
JP2017200721A (en) Method for hard-precision machining tooth portion of gear or tooth portion of workpiece with gear-like contour
CN105127682B (en) A kind of processing method of internal tooth washer
CN104870834B (en) Manufacturing method for hydraulic actuator device
JP4946166B2 (en) Manufacturing method of molded product with tooth profile
KR101954757B1 (en) A Manufacturing Method Of Gear And The Gear Manufactured Thereby
CN103357967A (en) Design method of honing grinding wheel
JP4604102B2 (en) Manufacturing method of helical gear
JP6693259B2 (en) Manufacturing method of forged bevel gear and cold sizing die used therefor
WO2020045239A1 (en) Crankshaft and method for producing same
KR101187776B1 (en) The manufacturing method of gear
JP4783544B2 (en) FORGED MOLDED PRODUCT AND METHOD FOR MANUFACTURING FORGED MOLDED PRODUCT AND DEVICE
JP2009220261A (en) Helical broach for internal gear machining, and broaching method
KR101033069B1 (en) The manufacturing method of ring gear
JP2013241961A (en) Gear manufacturing method and gear
CN104646971A (en) Processing method of differential wheel of large power drive motorcycle
Oladejo et al. Analysis of gear milling at various speeds, time and feed rates
JP5688392B2 (en) Design method of honing wheel
JP5988846B2 (en) Rolling tool and manufacturing method thereof