JP2012137079A - Impeller - Google Patents

Impeller Download PDF

Info

Publication number
JP2012137079A
JP2012137079A JP2010294849A JP2010294849A JP2012137079A JP 2012137079 A JP2012137079 A JP 2012137079A JP 2010294849 A JP2010294849 A JP 2010294849A JP 2010294849 A JP2010294849 A JP 2010294849A JP 2012137079 A JP2012137079 A JP 2012137079A
Authority
JP
Japan
Prior art keywords
impeller
air
air inflow
shape
rotation direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010294849A
Other languages
Japanese (ja)
Inventor
Nobuhiro Takao
信博 鷹尾
Rie Matsuki
理恵 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010294849A priority Critical patent/JP2012137079A/en
Publication of JP2012137079A publication Critical patent/JP2012137079A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

PROBLEM TO BE SOLVED: To satisfy both impeller's low rotating speed and large wind amount or low wind speed and impeller's large torque.SOLUTION: There is provided an opening face 10a of approximately U shape on a face approximately orthogonal in the rotating direction of the impeller 1 to be so structured that the cross-sectional area may be smaller toward the reverse direction in relation to the rotating direction of the impeller 1 from the opening face 10a of an airflow import 4a. The airflow export 6a is an approximately isosceles triangle. The bottom 11 of the approximately isosceles triangle is structured to be in the rotating direction of the impeller 1. This makes the impeller generate less noise so that more wind amount can be gained by the low rotating speed of the impeller.

Description

本発明は送風用羽根車または発電用羽根車に関し、低い回転速度でも風量が大きく、低い風速でも発電可能な羽根車に関するものである。  The present invention relates to an impeller for air blowing or an impeller for power generation, and relates to an impeller capable of generating power even at a low rotational speed and a large air volume even at a low rotational speed.

近年、送風用羽根車の低騒音化や、低い風速でも発電可能な羽根車が求められている。  In recent years, there has been a demand for an impeller capable of generating power even with low noise and low wind speed.

例えば、特開2000−186693号公報では、軸方向に空気取り入れ口を有する羽根車モータにおいて、軸に取り付けられたロータの外周面に、ロータの厚さより高さが大きい羽根を植設し、羽根の上面から空気を吸引するとともにロータ上面を経由し羽根の植設部分上部側面からも空気を吸引するように構成している。この構成によれば、ロータを薄くすることで羽根の空気取り込み面積を広くでき、風量をアップすることが出来る。  For example, in Japanese Unexamined Patent Publication No. 2000-186893, in an impeller motor having an air intake port in the axial direction, a blade having a height larger than the thickness of the rotor is implanted on the outer peripheral surface of the rotor attached to the shaft. The air is sucked from the upper surface of the blade, and the air is also sucked from the upper side surface of the blade implantation portion via the rotor upper surface. According to this configuration, by reducing the thickness of the rotor, the air intake area of the blades can be increased, and the air volume can be increased.

特開2000−186693号公報JP 2000-186893 A

しかし、このような構造は、空気を吸引する方向の羽根の寸法が大きくなるため、羽根車の回転軸方向の寸法が大きくなる問題がある。また、発電用の羽根車に適用した場合も同様の問題がある。  However, such a structure has a problem in that the size of the impeller in the direction of the rotation axis increases because the size of the blade in the direction of sucking air increases. The same problem occurs when applied to an impeller for power generation.

本発明は、このような従来の課題を解決するものであり、風量が大きな送風用羽根車でも羽根車の回転軸方向の寸法が小さく、また低コストで、騒音が低く風量性能の高い送風用羽根車や、低い風速でも大きい回転力が発生出来る発電用羽根車を提供することを目的とする。  The present invention solves such a conventional problem, and even for a blower impeller with a large air volume, the size of the impeller in the direction of the rotation axis is small, low cost, low noise, low air flow performance and high air volume performance. An object of the present invention is to provide an impeller and a power generation impeller capable of generating a large rotational force even at a low wind speed.

