JP2010110799A - Apparatus and method for machining hard and brittle material - Google Patents

Apparatus and method for machining hard and brittle material Download PDF

Info

Publication number
JP2010110799A
JP2010110799A JP2008286498A JP2008286498A JP2010110799A JP 2010110799 A JP2010110799 A JP 2010110799A JP 2008286498 A JP2008286498 A JP 2008286498A JP 2008286498 A JP2008286498 A JP 2008286498A JP 2010110799 A JP2010110799 A JP 2010110799A
Authority
JP
Japan
Prior art keywords
hard
brittle material
processing
femtosecond laser
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008286498A
Other languages
Japanese (ja)
Inventor
Katsuzo Okada
勝蔵 岡田
Kazuyoshi Ishida
和義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAYA ICHI
University of Yamanashi NUC
Original Assignee
OKAYA ICHI
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAYA ICHI, University of Yamanashi NUC filed Critical OKAYA ICHI
Priority to JP2008286498A priority Critical patent/JP2010110799A/en
Publication of JP2010110799A publication Critical patent/JP2010110799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problems that, when machining a hard and brittle material, i.e., a hard-to-work material such as cemented carbide and diamond, the material is broken by the buckling and cannot be machined in the mechanical finish by polishing or grinding when the shape is slender, and that an optional fore end shape is hardly formed in a non-contact machining method. <P>SOLUTION: An optional fore end shape is formed by applying femtosecond laser beam via an optical system including a condensing lens while rotating and moving an object to be machined consisting of a hard and brittle material. Further, the finish surface roughness of the object can be controlled by changing the ellipticity of the femtosecond laser beam by operation of the optical system. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、難加工材料である超硬合金やダイヤモンドなどの硬脆材料の加工装置および加工方法に関する。 The present invention relates to a processing apparatus and a processing method for hard and brittle materials such as cemented carbide and diamond which are difficult to process materials.

従来、難加工材料である超硬合金やダイヤモンドのような硬脆材料の加工に際しては、研磨や研削による直線的な加工、加工形状に作成した研削型による加工、又は非接触加工法の集束イオンビーム(FIB)、超音波加工、エッチング加工、放電加工が用いられていた。しかし、機械的な仕上げでは形状が細長い場合には座屈により破断するために加工できないという問題があった。また、非接触加工法では任意の先端形状を作製することが難しいという問題があった。 Conventionally, when processing hard and brittle materials such as cemented carbide and diamond, which are difficult to process, linear processing by grinding and grinding, processing by a grinding die created in the processing shape, or focused ion of non-contact processing method Beam (FIB), ultrasonic processing, etching processing, and electric discharge processing have been used. However, in mechanical finishing, when the shape is elongated, there is a problem that it cannot be processed because it breaks due to buckling. In addition, there is a problem that it is difficult to produce an arbitrary tip shape by the non-contact processing method.

一般に、極超短パルスレーザであるフェムト秒レーザは、非接触で多光子吸収過程によって被加工物内部にサブミクロンサイズの微細加工を可能にする。また、エネルギー注入時の熱拡散に要する時間に比べてレーザ光のパルス幅が非常に短いため、加工部周辺への熱損傷が少なく、非熱加工ができる。したがってフェムト秒レーザによる微細加工は、3次元構造を有する新デバイスの作製に利用されてきている。
このようなフェムト秒レーザを用いた被加工物についての加工に関し、特許第3283265号公報(特許文献1参照)、特許第3824622号公報(特許文献2参照)、特開2005−210037号公報(特許文献3参照)には、それぞれフェムト秒レーザを用いて、金属材料にラインまたはスポット(穴開け)加工を行う方法が開示されている。
In general, a femtosecond laser, which is an ultra-short pulse laser, enables sub-micron fine processing inside a workpiece by a multi-photon absorption process without contact. Further, since the pulse width of the laser beam is very short compared with the time required for thermal diffusion at the time of energy injection, there is little thermal damage to the periphery of the processed portion, and non-thermal processing can be performed. Therefore, microfabrication with a femtosecond laser has been used to fabricate a new device having a three-dimensional structure.
Regarding processing on a workpiece using such a femtosecond laser, Japanese Patent No. 3283265 (see Patent Document 1), Japanese Patent No. 3824622 (see Patent Document 2), Japanese Patent Application Laid-Open No. 2005-210037 (Patent). Document 3) discloses a method of performing line or spot (drilling) processing on a metal material using a femtosecond laser.

