JP2012135828A - Carbon film-coated insert tip, and method of manufacturing the same - Google Patents

Carbon film-coated insert tip, and method of manufacturing the same Download PDF

Info

Publication number
JP2012135828A
JP2012135828A JP2010289038A JP2010289038A JP2012135828A JP 2012135828 A JP2012135828 A JP 2012135828A JP 2010289038 A JP2010289038 A JP 2010289038A JP 2010289038 A JP2010289038 A JP 2010289038A JP 2012135828 A JP2012135828 A JP 2012135828A
Authority
JP
Japan
Prior art keywords
carbon film
cutting edge
edge
laser beam
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010289038A
Other languages
Japanese (ja)
Inventor
Masakuni Takahashi
正訓 高橋
Satoru Higano
哲 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010289038A priority Critical patent/JP2012135828A/en
Publication of JP2012135828A publication Critical patent/JP2012135828A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon film-coated insert tip coated with a carbon film such as a diamond coating having a sharper edge compared to conventional ones, and to provide a manufacturing method capable of highly accurately working and preparing the insert tip.SOLUTION: In the carbon film-coated insert tip 1, the carbon film 3 is formed on a surface of a cutting edge 2a of a tool base body 2. The surface of the carbon film 3 on a cutting face 4a side and the surface of the carbon film 3 on a flank 4b side which are adjacent to each other are recessed surfaces 3a in the vicinity of a blade edge 2b of the cutting edge 2a, and the carbon film 3 formed on the cutting edge 2a has a cross sectional shape having a more acute angle than an angle between the cutting face 4a and the flank 4b.

Description

本発明は、鋭利に被削材を加工することが可能な炭素膜被覆インサートチップおよびその製造方法に関する。   The present invention relates to a carbon film-coated insert chip capable of sharply machining a work material and a method for manufacturing the same.

切れ刃の表面がダイヤモンド膜で被覆されたダイヤモンド被覆切削工具において、従来、例えば切れ刃の刃先に略円弧部を研削加工し、略円弧部の角度を40°以下になるように部分的にチャンファが設けられたものが提案されている(特許文献1参照)。また、上記略円弧部を研削加工し、逃げ角を元の角度よりも小さくしたものも提案されている(特許文献2参照)。   In a diamond-coated cutting tool whose surface of the cutting edge is coated with a diamond film, conventionally, for example, a substantially arc portion is ground on the cutting edge of the cutting edge, and the chamfer is partially chamfered so that the angle of the approximately arc portion is 40 ° or less. Has been proposed (see Patent Document 1). Further, there has also been proposed a method in which the substantially arc portion is ground and the clearance angle is smaller than the original angle (see Patent Document 2).

また、レーザの焦点をダイヤモンド被膜の表面上で走査すると共に、ダイヤモンド被膜をずらせるようにして両者に相対的に運動を与え、ダイヤモンド被膜の表面に形成された凸部を除去するダイヤモンドのレーザ研磨方法が提案されている(特許文献3参照)。さらに、波長266nmのレーザ光をダイヤモンド被膜に対して垂直に照射して加工する加工工具の製造方法が提案されている(特許文献4参照)。   In addition, the laser focus is scanned over the surface of the diamond coating, and the diamond coating is shifted to impart relative motion to the two to remove the convex portions formed on the surface of the diamond coating. A method has been proposed (see Patent Document 3). Furthermore, a manufacturing method of a processing tool has been proposed in which a laser beam having a wavelength of 266 nm is irradiated and processed perpendicularly to the diamond coating (see Patent Document 4).

特許第3477182号公報Japanese Patent No. 3477182 特許第3477183号公報Japanese Patent No. 3477183 特許第3096943号公報Japanese Patent No. 3096943 特開2009−6436号公報JP 2009-6436 A

上記従来の技術には、以下の課題が残されている。
すなわち、研削加工による切れ刃の形成では、ダイヤモンドが砥石よりも硬いため、加工途中での砥石の形態変化を生じ、高精度に狙いの形状加工を行うことが困難であるという不都合があった。また、レーザとダイヤモンド被膜とを共に相対運動させながら走査加工する方法は、さらに形態に倣ったワーク移動が必要で制御が複雑であるという問題がある。さらに、ダイヤモンド被膜に対して垂直にレーザ光を照射する加工法では、加工後の形態が加工前の膜の起伏に倣うおそれがあり、均一なダイヤモンド被膜の形成が必須であり、やはり高精度な加工が難しいという不都合があった。特に、インサートチップの切れ刃などの刃先にダイヤモンド被膜を形成すると、厚さに応じて刃先に被膜が盛り上がって形成されてしまうことから、刃先の加工が困難であった。このため、従来では、ダイヤモンド被膜でコーティングされていると共に鋭利なエッジを有したインサートチップを作製することが困難であった。
The following problems remain in the conventional technology.
That is, in the formation of the cutting edge by grinding, since diamond is harder than the grindstone, the shape of the grindstone changes during the machining, and it is difficult to perform the desired shape processing with high accuracy. Further, the method of performing scanning processing while relatively moving the laser and the diamond film together has a problem that the workpiece movement according to the form is further required and the control is complicated. Furthermore, in the processing method in which laser light is irradiated perpendicularly to the diamond film, the shape after processing may follow the undulation of the film before processing, and it is essential to form a uniform diamond film, which is also highly accurate. There was the inconvenience that processing was difficult. In particular, when a diamond coating is formed on a cutting edge such as a cutting edge of an insert tip, the coating is formed on the cutting edge depending on the thickness, so that it is difficult to process the cutting edge. For this reason, conventionally, it has been difficult to produce an insert tip that is coated with a diamond coating and has sharp edges.

