JP2012137615A - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method Download PDF

Info

Publication number
JP2012137615A
JP2012137615A JP2010289902A JP2010289902A JP2012137615A JP 2012137615 A JP2012137615 A JP 2012137615A JP 2010289902 A JP2010289902 A JP 2010289902A JP 2010289902 A JP2010289902 A JP 2010289902A JP 2012137615 A JP2012137615 A JP 2012137615A
Authority
JP
Japan
Prior art keywords
optical fiber
core material
pipe
core
fiber manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010289902A
Other languages
Japanese (ja)
Inventor
Takushi Nagashima
拓志 永島
Masatoshi Wakaida
雅稔 若井田
Toshiki Taru
稔樹 樽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010289902A priority Critical patent/JP2012137615A/en
Publication of JP2012137615A publication Critical patent/JP2012137615A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01234Removal of preform material to form longitudinal grooves, e.g. by chamfering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02781Hollow fibres, e.g. holey fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/10Fibre drawing or extruding details pressurised

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of manufacturing an optical fiber having a pore extending along a longitudinal direction and further having a desired characteristics with excellent yields.SOLUTION: An optical fiber manufacturing method according to the present invention comprises: a core member exterior cutting process forming a groove extending on an outer periphery of a core member in a longitudinal direction (1); a fixing process inserting the core member into a pipe member so as to fix the core member and the pipe member to each other at one point or a plurality of points including a first end side of the core member after the core member exterior cutting process (2); an optical fiber drawing process holding the core member and the pipe member such that the first end side thereof is turned upward and executing the optical fiber drawing process of the core member and the pipe member from a second end side thereof while pressuring a space between the core member and the pipe member so as to manufacture an optical fiber after the fixing process (3). It is preferable that a glass block having a diameter larger than an inner diameter of the pipe member is fixed to the first end side of the core member so as to insert the core member into the pipe member and fix the core member and the pipe member to each other through the glass block during the fixing process.

Description

本発明は、長手方向に空孔が延在する光ファイバを製造する方法に関するものである。   The present invention relates to a method of manufacturing an optical fiber having holes extending in the longitudinal direction.

長手方向に空孔が延在する光ファイバは、中実の光ファイバが有し得ないような様々な特性を有することができる。このような光ファイバを製造する方法として、コア材外削法および母材穿孔法が知られている。コア材外削法は、コア材の外周に長手方向に延在する溝を形成し、このコア材をパイプ材に挿入して両者を加熱一体化してコラプスし、その後に線引を行うことで、長手方向に空孔が延在する光ファイバを製造する(特許文献1,2を参照)。母材穿孔法は、母材に長手方向に延在する空孔を形成し、この母材を線引することで、長手方向に空孔が延在する光ファイバを製造する。   An optical fiber having a hole extending in the longitudinal direction can have various characteristics that a solid optical fiber cannot have. As a method for producing such an optical fiber, a core material cutting method and a base material drilling method are known. In the core material cutting method, a groove extending in the longitudinal direction is formed on the outer periphery of the core material, the core material is inserted into a pipe material, the two are heated and integrated, and then drawn. An optical fiber having holes extending in the longitudinal direction is manufactured (see Patent Documents 1 and 2). In the base material drilling method, a hole extending in the longitudinal direction is formed in the base material, and an optical fiber in which the hole extends in the longitudinal direction is manufactured by drawing the base material.

特開2002−321935号公報JP 2002-321935 A 特開2003−342031号公報JP 2003-342031 A

コア材外削法では、高い温度でコラプスを行うと母材に空孔が残らないので、空孔を残す為には低い温度でコラプスを行う必要がある。低い温度でコラプスを行うと、コア材とパイプ材との界面を充分に加熱することができず、この部分に歪みが残留し易く、母材割れの危険が高くなる。また、コラプス時に、加熱によりコア材が変形するので、母材において長手方向の空孔のサイズが安定しない。したがって、コア材外削法は、所望の特性を有する光ファイバを歩留りよく製造することができない。   In the core material cutting method, voids do not remain in the base material when collapse is performed at a high temperature. Therefore, it is necessary to perform collapse at a low temperature in order to leave holes. When collapsing is performed at a low temperature, the interface between the core material and the pipe material cannot be sufficiently heated, and distortion tends to remain in this portion, thereby increasing the risk of cracking the base material. Further, since the core material is deformed by heating during the collapse, the size of the holes in the longitudinal direction in the base material is not stable. Therefore, the core material cutting method cannot manufacture an optical fiber having desired characteristics with a high yield.

母材穿孔法では、母材に長尺の空孔を形成するためには、長尺の穴あけツールが必要となる。母材が長尺になるほどツールの剛性が不足するので、母材に対して真っ直ぐに穴をあけることが難しい。したがって、母材穿孔法も、所望の特性を有する光ファイバを歩留りよく製造することができない。   In the base material drilling method, a long drilling tool is required to form a long hole in the base material. The longer the base material is, the less rigid the tool is, so it is difficult to make a hole straight in the base material. Therefore, the base material drilling method also cannot produce an optical fiber having desired characteristics with a high yield.