また特開2001−68899号公報(特許文献4参照)には、フェムト秒レーザを用いてタングステン等の高融点金属板の表面に粒径1μm〜100μmの半球状の突起物を多数形成させる方法が開示されている。しかしながら、いずれも超硬合金やダイヤモンドなどの硬脆材料の先端を任意の形状に加工する技術を開示するものではない。
特許第3283265号公報 特許第3824622号公報 特開2005−210037号公報 特開2001−68899号公報
Japanese Patent Laid-Open No. 2001-68899 (see Patent Document 4) discloses a method of forming a large number of hemispherical projections having a particle diameter of 1 μm to 100 μm on the surface of a refractory metal plate such as tungsten using a femtosecond laser. It is disclosed. However, none disclose a technique for processing the tip of a hard and brittle material such as cemented carbide or diamond into an arbitrary shape.
Japanese Patent No. 3283265 Japanese Patent No. 3824622 JP 2005-210037 A JP 2001-68899 A

上述のように、難加工材料である超硬合金やダイヤモンドのような硬脆材料の加工を簡便に行う手法として、研磨や研削による直線的な加工、あるいは加工形状に作成した研削型等によって加工されていた。
しかし、図14のような1μm〜1000μmの細長さにある超硬合金製の硬脆材料141の凸端部142へ、上述のような加工方法を用いて球状加工することは破損しやすいために、非常に困難であった。
As mentioned above, as a method for easily processing hard-brittle materials such as hard metal and diamond, which are difficult to process, processing by linear processing by grinding or grinding, or by grinding dies created in processed shapes, etc. It had been.
However, the spherical processing using the above-described processing method to the convex end portion 142 of the hard brittle material 141 made of cemented carbide having a slender length of 1 μm to 1000 μm as shown in FIG. 14 is easy to break. It was very difficult.

また、フェムト秒レーザを用いた被加工物についての加工に関する先行技術においても、超硬合金やダイヤモンドなどの硬脆材料の加工に関する記述はない。 In addition, in the prior art relating to processing of a workpiece using a femtosecond laser, there is no description regarding processing of hard and brittle materials such as cemented carbide and diamond.

この発明はこのような状況に鑑みて提案されたもので、超硬合金やダイヤモンドなどの硬脆材料の先端、例えば曲率半径が1μm〜1000μmである微小な球状の凸部を簡便に、かつ高精度に加工する新規な硬脆材料の加工装置および加工方法を提供するものである。 The present invention has been proposed in view of such a situation. A tip of a hard and brittle material such as cemented carbide or diamond, for example, a minute spherical convex portion having a radius of curvature of 1 μm to 1000 μm can be easily and The present invention provides a processing apparatus and a processing method for a novel hard and brittle material that is processed with high accuracy.

請求項1に記載の発明は、硬脆材料から成る加工対象物を回転させる回転手段と、前記回転手段を3軸方向に移動させる3軸移動手段と、前記加工対象物に集光レンズを含む光学系を介して、フェムト秒レーザを照射するレーザ照射手段とを備え、前記光学系は、前記加工対象物に照射される際の前記フェムト秒レーザの楕円率を、前記加工対象物の仕上げ表面粗さに応じて変更する手段を備えたことを特徴とする硬脆材料加工装置である。   The invention described in claim 1 includes a rotating means for rotating a workpiece made of a hard and brittle material, a triaxial moving means for moving the rotating means in three axial directions, and a condenser lens on the workpiece. Laser irradiation means for irradiating a femtosecond laser via an optical system, and the optical system determines the ellipticity of the femtosecond laser when the workpiece is irradiated to the finished surface of the workpiece. It is a hard and brittle material processing apparatus provided with the means to change according to roughness.

請求項2に記載の発明は、請求項1に記載の硬脆材料加工装置において、前記光学系は前記楕円率が0から±1の範囲で調整可能であることを特徴とする。 According to a second aspect of the present invention, in the hard and brittle material processing apparatus according to the first aspect of the invention, the optical system can adjust the ellipticity in a range of 0 to ± 1.

請求項3に記載の発明は、請求項1又は2に記載の硬脆材料加工装置において、前記回転手段は、前記加工対象物の円周速度が0.01mm/秒から100mm/秒の範囲で制御可能であることを特徴とする。 According to a third aspect of the present invention, in the hard and brittle material processing apparatus according to the first or second aspect, the rotating means controls the circumferential speed of the object to be processed within a range of 0.01 mm / second to 100 mm / second. It is possible.

請求項4に記載の発明は、請求項1から3のいずれかに記載の硬脆材料加工装置において、前記硬脆材料がダイヤモンド、又は超硬合金であることを特徴とする。 According to a fourth aspect of the present invention, in the hard and brittle material processing apparatus according to any one of the first to third aspects, the hard and brittle material is diamond or a cemented carbide.

