JP2012138777A - Antenna reflector and correction method for radio wave reflection mirror plane - Google Patents

Antenna reflector and correction method for radio wave reflection mirror plane Download PDF

Info

Publication number
JP2012138777A
JP2012138777A JP2010289976A JP2010289976A JP2012138777A JP 2012138777 A JP2012138777 A JP 2012138777A JP 2010289976 A JP2010289976 A JP 2010289976A JP 2010289976 A JP2010289976 A JP 2010289976A JP 2012138777 A JP2012138777 A JP 2012138777A
Authority
JP
Japan
Prior art keywords
radio wave
wave reflecting
mirror surface
reflecting mirror
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010289976A
Other languages
Japanese (ja)
Other versions
JP5859198B2 (en
Inventor
Saburo Murase
三朗 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010289976A priority Critical patent/JP5859198B2/en
Publication of JP2012138777A publication Critical patent/JP2012138777A/en
Application granted granted Critical
Publication of JP5859198B2 publication Critical patent/JP5859198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: a radio wave reflection mirror plane of an antenna reflector installed on an artificial satellite uses a composite material formed from carbon fiber or the like in view of weight reduction, radio wave reflection properties and shape stability, and when the composite material is employed for a radio wave reflection mirror plane, a process for hardening resin under a semi-cured state in the manufacturing process is required; however, in the curing process, the mirror plane precision of the reflector is generally deteriorated because molding distortion is generated in the composite material.SOLUTION: A radio wave reflective member is mounted at a generation position of molding distortion of a radio wave reflection mirror plane by a hardening process. The mounting of the radio wave reflective member is implemented by adhesive fixing, fiber bundle sewing or by other means. By locally disposing the radio wave reflective member, the shape of the radio wave reflection mirror plane is corrected to provide an antenna with high mirror plane precision.

Description

この発明は、例えば人工衛星等に設けられるアンテナリフレクタに関するものである。   The present invention relates to an antenna reflector provided in, for example, an artificial satellite.

人工衛星搭載用アンテナ等に設けられるリフレクタの電波反射鏡面は、軽量かつ電波反射性、形状安定性の観点から、炭素繊維等を用いた複合材料を素材としていることが一般的である。リフレクタの構造としては、例えば電波反射鏡面の素材を複合材料とし、この複合材料でコア層を両側から圧着したサンドイッチパネル方式、2つのリフレクタを組み合わせたデュアルリフレクタ方式、金属や合成物質にメッキを施したメッシュを電波反射鏡面としたメッシュ方式等、各種の構造がある。   In general, the reflector of a reflector provided in an antenna for satellite installation is made of a composite material using carbon fiber or the like from the viewpoint of light weight, radio reflectivity, and shape stability. The structure of the reflector is, for example, a sandwich panel method in which the material of the radio wave reflecting mirror surface is a composite material, and the core layer is crimped from both sides with this composite material, a dual reflector method in which two reflectors are combined, and metal or a synthetic material is plated. There are various types of structures such as a mesh method in which the mesh is a radio wave reflecting mirror surface.

複合材料を電波反射鏡面に適用する場合の製造上の特徴として、製造過程で、樹脂を含浸した炭素繊維等の半硬化状態の樹脂を硬化させる硬化プロセスが必要であることが挙げられる。
複合材料中の樹脂を硬化させるプロセスにおいては、複合材料に成形歪が発生するため、一般的にリフレクタの鏡面精度が劣化する。
A manufacturing characteristic when the composite material is applied to a radio wave reflecting mirror surface is that a curing process for curing a semi-cured resin such as carbon fiber impregnated with the resin is necessary in the manufacturing process.
In the process of curing the resin in the composite material, molding distortion occurs in the composite material, so that the mirror surface accuracy of the reflector generally deteriorates.

また、複合材料を素材とする電波反射鏡面は背面構造などの剛性を受け持つ部材との接着工程を有するため、接着工程において接着剤の硬化収縮などの影響によって、一般的にリフレクタの鏡面精度が劣化する。   In addition, the radio wave reflecting mirror surface made of composite material has a bonding process with a member having rigidity such as the back structure, so that the mirror surface accuracy of the reflector is generally deteriorated due to the effect of hardening and shrinkage of the adhesive in the bonding process. To do.