本発明は、前述の課題に鑑みてなされたもので、従来よりも鋭利なエッジを有するダイヤモンド被膜等の炭素膜で被覆された炭素膜被覆インサートチップを提供すると共に、このインサートチップを高精度に加工して作製することができる製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a carbon film-coated insert chip coated with a carbon film such as a diamond film having a sharper edge than the conventional one, and the insert chip is highly accurate. It aims at providing the manufacturing method which can be processed and produced.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の炭素膜被覆インサートチップは、工具基体の切れ刃の表面に炭素膜が形成された炭素膜被覆インサートチップであって、互いに隣接するすくい面側の前記炭素膜の表面と逃げ面側の前記炭素膜の表面とが、前記切れ刃の刃先近傍で凹面とされ、前記切れ刃の刃先に形成された前記炭素膜が、前記すくい面と前記逃げ面との成す角度より鋭角な断面形状を有していることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the carbon film-coated insert tip of the present invention is a carbon film-coated insert chip in which a carbon film is formed on the surface of the cutting edge of the tool base, and the surface of the carbon film adjacent to the rake face side and the flank face. The surface of the carbon film on the side is a concave surface in the vicinity of the cutting edge of the cutting edge, and the carbon film formed on the cutting edge of the cutting edge is sharper than the angle formed by the rake face and the flank face It has a shape.

この炭素膜被覆インサートチップでは、互いに隣接するすくい面側の炭素膜の表面と逃げ面側の炭素膜の表面とが、切れ刃の刃先近傍で凹面とされ、切れ刃の刃先に形成された炭素膜が、すくい面と逃げ面との成す角度より鋭角な断面形状を有しているので、従来よりもさらに鋭利なエッジを有することができる。すなわち、切れ刃の刃先部分の炭素膜表面がすくい面および逃げ面の延長面に対してえぐられて凹面化されることで、刃先部分の炭素膜が鋭く形成され、従来のようなチャンファを形成するよりも鋭利なエッジを得ることができる。   In this carbon film-coated insert tip, the surface of the carbon film on the rake face side and the surface of the carbon film on the flank side adjacent to each other are concave in the vicinity of the cutting edge of the cutting edge, and carbon formed on the cutting edge of the cutting edge Since the film has a cross-sectional shape that is sharper than the angle formed by the rake face and the flank face, it can have a sharper edge than before. In other words, the carbon film surface of the cutting edge portion of the cutting edge is recessed against the rake face and the extended surface of the flank surface, so that the carbon film of the cutting edge portion is formed sharply and a conventional chamfer is formed. A sharper edge than that can be obtained.

本発明の炭素膜被覆インサートチップの製造方法は、上記本発明の炭素膜被覆インサートチップを製造する方法であって、工具基体の切れ刃の表面に炭素膜を形成する炭素膜形成工程と、レーザビームを照射して前記切れ刃の表面の前記炭素膜を加工するレーザ加工工程とを有し、該レーザ加工工程で、ビーム断面の光強度分布がガウシアン分布である前記レーザビームを、前記刃先前方から前記刃先近傍における前記すくい面側または前記逃げ面側の前記炭素膜に向けて照射すると共に前記刃先の延在方向に沿って走査して前記凹面を形成することを特徴とする。   The method for producing the carbon film-coated insert chip of the present invention is a method for producing the carbon film-coated insert chip of the present invention, wherein a carbon film forming step of forming a carbon film on the surface of the cutting edge of the tool base, and a laser A laser processing step of processing the carbon film on the surface of the cutting edge by irradiating a beam, and in the laser processing step, the laser beam whose light intensity distribution in the beam cross section is a Gaussian distribution, Irradiating the carbon film on the rake face side or the flank face side in the vicinity of the cutting edge and scanning along the extending direction of the cutting edge to form the concave surface.

すなわち、この炭素膜被覆インサートチップの製造方法では、レーザ加工工程で、ビーム断面の光強度分布がガウシアン分布であるレーザビームを、刃先前方から刃先近傍におけるすくい面側または逃げ面側の炭素膜に向けて照射すると共に刃先の延在方向に沿って走査して前記凹面を形成するので、刃先前方から照射されたレーザビームによる炭素膜の切除痕が断面円弧状となり、高精度に前記凹面を刃先に沿って形成することができる。また、炭素膜の先端部(エッジ部分)には、レーザビームの外周側が当たるため、該先端部におけるレーザビームのパワー密度を弱めることができ、炭素膜の先端部が必要以上に切除されて鈍角になることを防ぐことができる。   That is, in this carbon film-coated insert chip manufacturing method, in the laser processing step, a laser beam having a Gaussian distribution in the beam cross section is applied to the carbon film on the rake face side or flank face side from the front of the blade edge to the vicinity of the blade edge. Since the concave surface is formed by scanning along the extending direction of the blade edge, the cut mark of the carbon film by the laser beam irradiated from the front of the blade edge becomes a circular arc shape, and the concave surface is highly accurately It can be formed along. In addition, since the outer peripheral side of the laser beam hits the tip portion (edge portion) of the carbon film, the power density of the laser beam at the tip portion can be weakened, and the tip portion of the carbon film is cut off more than necessary, and the obtuse angle Can be prevented.

また、本発明の炭素膜被覆インサートチップの製造方法は、前記炭素膜形成工程において、前記切れ刃の刃先に前記炭素膜を他の部分より盛り上げて形成しておくことが好ましい。
すなわち、この炭素膜被覆インサートチップの製造方法では、炭素膜形成工程において、予め切れ刃の刃先に炭素膜を他の部分より盛り上げて形成しておくことで、レーザ加工工程における炭素膜の削りしろを大きく設けて、より深い凹面およびより鋭利なエッジを形成することが可能になる。なお、すくい面と逃げ面との2面が近接する切れ刃の刃先は、炭素膜が成長し易い場所であることから、炭素膜を厚めにCVD成膜でコーティングすることで、切れ刃の刃先に炭素膜を他の部分より盛り上げて形成することができる。
Moreover, it is preferable that the manufacturing method of the carbon film covering insert chip | tip of this invention forms the said carbon film on the blade edge | tip of the said cutting blade from the other part in the said carbon film formation process.
That is, in this carbon film-coated insert chip manufacturing method, in the carbon film forming process, the carbon film is raised on the cutting edge in advance from other parts, so that the carbon film in the laser processing process can be cut off. It is possible to form a deeper concave surface and a sharper edge. Since the cutting edge of the cutting edge where the two surfaces of the rake face and the flank face are close to each other is a place where the carbon film is easy to grow, the cutting edge of the cutting edge can be formed by coating the carbon film with a thick CVD film. In addition, the carbon film can be formed so as to be raised from other portions.