請求項5に記載の発明は、硬脆材料から成る加工対象物を回転、移動させながらフェムト秒レーザ光を照射し、前記加工対象物の端部を凸状に加工する硬脆材料の端部加工方法であって、前記加工対象物に照射される前記フェムト秒レーザの楕円率は仕上げ表面粗さに応じて調整することを特徴とする硬脆材料の端部加工方法である。 The invention according to claim 5 is an end portion of a hard and brittle material which is irradiated with femtosecond laser light while rotating and moving a workpiece made of a hard and brittle material, thereby processing the end portion of the workpiece into a convex shape. A method for processing an end portion of a hard and brittle material, characterized in that the ellipticity of the femtosecond laser applied to the workpiece is adjusted according to the finished surface roughness.

請求項6に記載の発明は、請求項5に記載の硬脆材料の端部加工方法において、前記硬脆材料の端部が、予め研削又は研磨により所望の形状に加工してあることを特徴とする。 The invention according to claim 6 is the method of processing an end portion of the hard and brittle material according to claim 5, wherein the end portion of the hard and brittle material is previously processed into a desired shape by grinding or polishing. And

請求項7に記載の発明は、請求項6又は7に記載の硬脆材料の端部加工方法において、前記楕円率が0から±1の範囲にあることを特徴とする。 A seventh aspect of the invention is characterized in that the ellipticity is in the range of 0 to ± 1 in the end portion processing method of the hard and brittle material according to the sixth or seventh aspect.

請求項8に記載の発明は、請求項5から7のいずれかに記載の硬脆材料の端部加工方法において、前記端部の形状を、曲率半径が1μmから1000μmの球面形状に加工することを特徴とする。 The invention according to claim 8 is the method of processing an end portion of the hard and brittle material according to any one of claims 5 to 7, wherein the shape of the end portion is processed into a spherical shape with a radius of curvature of 1 μm to 1000 μm. It is characterized by.

請求項9に記載の発明は、請求項5から8のいずれかに記載の硬脆材料の加工方法におおいて、前記硬脆材料がダイヤモンド、又は超硬合金であることを特徴とする。 The invention according to claim 9 is the method for processing a hard and brittle material according to any one of claims 5 to 8, wherein the hard and brittle material is diamond or a cemented carbide.

本発明によれば硬脆材料の端部に、例えば先端曲率半径が1μm〜1000μmである微小な球状の凸部を高精度に加工することができる。
また、本発明により端部を加工した硬脆材料は各種計測機器類の端子類や加工用微小工具類等に利用ができる。
According to the present invention, a minute spherical convex portion having a tip curvature radius of 1 μm to 1000 μm, for example, can be processed with high accuracy at the end portion of the hard and brittle material.
Further, the hard and brittle material whose end portion is processed according to the present invention can be used for terminals of various measuring instruments, micro tools for processing, and the like.

以下添付の図面に基いて、この発明に関する硬脆材料の加工装置およびこの加工方法を詳細に説明する。
図面はこの発明の超硬合金やダイヤモンドなどの硬脆材料の加工装置および加工方法に係る実施例を示す。図1は硬脆材料の先端加工の段階を示す概略図、図2はフェムト秒レーザ加工装置の概略図、図3はフェムト秒レーザ加工装置に取り付けられ加工に用いる旋盤装置の平面図、図4は旋盤装置のブロック図、図5は超硬合金の丸棒端部を球状に加工したときの拡大写真、図6は図5の矢印方向から見たときのレーザ顕微鏡による3次元観察像、図7は図5に示したXY座標における断面形状、図8は図7の一部を拡大表示した断面形状、図9は超硬合金の半球加工した部分の表面粗さ、図10はレーザ光線の偏光度合いを示す楕円率と超硬合金加工部の表面粗さの関係、図11はダイヤモンドの角材端部を球状に加工した球状部の拡大写真、図12は図11に示したXY座標における断面形状、図13は図12の半球加工した部分の表面粗さである。
A hard brittle material processing apparatus and this processing method according to the present invention will be described below in detail with reference to the accompanying drawings.
The drawings show an embodiment relating to a processing apparatus and processing method for hard and brittle materials such as cemented carbide and diamond of the present invention. FIG. 1 is a schematic diagram showing the stage of tip processing of a hard and brittle material, FIG. 2 is a schematic diagram of a femtosecond laser processing apparatus, FIG. 3 is a plan view of a lathe apparatus attached to the femtosecond laser processing apparatus and used for processing, FIG. Is a block diagram of a lathe device, FIG. 5 is an enlarged photograph when the end of a round bar of cemented carbide is processed into a spherical shape, FIG. 6 is a three-dimensional observation image by a laser microscope when viewed from the direction of the arrow in FIG. 7 is a cross-sectional shape in the XY coordinates shown in FIG. 5, FIG. 8 is a cross-sectional shape in which a part of FIG. 7 is enlarged, FIG. 9 is a surface roughness of a hemispherical portion of cemented carbide, and FIG. 11 shows the relationship between the ellipticity indicating the degree of polarization and the surface roughness of the processed part of the cemented carbide, FIG. 11 is an enlarged photograph of the spherical part obtained by processing the end of the square of the diamond into a spherical shape, and FIG. 12 is a cross section taken along the XY coordinates shown in FIG. Fig. 13 shows the surface roughness of the hemispherical part of Fig. 12 A.