このような原因により鏡面精度は劣化していくが、鏡面精度の劣化はリフレクタにおける電波の焦点のずれを発生させ、リフレクタを使用した衛星通信の安定性が低下する。
従来、リフレクタの鏡面精度の劣化を抑えることを目的として、樹脂を含浸したプリプレグを2層にするなど種々の方法が提案されている(例えば、特許文献1参照)。
Although the mirror surface accuracy is deteriorated due to such a cause, the deterioration of the mirror surface accuracy causes a defocus of the radio wave in the reflector, and the stability of satellite communication using the reflector is lowered.
Conventionally, for the purpose of suppressing the deterioration of the mirror surface accuracy of the reflector, various methods have been proposed, such as making the prepreg impregnated with resin into two layers (see, for example, Patent Document 1).

特開2001−148611号公報JP 2001-148611 A

特許文献1に記載のアンテナリフレクタでは、メンブレンリフレクタにおいて三軸織物に半硬化状態の樹脂を含浸したプリプレグの面同士あるいは裏同士を合わせて二層にすることにより、成形歪による変形を小さくし、鏡面の形状精度の劣化を抑える方法を提案している。
しかしながら、特許文献1で提案された方法は、対象となるリフレクタがメンブレンリフレクタの場合は有効であるが、メンブレンリフレクタ以外の例えばサンドイッチパネル方式のリフレクタには適用できないという課題があった。
In the antenna reflector described in Patent Document 1, the deformation due to molding distortion is reduced by combining the surfaces of the prepregs impregnated with a semi-cured resin into the triaxial fabric in the membrane reflector or the backs of the two layers. A method for suppressing the deterioration of the shape accuracy of the mirror surface is proposed.
However, although the method proposed in Patent Document 1 is effective when the target reflector is a membrane reflector, there is a problem that it cannot be applied to a reflector of a sandwich panel type other than the membrane reflector.

また、一般的にメンブレンリフレクタは電波反射鏡面と背面構造との接着工程を必要とするが、特許文献1に記載された方法ではこの電波反射鏡面と背面構造との接着工程で発生した鏡面精度の劣化を低減することはできないという課題があった。   In general, the membrane reflector requires a bonding process between the radio wave reflecting mirror surface and the back surface structure. However, in the method described in Patent Document 1, the mirror surface accuracy generated in the bonding process between the radio wave reflecting mirror surface and the back surface structure can be improved. There was a problem that deterioration could not be reduced.

この発明は係る課題を解決するためになされたものであり、通信の安定性を向上させることのできるアンテナリフレクタを提供することを目的とする。   The present invention has been made in order to solve the problem, and an object thereof is to provide an antenna reflector capable of improving the stability of communication.

この発明の人工衛星に搭載されるアンテナリフレクタは、アンテナリフレクタの電波反射鏡面の一領域に、前記電波反射鏡面とは別部品の電波反射材を備える。   The antenna reflector mounted on the artificial satellite according to the present invention includes a radio wave reflection material that is a separate component from the radio wave reflection mirror surface in a region of the radio wave reflection mirror surface of the antenna reflector.

この発明によれば、複合材料を鏡面に用いた場合のアンテナリフレクタの製造過程で生ずる鏡面精度の劣化を抑えることができ、アンテナリフレクタを使用した通信の安定性を向上させることができる。   According to the present invention, it is possible to suppress the deterioration of the mirror surface accuracy that occurs during the manufacturing process of the antenna reflector when the composite material is used for the mirror surface, and it is possible to improve the stability of communication using the antenna reflector.