また、本発明の炭素膜被覆インサートチップの製造方法は、前記炭素膜が、ダイヤモンド膜であり、前記レーザビームの波長が、360nm以下であることを特徴とする。
すなわち、この炭素膜被覆インサートチップの製造方法では、炭素膜が、ダイヤモンド膜であり、レーザビームの波長が、360nm以下であるので、ダイヤモンド加工に適した波長のレーザビームにより高精度にダイヤモンド膜を加工することができる。
The carbon film-coated insert chip manufacturing method of the present invention is characterized in that the carbon film is a diamond film and the wavelength of the laser beam is 360 nm or less.
That is, in this carbon film-coated insert chip manufacturing method, since the carbon film is a diamond film and the wavelength of the laser beam is 360 nm or less, the diamond film is formed with high accuracy by a laser beam having a wavelength suitable for diamond processing. Can be processed.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る炭素膜被覆インサートチップによれば、互いに隣接するすくい面側の炭素膜の表面と逃げ面側の炭素膜の表面とが、切れ刃の刃先近傍で凹面とされ、切れ刃の刃先に形成された炭素膜が、すくい面と逃げ面との成す角度より鋭角な断面形状を有しているので、従来よりもさらに鋭利なエッジを有することができる。
また、本発明に係る炭素膜被覆インサートチップの製造方法によれば、レーザ加工工程で、ビーム断面の光強度分布がガウシアン分布であるレーザビームを、刃先前方から刃先近傍におけるすくい面側または逃げ面側の炭素膜に向けて照射すると共に刃先の延在方向に沿って走査して前記凹面を形成するので、高精度に前記凹面を刃先に沿って形成することができ、鋭利なエッジを形成することができる。
したがって、本発明の炭素膜被覆インサートチップおよび上記製法で作製した炭素膜被覆インサートチップは、炭素膜による耐摩耗性だけでなく切れ味に優れ、非鉄金属および複合材料加工用のインサートチップとしても適している。
The present invention has the following effects.
That is, according to the carbon film-coated insert chip according to the present invention, the surface of the carbon film on the rake face side and the surface of the carbon film on the flank face side that are adjacent to each other are concave in the vicinity of the cutting edge of the cutting edge. Since the carbon film formed on the blade edge has a sharper cross-sectional shape than the angle formed by the rake face and the flank face, it can have a sharper edge than before.
Further, according to the method of manufacturing the carbon film-coated insert tip according to the present invention, in the laser processing step, the laser beam whose light intensity distribution in the beam cross section is Gaussian distribution Since the concave surface is formed by irradiating toward the carbon film on the side and scanning along the extending direction of the blade edge, the concave surface can be formed along the blade edge with high accuracy, and a sharp edge is formed. be able to.
Therefore, the carbon film-coated insert chip of the present invention and the carbon film-coated insert chip produced by the above-described method are excellent not only in wear resistance due to the carbon film but also in sharpness, and are suitable as insert chips for processing non-ferrous metals and composite materials. Yes.

本発明に係る炭素膜被覆インサートチップおよびその製造方法の一実施形態において、炭素膜被覆インサートチップの切れ刃およびレーザ加工工程を示す要部の拡大断面図である。It is an expanded sectional view of the important section showing a cutting edge of a carbon film covering insert chip, and a laser processing process in one embodiment of a carbon film covering insert chip concerning the present invention, and its manufacturing method. 本実施形態に係る炭素膜被覆インサートチップを示す斜視図である。It is a perspective view showing the carbon film covering insert tip concerning this embodiment. 本実施形態に係る炭素膜被覆インサートチップの製造方法に使用するレーザ加工装置を示す概略的な全体構成図である。It is a rough whole block diagram which shows the laser processing apparatus used for the manufacturing method of the carbon film covering insert chip concerning this embodiment. 本実施形態において、レーザビームの走査方向とレーザビームの断面形状との関係を示す説明図である。In this embodiment, it is explanatory drawing which shows the relationship between the scanning direction of a laser beam, and the cross-sectional shape of a laser beam. 本実施形態において、レーザビームによる炭素膜の切除痕を示す概念図である。In this embodiment, it is a conceptual diagram which shows the excision trace of the carbon film by a laser beam. 本発明に係る炭素膜被覆インサートチップおよびその製造方法の実施例において、レーザ加工工程時の炭素膜被覆インサートチップを示す要部の拡大断面図である。In the Example of the carbon film covering insert chip concerning the present invention and its manufacturing method, it is an expanded sectional view of the important section showing the carbon film covering insert chip at the time of a laser processing process. 本発明に係る炭素膜被覆インサートチップおよびその製造方法の実施例において、レーザ加工工程前およびレーザ加工工程後の切れ刃を示す拡大画像である。In the Example of the carbon film covering insert chip concerning the present invention, and its manufacturing method, it is an enlarged picture showing the cutting edge before a laser processing process and after a laser processing process.

以下、本発明に係る炭素膜被覆インサートチップおよびその製造方法の一実施形態を、図1から図5を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している部分がある。   Hereinafter, an embodiment of a carbon film-coated insert chip and a manufacturing method thereof according to the present invention will be described with reference to FIGS. 1 to 5. In each drawing used in the following description, there is a portion where the scale is appropriately changed as necessary in order to make each member recognizable or easily recognizable.

本実施形態の炭素膜被覆インサートチップ1は、図1に示すように、工具基体2の切れ刃2aの表面に炭素膜3が形成された刃先交換(替刃)用の炭素膜被覆インサートチップ(スローアウェイチップ)であって、互いに隣接するすくい面4a側の炭素膜3の表面と逃げ面4b側の炭素膜3の表面とが、切れ刃2aの刃先2b近傍で凹面3aとされ、切れ刃2aの刃先2bに形成された炭素膜3が、すくい面4aと逃げ面4bとの成す角度θ0より鋭角な断面形状を有している。
この炭素膜被覆インサートチップ1は、図2に示すように、例えば略正方形板状をなし、上面の隣接する二つのコーナー部間に形成されたエッジが切れ刃2aとされているもので、ネジ孔無しのネガインサートである。
As shown in FIG. 1, the carbon film-coated insert tip 1 of the present embodiment has a carbon film-coated insert tip for blade edge replacement (replacement blade) in which a carbon film 3 is formed on the surface of the cutting edge 2 a of the tool base 2 ( The surface of the carbon film 3 on the rake face 4a side and the surface of the carbon film 3 on the flank face 4b side which are adjacent to each other are formed into a concave surface 3a in the vicinity of the cutting edge 2b of the cutting edge 2a. The carbon film 3 formed on the cutting edge 2b of 2a has a cross-sectional shape that is sharper than the angle θ0 formed by the rake face 4a and the flank face 4b.
As shown in FIG. 2, the carbon film-coated insert chip 1 has, for example, a substantially square plate shape, and an edge formed between two adjacent corner portions on the upper surface is a cutting edge 2a. Negative insert without holes.