図1はこの発明の超硬合金やダイヤモンドなどの硬脆材料の加工方法に係る加工段階の1実施例を示すものである。超硬合金やダイヤモンドなどの硬脆材料の回転体11は、その前工程において予め頭部13を切断した所定角度のテーパ面12を備えた円錐形に加工されている。前加工は、研削あるいは研磨によって行えば良い。 FIG. 1 shows one embodiment of a processing stage according to a processing method of a hard and brittle material such as a cemented carbide or diamond according to the present invention. The rotating body 11 of a hard and brittle material such as cemented carbide or diamond is processed into a conical shape having a tapered surface 12 having a predetermined angle obtained by cutting the head 13 in advance. The pre-processing may be performed by grinding or polishing.

このようにして前加工された超硬合金やダイヤモンドなどの硬脆材料の回転体11、例えば丸棒を回転させながら、その先端にフェムト秒レーザを照射し、先端部分の曲率半径が1μm〜1000μmの曲面を有する球面形状14を形成する。フェムト秒レーザの照射は、後述する旋盤装置を用いて超硬合金やダイヤモンドなどの硬脆材料の回転体11を回転させながら所定の肉厚分を順次削り取って行くものである。 While rotating the rotating body 11 of a hard and brittle material such as a hard metal or diamond pre-processed in this way, for example, a round bar, the tip is irradiated with a femtosecond laser, and the curvature radius of the tip is 1 μm to 1000 μm. A spherical shape 14 having a curved surface is formed. The femtosecond laser irradiation is to sequentially scrape a predetermined thickness while rotating a rotating body 11 of a hard and brittle material such as a cemented carbide or diamond using a lathe described later.

フェムト秒レーザの作用は、超硬合金やダイヤモンドなどの硬脆材料の回転体11の表面部におけるレーザアブレーションによる除去加工であり、極小の被加工物に対して非常に高精度の加工を行うことができる。レーザアブレーションとはレーザ照射による固体表面の除去の意味である。 The action of the femtosecond laser is removal processing by laser ablation on the surface portion of the rotating body 11 of a hard and brittle material such as cemented carbide or diamond, and performs extremely high precision processing on a very small workpiece. Can do. Laser ablation means the removal of the solid surface by laser irradiation.

フェムト秒レーザによる被加工物表面の除去加工はレーザフルエンスの大小によりその加工速度が異なる。レーザフルエンスとは単位面積あたりのエネルギー量を指し、J/cm2またはW/cm2で表わされる。レーザフルエンスが大きい程、レーザアブレーションによる除去量は多くなり、同時にプラズマの発生量も多くなる。レーザフルエンスが大きい程、集光加工点以外への影響が大きくなるため、加工部の表面粗さが悪化する。したがって、加工速度や加工精度に関して適切なレーザフルエンスが存在する。 The removal speed of the workpiece surface by femtosecond laser varies depending on the laser fluence. Laser fluence refers to the amount of energy per unit area and is expressed in J / cm 2 or W / cm 2 . The greater the laser fluence, the greater the amount removed by laser ablation and the greater the amount of plasma generated. The larger the laser fluence, the greater the influence on the points other than the condensing processing point, so that the surface roughness of the processed part deteriorates. Therefore, there is an appropriate laser fluence regarding the processing speed and processing accuracy.