この発明の実施の形態1に係る電波反射鏡面を示す斜視図である。It is a perspective view which shows the electromagnetic wave reflector surface which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電波反射鏡面の正面図を示した図である。It is the figure which showed the front view of the electromagnetic wave reflector surface which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電波反射鏡面の断面図である。It is sectional drawing of the electromagnetic wave reflector surface which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電波反射鏡面の断面拡大図である。It is a cross-sectional enlarged view of the radio wave reflecting mirror surface according to the first embodiment of the present invention. この発明の実施の形態2に係る電波反射鏡面の部分正面図を示した図である。It is the figure which showed the partial front view of the electromagnetic wave reflector surface which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る電波反射鏡面の断面拡大図である。It is a cross-sectional enlarged view of the radio wave reflecting mirror surface according to the second embodiment of the present invention. この発明の実施の形態3に係る電波反射鏡面の部分正面図を示した図である。It is the figure which showed the partial front view of the electromagnetic wave reflector surface which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る電波反射鏡面の断面拡大図である。It is a cross-sectional enlarged view of the radio wave reflecting mirror surface according to the third embodiment of the present invention. 人工衛星の構成の概略を表わした図である。It is a figure showing the outline of the structure of the artificial satellite.

実施の形態1.
図9は一般的な人工衛星を概略的に示したもので、人工衛星の本体50には太陽電池パネル51やアンテナリフレクタ52等が設けられる。アンテナリフレクタ52は、曲面形状の電波反射鏡面1(リフレクタ1ともいう)と、電波反射鏡面1の背面に設けられ電波反射鏡面1を支持する背面構造体53等によって構成されている。
Embodiment 1 FIG.
FIG. 9 schematically shows a general artificial satellite. A main body 50 of the artificial satellite is provided with a solar cell panel 51, an antenna reflector 52, and the like. The antenna reflector 52 includes a curved radio wave reflecting mirror surface 1 (also referred to as a reflector 1), a back structure 53 provided on the back surface of the radio wave reflecting mirror surface 1, and supporting the radio wave reflecting mirror surface 1.

図1は実施の形態1の電波反射鏡面1の構成例である。アルミなどのコア材12の両面に表皮材11a及び表皮材11bが接着剤で密着された構成であって、サンドイッチ構造のリフレクタを成している。なお、ここでは、コア材12両面の表皮材11a、11bのうち、表皮材11aの方を電波を反射する電波反射面とする。表皮材11a、11bの材料には、軽量、低熱膨張性による形状安定性の観点からCFRP(炭素繊維複合材料)等の複合材料が使用される。また、コア材12としては、軽量なハニカム構造のもの、即ちハニカムコアが使用される。   FIG. 1 is a configuration example of a radio wave reflecting mirror surface 1 according to the first embodiment. The skin material 11a and the skin material 11b are adhered to both surfaces of the core material 12 such as aluminum with an adhesive, and form a sandwich structure reflector. Here, out of the skin materials 11a and 11b on both surfaces of the core material 12, the skin material 11a is a radio wave reflecting surface that reflects radio waves. As the material for the skin materials 11a and 11b, a composite material such as CFRP (carbon fiber composite material) is used from the viewpoint of light weight and shape stability due to low thermal expansion. As the core material 12, a lightweight honeycomb structure, that is, a honeycomb core is used.

次に、電波反射鏡面1の製造方法について説明する。熱硬化樹脂を含浸させた炭素繊維織物とコア材を、鏡面型上で加熱硬化することで樹脂が硬化して電波反射鏡面1を形成する。より詳しくは、加熱硬化後の表皮材11a、11bをコア材12の両面に接着剤を介して密着させ、これを過熱してコア材12に表皮材11a、11bを接着させる。このとき、真空引きの圧力と直接の押圧力とを、鏡面成形型上でコア材12及び表皮材11a、11bに加えることにより、表皮材が弾性変形し、コア材12及び表皮材11a、11bの形状誤差が吸収され、表皮材がコア材に密着する。このように、表皮材11a、11bをコア材12に密着させて表皮材11a、11bを弾性変形させることで、加熱硬化時に生じた成形歪が除去し、電波反射鏡面1を理想形状に近づけている。   Next, a method for manufacturing the radio wave reflecting mirror surface 1 will be described. The carbon fiber woven fabric impregnated with the thermosetting resin and the core material are heated and cured on a mirror mold so that the resin is cured and the radio wave reflecting mirror surface 1 is formed. More specifically, the skin materials 11a and 11b after heat curing are brought into close contact with both surfaces of the core material 12 via an adhesive, and the skin materials 11a and 11b are bonded to the core material 12 by heating them. At this time, by applying a vacuuming pressure and a direct pressing force to the core material 12 and the skin materials 11a and 11b on the mirror mold, the skin material is elastically deformed, and the core material 12 and the skin materials 11a and 11b. The shape error is absorbed, and the skin material adheres to the core material. In this manner, the skin materials 11a and 11b are brought into close contact with the core material 12 to elastically deform the skin materials 11a and 11b, so that molding distortion generated during heat curing is removed and the radio wave reflecting mirror surface 1 is brought close to an ideal shape. Yes.