上記の課題を解決するために、本発明は、回転中心軸と略直交する分離面の一方の面に設けられた複数の空気流入部と、分離面の他方の面に設けられ空気流入部と連通した複数の空気流出部と、を備えている。  In order to solve the above problems, the present invention provides a plurality of air inflow portions provided on one surface of a separation surface substantially orthogonal to the rotation center axis, and an air inflow portion provided on the other surface of the separation surface. A plurality of communicating air outflow portions.

また、本発明は、空気流入部が羽根車の回転方向と略直交する面に略U字形状または略半円形状などの開口面が設けられ、空気流入部の開口面から羽根車の回転方向と逆方向に向かうに従い断面積が小さくなるように構成され、空気流出部は略2等辺3角形状で、略2等辺3角形状の底辺が羽根車の回転方向になるように構成されている。  In the present invention, the air inflow portion is provided with an opening surface such as a substantially U shape or a substantially semicircular shape on a surface substantially orthogonal to the rotation direction of the impeller, and the rotation direction of the impeller from the opening surface of the air inflow portion. The cross-sectional area becomes smaller as it goes in the opposite direction, and the air outflow portion has an approximately isosceles triangle shape, and the base of the approximately isosceles triangle shape is in the rotational direction of the impeller. .

また、本発明は、空気流入部が略2等辺3角形状で、略2等辺3角形状の底辺が羽根車の回転方向と逆方向になるように構成され、空気流出部は羽根車の回転方向と略直交する面に略U字形状または略半円形状などの開口面が設けられ、空気流出部の開口面から羽根車の回転方向に向かうに従い、断面積が小さくなるように構成されている。  Further, the present invention is configured such that the air inflow portion has a substantially isosceles triangle shape, and the bottom of the substantially isosceles triangle shape is opposite to the rotation direction of the impeller, and the air outflow portion is the rotation of the impeller. An opening surface such as a substantially U shape or a substantially semicircular shape is provided on a surface substantially orthogonal to the direction, and the cross-sectional area is configured to decrease from the opening surface of the air outflow portion toward the rotation direction of the impeller. Yes.

また、本発明は、羽根車の円周方向に隣り合う空気流入部が半径方向に略半ピッチ異なる位置になるように構成されている。  Further, the present invention is configured such that the air inflow portions adjacent to each other in the circumferential direction of the impeller are located at a position that is different from the radial direction by approximately a half pitch.

また、本発明は、分離面の空気流入部が相対する2つの略円弧と相対する2つの略直線で囲まれた形状で、空気流入部は羽根車の回転方向に向かうに従い、断面積が小さくなるように構成され、羽根車の回転方向と略直交する面の空気流出部の開口面は略U字形状または略半円形状などに構成されている。  Further, according to the present invention, the air inflow portion of the separation surface is surrounded by two substantially straight lines opposed to two opposed arcs, and the air inflow portion becomes smaller in cross section as it goes in the rotation direction of the impeller. The opening surface of the air outflow portion on the surface substantially orthogonal to the rotation direction of the impeller is configured in a substantially U shape or a substantially semicircular shape.

また、本発明は、羽根車の回転方向と略直交する面の空気流入部の開口面は略U字形状または略半円形状などに構成され、分離面の空気流出部は相対する2つの略円弧と相対する2つの略直線で囲まれた形状で、空気流出部は羽根車の回転方向に向かうに従い、断面積が大きくなるように構成されている。  Further, according to the present invention, the opening surface of the air inflow portion on the surface substantially orthogonal to the rotation direction of the impeller is configured to have a substantially U shape or a substantially semicircular shape, and the air outflow portions of the separation surface are opposed to two substantially opposite surfaces. In the shape surrounded by two substantially straight lines opposed to the arc, the air outflow portion is configured so that its cross-sectional area increases as it goes in the rotational direction of the impeller.

また、本発明は、羽根車の半径方向に隣り合う空気流入部は、回転中心軸に向かうに従い、数が少なくなるように構成されている。  Moreover, the present invention is configured such that the number of air inflow portions adjacent to each other in the radial direction of the impeller decreases as it goes toward the rotation center axis.