図2にフェムト秒レーザ加工装置の概略を、図3にフェムト秒レーザによる旋盤加工に用いる旋盤装置の概略を示す。
図2において、この発明に用いられるフェムト秒レーザ加工装置は、超硬合金やダイヤモンドなどの硬脆材料の回転体11を取り付けた旋盤装置21と、旋盤装置21を搭載してxyz軸方向に移動可能とした3軸直交型電動リニアステージ22と、3軸直交型電動リニアステージ22上の旋盤装置21に保持した超硬合金やダイヤモンドなどの硬脆材料の回転体11に光学系23を介してフェムト秒レーザを照射するフェムト秒レーザ光源24と、前記光学系23と3軸直交型電動リニアステージ22に保持した超硬合金やダイヤモンドなどの硬脆材料の回転体11との間に配置した集光レンズ25とを備えている。
また、光学系23は、ミラー26で光軸を変えるとともに、偏光型アッテネータ27、偏光素子(λ/4波長板)28および減光フィルタ29を配置した構成としてある。偏光型アッテネータ27および減光フィルタ29を調整することにより、レーザフルエンスを変更することができる。また、偏光素子28を調節することにより、レーザ光線の偏光状態を変更することができる。
偏光とは光の振動方向、すなわち、光の強さが一様でなく、常に一定の平面上に限られている光をいう。偏光は直線偏光、楕円偏光、円偏光に分類できる。直線偏光とは光の振動(強さ)が光軸に対して垂直な平面上を一直線上に限られる場合である。円偏光とは光の振動(強さ)が光軸に対して垂直な平面上で常に一定であり、円を描く場合をいう。楕円偏光とは光の振動(強さ)が直線偏光と円偏光の中間である楕円を描く場合である。なお、楕円率とは楕円偏光の長軸と短軸との比を示す。これより、楕円率0の場合が直線偏光、楕円率±1の場合が円偏光、その中間の楕円率が楕円偏光である。ここで、±とは+が右回りの場合、−が左回りの場合に対応する。
FIG. 2 shows an outline of a femtosecond laser processing apparatus, and FIG. 3 shows an outline of a lathe apparatus used for lathe processing using a femtosecond laser.
In FIG. 2, the femtosecond laser processing apparatus used in the present invention includes a lathe apparatus 21 to which a rotating body 11 of a hard and brittle material such as cemented carbide or diamond is attached, and a lathe apparatus 21 mounted thereon and moves in the xyz axis direction. The three-axis orthogonal electric linear stage 22 made possible, and a rotating body 11 of a hard and brittle material such as cemented carbide or diamond held by a lathe device 21 on the three-axis orthogonal electric linear stage 22 via an optical system 23. A collection disposed between a femtosecond laser light source 24 for irradiating a femtosecond laser, and a rotating body 11 of a hard and brittle material such as cemented carbide or diamond held by the optical system 23 and a three-axis orthogonal electric linear stage 22. And an optical lens 25.
The optical system 23 has a configuration in which an optical axis is changed by a mirror 26 and a polarization type attenuator 27, a polarizing element (λ / 4 wavelength plate) 28, and a neutral density filter 29 are arranged. By adjusting the polarization type attenuator 27 and the neutral density filter 29, the laser fluence can be changed. Further, the polarization state of the laser beam can be changed by adjusting the polarization element 28.
Polarized light refers to light in which the vibration direction of light, that is, the intensity of light is not uniform and is always limited to a certain plane. Polarized light can be classified into linearly polarized light, elliptically polarized light, and circularly polarized light. Linearly polarized light is when the vibration (intensity) of light is limited to a straight line on a plane perpendicular to the optical axis. Circularly polarized light refers to a case in which the vibration (intensity) of light is always constant on a plane perpendicular to the optical axis and a circle is drawn. The elliptically polarized light is a case where an ellipse whose light vibration (intensity) is intermediate between linearly polarized light and circularly polarized light is drawn. The ellipticity indicates the ratio between the major axis and the minor axis of elliptically polarized light. From this, when the ellipticity is 0, linearly polarized light, when the ellipticity is ± 1, circularly polarized light, and the intermediate ellipticity is elliptically polarized light. Here, ± corresponds to the case where + is clockwise, and the case where − is counterclockwise.

図3は前記旋盤装置21の装置構成を示したものである。この旋盤装置21はPC制御の3軸直交型電動リニアステージ22上に備えてあり、xyz方向の位置決め制御が可能である。
図3において、丸棒の加工用に3軸直交型電動リニアステージ22上には、独立した制御系の旋盤装置21を取り付けてある。すなわち、前記旋盤装置21はブラシレスDCモータ31とスピンドル32により構成されており、両者は同一方向にその端部に突設したプーリ33,33とこれらを連結する平ベルト34によって動力伝達される。
図中35は、前記スピンドル32の先端に取り付けた被加工物を保持するためのチャックである。
FIG. 3 shows an apparatus configuration of the lathe apparatus 21. The lathe device 21 is provided on a PC-controlled three-axis orthogonal electric linear stage 22, and positioning control in the xyz direction is possible.
In FIG. 3, a lathe device 21 of an independent control system is mounted on a three-axis orthogonal electric linear stage 22 for processing a round bar. That is, the lathe device 21 is composed of a brushless DC motor 31 and a spindle 32, both of which are transmitted power by pulleys 33, 33 projecting from the end in the same direction and a flat belt 34 connecting them.
In the figure, reference numeral 35 denotes a chuck for holding a workpiece attached to the tip of the spindle 32.