次に、この電波反射鏡面1を背面構造体53と結合することにより、アンテナリフレクタ52が製造される。   Next, the antenna reflector 52 is manufactured by combining the radio wave reflecting mirror surface 1 with the back structure 53.

このようにして製造されるアンテナリフレクタ52の工程上の特徴として、樹脂を含浸した炭素繊維等の半硬化状態の樹脂を加熱により硬化させる硬化プロセスを要することが挙げられる。この硬化プロセスにおいて炭素繊維複合材料に成形歪が発生し、残留した成形歪によって電波反射鏡面1の鏡面精度が劣化する。   A characteristic in the process of the antenna reflector 52 manufactured in this way is that a curing process is required in which a semi-cured resin such as carbon fiber impregnated with the resin is cured by heating. In this curing process, molding distortion occurs in the carbon fiber composite material, and the mirror surface accuracy of the radio wave reflecting mirror surface 1 deteriorates due to the remaining molding distortion.

実施の形態1ではこの成形歪を修正するため、追加部品となる電波反射材2を用いて、局所的に鏡面を補正する。   In the first embodiment, in order to correct this molding distortion, the specular surface is locally corrected using the radio wave reflecting material 2 as an additional part.

図2は、実施の形態1における電波反射鏡面1の正面図である。図3は、図2におけるA−A断面図である。
図3の断面図で、電波反射鏡面1の一部には硬化プロセスで発生した成形歪20が残留し、この成形歪20によって設計上の鏡面形状100との不一致箇所が生ずる。
実施の形態1では、この不一致箇所に追加部品となる電波反射材2を局所的に追加することで、電波反射鏡面1の電波反射面、すなわち表皮材11aの形状が設計上の鏡面形状100と一致するように修正する。
FIG. 2 is a front view of the radio wave reflecting mirror surface 1 according to the first embodiment. 3 is a cross-sectional view taken along line AA in FIG.
In the cross-sectional view of FIG. 3, the molding distortion 20 generated in the curing process remains on a part of the radio wave reflecting mirror surface 1, and the molding distortion 20 causes a mismatch with the designed mirror surface shape 100.
In the first embodiment, the radio wave reflecting material 2 as an additional part is locally added to the mismatched portion, so that the radio wave reflecting surface of the radio wave reflecting mirror surface 1, that is, the shape of the skin material 11a is the design mirror surface shape 100. Modify to match.

鏡面形状との不一致箇所は、例えばカメラ画像を用いた画像処理により特定する。特定された表皮材11aの箇所に電波反射材2を追加することで形状の修正を行う。   The mismatched portion with the specular shape is identified by image processing using a camera image, for example. The shape is corrected by adding the radio wave reflecting material 2 to the identified skin material 11a.

表皮材11aと電波反射材2の固定には接着剤3を用いる。
電波反射材2の素材としては、宇宙空間での温度変化による形状安定性の観点から、電波反射鏡面1の表皮材11と同じ素材であることが望ましい。
また、接着剤3には宇宙空間での耐熱性とアウトガスの観点からエポキシ樹脂もしくはシアネート樹脂を用いることが望ましい。
Adhesive 3 is used for fixing the skin material 11 a and the radio wave reflecting material 2.
The material of the radio wave reflecting material 2 is preferably the same material as the skin material 11 of the radio wave reflecting mirror surface 1 from the viewpoint of shape stability due to temperature change in outer space.
Moreover, it is desirable to use an epoxy resin or a cyanate resin for the adhesive 3 from the viewpoint of heat resistance in outer space and outgas.