本発明は、上記問題点を解消する為になされたものであり、長手方向に空孔が延在し所望の特性を有する光ファイバを歩留りよく製造することができる方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method capable of producing an optical fiber having desired characteristics with holes extending in the longitudinal direction with high yield. To do.

本発明の光ファイバ製造方法は、長手方向に空孔が延在する光ファイバを製造する方法であって、(1) コア材の外周に長手方向に延在する溝を形成するコア材外削工程と、(2) コア材外削工程後に、コア材をパイプ材に挿入し、コア材の第1端側を含む1箇所または複数箇所においてコア材とパイプ材とを互いに固定する固定工程と、(3) 固定工程後に、第1端側が上になるようにコア材およびパイプ材を保持し、コア材とパイプ材との間の空間を加圧しながらコア材およびパイプ材を第2端側から線引して光ファイバを製造する線引工程と、を備えることを特徴とする。   An optical fiber manufacturing method of the present invention is a method of manufacturing an optical fiber in which holes extend in the longitudinal direction, and (1) core material external cutting that forms a groove extending in the longitudinal direction on the outer periphery of the core material. And (2) a fixing step of inserting the core material into the pipe material after the core material cutting step, and fixing the core material and the pipe material to each other at one or a plurality of locations including the first end side of the core material; (3) After the fixing process, hold the core material and the pipe material so that the first end side is on the upper side, and press the space between the core material and the pipe material while the core material and the pipe material are on the second end side. And a drawing step of drawing an optical fiber by drawing from the wire.

本発明の光ファイバ製造方法は、固定工程において、パイプ材の内径より大きい径を有するガラスブロックをコア材の第1端に固定し、コア材をパイプ材に挿入して、ガラスブロックを介してコア材とパイプ材とを互いに固定するのが好適である。或いは、固定工程において、コア材とパイプ材とを第1端側において加熱一体化してコア材とパイプ材とを互いに固定するのも好適である。   In the optical fiber manufacturing method of the present invention, in the fixing step, a glass block having a diameter larger than the inner diameter of the pipe material is fixed to the first end of the core material, the core material is inserted into the pipe material, and the glass block is inserted. It is preferable to fix the core material and the pipe material to each other. Alternatively, in the fixing step, it is also preferable that the core material and the pipe material are fixed to each other by heating and integrating the core material and the pipe material on the first end side.

本発明の光ファイバ製造方法は、コア材の粘性がパイプ材の粘性より低くてもよいし、コア材の粘性がパイプ材の粘性より高くてもよい。コア材の粘性がパイプ材の粘性より低ければ、線引工程の際に同じ線引張力でもファイバ空孔内面の粗さを低減することができる。コア材の粘性がパイプ材の粘性より高ければ、線引工程の際に内圧印加による空孔径の変化が小さくなり、空孔径の制御性が向上するというメリットが得られる。   In the optical fiber manufacturing method of the present invention, the viscosity of the core material may be lower than the viscosity of the pipe material, or the viscosity of the core material may be higher than the viscosity of the pipe material. If the viscosity of the core material is lower than the viscosity of the pipe material, the roughness of the inner surface of the fiber hole can be reduced even with the same drawing tension during the drawing process. If the viscosity of the core material is higher than the viscosity of the pipe material, the change in the hole diameter due to the application of the internal pressure during the drawing process is reduced, and the merit that the controllability of the hole diameter is improved can be obtained.

本発明によれば、長手方向に空孔が延在し所望の特性を有する光ファイバを歩留りよく製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the void | hole extends in a longitudinal direction and the optical fiber which has a desired characteristic can be manufactured with a sufficient yield.

第1比較例の光ファイバ製造方法のフローを示す図である。It is a figure which shows the flow of the optical fiber manufacturing method of a 1st comparative example. 外削前のコア材10の形状を示す図である。It is a figure which shows the shape of the core material 10 before an external cutting. 外削後のコア材10の形状を示す図である。It is a figure which shows the shape of the core material 10 after an external cutting. パイプ材20の断面形状を示す図である。FIG. 3 is a diagram showing a cross-sectional shape of a pipe material 20. 第1比較例の光ファイバ製造方法においてコア材10およびパイプ材20を加熱一体化した後の母材1の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the preform | base_material 1 after heat-integrating the core material 10 and the pipe material 20 in the optical fiber manufacturing method of a 1st comparative example. 第2比較例の光ファイバ製造方法のフローを示す図である。It is a figure which shows the flow of the optical fiber manufacturing method of a 2nd comparative example. 第2比較例の光ファイバ製造方法における穿孔前の母材2Aの断面形状を示す図である。It is a figure which shows the cross-sectional shape of preform | base_material 2A before drilling in the optical fiber manufacturing method of a 2nd comparative example. 第2比較例の光ファイバ製造方法における穿孔後の母材2の断面形状を示す図であるIt is a figure which shows the cross-sectional shape of the preform | base_material 2 after the drilling in the optical fiber manufacturing method of a 2nd comparative example. 第3比較例の光ファイバ製造方法のフローを示す図である。It is a figure which shows the flow of the optical fiber manufacturing method of a 3rd comparative example. 第3比較例の光ファイバ製造方法における母材3の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the preform | base_material 3 in the optical fiber manufacturing method of a 3rd comparative example. 第1実施形態の光ファイバ製造方法のフローを示す図である。It is a figure which shows the flow of the optical fiber manufacturing method of 1st Embodiment. 第1実施形態の光ファイバ製造方法の固定工程を説明する図である。It is a figure explaining the fixing process of the optical fiber manufacturing method of 1st Embodiment. 第1実施形態の光ファイバ製造方法の固定工程を説明する図である。It is a figure explaining the fixing process of the optical fiber manufacturing method of 1st Embodiment. 第1実施形態の光ファイバ製造方法の線引工程を説明する図である。It is a figure explaining the drawing process of the optical fiber manufacturing method of 1st Embodiment. 第2実施形態の光ファイバ製造方法のフローを示す図である。It is a figure which shows the flow of the optical fiber manufacturing method of 2nd Embodiment. 第2実施形態の光ファイバ製造方法の固定工程を説明する図である。It is a figure explaining the fixing process of the optical fiber manufacturing method of 2nd Embodiment. 第2実施形態の光ファイバ製造方法の線引工程を説明する図である。It is a figure explaining the drawing process of the optical fiber manufacturing method of 2nd Embodiment.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、初めに比較例の光ファイバ製造方法について説明し、その後に本実施形態の光ファイバ製造方法について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the optical fiber manufacturing method of the comparative example will be described first, and then the optical fiber manufacturing method of the present embodiment will be described.