図4はフェムト秒レーザ光線が集光レンズ25で収束されて、スピンドル32端部のチャック35に取り付けた回転体11の先端で集光し、除去加工するまでの光路を示した図である。
以上のような構造を採用すれば、被加工物である超硬合金やダイヤモンドなどの硬脆材料の回転体11を非常に精度よく加工させることができる。
FIG. 4 is a diagram showing an optical path from when the femtosecond laser beam is converged by the condensing lens 25, condensed at the tip of the rotating body 11 attached to the chuck 35 at the end of the spindle 32, and removed.
If the structure as described above is employed, the rotating body 11 made of a hard and brittle material such as a cemented carbide or diamond, which is a workpiece, can be processed with very high accuracy.

フェムト秒レーザ加工装置として、パルス幅90fs(フェムト秒)、最大レーザフルエンス3.6W/cm2、波長800nm、発振周波数1kHzのものを用いた。
具体的な加工条件としては、上記仕様のフェムト秒レーザ加工装置におけるレーザフルエンスが530mW/cm2であり、5倍対物の集光レンズ(焦点距離36mm)を用いて、被加工物である超硬合金製回転体の回転数を7.8rpmとして加工を行った。
なお、旋盤装置22のレーザ集光点と加工軸が含まれるxy平面上が同一になるよう、xy電動ステージを走査した。
A femtosecond laser processing apparatus having a pulse width of 90 fs (femtosecond), a maximum laser fluence of 3.6 W / cm 2 , a wavelength of 800 nm, and an oscillation frequency of 1 kHz was used.
As specific processing conditions, the laser fluence in the femtosecond laser processing apparatus having the above specifications is 530 mW / cm 2 , and a cemented carbide that is a workpiece is used by using a 5 × objective condensing lens (focal length 36 mm). Processing was performed with the rotational speed of the alloy rotating body set to 7.8 rpm.
In addition, the xy electric stage was scanned so that the laser condensing point of the lathe device 22 and the xy plane including the machining axis were the same.

加工手順は、前記図1に示すように機械仕上げ加工された超硬合金製の回転体11の先端部に、研削あるいは研磨によってその頭部13を切断した所定角度のテーパ面12を備えた円錐形に加工して、旋盤装置21のチャック35へ取り付ける。その上で、ブラシレスDCモータ31を駆動してスピンドル32を回転させ、所定の速度で回転している回転体11先端のテーパ面12へフェムト秒レーザを照射して球状になるように表面を除去加工した。
具体的には、回転体11として、直径1.0mm、長さ30mmの研磨丸棒の先端部分、約5mmを予め直径0.6mmに研削し、その先端部へ球状加工を行った。
なお、加工された回転体11からなる試料は、共焦点型レーザ顕微鏡によって形状観察した。
As shown in FIG. 1, the machining procedure includes a cone having a tapered surface 12 of a predetermined angle obtained by cutting the head 13 by grinding or polishing at the tip of a rotating body 11 made of cemented carbide that has been machine-finished. The shape is processed and attached to the chuck 35 of the lathe device 21. Then, the brushless DC motor 31 is driven to rotate the spindle 32, and the tapered surface 12 at the tip of the rotating body 11 rotating at a predetermined speed is irradiated with a femtosecond laser to remove the surface so that it becomes spherical. processed.
Specifically, as the rotating body 11, a tip portion of a polished round bar having a diameter of 1.0 mm and a length of 30 mm, about 5 mm, was ground in advance to a diameter of 0.6 mm, and the tip portion was spherically processed.
Note that the shape of the processed sample of the rotating body 11 was observed with a confocal laser microscope.

図5に前記旋盤装置21で加工した試料の外観を示す。回転体11の先端は球状に加工されていることが確認できる。先端球の直径はφ400μmであった。
図6にその球状部分を図5の矢印で示した観察方向から見た3次元観察像を示す。同図より、概ね球状に加工されていることが確認される。
FIG. 5 shows an external appearance of a sample processed by the lathe device 21. It can be confirmed that the tip of the rotating body 11 is processed into a spherical shape. The diameter of the tip sphere was φ400 μm.
FIG. 6 shows a three-dimensional observation image of the spherical portion viewed from the observation direction indicated by the arrow in FIG. From this figure, it is confirmed that it is processed into a roughly spherical shape.