上記工具基体2は、例えばWC(タングステンカーバイト)等の超硬合金で形成され、炭素膜3は、CVD(化学気相成長法)等で成膜されたダイヤモンド膜、グラファイト膜またはDLC(ダイヤモンドライクカーボン)膜等である。   The tool base 2 is made of a cemented carbide such as WC (tungsten carbide), and the carbon film 3 is a diamond film, graphite film or DLC (diamond) formed by CVD (chemical vapor deposition) or the like. Like carbon) film.

互いに隣接するすくい面4a側の炭素膜3の表面と逃げ面4b側の炭素膜3の表面とには、上述したように、それぞれ切れ刃2aの刃先2b近傍で凹面3aが形成されている。このため、これら一対の凹面3aで構成された炭素膜3先端(エッジ)における断面の角度θ1(すくい面4aおよび逃げ面4bに直交する面における断面の先端角度)は、すくい面4aと逃げ面4bとの成す角度θ0より小さく設定されている。すなわち、「θ1<θ0」となるように切れ刃2aをコーティングしている炭素膜3が加工されている。また、切れ刃2aの刃先2bに形成された炭素膜3の先端部は、曲率半径2μm以下に加工されている。   As described above, the concave surface 3a is formed in the vicinity of the cutting edge 2b of the cutting edge 2a on the surface of the carbon film 3 on the rake face 4a side and the surface of the carbon film 3 on the flank face 4b side which are adjacent to each other. For this reason, the angle θ1 of the cross section at the tip (edge) of the carbon film 3 constituted by the pair of concave surfaces 3a (the tip angle of the cross section in the plane perpendicular to the rake face 4a and the flank 4b) is the rake face 4a and the flank face. It is set smaller than the angle θ0 formed with 4b. That is, the carbon film 3 coated with the cutting edge 2a is processed so that “θ1 <θ0”. The tip of the carbon film 3 formed on the cutting edge 2b of the cutting edge 2a is processed to have a curvature radius of 2 μm or less.

次に、本実施形態の炭素膜被覆インサートチップを製造する方法について、図1から図5を参照して説明する。   Next, a method for manufacturing the carbon film-coated insert chip of the present embodiment will be described with reference to FIGS.

本実施形態の炭素膜被覆インサートチップ1の製造方法は、工具基体2の切れ刃2aの表面に炭素膜3を形成する炭素膜形成工程と、レーザビームLを照射して切れ刃2aの表面の炭素膜3を加工するレーザ加工工程とを有している。
上記炭素膜形成工程では、予め切れ刃2aの刃先2bに炭素膜3を他の部分より盛り上げて形成しておく。すなわち、すくい面4aと逃げ面4bとの2面が近接する切れ刃2aの刃先2bは、炭素膜3が成長し易い場所であることから、炭素膜3を厚めにCVD成膜でコーティングすることで、切れ刃2aの刃先2bに炭素膜3を他の部分より盛り上げて形成することができる。
The method for manufacturing the carbon film-coated insert tip 1 of the present embodiment includes a carbon film forming step of forming the carbon film 3 on the surface of the cutting edge 2a of the tool base 2, and a surface of the cutting edge 2a by irradiating the laser beam L. A laser processing step for processing the carbon film 3.
In the carbon film forming step, the carbon film 3 is formed on the cutting edge 2b of the cutting edge 2a in advance from other portions. That is, the cutting edge 2b of the cutting edge 2a where the two faces of the rake face 4a and the flank face 4b are close to each other is a place where the carbon film 3 is easy to grow, so that the carbon film 3 is thickly coated by CVD film formation. Thus, the carbon film 3 can be formed on the cutting edge 2b of the cutting edge 2a by raising it from other portions.

上記レーザ加工工程に用いるレーザ加工装置21は、図3に示すように、工具基体2に被覆された炭素膜3にレーザビーム(レーザ光)Lを照射して加工する装置であって、レーザビームLをパルス発振して炭素膜3に一定の繰り返し周波数で照射すると共に走査するレーザ光照射機構22と、炭素膜3がコーティングされた工具基体2を保持して回転可能なモータ等の回転機構23と、該回転機構23が設置されて移動可能な移動機構24と、これらを制御する制御部25と、を備えている。   As shown in FIG. 3, a laser processing apparatus 21 used in the laser processing step is an apparatus that irradiates a carbon film 3 covered with a tool base 2 with a laser beam (laser light) L and processes the laser beam. A laser beam irradiation mechanism 22 that irradiates and scans the carbon film 3 with a constant repetition frequency by oscillating L, and a rotation mechanism 23 such as a motor that can rotate while holding the tool base 2 coated with the carbon film 3. And a moving mechanism 24 that is installed and movable, and a control unit 25 that controls them.

上記移動機構24は、水平面に平行なX方向に移動可能なX軸ステージ部24xと、該X軸ステージ部24x上に設けられX方向に対して垂直なかつ水平面に平行なY方向に移動方向なY軸ステージ部24yと、該Y軸ステージ部24y上に設けられ回転機構23が固定されて工具基体2を保持可能であると共に水平面に対して垂直方向に移動可能なZ軸ステージ部24zと、で構成されている。   The moving mechanism 24 includes an X-axis stage unit 24x that can move in the X direction parallel to the horizontal plane, and a moving direction in the Y direction that is provided on the X-axis stage unit 24x and is perpendicular to the X direction and parallel to the horizontal plane. A Y-axis stage unit 24y, and a Z-axis stage unit 24z provided on the Y-axis stage unit 24y, the rotation mechanism 23 being fixed to hold the tool base 2 and movable in a direction perpendicular to the horizontal plane, It consists of

上記レーザ光照射機構22は、Qスイッチのトリガー信号によりレーザビームLとなるレーザ光を発振すると共にスポット状に集光させる光学系も有するレーザ光源26と、照射するレーザビームLを走査させるガルバノスキャナ27と、保持されたコーティング済みの工具基体2の加工位置を確認するために撮像するCCDカメラ28と、を備えている。   The laser light irradiation mechanism 22 includes a laser light source 26 that also has an optical system that oscillates a laser beam that becomes a laser beam L in response to a trigger signal of a Q switch and collects it in a spot shape, and a galvano scanner that scans the laser beam L to be irradiated 27 and a CCD camera 28 for imaging to confirm the processing position of the held coated tool base 2.