本出願に係る発明のうち、請求項1と請求項2と請求項6に記載の発明は、複数の空気流入部の開口面から流入した空気が、空気流入部で、空気の流れる方向を曲げられて、複数の空気流出部から流出する。複数の空気流入部の開口面の面積が大きくかつ数が多いため、羽根車の回転速度が低い場合でも、複数の空気流出部から多量の空気を流出することが出来る。つまり、複数の空気流出部からの風量を多くすることが出来る。また、羽根車の回転速度を低く出来るため、羽根車の騒音を小さくすることが出来る。  Among the inventions according to the present application, the inventions according to claim 1, claim 2 and claim 6 are such that the air flowing in from the opening surfaces of the plurality of air inflow portions is bent at the air inflow portions. And flows out from a plurality of air outflow portions. Since the area of the opening surfaces of the plurality of air inflow portions is large and many, a large amount of air can be discharged from the plurality of air outflow portions even when the rotational speed of the impeller is low. That is, the air volume from a plurality of air outflow portions can be increased. Moreover, since the rotational speed of an impeller can be made low, the noise of an impeller can be made small.

また、本出願に係る発明のうち、請求項1と請求項3と請求項5に記載の発明は、複数の空気流入部の開口面から流入した空気が、空気流入部で、空気の流れる方向を曲げられて、複数の空気流出部から流出するため、羽根車は回転する。空気流入部の開口面の面積が大きくかつ数が多いため、風速が低い場合でも、複数の空気流出部から多量の空気を流出することが出来る。つまり、複数の空気流出部からの風量を多くすることが出来る。また、低い風速でも、羽根車を回転させることが出来るため、発電機を電動機として駆動する駆動回路を省略することが出来る。  Further, among the inventions according to the present application, the inventions according to claim 1, claim 3 and claim 5 are such that the air flowing in from the opening surfaces of the plurality of air inflow portions is the air inflow portion and the direction of air flow. Is bent and flows out from the plurality of air outflow portions, so that the impeller rotates. Since the area of the opening surface of the air inflow portion is large and many, a large amount of air can be discharged from a plurality of air outflow portions even when the wind speed is low. That is, the air volume from a plurality of air outflow portions can be increased. Further, since the impeller can be rotated even at a low wind speed, a drive circuit for driving the generator as an electric motor can be omitted.

また、本出願に係る発明のうち、請求項4と請求項7に記載の発明は、送風用の羽根車に適用した場合、複数の空気流入部の開口面から空気が流入しやすいため、複数の空気流出部からの風量を多くすることが出来る。また、羽根車の回転速度を低く出来るため、羽根車の騒音を小さくすることが出来る。風力発電用の羽根車に適用した場合、複数の空気流出部の開口面から空気が流出しやすいため、複数の空気流出部からの風量を多くすることが出来る。また、低い風速でも、羽根車を回転させることが出来るため、発電機を電動機として駆動する駆動回路を省略することが出来る。  In addition, among the inventions according to the present application, when the inventions according to claims 4 and 7 are applied to an impeller for blowing air, air easily flows from the opening surfaces of the plurality of air inflow portions. The air volume from the air outflow part can be increased. Moreover, since the rotational speed of an impeller can be made low, the noise of an impeller can be made small. When applied to an impeller for wind power generation, air easily flows out from the opening surfaces of the plurality of air outflow portions, so that the air volume from the plurality of air outflow portions can be increased. Further, since the impeller can be rotated even at a low wind speed, a drive circuit for driving the generator as an electric motor can be omitted.

第1の実施形態に係る羽根車の正面図である。It is a front view of the impeller which concerns on 1st Embodiment. 第1の実施形態に係る羽根車のA−A矢視の部分断面側面図である。It is a fragmentary sectional side view of the impeller which concerns on 1st Embodiment of AA arrow. 第1の実施形態に係る羽根車のB矢視の部分断面上面図である。It is a partial section top view of arrow B of an impeller concerning a 1st embodiment. 第1の実施形態に係る羽根車の裏面図である。It is a reverse view of the impeller which concerns on 1st Embodiment. 第2の実施形態に係る羽根車の正面図である。It is a front view of the impeller which concerns on 2nd Embodiment. 第2の実施形態に係る羽根車のA−A矢視の部分断面側面図である。It is a fragmentary sectional side view of the impeller which concerns on 2nd Embodiment of AA arrow. 第2の実施形態に係る羽根車のB−B矢視の直線状に展開した部分上面図である。It is the fragmentary top view developed in the shape of a BB arrow line of the impeller concerning a 2nd embodiment.