先ず、第1比較例の光ファイバ製造方法について説明する。図1は、第1比較例の光ファイバ製造方法のフローを示す図である。第1比較例の光ファイバ製造方法は、コア材外削法に拠って、長手方向に空孔が延在する光ファイバを製造する方法である。   First, the optical fiber manufacturing method of the first comparative example will be described. FIG. 1 is a diagram illustrating a flow of the optical fiber manufacturing method of the first comparative example. The optical fiber manufacturing method of the first comparative example is a method of manufacturing an optical fiber in which holes extend in the longitudinal direction based on the core material cutting method.

第1比較例の光ファイバ製造方法では、先ず、石英ガラス製のコア材10が用意される。外削前のコア材10は、図2に示されるように、光ファイバのコアとなるべき第1コア部11と、この第1コア部11を取り囲む第2コア部12とを含む。図2(a)は外削前のコア材10の断面を示し、同図(b)は外削前のコア材10の外形を示す。   In the optical fiber manufacturing method of the first comparative example, first, a core material 10 made of quartz glass is prepared. As shown in FIG. 2, the core material 10 before external cutting includes a first core portion 11 to be an optical fiber core and a second core portion 12 surrounding the first core portion 11. FIG. 2A shows a cross-section of the core material 10 before cutting, and FIG. 2B shows the outer shape of the core material 10 before cutting.

このコア材10の外周に長手方向に延在する溝30が形成される。図3(a)は外削後のコア材10の断面を示し、同図(b)は外削後のコア材10の外形を示す。溝30の深さは第1コア部11に達しない程度とされる。   A groove 30 extending in the longitudinal direction is formed on the outer periphery of the core material 10. FIG. 3A shows a cross section of the core material 10 after the external cutting, and FIG. 3B shows an outer shape of the core material 10 after the external cutting. The depth of the groove 30 is set so as not to reach the first core portion 11.

また、石英ガラス製のパイプ材20が用意される。このパイプ材20の内径は、コア材10の外径より僅かに大きい。図4は、パイプ材20の断面形状を示す図である。   In addition, a pipe member 20 made of quartz glass is prepared. The inner diameter of the pipe material 20 is slightly larger than the outer diameter of the core material 10. FIG. 4 is a diagram illustrating a cross-sectional shape of the pipe material 20.

そして、外削後のコア材10がパイプ材20内に挿入され、両者が加熱一体化されコラプスされて母材1が作製される。図5は、母材1の断面形状を示す図である。外削後のコア材10において長手方向に延在する溝30は、母材1において長手方向に延在する空孔31となる。この母材1が線引されることで、長手方向に空孔が延在する光ファイバが製造される。   Then, the core material 10 after the external cutting is inserted into the pipe material 20, and both are integrated by heating and collapsed to produce the base material 1. FIG. 5 is a diagram showing a cross-sectional shape of the base material 1. The groove 30 extending in the longitudinal direction in the core material 10 after the external cutting becomes a hole 31 extending in the longitudinal direction in the base material 1. By drawing the base material 1, an optical fiber having holes extending in the longitudinal direction is manufactured.