以上のように、実施の形態1のアンテナリフレクタでは、硬化プロセスで生じた電波反射面の歪箇所に、電波反射材が接着剤で接着される。これにより、電波反射面の形状が修正されて、通信の安定性を向上させることができる。   As described above, in the antenna reflector according to the first embodiment, the radio wave reflecting material is bonded to the distorted portion of the radio wave reflecting surface generated by the curing process with the adhesive. As a result, the shape of the radio wave reflecting surface is corrected, and the stability of communication can be improved.

なお、実施の形態1ではサンドイッチ構造のアンテナリフレクタについて説明したが、電波反射面にメンブレン(膜)を用いたアンテナリフレクタなどこれ以外のアンテナリフレクタに適用してもよく、リフレクタの方式は問わない。   Although the antenna reflector having the sandwich structure has been described in the first embodiment, the present invention may be applied to other antenna reflectors such as an antenna reflector using a membrane (film) as a radio wave reflecting surface, and the reflector method is not limited.

実施の形態2.
実施の形態1では電波反射材2を接着剤で電波反射鏡面の表皮材に接着していたが、実施の形態2では、電波反射材2を繊維束を用い電波反射鏡面に縫合して固定する。
図5は、実施の形態2における電波反射材2を固定した箇所の電波反射鏡面1の正面図を示した図である。ここで、電波反射材2はその周囲を繊維束4を用いて電波反射鏡面1に縫い付けられている。図6は、図5のA-A断面図を示したものである。
電波反射材2の形状および取り付け位置は、電波反射鏡面1の鏡面形状が設計上の鏡面形状と一致しない領域の形状および位置と同じであり、電波反射材2が設計上の鏡面形状と一致するように局所的に配置されている。
縫い付けの方法としては、電波反射鏡面1と電波反射材2に予め繊維束が貫通する程度の穴をあけておき、繊維束を通すことで固定する。
電波反射材2の素材としては、宇宙空間での温度変化による形状安定性の観点から、電波反射鏡面1と同じ素材であることが望ましい。繊維束4には熱膨張率が低い炭素繊維を用いるか、電波透過性を有するケブラー繊維を用いることが望ましい。
Embodiment 2. FIG.
In the first embodiment, the radio wave reflecting material 2 is bonded to the skin material of the radio wave reflecting mirror surface with an adhesive. However, in the second embodiment, the radio wave reflecting material 2 is sewn and fixed to the radio wave reflecting mirror surface using a fiber bundle. .
FIG. 5 is a diagram showing a front view of the radio wave reflecting mirror surface 1 at a location where the radio wave reflecting material 2 in Embodiment 2 is fixed. Here, the radio wave reflecting material 2 is sewn around the radio wave reflecting mirror surface 1 using a fiber bundle 4. FIG. 6 is a cross-sectional view taken along the line AA in FIG.
The shape and mounting position of the radio wave reflecting material 2 are the same as the shape and position of the region where the mirror surface shape of the radio wave reflecting mirror surface 1 does not match the designed mirror surface shape, and the radio wave reflecting material 2 matches the designed mirror surface shape. So that it is placed locally.
As a sewing method, holes are formed in the radio wave reflecting mirror surface 1 and the radio wave reflecting material 2 so that the fiber bundle penetrates in advance, and the fiber bundle is passed and fixed.
The material of the radio wave reflector 2 is preferably the same material as that of the radio wave reflector 1 from the viewpoint of shape stability due to temperature changes in outer space. The fiber bundle 4 is preferably made of carbon fiber having a low coefficient of thermal expansion or Kevlar fiber having radio wave permeability.