以下、本発明の実施の形態について説明する。  Embodiments of the present invention will be described below.

(第1の実施形態)
この発明の第1の実施形態を、ここでは送風用の軸流羽根車として、図1から図4に基づいて説明する。図1から図4に示すように、羽根車1は一方の面2に空気3が流入する多数の空気流入部4aと、他方の面5に空気が流出する多数の空気流出部6aを備えている。羽根車1が、回転軸7を中心に反時計方向に回転している時、空気3の流れは、太い矢印で示しているように流れる。以下の説明では、空気3が流入する一方の面2を「流入面2a」、空気3が流出する他方の面5を「流出面5a」と言う。
(First embodiment)
1st Embodiment of this invention is described based on FIGS. 1-4 as an axial-flow impeller for ventilation here. As shown in FIGS. 1 to 4, the impeller 1 includes a large number of air inflow portions 4 a through which air 3 flows into one surface 2 and a large number of air outflow portions 6 a through which air flows out to the other surface 5. Yes. When the impeller 1 rotates counterclockwise about the rotation shaft 7, the flow of the air 3 flows as shown by a thick arrow. In the following description, one surface 2 into which air 3 flows is referred to as “inflow surface 2a”, and the other surface 5 from which air 3 flows out is referred to as “outflow surface 5a”.

流入面2aと流出面5aを分ける分離面8は、分離面8に設けられた円筒9によって回転軸7に固定されている。分離面8に設けられ羽根車1の回転方向と略直交する空気流入部4aの断面形状は略U字で、空気3が流入する開口面10aを有し、開口面10aから羽根車1の回転方向と逆方向に向かうに従い断面積が小さくなる形状をしている。図4に示すように、分離面8に設けられた空気流出部6aの形状は略2等辺3角形で、2等辺3角形の底辺11が羽根車1の回転方向に設けられている。  A separation surface 8 that separates the inflow surface 2 a and the outflow surface 5 a is fixed to the rotary shaft 7 by a cylinder 9 provided on the separation surface 8. The cross-sectional shape of the air inflow portion 4a provided on the separation surface 8 and substantially orthogonal to the rotation direction of the impeller 1 is substantially U-shaped, and has an opening surface 10a through which air 3 flows, and the rotation of the impeller 1 from the opening surface 10a. The cross-sectional area decreases in the direction opposite to the direction. As shown in FIG. 4, the shape of the air outflow portion 6 a provided on the separation surface 8 is substantially isosceles triangle, and the base 11 of the isosceles triangle is provided in the rotation direction of the impeller 1.

図1、図2に示すように、複数の空気流入部4aと空気流入部4aに連通する空気流出部6aは半径方向に半ピッチずらせて配置されていて、20度ごとに、複数の空気流入部4aと空気流出部6aの半径方向の数は異なっている。この理由は、羽根車1の回転方向の前に配置された空気流入部4aが、羽根車1の回転方向の後に配置された空気流入部4aへの空気3の流入を出来るだけ妨げないようにするためである。  As shown in FIGS. 1 and 2, the plurality of air inflow portions 4a and the air outflow portions 6a communicating with the air inflow portions 4a are arranged with a half pitch shift in the radial direction. The numbers in the radial direction of the portion 4a and the air outflow portion 6a are different. The reason is that the air inflow portion 4a arranged in front of the rotation direction of the impeller 1 does not disturb the inflow of the air 3 to the air inflow portion 4a arranged after the rotation direction of the impeller 1 as much as possible. It is to do.