第1比較例の光ファイバ製造方法(コア材外削法)は、長尺化が容易というメリットを有する。しかし、第1比較例の光ファイバ製造方法は、空孔を残す為には低い温度でコラプスを行う必要がある。低い温度でコラプスを行うと、コア材とパイプ材との界面を充分に加熱することができず、この部分に歪みが残留し易く、母材割れの危険が高くなる。また、コラプス時に、加熱によりコア材が変形するので、母材において長手方向の空孔のサイズが安定しない。したがって、第1比較例の光ファイバ製造方法は、所望の特性を有する光ファイバを歩留りよく製造することができない。   The optical fiber manufacturing method (core material cutting method) of the first comparative example has an advantage that it is easy to increase the length. However, the optical fiber manufacturing method of the first comparative example needs to be collapsed at a low temperature in order to leave holes. When collapsing is performed at a low temperature, the interface between the core material and the pipe material cannot be sufficiently heated, and distortion tends to remain in this portion, thereby increasing the risk of cracking the base material. Further, since the core material is deformed by heating during the collapse, the size of the holes in the longitudinal direction in the base material is not stable. Therefore, the optical fiber manufacturing method of the first comparative example cannot manufacture an optical fiber having desired characteristics with a high yield.

次に、第2比較例の光ファイバ製造方法について説明する。図6は、第2比較例の光ファイバ製造方法のフローを示す図である。第2比較例の光ファイバ製造方法は、母材穿孔法に拠って、長手方向に空孔が延在する光ファイバを製造する方法である。   Next, an optical fiber manufacturing method of the second comparative example will be described. FIG. 6 is a diagram illustrating a flow of the optical fiber manufacturing method of the second comparative example. The optical fiber manufacturing method of the second comparative example is a method for manufacturing an optical fiber in which holes extend in the longitudinal direction based on a preform drilling method.

第2比較例の光ファイバ製造方法では、先ず、石英ガラス製のコア材10(図2)および石英ガラス製のパイプ材20(図4)が準備される。そして、コア材10がパイプ材20内に挿入され、両者が加熱一体化されコラプスされて母材2Aが作製される。図7は、母材2Aの断面形状を示す図である。さらに、この母材2Aにおいて長手方向に延在する空孔32が形成されて、母材2が作製される。図8は、母材2の断面形状を示す図である。この母材2が線引されることで、長手方向に空孔が延在する光ファイバが製造される。   In the optical fiber manufacturing method of the second comparative example, first, a core material 10 made of quartz glass (FIG. 2) and a pipe material 20 made of quartz glass (FIG. 4) are prepared. Then, the core material 10 is inserted into the pipe material 20, and both are heated and integrated to be collapsed to produce the base material 2A. FIG. 7 is a diagram showing a cross-sectional shape of the base material 2A. Further, a hole 32 extending in the longitudinal direction is formed in the base material 2A, and the base material 2 is manufactured. FIG. 8 is a diagram showing a cross-sectional shape of the base material 2. By drawing the base material 2, an optical fiber having holes extending in the longitudinal direction is manufactured.

第2比較例の光ファイバ製造方法(母材穿孔法)は、母材に長尺の空孔を形成するためには、長尺の穴あけツールが必要となる。母材が長尺になるほどツールの剛性が不足するので、母材に対して真っ直ぐに穴をあけることが難しい。したがって、第2比較例の光ファイバ製造方法も、所望の特性を有する光ファイバを歩留りよく製造することができない。   The optical fiber manufacturing method (base material drilling method) of the second comparative example requires a long drilling tool in order to form long holes in the base material. The longer the base material is, the less rigid the tool is, so it is difficult to make a hole straight in the base material. Therefore, the optical fiber manufacturing method of the second comparative example cannot manufacture an optical fiber having desired characteristics with a high yield.

次に、第3比較例の光ファイバ製造方法について説明する。図9は、第3比較例の光ファイバ製造方法のフローを示す図である。第3比較例の光ファイバ製造方法は、ロッドイン線引に拠って、長手方向に空孔が延在する光ファイバを製造する方法である。   Next, an optical fiber manufacturing method of the third comparative example will be described. FIG. 9 is a diagram illustrating a flow of the optical fiber manufacturing method of the third comparative example. The optical fiber manufacturing method of the third comparative example is a method of manufacturing an optical fiber in which holes extend in the longitudinal direction based on rod-in drawing.

第3比較例の光ファイバ製造方法は、第1比較例の光ファイバ製造方法と類似しているが、線引前にはコア材10とパイプ材20とを加熱一体化しない。線引の際の母材3は、図10に示されるように、コア材10がパイプ材20内に挿入されただけのものである。   The optical fiber manufacturing method of the third comparative example is similar to the optical fiber manufacturing method of the first comparative example, but the core material 10 and the pipe material 20 are not heated and integrated before drawing. As shown in FIG. 10, the base material 3 at the time of drawing is only the core material 10 inserted into the pipe material 20.

第3比較例の光ファイバ製造方法(ロッドイン線引)は、母材3が割れるリスクは極めて低くなる。しかし、第3比較例の光ファイバ製造方法は、線引の際にコア材10がパイプ材20の中で融け落ちたり、コア材10がパイプ材20から押し出されたりするといった意図せぬ変形をしやすいというデメリットがある。   In the optical fiber manufacturing method (rod-in drawing) of the third comparative example, the risk of the base material 3 breaking is extremely low. However, in the optical fiber manufacturing method of the third comparative example, the core material 10 melts down in the pipe material 20 or the core material 10 is pushed out of the pipe material 20 during drawing. There is a demerit that it is easy to do.