このように、実施の形態2のアンテナリフレクタでは、硬化プロセスで生じた電波反射面の歪箇所に電波反射材2を繊維束4によって縫い付けるようにした。これにより、追加の接着剤を使用することによる硬化プロセスを経ることなく、電波反射面の形状が修正されて、通信の安定性を向上させることができる。   As described above, in the antenna reflector according to the second embodiment, the radio wave reflecting material 2 is sewn by the fiber bundle 4 to the distorted portion of the radio wave reflecting surface generated by the curing process. As a result, the shape of the radio wave reflecting surface is corrected without going through a curing process by using an additional adhesive, and the stability of communication can be improved.

実施の形態3.
実施の形態2では、電波反射材2を繊維束4を用い電波反射鏡面に縫合して固定するようにしたが、実施の形態3では、一方向材繊維強化樹脂5を用いて、電波反射材2を電波反射鏡面1に固定する。
図7は、実施の形態2における電波反射材2を固定した箇所の電波反射鏡面1の正面図を示した図である。ここで、電波反射材2はその周囲を一方向材繊維強化樹脂5を用いて電波反射鏡面1に縫い付けられている。図8は、図7のA-A断面図を示したものである。
電波反射材2の形状および取り付け位置は、電波反射鏡面1の鏡面形状が設計上の鏡面形状と一致しない領域の形状および位置と同じであり、電波反射材2が設計上の鏡面形状と一致するように局所的に配置されている。
縫い付けの方法としては、電波反射鏡面1と電波反射材2に予め一方向材繊維強化樹脂5が貫通する程度の穴をあけておき、一方向材繊維強化樹脂5を通すことで固定する。
電波反射材2の素材としては、宇宙空間での温度変化による形状安定性の観点から、電波反射鏡面1と同じ素材であることが望ましい。
一方向材繊維強化樹脂5としては、例えば熱膨張率が低い炭素繊維強化樹脂か、あるいは電波透過性を有するケブラー繊維強化樹脂を用いることが望ましい。
なお、電波反射材2の固定手順としては、本実施の形態で説明した樹脂硬化前の一方向繊維強化材料を用いてもよいし、実施の形態2と同様に繊維束4を通した後、樹脂を含浸させるという手順でもよい。
Embodiment 3 FIG.
In the second embodiment, the radio wave reflecting material 2 is sewn and fixed to the radio wave reflecting mirror surface using the fiber bundle 4, but in the third embodiment, the unidirectional material fiber reinforced resin 5 is used to fix the radio wave reflecting material. 2 is fixed to the radio wave reflecting mirror surface 1.
FIG. 7 is a front view of the radio wave reflecting mirror surface 1 at a location where the radio wave reflecting material 2 in Embodiment 2 is fixed. Here, the radio wave reflecting material 2 is sewn around the radio wave reflecting mirror surface 1 using a unidirectional material fiber reinforced resin 5. FIG. 8 shows an AA cross-sectional view of FIG.
The shape and mounting position of the radio wave reflecting material 2 are the same as the shape and position of the region where the mirror surface shape of the radio wave reflecting mirror surface 1 does not match the designed mirror surface shape, and the radio wave reflecting material 2 matches the designed mirror surface shape. So that it is placed locally.
As a sewing method, holes are formed in advance so that the unidirectional material fiber reinforced resin 5 penetrates the radio wave reflecting mirror surface 1 and the radio wave reflecting material 2, and the unidirectional material fiber reinforced resin 5 is passed through and fixed.
The material of the radio wave reflector 2 is preferably the same material as that of the radio wave reflector 1 from the viewpoint of shape stability due to temperature changes in outer space.
As the unidirectional material fiber reinforced resin 5, for example, a carbon fiber reinforced resin having a low coefficient of thermal expansion or a Kevlar fiber reinforced resin having radio wave permeability is preferably used.
As a procedure for fixing the radio wave reflector 2, the unidirectional fiber reinforced material before resin curing described in the present embodiment may be used, and after passing through the fiber bundle 4 as in the second embodiment, A procedure of impregnating with resin may be used.