流入面2aの複数の空気流入部4aの開口面10aから流入した空気3は、空気流入部4aの周囲の壁面12aで、空気3の流れる方向を曲げられて、流出面5aの複数の空気流出部6aから流出する。複数の空気流入部4aの開口面10aの面積が大きくかつ数が多いため、羽根車1の回転速度が低い場合でも、流出面5aから多くの空気3の量(風量)を流出することが出来る。羽根車1の回転速度を低く出来るため、羽根車1の騒音を小さくすることも出来る。  The air 3 flowing in from the opening surfaces 10a of the plurality of air inflow portions 4a of the inflow surface 2a is bent in the flow direction of the air 3 by the wall surface 12a around the air inflow portion 4a, and the plurality of air outflows of the outflow surface 5a. It flows out from the part 6a. Since the area of the opening surface 10a of the plurality of air inflow portions 4a is large and many, even when the rotational speed of the impeller 1 is low, a large amount of air 3 (air volume) can flow out from the outflow surface 5a. . Since the rotational speed of the impeller 1 can be lowered, the noise of the impeller 1 can also be reduced.

図示の例では、複数の空気流入部4aと対となる空気流出部6aの半径方向の数は異なっているが、半径の小さい羽根車1では、複数の空気流入部4aと空気流出部6aの半径方向の数は、1つでも良い。複数の空気流入部4aと対となる空気流出部6aの数や形状や配置は、羽根車1の要求仕様によって、変更しても良い。例えば、空気流入部4aの断面形状は略半円や、略U字と略半円の中間の形状でも良い。  In the illustrated example, the number of the air outflow portions 6a paired with the plurality of air inflow portions 4a is different in the radial direction, but in the impeller 1 having a small radius, the plurality of air inflow portions 4a and the air outflow portions 6a are different. The number in the radial direction may be one. The number, shape, and arrangement of the air outflow portions 6a paired with the plurality of air inflow portions 4a may be changed according to the required specifications of the impeller 1. For example, the cross-sectional shape of the air inflow portion 4a may be a substantially semicircle or an intermediate shape between a substantially U shape and a substantially semicircle.

以上は、送風用の軸流羽根車として説明したが、空気流入部4aを空気流出部6aに変更し、空気流出部6aを空気流入部4aに変更すれば、風力発電用の軸流羽根車としても、用いることが出来る。  Although the above has been described as the axial flow impeller for blowing air, if the air inflow portion 4a is changed to the air outflow portion 6a and the air outflow portion 6a is changed to the air inflow portion 4a, the axial flow impeller for wind power generation Can also be used.

上記実施形態にて説明した構造から導かれる作用効果は、以下の他の実施形態における同様の構造からも導かれる。  The effects derived from the structures described in the above embodiments are also derived from similar structures in the following other embodiments.

(第2の実施形態)
この発明の第2の実施形態を、ここでは風力発電用の軸流羽根車として、図5から図7に基づいて説明する。図5から図7に示すように、一方の面2に多数の空気3が流入する空気流入部4bと、他方の面5に多数の空気3が流出する空気流出部6bを備えている羽根車1が、紙面の上から、空気3が太い矢印で示しているように流れる時、羽根車1は回転軸7を中心に反時計方向に回転する。以下の説明では、空気3が流入する一方の面2を「流入面2b」、空気3が流出する他方の面5を「流出面5b」と言う。第1の実施形態と同様の部分には、同符号を付して説明する。
(Second Embodiment)
A second embodiment of the present invention will be described based on FIGS. 5 to 7 as an axial flow impeller for wind power generation. As shown in FIGS. 5 to 7, the impeller includes an air inflow portion 4 b through which a large number of air 3 flows into one surface 2 and an air outflow portion 6 b through which a large number of air 3 flows out to the other surface 5. When 1 flows from the top of the paper as shown by a thick arrow, the impeller 1 rotates counterclockwise about the rotation shaft 7. In the following description, one surface 2 into which air 3 flows is referred to as “inflow surface 2b”, and the other surface 5 from which air 3 flows out is referred to as “outflow surface 5b”. The same parts as those in the first embodiment will be described with the same reference numerals.