次に、図7は図5のXY座標で示した球中央部におけるX方向の距離とY方向の高さの関係を示す。さらに図8は図7の一部を拡大表示したものである。
図9は図6から得られた表面のJISで規定されている算術平均粗さRa(断面の抜き取り部の平均線の下側に現れる断面の部分を平均線で折り返して得られる部分を含む総面積を基準長さで除した値をμmで表したもの)であり、誤差線は標準偏差(測定数は5回)である。図9から、表面の算術平均粗さRa=0.6程度であり、これは超仕上げ加工面の表面粗さを満たすものである。
Next, FIG. 7 shows the relationship between the distance in the X direction and the height in the Y direction at the center of the sphere indicated by the XY coordinates in FIG. FIG. 8 is an enlarged view of a part of FIG.
FIG. 9 shows the arithmetic average roughness Ra specified by JIS of the surface obtained from FIG. 6 (the total including the portion obtained by folding the portion of the cross section appearing below the average line of the extracted portion of the cross section with the average line) The value obtained by dividing the area by the reference length is expressed in μm), and the error line is the standard deviation (the number of measurements is 5). From FIG. 9, the arithmetic average roughness Ra of the surface is about 0.6, which satisfies the surface roughness of the superfinished surface.

レーザ光線の楕円率は球の表面粗さに影響を及ぼす。
図10にレーザ光線の楕円率と表面粗さの関係を示す。同図より、楕円率0の直線偏光のとき表面粗さが最も大きく、楕円率が大きくなるほど表面粗さは減少し、楕円率+1の円偏光のとき表面粗さが最も小さいことがわかる。なお、楕円率がマイナスの場合も図10に対応する結果が得られた。
The ellipticity of the laser beam affects the surface roughness of the sphere.
FIG. 10 shows the relationship between the ellipticity of the laser beam and the surface roughness. From the figure, it can be seen that the surface roughness is the largest for linearly polarized light with an ellipticity of 0, the surface roughness decreases as the ellipticity increases, and the surface roughness is the smallest for circularly polarized light with an ellipticity of +1. The result corresponding to FIG. 10 was also obtained when the ellipticity was negative.

上記実施例1と同様の加工装置を用いて,ダイヤモンド端部に球状加工を施した1例の拡大写真を図11に示す。ダイヤモンド先端部の球の直径は約870μmであり、球状に加工されている。このときの加工条件および加工手順は実施例1の超硬合金と同様であるが、レーザフルエンスが710mW/cm2であることのみ異なる。 FIG. 11 shows an enlarged photograph of an example in which spherical processing is applied to the diamond end using the same processing apparatus as in Example 1 above. The diameter of the sphere at the tip of the diamond is about 870 μm and is processed into a spherical shape. The processing conditions and processing procedures at this time are the same as those of the cemented carbide of Example 1, except that the laser fluence is 710 mW / cm 2 .

次に、図11のXY座標で示した球中央部のX方向の距離とY方向の高さの関係を図12に示す。
図13は図11から求めた表面の算術平均粗さRaであり、誤差線は標準偏差(測定数は5回)である。図13より、表面の算術平均粗さはRa=1.1であり、これは超仕上げ加工面の表面粗さを満たすものである。
Next, FIG. 12 shows the relationship between the distance in the X direction and the height in the Y direction at the center of the sphere indicated by the XY coordinates in FIG.
FIG. 13 shows the arithmetic average roughness Ra of the surface obtained from FIG. 11, and the error line is the standard deviation (the number of measurements is 5). From FIG. 13, the arithmetic average roughness of the surface is Ra = 1.1, which satisfies the surface roughness of the superfinished surface.

上記実施例においてはフェムト秒レーザ加工装置の加工条件として、パルス幅90fs、最大レーザフルエンス3.6W/cm2、波長800nm、発振周波数1kHzのものを示したが、加工条件はこの条件に限定されるものではない。
また、上記仕様のフェムト秒レーザ加工装置におけるレーザフルエンスが530mW/cm2や710mW/cm2であり、5倍対物の集光レンズ(焦点距離36mm)を用いて、被加工物である超硬合金とダイヤモンド製回転体の回転数を7.8rpmとして加工を行ったが、この加工条件も、被加工物である硬脆材料製回転体11の材質や求められる精度等に応じて適宜変更することができる。
In the above embodiment, the processing conditions of the femtosecond laser processing apparatus are shown as those with a pulse width of 90 fs, a maximum laser fluence of 3.6 W / cm 2 , a wavelength of 800 nm, and an oscillation frequency of 1 kHz. However, the processing conditions are limited to these conditions. It is not something.
In addition, the laser fluence in the femtosecond laser processing apparatus having the above specifications is 530 mW / cm 2 or 710 mW / cm 2 , and a cemented carbide which is a workpiece using a 5 × objective condenser lens (focal length 36 mm). And the rotation speed of the diamond rotating body was 7.8 rpm, but the processing conditions should be changed as appropriate depending on the material of the hard and brittle material rotating body 11 that is the workpiece, the required accuracy, and the like. Can do.