このように、実施の形態3のアンテナリフレクタでは、硬化プロセスで生じた電波反射面の歪箇所に電波反射材2を一方向材繊維強化樹脂5によって縫い付けるようにした。これにより、電波反射材2の固定を強固にして電波反射面の形状を修正することができ、通信の安定性を向上させることができる。   As described above, in the antenna reflector according to the third embodiment, the radio wave reflecting material 2 is sewn by the unidirectional material fiber reinforced resin 5 to the distorted portion of the radio wave reflecting surface generated by the curing process. As a result, the radio wave reflecting material 2 can be firmly fixed, the shape of the radio wave reflecting surface can be corrected, and the stability of communication can be improved.

1 電波反射鏡面、2 電波反射材、3 接着剤、4 繊維束、5 一方向材繊維強化樹脂、11a、11b 表皮材、12 コア材、20 成形歪箇所、50 人工衛星、51 太陽電池パネル、52 アンテナリフレクタ、53 背面構造体。   DESCRIPTION OF SYMBOLS 1 Radio wave reflecting mirror surface, 2 Radio wave reflecting material, 3 Adhesive agent, 4 Fiber bundle, 5 Unidirectional material Fiber reinforced resin, 11a, 11b Skin material, 12 Core material, 20 Molding distortion location, 50 Artificial satellite, 51 Solar cell panel, 52 Antenna reflector, 53 Back structure.

Claims (8)

人工衛星に搭載されるアンテナリフレクタの電波反射鏡面の一領域に、前記電波反射鏡面とは別部品の電波反射材を備えることを特徴とするアンテナリフレクタ。 An antenna reflector, comprising: a radio wave reflecting material that is a separate component from the radio wave reflecting mirror surface in an area of a radio wave reflecting mirror surface of an antenna reflector mounted on an artificial satellite. 前記電波反射材は電波反射鏡面の一領域に接着剤で固定されていることを特徴とする請求項1記載のアンテナリフレクタ。 The antenna reflector according to claim 1, wherein the radio wave reflector is fixed to an area of the radio wave reflector surface with an adhesive. 前記接着剤はエポキシ樹脂あるいはシアネート樹脂であることを特徴とする請求項2記載のアンテナリフレクタ。 The antenna reflector according to claim 2, wherein the adhesive is an epoxy resin or a cyanate resin. 前記電波反射材は電波反射鏡面の一領域に繊維束で縫合されていることを特徴とする請求項1記載のアンテナリフレクタ 2. The antenna reflector according to claim 1, wherein the radio wave reflecting material is stitched with a fiber bundle in a region of the radio wave reflecting mirror surface. 前記繊維束はケブラー繊維であることを特徴とする請求項4記載のアンテナリフレクタ。 The antenna reflector according to claim 4, wherein the fiber bundle is a Kevlar fiber. 前記電波反射材は電波反射鏡面の一領域に一方向繊維強化樹脂で縫合されていることを特徴とする請求項1記載のアンテナリフレクタ 2. The antenna reflector according to claim 1, wherein the radio wave reflecting material is stitched to a region of the radio wave reflecting mirror surface with a unidirectional fiber reinforced resin. 前記電波反射鏡面の一領域は、電波反射鏡面に成形された歪箇所であることを特徴とする請求項1乃至6いずれか記載のアンテナリフレクタ 7. The antenna reflector according to claim 1, wherein one region of the radio wave reflecting mirror surface is a strained portion formed on the radio wave reflecting mirror surface. 人工衛星に搭載されるアンテナリフレクタの電波反射鏡面に成形された歪箇所に別部品の電波反射材を取り付けることにより前記電波反射鏡面の形状を修正することを特徴とする電波反射鏡面の修正方法。 A radio wave reflecting mirror surface correcting method, comprising: correcting a shape of the radio wave reflecting mirror surface by attaching a separate wave reflecting material to a strained portion formed on a radio wave reflecting mirror surface of an antenna reflector mounted on an artificial satellite.
JP2010289976A 2010-12-27 2010-12-27 Method for manufacturing antenna reflector Active JP5859198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289976A JP5859198B2 (en) 2010-12-27 2010-12-27 Method for manufacturing antenna reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289976A JP5859198B2 (en) 2010-12-27 2010-12-27 Method for manufacturing antenna reflector

Publications (2)