流入面2bと流出面5bを分ける分離面8は、分離面8に設けられた円筒9によって回転軸7に固定されている。分離面8に設けられた空気流入部4bは、2つの円弧13、14と回転軸7を中心とした2つの放射状の直線15、16で囲まれた形状をした開口面10bを有し、開口面10bと略直角方向の形状は略U字で、羽根車1の回転方向に向かうに従い、断面積が小さくなる形状をしている。図5に示すように、半径方向の複数の空気流入部4bの数は同じのため、複数の空気流出部6bの開口面10bの面積は半径に比例して小さくなっている。この理由は、複数の空気流出部6bから流出する空気3の速度(風速)を同じにして、空気のエネルギーを有効に利用し、かつ羽根車の回転方向の後に配置された空気流出部6bが、回転方向の前に配置された空気流出部6bからの空気3の流出を出来るだけ妨げないようにするためである。  A separation surface 8 that separates the inflow surface 2 b and the outflow surface 5 b is fixed to the rotary shaft 7 by a cylinder 9 provided on the separation surface 8. The air inflow portion 4 b provided on the separation surface 8 has an opening surface 10 b having a shape surrounded by two arcs 13 and 14 and two radial straight lines 15 and 16 centering on the rotation shaft 7. The shape in a direction substantially perpendicular to the surface 10 b is substantially U-shaped, and has a shape in which the cross-sectional area becomes smaller as it goes in the rotational direction of the impeller 1. As shown in FIG. 5, since the number of the plurality of air inflow portions 4b in the radial direction is the same, the area of the opening surface 10b of the plurality of air outflow portions 6b decreases in proportion to the radius. The reason for this is that the speed of the air 3 flowing out from the plurality of air outflow portions 6b (wind speed) is made the same, the air outflow portion 6b disposed after the direction of rotation of the impeller is used effectively. This is to prevent the outflow of the air 3 from the air outflow portion 6b disposed in front of the rotation direction as much as possible.

流入面2bの複数の空気流入部4bの開口面10bから流入した空気3は、空気流入部4bの周囲の壁面12bで、空気の流れる方向を曲げられて、流出面5bの複数の空気流出部6bから、時計方向に流出するため、羽根車1は反時計方向に回転する。複数の空気流入部4bの開口面10bの面積が大きくかつ数が多いため、空気3の速度(風速)が低い場合でも、流出面5bから多量の空気を流出することが出来る。つまり、流出面5bからの風量を多く出来る。また、空気3の速度(風速)が低い場合でも、羽根車を回転させることが出来るため、発電機を電動機として駆動する駆動回路を設ける必要がない。  The air 3 flowing in from the opening surfaces 10b of the plurality of air inflow portions 4b on the inflow surface 2b is bent in the air flowing direction on the wall surface 12b around the air inflow portion 4b, and the plurality of air outflow portions on the outflow surface 5b. Since it flows out from 6b in the clockwise direction, the impeller 1 rotates counterclockwise. Since the area of the opening surface 10b of the plurality of air inflow portions 4b is large and many, a large amount of air can flow out from the outflow surface 5b even when the speed of the air 3 (wind speed) is low. That is, the air volume from the outflow surface 5b can be increased. Further, since the impeller can be rotated even when the speed of the air 3 (wind speed) is low, it is not necessary to provide a drive circuit for driving the generator as an electric motor.

図示の例では、複数の空気流入部4bの周方向の数は同じであるが、半径が小さくなるに従って、空気流入部4bの数を少なくしても良い。また、半径の小さい羽根車1では、複数の空気流入部4bの半径方向の数は、1個でも良い。複数の空気流入部4bと対となる空気流出部6bの数や形状や配置は、羽根車の要求仕様によって、変更しても良い。例えば、空気流出6bの断面形状は略半円や、略U字と略半円の中間の形状でも良い。また、複数の空気流入部4bと空気流入部4bに連通する空気流出部6bは周方向に半ピッチずらせて配置しても良い。また、直線15、16は、その延長部が回転軸7の中心を通らない角度に設定しても良い。  In the illustrated example, the number of the air inflow portions 4b in the circumferential direction is the same, but the number of air inflow portions 4b may be reduced as the radius decreases. In the impeller 1 having a small radius, the number of the air inflow portions 4b in the radial direction may be one. The number, shape, and arrangement of the air outflow portions 6b that are paired with the plurality of air inflow portions 4b may be changed according to the required specifications of the impeller. For example, the cross-sectional shape of the air outflow 6b may be a substantially semicircle or an intermediate shape between a substantially U-shape and a substantially semicircle. The plurality of air inflow portions 4b and the air outflow portions 6b communicating with the air inflow portions 4b may be arranged with a half pitch shift in the circumferential direction. In addition, the straight lines 15 and 16 may be set to an angle at which the extended portion does not pass through the center of the rotation shaft 7.