以下に説明する第1実施形態または第2実施形態の光ファイバ製造方法は、上記の第1〜第3の比較例の光ファイバ製造方法が有する問題点を解消し得るものである。   The optical fiber manufacturing method of the first embodiment or the second embodiment described below can solve the problems of the optical fiber manufacturing methods of the first to third comparative examples.

次に、第1実施形態の光ファイバ製造方法について説明する。図11は、第1実施形態の光ファイバ製造方法のフローを示す図である。第1実施形態の光ファイバ製造方法は、コア材外削工程,固定工程および線引工程を備える。コア材外削工程では、第1比較例および第3比較例と同様に、コア材10の外周に長手方向に延在する溝30が形成される(図2,図3)。   Next, an optical fiber manufacturing method according to the first embodiment will be described. FIG. 11 is a diagram illustrating a flow of the optical fiber manufacturing method according to the first embodiment. The optical fiber manufacturing method of the first embodiment includes a core material cutting process, a fixing process, and a drawing process. In the core material cutting process, a groove 30 extending in the longitudinal direction is formed on the outer periphery of the core material 10 as in the first comparative example and the third comparative example (FIGS. 2 and 3).

コア材外削工程に続く固定工程において、コア材10がパイプ材20に挿入され、コア材10の第1端側においてコア材10とパイプ材20とが互いに固定される。固定工程は具体的には以下のとおりである。図12および図13それぞれは、第1実施形態の光ファイバ製造方法の固定工程を説明する図である。   In the fixing process subsequent to the core material cutting process, the core material 10 is inserted into the pipe material 20, and the core material 10 and the pipe material 20 are fixed to each other on the first end side of the core material 10. Specifically, the fixing process is as follows. FIG. 12 and FIG. 13 are diagrams for explaining a fixing process of the optical fiber manufacturing method of the first embodiment.

図12(a),(b)に示されるように、パイプ材20の内径より大きい径を有するガラスブロック40がコア材10の第1端に固定される。また、図13(a)に示されるように、パイプ20の第1端にダミーパイプ50が同軸となるように接続され、また、パイプ20の第2端にダミーロッド60が同軸となるように接続される。図13(b),(c)に示されるように、コア材10がダミーパイプ50を経てパイプ材20に挿入される。このとき、パイプ20の第1端にガラスブロック40が接する。そして、図13(d)に示されるように、ダミーパイプ50の一部が縮径されて、当該縮径部51によりガラスブロック50を介してコア材10とパイプ材20とが第1端側において互いに固定される。これにより母材4が作製される。   As shown in FIGS. 12A and 12B, a glass block 40 having a diameter larger than the inner diameter of the pipe material 20 is fixed to the first end of the core material 10. Further, as shown in FIG. 13A, the dummy pipe 50 is connected to the first end of the pipe 20 so as to be coaxial, and the dummy rod 60 is coaxially connected to the second end of the pipe 20. Connected. As shown in FIGS. 13B and 13C, the core material 10 is inserted into the pipe material 20 through the dummy pipe 50. At this time, the glass block 40 contacts the first end of the pipe 20. 13D, a part of the dummy pipe 50 is reduced in diameter, and the core material 10 and the pipe material 20 are connected to the first end side via the glass block 50 by the reduced diameter portion 51. Are fixed to each other. Thereby, the base material 4 is produced.

固定工程に続く線引工程では、図14に示されるように、第1端側が上になるようにコア材10およびパイプ材20を含む母材4が保持され、コア材10とパイプ材20との間の空間が加圧されながら、コア材10およびパイプ材20が第2端側から線引される。これにより、長手方向に空孔が延在する光ファイバ9が製造される。   In the drawing process following the fixing process, as shown in FIG. 14, the base material 4 including the core material 10 and the pipe material 20 is held so that the first end side is up, and the core material 10 and the pipe material 20 While the space between is pressed, the core material 10 and the pipe material 20 are drawn from the second end side. Thereby, the optical fiber 9 in which holes extend in the longitudinal direction is manufactured.

第1実施形態の光ファイバ製造方法では、線引工程の際に、コア材10とパイプ材20とが互いに固定された第1端が上になるように母材4が保持され、コア材10は上端である第1端でパイプ材20に固定されるとともに、下端でダミーロッドに支持される。したがって、線引工程の際に、コア材10が自重で融け落ちたり、逆にコア材10がパイプ20から押し出されたりするといった不具合が回避され得る。また、第1実施形態の光ファイバ製造方法では、第1比較例の光ファイバ製造方法(コア材外削法)が有する母材割れの危険や長手方向の空孔サイズの不均一の問題が解消される。したがって、第1実施形態の光ファイバ製造方法は、長手方向に空孔が延在し所望の特性を有する光ファイバを歩留りよく製造することができる。   In the optical fiber manufacturing method of the first embodiment, during the drawing process, the base material 4 is held so that the first ends where the core material 10 and the pipe material 20 are fixed to each other are on the top, and the core material 10 Is fixed to the pipe member 20 at the first end, which is the upper end, and supported by the dummy rod at the lower end. Therefore, in the drawing process, problems such as the core material 10 being melted by its own weight or the core material 10 being pushed out of the pipe 20 can be avoided. Further, in the optical fiber manufacturing method of the first embodiment, the problem of the base material cracking and the non-uniformity of the hole size in the longitudinal direction, which the optical fiber manufacturing method (core material cutting method) of the first comparative example has, are solved. Is done. Therefore, the optical fiber manufacturing method according to the first embodiment can manufacture an optical fiber having desired characteristics with holes extending in the longitudinal direction with high yield.