Publication Number Publication Date
JP2012138777A true JP2012138777A (en) 2012-07-19
JP5859198B2 JP5859198B2 (en) 2016-02-10

Family

ID=46675850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289976A Active JP5859198B2 (en) 2010-12-27 2010-12-27 Method for manufacturing antenna reflector

Country Status (1)

Country Link
JP (1) JP5859198B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797705A (en) * 1980-12-10 1982-06-17 Mitsubishi Electric Corp Reflective mirror antenna device
JPH0975564A (en) * 1995-09-11 1997-03-25 Tokai Ind Sewing Mach Co Ltd Processing method by sewing machine with laser beam processing function
JPH09327544A (en) * 1996-06-11 1997-12-22 Yoichi Endo Glove for sport
JP2001315228A (en) * 2000-05-11 2001-11-13 Fuji Heavy Ind Ltd Method for manufacturing honeycomb sandwich structure using composite material and molding device used therein
JP2006166109A (en) * 2004-12-08 2006-06-22 Nec Toshiba Space Systems Ltd Reflection mirror and manufacturing method thereof
JP2009528782A (en) * 2006-02-28 2009-08-06 ザ・ボーイング・カンパニー Arbitrarily shaped deployable mesh reflector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797705A (en) * 1980-12-10 1982-06-17 Mitsubishi Electric Corp Reflective mirror antenna device
JPH0975564A (en) * 1995-09-11 1997-03-25 Tokai Ind Sewing Mach Co Ltd Processing method by sewing machine with laser beam processing function
JPH09327544A (en) * 1996-06-11 1997-12-22 Yoichi Endo Glove for sport
JP2001315228A (en) * 2000-05-11 2001-11-13 Fuji Heavy Ind Ltd Method for manufacturing honeycomb sandwich structure using composite material and molding device used therein
JP2006166109A (en) * 2004-12-08 2006-06-22 Nec Toshiba Space Systems Ltd Reflection mirror and manufacturing method thereof
JP2009528782A (en) * 2006-02-28 2009-08-06 ザ・ボーイング・カンパニー Arbitrarily shaped deployable mesh reflector

Also Published As

Publication number Publication date
JP5859198B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US7897095B2 (en) Method for manufacturing a reinforced shell for forming component parts for aircraft and shell for component parts for aircraft
JP4960318B2 (en) Method and apparatus for minimizing misalignments appearing on the surface of composite parts
JP6504993B2 (en) Method of manufacturing curved sandwich structure
US9120272B2 (en) Smooth composite structure
US5895699A (en) Tiedown ply for reducing core crush in composite honeycomb sandwich structure
CN110239200B (en) Preparation method of light grid skin honeycomb structure
CA2769693A1 (en) Method of molding complex composite parts using pre-plied multi-directional continuous fiber laminate
CA2679078A1 (en) Method for producing a structural component
JP2010268467A5 (en)
JP2000502968A (en) Composite honeycomb sandwich structure
KR101498406B1 (en) Molding die
JP5859198B2 (en) Method for manufacturing antenna reflector
US8089422B2 (en) Reflector
US9685710B1 (en) Reflective and permeable metalized laminate
WO2019225294A1 (en) Pipe structure and truss structure, and artificial satellite using such structures
JP2014015159A (en) Propeller blade body and method of manufacturing the same
JP2017219811A (en) Frp-made mirror structure, method for producing frp-made mirror structure, and telescope
JP2008306567A (en) Membrane reflector
JP2013201953A (en) Fishing line guide and fishing rod provided with the same
JP6482493B2 (en) Grid reflector and grid reflector manufacturing method
WO2019059260A1 (en) Method for molding composite material blade, composite material blade, and molding die for composite material blade
CN110145678B (en) Large-size complex honeycomb sandwich structure composite shell sheet and integral forming method
JP2010213198A (en) Membrane reflector
JP5935739B2 (en) Antenna reflector and method of manufacturing antenna reflector
JP5606185B2 (en) Dual grid reflector and manufacturing method of dual grid reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150120

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151216

R151 Written notification of patent or utility model registration

Ref document number: 5859198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250