以上は、風力発電用の軸流羽根車として説明したが、空気流入部4bを空気流出部6bに変更し、空気流出部6bを空気流入部4bに変更すれば、送風用の軸流羽根車としても、用いることが出来る。  The above has been described as an axial flow impeller for wind power generation. However, if the air inflow portion 4b is changed to the air outflow portion 6b and the air outflow portion 6b is changed to the air inflow portion 4b, an axial flow impeller for blowing air is used. Can also be used.

本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。  The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.

本発明は、超小型から中型の羽根車まで、送風用でも発電用でも用途に限定されることなく広く利用することが出来る。  The present invention can be widely used from ultra-small to medium-sized impellers without being limited to the use for air blowing or power generation.

1 羽根車
2 一方の面
2a、2b 流入面
3 空気
4a、4b 空気流入部
5 他方の面
5a、5b 流出面
6a、6b 空気流出部
7 回転軸
8 分離面
9 円筒
10a、10b 開口面
11 底辺
12a、12b 壁面
13、14 円弧
15、16 直線
DESCRIPTION OF SYMBOLS 1 Impeller 2 One surface 2a, 2b Inflow surface 3 Air 4a, 4b Air inflow part 5 Other surface 5a, 5b Outflow surface 6a, 6b Air outflow part 7 Rotating shaft 8 Separation surface 9 Cylinder 10a, 10b Opening surface 11 Bottom 12a, 12b Wall surface 13, 14 Arc 15, 16 Straight line

Claims (7)

回転中心軸と略直交する分離面の一方の面に設けられた複数の空気流入部と、前記分離面の他方の面に設けられ前記空気流入部と連通した複数の空気流出部と、を備えることを特徴とする羽根車。  A plurality of air inflow portions provided on one surface of the separation surface substantially orthogonal to the rotation center axis, and a plurality of air outflow portions provided on the other surface of the separation surface and communicated with the air inflow portion. Impeller characterized by that. 請求項1に記載の羽根車において、前記空気流入部は羽根車の回転方向と略直交する面に略U字形状または略半円形状などの開口面が設けられ、前記空気流入部の開口面から羽根車の回転方向と逆方向に向かうに従い断面積が小さくなるように構成され、前記空気流出部は略2等辺3角形状で、略2等辺3角形状の底辺が羽根車の回転方向になるように構成されていることを特徴とする羽根車。  2. The impeller according to claim 1, wherein the air inflow portion is provided with an opening surface such as a substantially U shape or a substantially semicircular shape on a surface substantially orthogonal to a rotation direction of the impeller, and the opening surface of the air inflow portion. The cross-sectional area decreases from the direction of rotation of the impeller to the direction of rotation of the impeller, and the air outflow portion has an approximately isosceles triangle shape, and the base of the approximately isosceles triangle shape is in the rotation direction of the impeller. It is comprised so that it may become, The impeller characterized by the above-mentioned. 請求項1に記載の羽根車において、前記空気流入部は略2等辺3角形状で、略2等辺3角形状の底辺が羽根車の回転方向と逆方向になるように構成され、前記空気流出部は羽根車の回転方向と略直交する面に略U字形状または略半円形状などの開口面が設けられ、前記空気流出部の開口面から羽根車の回転方向に向かうに従い、断面積が小さくなるように構成されていることを特徴とする羽根車。  2. The impeller according to claim 1, wherein the air inflow portion has a substantially isosceles triangle shape, and the bottom of the substantially isosceles triangle shape is opposite to the rotation direction of the impeller, the air outflow The portion is provided with an opening surface such as a substantially U shape or a substantially semicircular shape on a surface substantially orthogonal to the rotation direction of the impeller, and the cross-sectional area increases from the opening surface of the air outflow portion toward the rotation direction of the impeller. An impeller configured to be small. 請求項2と3に記載の羽根車において、羽根車の円周方向に隣り合う前記空気流入部は半径方向に略半ピッチ異なる位置になるように構成されていることを特徴とする羽根車。  4. The impeller according to claim 2, wherein the air inflow portion adjacent in the circumferential direction of the impeller is configured to be at a position that is different from the radial direction by approximately a half pitch. 請求項1に記載の羽根車において、前記分離面の前記空気流入部は相対する2つの略円弧と相対する2つの略直線で囲まれた形状で、前記空気流入部は羽根車の回転方向に向かうに従い、断面積が小さくなるように構成され、羽根車の回転方向と略直交する面の前記空気流出部の開口面は略U字形状または略半円形状などに構成されていることを特徴とする羽根車。  2. The impeller according to claim 1, wherein the air inflow portion of the separation surface is surrounded by two substantially straight lines opposed to two opposed arcs, and the air inflow portion extends in a rotation direction of the impeller. The cross-sectional area is configured to become smaller as it goes, and the opening surface of the air outflow portion that is substantially perpendicular to the rotation direction of the impeller is configured to have a substantially U shape or a semicircular shape. Impeller. 請求項1に記載の羽根車において、羽根車の回転方向と略直交する面の前記空気流入部の開口面は略U字形状または略半円形状などに構成され、前記分離面の前記空気流出部は相対する2つの略円弧と相対する2つの略直線で囲まれた形状で、前記空気流出部は羽根車の回転方向に向かうに従い、断面積が大きくなるように構成されていることを特徴とする羽根車。  2. The impeller according to claim 1, wherein an opening surface of the air inflow portion on a surface substantially orthogonal to a rotation direction of the impeller is configured in a substantially U shape or a substantially semicircular shape, and the air outflow of the separation surface. The portion is surrounded by two substantially straight lines opposed to each other, and the air outflow portion is configured to increase in cross-sectional area as it goes in the rotation direction of the impeller. Impeller. 請求項5と請求項6に記載の羽根車において、羽根車の半径方向に隣り合う前記空気流入部は、回転中心軸に向かうに従い、数が少なくなるように構成されていることを特徴とする羽根車。  The impeller according to claim 5 or 6, wherein the air inflow portion adjacent in the radial direction of the impeller is configured so that the number thereof decreases as it goes toward the rotation center axis. Impeller.
JP2010294849A 2010-12-24 2010-12-24 Impeller Pending JP2012137079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294849A JP2012137079A (en) 2010-12-24 2010-12-24 Impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294849A JP2012137079A (en) 2010-12-24 2010-12-24 Impeller