特に、コア材10の粘性をパイプ材20より小さくすれば、同じ線引張力でもファイバ空孔内面の粗さを低減することができるので、伝送損失の低減につながる。また、逆にコア材10の粘性をパイプ材20より大きくすれば、内圧印加による空孔径の変化が小さくなり、空孔径の制御性が向上するというメリットが得られる。   In particular, if the viscosity of the core material 10 is made smaller than that of the pipe material 20, the roughness of the inner surface of the fiber hole can be reduced even with the same drawing tension, leading to a reduction in transmission loss. Conversely, if the viscosity of the core material 10 is made larger than that of the pipe material 20, the change in the hole diameter due to the application of the internal pressure is reduced, and the merit that the controllability of the hole diameter is improved can be obtained.

次に、第2実施形態の光ファイバ製造方法について説明する。図15は、第2実施形態の光ファイバ製造方法のフローを示す図である。第2実施形態の光ファイバ製造方法は、コア材外削工程,固定工程および線引工程を備える。コア材外削工程では、第1比較例および第3比較例と同様に、コア材10の外周に長手方向に延在する溝30が形成される(図2,図3)。   Next, an optical fiber manufacturing method according to the second embodiment will be described. FIG. 15 is a diagram illustrating a flow of the optical fiber manufacturing method according to the second embodiment. The optical fiber manufacturing method of the second embodiment includes a core material cutting process, a fixing process, and a drawing process. In the core material cutting process, a groove 30 extending in the longitudinal direction is formed on the outer periphery of the core material 10 as in the first comparative example and the third comparative example (FIGS. 2 and 3).

コア材外削工程に続く固定工程において、コア材10がパイプ材20に挿入され、コア材10の少なくとも第1端側においてコア材10とパイプ材20とが互いに固定される。固定工程は具体的には以下のとおりである。図16は、第2実施形態の光ファイバ製造方法の固定工程を説明する図である。   In a fixing process subsequent to the core material cutting process, the core material 10 is inserted into the pipe material 20, and the core material 10 and the pipe material 20 are fixed to each other at least on the first end side of the core material 10. Specifically, the fixing process is as follows. FIG. 16 is a diagram illustrating a fixing process of the optical fiber manufacturing method according to the second embodiment.

図16(a)に示されるように、パイプ20の第1端にダミーパイプ50が同軸となるように接続され、また、パイプ20の第2端にダミーロッド60が同軸となるように接続される。図16(b)に示されるように、コア材10がダミーパイプ50を経てパイプ材20に挿入される。そして、図16(c)に示されるように、コア材10とパイプ材20とは第1端側において加熱源71による加熱により加熱一体化されて互いに固定される。このとき、固定部分において溝30が完全に潰れない限り、溝30(空孔31)の変形は問題にならない。また、コア材10とパイプ材20とは第2端側においても加熱源72による加熱により加熱一体化されて互いに固定されてもよい。(さらに、コア材10のサイズが大きい場合は、コア材10とパイプ材20とを中間部分の一箇所または複数箇所においても加熱源72による加熱により加熱一体化して互いに固定してもよい。)これにより母材5が作製される。   As shown in FIG. 16A, the dummy pipe 50 is connected to the first end of the pipe 20 so as to be coaxial, and the dummy rod 60 is connected to the second end of the pipe 20 so as to be coaxial. The As shown in FIG. 16B, the core material 10 is inserted into the pipe material 20 through the dummy pipe 50. Then, as shown in FIG. 16C, the core material 10 and the pipe material 20 are heated and integrated by heating by the heating source 71 on the first end side and fixed to each other. At this time, as long as the groove 30 is not completely crushed in the fixed portion, the deformation of the groove 30 (hole 31) is not a problem. Further, the core material 10 and the pipe material 20 may be heated and integrated by heating by the heating source 72 on the second end side and fixed to each other. (Further, when the size of the core material 10 is large, the core material 10 and the pipe material 20 may be heated and integrated by heating by the heating source 72 even at one or a plurality of locations in the intermediate portion.) Thereby, the base material 5 is produced.

固定工程に続く線引工程では、図17に示されるように、第1端側が上になるようにコア材10およびパイプ材20を含む母材5が保持され、コア材10とパイプ材20との間の空間が加圧されながら、コア材10およびパイプ材20が第2端側から線引される。これにより、長手方向に空孔が延在する光ファイバ9が製造される。   In the drawing process following the fixing process, as shown in FIG. 17, the base material 5 including the core material 10 and the pipe material 20 is held so that the first end side is up, and the core material 10 and the pipe material 20 While the space between is pressed, the core material 10 and the pipe material 20 are drawn from the second end side. Thereby, the optical fiber 9 in which holes extend in the longitudinal direction is manufactured.