このレーザ光照射機構22により出射されるレーザビームLは、シングルモードでありビーム断面の光強度分布がガウシアン分布となっていると共に、図4に示すように、集光点においてビーム断面の光強度分布が楕円形状となっている。
また、レーザ光照射機構22は、レーザビームLの走査方向を、楕円形状である上記光強度分布の長軸方向または短軸方向に一致させている。これは、レーザビームLの走査方向が、上記光強度分布の長軸方向または短軸方向に一致せずに長軸または短軸に対して傾いた方向であると、走査終端部分の加工形状が傾いてズレが生じてしまうためである。なお、本実施形態では、レーザビームLの走査方向を、上記光強度分布の短軸方向に一致させている。
The laser beam L emitted by the laser beam irradiation mechanism 22 is single mode, and the light intensity distribution of the beam cross section is a Gaussian distribution, and as shown in FIG. 4, the light intensity of the beam cross section at the focal point. The distribution is elliptical.
Further, the laser beam irradiation mechanism 22 makes the scanning direction of the laser beam L coincide with the major axis direction or minor axis direction of the light intensity distribution having an elliptical shape. This is because when the scanning direction of the laser beam L is a direction inclined with respect to the major axis or the minor axis without matching the major axis direction or the minor axis direction of the light intensity distribution, the processing shape of the scanning end portion is This is because a tilt occurs and a deviation occurs. In the present embodiment, the scanning direction of the laser beam L is matched with the minor axis direction of the light intensity distribution.

上記レーザ光源26は、190〜550nmのいずれかの波長のレーザ光を照射できるものが使用可能であり、例えば本実施形態では、波長355nmのレーザ光(Nd:YAGレーザの第三高調波)を発振して出射できるものを用いている。
なお、炭素膜3が、ダイヤモンド膜である場合、レーザビームLの波長は、360nm以下の紫外線レーザ光を使用する。
上記ガルバノスキャナ27は、移動機構24の直上に配置されている。また、上記CCDカメラ28は、ガルバノスキャナ27に隣接して設置されている。
As the laser light source 26, one that can irradiate laser light having any wavelength of 190 to 550 nm can be used. For example, in this embodiment, laser light having a wavelength of 355 nm (third harmonic of Nd: YAG laser) is used. What can oscillate and emit is used.
When the carbon film 3 is a diamond film, an ultraviolet laser beam with a wavelength of 360 nm or less is used for the laser beam L.
The galvano scanner 27 is disposed immediately above the moving mechanism 24. The CCD camera 28 is installed adjacent to the galvano scanner 27.

上記レーザ加工工程では、ビーム断面の光強度分布がガウシアン分布であるレーザビームLを、刃先2b前方から刃先2b近傍におけるすくい面4a側または逃げ面4b側の炭素膜3に向けて照射すると共に刃先2bの延在方向に沿って走査して凹面3aを形成する。   In the laser processing step, the laser beam L having a Gaussian distribution in the beam cross section is irradiated from the front of the blade edge 2b toward the rake face 4a side or the flank face 4b side near the blade edge 2b and the blade edge. The concave surface 3a is formed by scanning along the extending direction of 2b.

また、レーザ加工工程では、刃先2b前方からレーザビームLを照射するが、移動機構24やガルバノスキャナ27を制御して、例えばすくい面4aまたは逃げ面4bに対して20°以下の角度で炭素膜3に照射する。また、刃先2bの延在方向、すなわち図1の紙面に垂直な方向にレーザビームLを走査し、図5に示すように、1ライン以上10ライン以下のカスケード状(スライドさせながらレーザビームLの走査ラインを部分的に重ねる状態)に照射を行う。なお、レーザビームLの集光角度や焦点位置に応じて、走査ラインの数が適宜設定される。本実施形態では、集光される前にレーザビームLが工具基体2の壁面に当たり、所望の部位への照射が困難なため、10ライン以下に設定している。   In the laser processing step, the laser beam L is irradiated from the front of the cutting edge 2b, and the carbon film is controlled at an angle of 20 ° or less with respect to the rake face 4a or the flank face 4b by controlling the moving mechanism 24 and the galvano scanner 27, for example. 3 is irradiated. Further, the laser beam L is scanned in the extending direction of the blade edge 2b, that is, the direction perpendicular to the paper surface of FIG. 1, and as shown in FIG. Irradiation is performed in a state where scanning lines are partially overlapped. Note that the number of scanning lines is appropriately set according to the condensing angle and the focal position of the laser beam L. In the present embodiment, the laser beam L hits the wall surface of the tool base 2 before being focused, and it is difficult to irradiate a desired part.

このレーザ加工では、レーザビームLのビーム断面の光強度分布がガウシアン分布を有しているため、レーザビームLの中心ほど強度が高く、レーザビームLの中心ほど深く加工されると共に周辺ほど浅く加工され、炭素膜3の先端(エッジ部分)に当たるレーザビームLのパワー密度は弱くなる。
なお、炭素膜3によっては、加工表面から1μm程度まではダイヤモンドがアモルファスカーボンになる等の構造変化が起こり得る。
In this laser processing, since the light intensity distribution in the beam cross section of the laser beam L has a Gaussian distribution, the intensity is higher as the center of the laser beam L is processed deeper as the center of the laser beam L and is processed as shallower as the periphery. As a result, the power density of the laser beam L hitting the tip (edge portion) of the carbon film 3 becomes weak.
Depending on the carbon film 3, structural changes such as diamond becoming amorphous carbon can occur up to about 1 μm from the processed surface.