Publications (1)

Publication Number Publication Date
JP2012137079A true JP2012137079A (en) 2012-07-19

Family

ID=46674664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294849A Pending JP2012137079A (en) 2010-12-24 2010-12-24 Impeller

Country Status (1)

Country Link
JP (1) JP2012137079A (en)

Similar Documents

Publication Publication Date Title
JP5273475B2 (en) Inline axial fan
EP2476912B1 (en) Propeller fan, molding die, and fluid feed device
JP6071394B2 (en) Centrifugal fan
WO2018008390A1 (en) Serrated fan blade, and axial flow fan and centrifugal fan equipped with said fan blade
JP2010024953A (en) Centrifugal type blower
JP2013185440A (en) Centrifugal fan
JP2015095962A (en) Rotary machine
JP2009030587A (en) Centrifugal multiblade fan
JP2007332871A (en) Impeller for windmill
CN204610367U (en) Centrifugal pump impeller and centrifugal pump
JP5705805B2 (en) Centrifugal fan
JP2012180810A (en) Air blowing device
JP2014148976A (en) Blower
JP2015031277A (en) Impeller for electric blower
JP5200702B2 (en) Electric blower and electric vacuum cleaner using the same
JP2006077631A (en) Impeller for centrifugal blower
JP6282720B2 (en) Centrifugal fan
JP2003180051A (en) Moving blade of totally-enclosed fan-cooled rotating electric machine
JP2012137079A (en) Impeller
WO2006082876A1 (en) Axial flow blower
JP2006125229A (en) Sirocco fan
JP2006312912A (en) Axial fan
JP6583558B2 (en) Centrifugal blower
JP2009174414A (en) Axial flow fan
JP6135702B2 (en) Blower