第2実施形態の光ファイバ製造方法では、線引工程の際に、コア材10とパイプ材20とが互いに固定された第1端が上になるように母材5が保持され、コア材10は上端である第1端でパイプ材20に固定されるとともに、下端でダミーロッドに支持される。(または、下端でもパイプ材20に固定される。)。したがって、線引工程の際に、コア材10が自重で融け落ちたり、逆にコア材10がパイプ20から押し出されたりするといった不具合が回避され得る。また、第2実施形態の光ファイバ製造方法では、第1比較例の光ファイバ製造方法(コア材外削法)が有する母材割れの危険や長手方向の空孔サイズの不均一の問題が解消される。したがって、第2実施形態の光ファイバ製造方法は、長手方向に空孔が延在し所望の特性を有する光ファイバを歩留りよく製造することができる。   In the optical fiber manufacturing method of the second embodiment, during the drawing process, the base material 5 is held so that the first end where the core material 10 and the pipe material 20 are fixed to each other is on the upper side, and the core material 10 Is fixed to the pipe member 20 at the first end, which is the upper end, and supported by the dummy rod at the lower end. (Or, the lower end is fixed to the pipe material 20). Therefore, in the drawing process, problems such as the core material 10 being melted by its own weight or the core material 10 being pushed out of the pipe 20 can be avoided. Further, in the optical fiber manufacturing method of the second embodiment, the problem of the base material cracking and the non-uniformity of the pore size in the longitudinal direction which the optical fiber manufacturing method (core material cutting method) of the first comparative example has been solved. Is done. Therefore, the optical fiber manufacturing method of the second embodiment can manufacture an optical fiber having desired characteristics with holes extending in the longitudinal direction with a high yield.

第2実施形態においても、コア材10の粘性をパイプ材20より小さくすれば、同じ線引張力でもファイバ空孔内面の粗さを低減することができるので、伝送損失の低減につながる。また、逆にコア材10の粘性をパイプ材20より大きくすれば、内圧印加による空孔径の変化が小さくなり、空孔径の制御性が向上するというメリットが得られる。   Also in the second embodiment, if the viscosity of the core material 10 is made smaller than that of the pipe material 20, the roughness of the inner surface of the fiber hole can be reduced even with the same linear tensile force, leading to a reduction in transmission loss. Conversely, if the viscosity of the core material 10 is made larger than that of the pipe material 20, the change in the hole diameter due to the application of the internal pressure is reduced, and the merit that the controllability of the hole diameter is improved can be obtained.

1〜5…母材、9…光ファイバ、10…コア材、20…パイプ材、30…溝、31,32…空孔、40…ガラスブロック、50…ダミーパイプ、60…ダミーロッド。
DESCRIPTION OF SYMBOLS 1-5 ... Base material, 9 ... Optical fiber, 10 ... Core material, 20 ... Pipe material, 30 ... Groove, 31, 32 ... Hole, 40 ... Glass block, 50 ... Dummy pipe, 60 ... Dummy rod.

Claims (5)

長手方向に空孔が延在する光ファイバを製造する方法であって、
コア材の外周に長手方向に延在する溝を形成するコア材外削工程と、
前記コア材外削工程後に、前記コア材をパイプ材に挿入し、前記コア材の第1端側を含む1箇所または複数箇所において前記コア材と前記パイプ材とを互いに固定する固定工程と、
前記固定工程後に、前記第1端側が上になるように前記コア材および前記パイプ材を保持し、前記コア材と前記パイプ材との間の空間を加圧しながら前記コア材および前記パイプ材を第2端側から線引して光ファイバを製造する線引工程と、
を備えることを特徴とする光ファイバ製造方法。
A method of manufacturing an optical fiber having holes extending in a longitudinal direction,
A core material cutting process for forming a groove extending in the longitudinal direction on the outer periphery of the core material;
After the core material cutting operation, the core material is inserted into the pipe material, and a fixing step of fixing the core material and the pipe material to each other at one or a plurality of locations including the first end side of the core material;
After the fixing step, the core material and the pipe material are held so that the first end side is up, and the space between the core material and the pipe material is pressed while the core material and the pipe material are A drawing process for producing an optical fiber by drawing from the second end side;
An optical fiber manufacturing method comprising:
前記固定工程において、前記パイプ材の内径より大きい径を有するガラスブロックを前記コア材の前記第1端に固定し、前記コア材を前記パイプ材に挿入して、前記ガラスブロックを介して前記コア材と前記パイプ材とを互いに固定する、ことを特徴とする請求項1に記載の光ファイバ製造方法。   In the fixing step, a glass block having a diameter larger than the inner diameter of the pipe material is fixed to the first end of the core material, the core material is inserted into the pipe material, and the core is inserted through the glass block. The optical fiber manufacturing method according to claim 1, wherein the material and the pipe material are fixed to each other. 前記固定工程において、前記コア材と前記パイプ材とを前記第1端側において加熱一体化して前記コア材と前記パイプ材とを互いに固定する、ことを特徴とする請求項1に記載の光ファイバ製造方法。   2. The optical fiber according to claim 1, wherein in the fixing step, the core material and the pipe material are heated and integrated on the first end side to fix the core material and the pipe material to each other. Production method. 前記コア材の粘性が前記パイプ材の粘性より低いことを特徴とする請求項1に記載の光ファイバ製造方法。   The optical fiber manufacturing method according to claim 1, wherein the viscosity of the core material is lower than the viscosity of the pipe material. 前記コア材の粘性が前記パイプ材の粘性より高いことを特徴とする請求項1に記載の光ファイバ製造方法。
The optical fiber manufacturing method according to claim 1, wherein the viscosity of the core material is higher than the viscosity of the pipe material.
JP2010289902A 2010-12-27 2010-12-27 Optical fiber manufacturing method Pending JP2012137615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289902A JP2012137615A (en) 2010-12-27 2010-12-27 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289902A JP2012137615A (en) 2010-12-27 2010-12-27 Optical fiber manufacturing method