このように本実施形態の炭素膜被覆インサートチップ1では、互いに隣接するすくい面4a側の炭素膜3の表面と逃げ面4b側の炭素膜3の表面とが、切れ刃2aの刃先2b近傍で凹面とされ、切れ刃2aの刃先2bに形成された炭素膜3が、すくい面4aと逃げ面4bとの成す角度θ0より鋭角な断面形状を有しているので、従来よりもさらに鋭利なエッジを有することができる。すなわち、切れ刃2aの刃先2b部分の炭素膜3表面がすくい面4aおよび逃げ面4bの延長面に対してえぐられて凹面化されることで、刃先2b部分の炭素膜3が鋭く形成され、従来のようなチャンファを形成するよりも鋭利なエッジを得ることができる。   Thus, in the carbon film-coated insert tip 1 of the present embodiment, the surface of the carbon film 3 on the rake face 4a side and the surface of the carbon film 3 on the flank face 4b side that are adjacent to each other are near the cutting edge 2b of the cutting edge 2a. The carbon film 3 that is concave and formed on the cutting edge 2b of the cutting edge 2a has a sharper cross-sectional shape than the angle θ0 formed by the rake face 4a and the flank face 4b, so that the edge is sharper than before. Can have. That is, the carbon film 3 surface of the cutting edge 2a portion of the cutting edge 2b is scooped and concaved with respect to the extended surface of the rake face 4a and the relief surface 4b, thereby forming the carbon film 3 of the cutting edge 2b portion sharply, A sharper edge can be obtained than when forming a conventional chamfer.

また、この炭素膜被覆インサートチップ1の製造方法では、レーザ加工工程で、ビーム断面の光強度分布がガウシアン分布であるレーザビームLを、刃先2b前方から刃先2b近傍におけるすくい面4a側または逃げ面4b側の炭素膜3に向けて照射すると共に刃先2bの延在方向に沿って走査して凹面3aを形成するので、図5に示すように、刃先2b前方から照射されたレーザビームLによる炭素膜3の切除痕が断面円弧状となり、高精度に凹面3aを刃先2bに沿って形成することができる。   Further, in the method of manufacturing the carbon film-coated insert chip 1, in the laser processing step, the laser beam L having a Gaussian light intensity distribution in the beam cross section is applied to the rake face 4a side or the flank face from the front of the blade edge 2b to the vicinity of the blade edge 2b. Since the concave surface 3a is formed by irradiating toward the carbon film 3 on the 4b side and scanning along the extending direction of the blade edge 2b, as shown in FIG. 5, the carbon by the laser beam L irradiated from the front of the blade edge 2b. The excision mark of the film 3 has an arc shape in cross section, and the concave surface 3a can be formed along the cutting edge 2b with high accuracy.

また、炭素膜3の先端部(エッジ部分)には、レーザビームLの外周側が当たるため、該先端部におけるレーザビームLのパワー密度を弱めることができ、炭素膜3の先端部(エッジ部分)が必要以上に切除されて鈍角になることを防ぐことができる。
さらに、炭素膜形成工程において、予め切れ刃2aの刃先2bに炭素膜3を他の部分より盛り上げて形成しておくことで、レーザ加工工程における炭素膜3の削りしろを大きく設けて、より深い凹面3aおよびより鋭利なエッジを形成することが可能になる。
Further, since the outer peripheral side of the laser beam L hits the tip portion (edge portion) of the carbon film 3, the power density of the laser beam L at the tip portion can be weakened, and the tip portion (edge portion) of the carbon film 3. Can be prevented from being cut more than necessary and becoming obtuse.
Further, in the carbon film forming step, the carbon film 3 is formed on the cutting edge 2b of the cutting edge 2a in advance from other portions, thereby providing a larger cutting margin for the carbon film 3 in the laser processing step and deeper. It becomes possible to form the concave surface 3a and a sharper edge.

次に、上記本実施形態の炭素膜被覆インサートチップの製造方法により、実際に作製した炭素膜被覆インサートチップの実施例について、図6および図7を参照して説明する。   Next, an example of the carbon film-coated insert chip actually produced by the carbon film-coated insert chip manufacturing method of the present embodiment will be described with reference to FIGS. 6 and 7.

本実施例では、波長262nm(Nd:YLFレーザ(基本波:波長1047nm)の4倍波)、繰り返し10kHz、平均出力0.1Wのレーザ光を照射可能な上記レーザ加工装置により、レーザ光をfθレンズ(焦点距離f=150mm)によって集光し、ガルバノスキャナを用いて25mm/sの走査速度で同じ軌跡を4回走査させて、気相合成によるダイヤモンド被膜を炭素膜3として施したインサートチップ1の切り刃2aを、鋭利に加工した。   In this embodiment, the laser beam is fθ by the above laser processing apparatus capable of irradiating laser beam having a wavelength of 262 nm (Nd: YLF laser (4th harmonic wave of fundamental wave: wavelength 1047 nm)), repetition of 10 kHz, and average output of 0.1 W. The insert chip 1 is focused by a lens (focal length f = 150 mm), and the same locus is scanned four times at a scanning speed of 25 mm / s using a galvano scanner, and a diamond coating by vapor phase synthesis is applied as a carbon film 3 The cutting blade 2a was sharply processed.

なお、準備として、図6に示すように、超硬合金製のインサート(工具基体2)に平均膜厚17μmのダイヤモンドを気相合成により成膜し、切れ刃2aである逃げ面4bとすくい面4aとのなす稜線部(切れ刃2b)に平均膜厚よりも厚くダイヤモンド膜の炭素膜3を形成した。なお、炭素膜質の測定については、ラマン分光法を用いた。
また、上述したように、切れ刃2aの部分は、成膜サイトが平面よりも多くなるため、厚くかつラウンド化してダイヤモンド膜(炭素膜3)が成膜されている。
As a preparation, as shown in FIG. 6, diamond having an average film thickness of 17 μm is formed on a cemented carbide insert (tool base 2) by vapor phase synthesis, and the flank 4b and the rake face are the cutting edges 2a. A diamond carbon film 3 having a thickness larger than the average film thickness was formed on the ridge line (cutting edge 2b) formed with 4a. For the measurement of carbon film quality, Raman spectroscopy was used.
Further, as described above, since the portion of the cutting edge 2a has more film formation sites than the plane, the diamond film (carbon film 3) is formed thick and rounded.