Publications (1)

Publication Number Publication Date
JP2012137615A true JP2012137615A (en) 2012-07-19

Family

ID=46675080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289902A Pending JP2012137615A (en) 2010-12-27 2010-12-27 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP2012137615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111180A (en) * 2013-12-06 2015-06-18 学校法人トヨタ学園 Optical fiber and manufacturing method thereof
JP2015151279A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Method for manufacturing multicore optical fiber
WO2022176990A1 (en) * 2021-02-22 2022-08-25 株式会社フジクラ Multi-core optical fiber base material, multi-core optical fiber base material production method, and multi-core optical fiber production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246931A (en) * 1985-08-23 1987-02-28 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JP2002501871A (en) * 1997-08-19 2002-01-22 ピレリー・カビ・エ・システミ・ソチエタ・ペル・アツィオーニ Method and apparatus for manufacturing optical fiber preform
JP2002321935A (en) * 2001-04-20 2002-11-08 Sumitomo Electric Ind Ltd Optical fiber and its manufacturing method
WO2004101456A1 (en) * 2003-05-19 2004-11-25 Sumitomo Electric Industries, Ltd Optical fiber and method of producing the same
JP2006193371A (en) * 2005-01-13 2006-07-27 Shin Etsu Chem Co Ltd Method of manufacturing optical fiber preform and optical fiber preform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246931A (en) * 1985-08-23 1987-02-28 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JP2002501871A (en) * 1997-08-19 2002-01-22 ピレリー・カビ・エ・システミ・ソチエタ・ペル・アツィオーニ Method and apparatus for manufacturing optical fiber preform
JP2002321935A (en) * 2001-04-20 2002-11-08 Sumitomo Electric Ind Ltd Optical fiber and its manufacturing method
WO2004101456A1 (en) * 2003-05-19 2004-11-25 Sumitomo Electric Industries, Ltd Optical fiber and method of producing the same
JP2006193371A (en) * 2005-01-13 2006-07-27 Shin Etsu Chem Co Ltd Method of manufacturing optical fiber preform and optical fiber preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111180A (en) * 2013-12-06 2015-06-18 学校法人トヨタ学園 Optical fiber and manufacturing method thereof
JP2015151279A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Method for manufacturing multicore optical fiber
WO2022176990A1 (en) * 2021-02-22 2022-08-25 株式会社フジクラ Multi-core optical fiber base material, multi-core optical fiber base material production method, and multi-core optical fiber production method

Similar Documents

Publication Publication Date Title
JP5577739B2 (en) Multi-core optical fiber preform manufacturing method
JP5932881B2 (en) Multi-core fiber and method for producing the multi-core fiber
JP6447279B2 (en) Optical fiber manufacturing method
JP2012137615A (en) Optical fiber manufacturing method
JP5435504B2 (en) Method for manufacturing preform for optical fiber
JP5503453B2 (en) OPTICAL FIBER BASE MATERIAL MANUFACTURING METHOD, HOLE STRUCTURE OPTICAL FIBER MANUFACTURING METHOD, AND PRESSURE / PRESSURE CONNECTOR
JP2010173917A (en) Base material for holey fiber and method for production thereof
JP2018140911A (en) Method for manufacturing multi-core optical fiber
JP2009149470A (en) Preform for optical fiber and its manufacturing method
JP4476900B2 (en) Photonic crystal fiber preform manufacturing method
JP5644693B2 (en) Optical fiber manufacturing method
JP2012025625A (en) Method for producing optical fiber
JP2002211941A (en) Method of manufacturing photonic crystal fiber
JP4541264B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
JP5644694B2 (en) Optical fiber manufacturing method
JP5644692B2 (en) Optical fiber preform manufacturing method
JP2004102281A (en) Photonic crystal fiber and method for manufacturing the same
JP4417212B2 (en) Optical fiber manufacturing method
JP2006160550A (en) Photonic crystal fiber, its production method, preform for producing photonic crystal fiber
JP4343066B2 (en) Optical fiber manufacturing method
JP4373250B2 (en) Optical fiber manufacturing method
JP2006103995A (en) Glass preform, its manufacturing method, and optical waveguide material
WO2023162775A1 (en) Optical fiber preform
JP3770889B2 (en) Photonic crystal fiber manufacturing method
JP4345974B2 (en) Quartz glass tube having a plurality of linear holes, method for manufacturing the same, and apparatus for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902