例えば、図1に示すように、工具基体2の切れ刃2aの先端(刃先2b)からすくい面4aに沿って50μm以上離れた炭素膜3において、すくい面4aの膜厚を、100μm以上の部位における平均膜厚taとすると共に、切れ刃2a周辺の膜厚を、工具基体2の切れ刃2aの先端(刃先2b)からすくい面4aに沿って50μmまでの平均膜厚teとした場合、膜厚taを5μm以上としたと共に、「te>ta 」の関係になるように成膜した。   For example, as shown in FIG. 1, in the carbon film 3 that is separated from the tip of the cutting edge 2a (the cutting edge 2b) of the tool base 2 by 50 μm or more along the rake face 4a, the rake face 4a has a thickness of 100 μm or more. When the film thickness around the cutting edge 2a is the average film thickness te from the tip of the cutting edge 2a (the cutting edge 2b) of the tool base 2 to the rake face 4a up to 50 μm. The thickness ta was set to 5 μm or more, and the film was formed so as to satisfy the relationship of “te> ta”.

次に、レーザビームLの照射方向に対してすくい面4aおよび逃げ面4bを10°傾け、各々の方向から切れ刃2aとなる稜線に平行にレーザビームLを走査した。図5に示すように、最初のビーム照射狙い位置P1は、すくい面4aおよび逃げ面4bの平均高さの延長線4c,4dと切れ刃部分の炭素膜3との交点から4μmの位置に設定した。   Next, the rake face 4a and the flank face 4b were tilted by 10 ° with respect to the irradiation direction of the laser beam L, and the laser beam L was scanned from each direction in parallel with the ridgeline that becomes the cutting edge 2a. As shown in FIG. 5, the initial beam irradiation target position P1 is set at a position of 4 μm from the intersection of the average height extension lines 4c and 4d of the rake face 4a and flank 4b and the carbon film 3 at the cutting edge portion. did.

このように上記製造方法で作製した炭素膜被覆インサートチップ1では、工具基体2の切れ刃角θ0が90°であるところ、炭素膜3をレーザ加工してできたエッジの切れ刃角θ1が88°であり、より鋭角化されていた。なお、膜厚taは17μmであり、膜厚teは19μmであった。また、これらの寸法精度は、レーザ顕微鏡を主に使用した。
また、このときのレーザ加工工程前の切れ刃部分の拡大画像を図7の(a)に示すと共に、レーザ加工工程後の切れ刃部分の拡大画像を図7の(b)に示す。なお、画像中の仮想線(二点鎖線)で囲んだ部分が、切れ刃部分である。これら画像からわかるように、レーザ加工工程後は、切れ刃部分がレーザ加工工程前に比べて非常にシャープに鋭角化されている。
As described above, in the carbon film-coated insert chip 1 manufactured by the above manufacturing method, the cutting edge angle θ0 of the tool base 2 is 90 °, and the cutting edge angle θ1 of the edge formed by laser processing of the carbon film 3 is 88. ° and more sharpened. The film thickness ta was 17 μm, and the film thickness te was 19 μm. Moreover, the laser microscope was mainly used for these dimensional accuracy.
In addition, an enlarged image of the cutting edge portion before the laser processing step is shown in FIG. 7A, and an enlarged image of the cutting edge portion after the laser processing step is shown in FIG. 7B. A portion surrounded by an imaginary line (two-dot chain line) in the image is a cutting edge portion. As can be seen from these images, after the laser processing step, the cutting edge portion is sharpened much sharper than before the laser processing step.

次に、この本実施例の炭素膜被覆インサートチップについて、切削バイトに用いた際の切削試験を行い、加工面の表面粗さRz(最大高さ)を測定した結果と切削時の所要動力とを表1に示す。また、比較例として、レーザ加工していない従来の炭素膜(ダイヤモンド膜)被覆をしたインサートチップについても、同様に測定した結果を表1に併せて示す。なお、ワークとしては、アルミニウム合金A7075を使用し、切削条件は表1に示す通りである。   Next, the carbon film-coated insert tip of this example was subjected to a cutting test when used as a cutting tool, and the surface roughness Rz (maximum height) of the processed surface and the required power for cutting were determined. Is shown in Table 1. In addition, as a comparative example, Table 1 also shows the results of measurement in the same manner with respect to an insert chip coated with a conventional carbon film (diamond film) that has not been laser processed. As a workpiece, aluminum alloy A7075 is used, and cutting conditions are as shown in Table 1.

この結果からわかるように比較例の炭素膜被覆インサートチップでは、表面粗さRzが20μmであるのに対し、本実施例の炭素膜被覆インサートチップでは、表面粗さRzが12μmと大幅に表面粗さが小さくなっており、より平坦に切削加工ができている。また、比較例の炭素膜被覆インサートチップでは、所要動力が700Wと大きいのに対し、本実施例の炭素膜被覆インサートチップでは、所要動力が300Wと半分以下に低減され、大幅に切削抵抗が小さくなっていることが判る。   As can be seen from the results, the carbon film-coated insert chip of the comparative example has a surface roughness Rz of 20 μm, whereas the carbon film-coated insert chip of the present example has a surface roughness Rz of 12 μm. Therefore, it is possible to cut more flatly. Further, in the carbon film-coated insert chip of the comparative example, the required power is as high as 700 W, whereas in the carbon film-coated insert chip of this example, the required power is reduced to less than half as 300 W, and the cutting resistance is greatly reduced. You can see that

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…炭素膜被覆インサートチップ、2…工具基体、2a…切れ刃、2b…切れ刃の刃先、3…炭素膜、3a…凹面、4a…すくい面、4b…逃げ面、θ0…すくい面と逃げ面との成す角度、θ1…一対の凹面で構成された炭素膜先端の断面の角度   DESCRIPTION OF SYMBOLS 1 ... Carbon film coating | insert insert chip, 2 ... Tool base | substrate, 2a ... Cutting blade, 2b ... Cutting-edge of a cutting blade, 3 ... Carbon film, 3a ... Concave surface, 4a ... Rake face, 4b ... Relief face, (theta) 0 ... Rake face and relief The angle formed with the surface, θ1... Angle of the cross section of the tip of the carbon film composed of a pair of concave surfaces

Claims (4)

工具基体の切れ刃の表面に炭素膜が形成された炭素膜被覆インサートチップであって、
互いに隣接するすくい面側の前記炭素膜の表面と逃げ面側の前記炭素膜の表面とが、前記切れ刃の刃先近傍で凹面とされ、
前記切れ刃の刃先に形成された前記炭素膜が、前記すくい面と前記逃げ面との成す角度より鋭角な断面形状を有していることを特徴とする炭素膜被覆インサートチップ。
A carbon film-coated insert chip in which a carbon film is formed on the surface of the cutting edge of the tool base,
The surface of the carbon film on the rake face side adjacent to each other and the surface of the carbon film on the flank face side are concave in the vicinity of the cutting edge of the cutting edge,
The carbon film-coated insert tip, wherein the carbon film formed on the cutting edge of the cutting edge has a cross-sectional shape that is sharper than an angle formed by the rake face and the flank face.
請求項1に記載の炭素膜被覆インサートチップを製造する方法であって、
工具基体の切れ刃の表面に炭素膜を形成する炭素膜形成工程と、
レーザビームを照射して前記切れ刃の表面の前記炭素膜を加工するレーザ加工工程と、を有し、
該レーザ加工工程で、ビーム断面の光強度分布がガウシアン分布である前記レーザビームを、前記刃先前方から前記刃先近傍における前記すくい面側または前記逃げ面側の前記炭素膜に向けて照射すると共に前記刃先の延在方向に沿って走査して前記凹面を形成することを特徴とする炭素膜被覆インサートチップの製造方法。
A method for producing the carbon film-coated insert chip according to claim 1,
A carbon film forming step of forming a carbon film on the surface of the cutting edge of the tool base;
A laser processing step of processing the carbon film on the surface of the cutting edge by irradiating a laser beam,
In the laser processing step, the laser beam whose beam cross-section has a Gaussian distribution is irradiated from the front of the blade edge toward the rake face side or the flank face side near the blade edge and the carbon film. A method for producing a carbon film-coated insert chip, wherein the concave surface is formed by scanning along the extending direction of the blade edge.
請求項2に記載の炭素膜被覆インサートチップの製造方法において、
前記炭素膜形成工程において、前記切れ刃の刃先に前記炭素膜を他の部分より盛り上げて形成しておくことを特徴とする炭素膜被覆インサートチップの製造方法。
In the manufacturing method of the carbon film covering insert chip according to claim 2,
In the carbon film forming step, the carbon film-covered insert chip manufacturing method, wherein the carbon film is raised and formed on the cutting edge of the cutting edge from other portions.
請求項2または3に記載の炭素膜被覆インサートチップの製造方法において、
前記炭素膜が、ダイヤモンド膜であり、
前記レーザビームの波長が、360nm以下であることを特徴とする炭素膜被覆インサートチップの製造方法。
In the manufacturing method of the carbon film covering insert chip according to claim 2 or 3,
The carbon film is a diamond film;
The method of manufacturing a carbon film-coated insert chip, wherein the wavelength of the laser beam is 360 nm or less.
JP2010289038A 2010-12-26 2010-12-26 Carbon film-coated insert tip, and method of manufacturing the same Withdrawn JP2012135828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289038A JP2012135828A (en) 2010-12-26 2010-12-26 Carbon film-coated insert tip, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289038A JP2012135828A (en) 2010-12-26 2010-12-26 Carbon film-coated insert tip, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012135828A true JP2012135828A (en) 2012-07-19

Family

ID=46673721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289038A Withdrawn JP2012135828A (en) 2010-12-26 2010-12-26 Carbon film-coated insert tip, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012135828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157454A (en) * 2019-03-28 2020-10-01 三菱マテリアル株式会社 Diamond-coated cemented carbide tool
JP2020157453A (en) * 2019-03-28 2020-10-01 三菱マテリアル株式会社 Diamond-coated cemented carbide tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157454A (en) * 2019-03-28 2020-10-01 三菱マテリアル株式会社 Diamond-coated cemented carbide tool
JP2020157453A (en) * 2019-03-28 2020-10-01 三菱マテリアル株式会社 Diamond-coated cemented carbide tool
JP7216916B2 (en) 2019-03-28 2023-02-02 三菱マテリアル株式会社 Diamond-coated cemented carbide tools
JP7216915B2 (en) 2019-03-28 2023-02-02 三菱マテリアル株式会社 Diamond-coated cemented carbide tools

Similar Documents

Publication Publication Date Title
JP5201424B2 (en) Carbon film coated cutting tool and method for manufacturing the same
JP4976576B2 (en) Cutting tool, manufacturing method thereof and manufacturing apparatus
JP4709202B2 (en) Laser processing method for sintered diamond, cutter wheel for brittle material substrate, and manufacturing method thereof
CN103084732B (en) Laser processing device and laser processing
JP2007216327A (en) Forming method of chip breaker
JP2012016735A (en) Laser beam machining device and laser beam machining method
JP5105153B2 (en) Manufacturing method of processing tool and processing tool
JP6950183B2 (en) Diamond-coated rotary cutting tool and its manufacturing method
JP5899904B2 (en) Carbon film coated end mill and method for producing the same
JP6435801B2 (en) End mill
JP2012006135A (en) End mill and manufacturing method therefor
JP5146493B2 (en) End mill and manufacturing method thereof
JP5899905B2 (en) Carbon film-coated drill and manufacturing method thereof
JP2012135828A (en) Carbon film-coated insert tip, and method of manufacturing the same
JP5890739B2 (en) Cutting tool and manufacturing method thereof
JP2015085336A (en) Laser processing method, and processing apparatus
JP6980216B2 (en) Cutting tool manufacturing method
JP2012045581A (en) Laser processing method
WO2021049257A1 (en) Skiving device and skiving method
JP2005034865A (en) Apparatus and method for working roll
JP2021011015A (en) Manufacturing method for diamond-coated rotary cutting tool
JP2018039101A (en) Manufacturing method of cutting tool and honing face formation device
WO2018043352A1 (en) Method for manufacturing cutting tool and honing surface forming device
JP2017104875A (en) Laser processing device and laser processing method
JP2010110799A (en) Apparatus and method for machining hard and brittle material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304