以上図示し説明したように、この発明に関して硬脆材料である超硬合金やダイヤモンドの加工装置および加工方法によれば、超硬合金あるいはダイヤモンドの回転体であればどのような用途のものにも適用することができる。 As shown and described above, according to the present invention, according to the processing apparatus and processing method for cemented carbide and diamond, which are hard and brittle materials, any cemented carbide or diamond rotating body can be used for any purpose. Can be applied.

例えば、この発明の超硬合金やダイヤモンドの加工装置および加工方法は、硬度計の圧端子やその他の微細な端子類、また種々の金属類等を加工するための微小工具類等の加工用途に利用することが可能である。 For example, the processing apparatus and processing method for cemented carbide and diamond of the present invention are suitable for processing applications such as pressure terminals of hardness testers, other fine terminals, and micro tools for processing various metals. It is possible to use.

この発明の超硬合金やダイヤモンドの加工装置および機械仕上げ加工面とレーザ加工面を示す概略図である。It is the schematic which shows the cemented carbide alloy and diamond processing apparatus of this invention, a machine finishing surface, and a laser processing surface. フェムト秒レーザ加工装置の概略を示す概略図である。It is the schematic which shows the outline of a femtosecond laser processing apparatus. 加工に用いる旋盤装置の平面図である。It is a top view of the lathe apparatus used for a process. 旋盤装置に取り付けられた被加工物と集光したレーザとの関係図である。It is a related figure of the to-be-processed object attached to the lathe apparatus, and the condensed laser. 超硬合金の丸棒端部を球状に加工した光学顕微鏡像である。It is the optical microscope image which processed the round bar end of the cemented carbide into a spherical shape. 図5の矢印方向から見たレーザ顕微鏡による3次元観察像である。6 is a three-dimensional observation image by a laser microscope viewed from the direction of the arrow in FIG. 5. 図5の球中央部のXY座標における断面形状である。6 is a cross-sectional shape in the XY coordinates of the center of the sphere in FIG. 図7の一部分を拡大して得られた断面形状である。It is the cross-sectional shape obtained by enlarging a part of FIG. 図5の加工球面における表面粗さである。It is the surface roughness in the processing spherical surface of FIG. 超硬合金におけるレーザの楕円率(偏光度合い)と加工表面粗さの関係を示している。The relationship between the ellipticity of the laser (degree of polarization) and the processed surface roughness in the cemented carbide is shown. ダイヤモンド端部の球状面の光学顕微鏡像である。It is an optical microscope image of the spherical surface of a diamond edge part. 図11の球中央部のXY座標における断面形状である。It is a cross-sectional shape in the XY coordinates of the sphere center part of FIG. 図11の加工球面の表面粗さである。It is the surface roughness of the processed spherical surface of FIG. 従来の細長く加工した超硬合金先端部の概略図である。It is the schematic of the conventional elongate processed cemented carbide tip part.

符号の説明Explanation of symbols

11 回転体
12 テーパ面
13 頭部
14 球面形状
21 旋盤装置
22 3軸直交型電動リニアステージ
23 光学系
24 フェムト秒レーザ光源
25 集光レンズ
26 ミラー
27 偏光型アッテネータ
28 偏光素子(λ/4波長板)
29 減光フィルタ
31 ブラシレスDCモータ
32 スピンドル
33,33 プーリ
34 平ベルト
35 チャック
141 細長くなっている超硬合金製加工部品
142 凸端部
DESCRIPTION OF SYMBOLS 11 Rotating body 12 Tapered surface 13 Head 14 Spherical shape 21 Lathe device 22 Three-axis orthogonal type electric linear stage 23 Optical system 24 Femtosecond laser light source 25 Condensing lens 26 Mirror 27 Polarization type attenuator 28 Polarization element (λ / 4 wavelength plate )
29 Neutral density filter 31 Brushless DC motor 32 Spindle 33, 33 Pulley 34 Flat belt 35 Chuck 141 Slender cemented carbide workpiece 142 Convex end

Claims (9)

硬脆材料から成る加工対象物を回転させる回転手段と、
前記回転手段を3軸方向に移動させる3軸移動手段と、
前記加工対象物に集光レンズを含む光学系を介して、フェムト秒レーザを照射するレーザ照射手段とを備え、
前記光学系は、前記加工対象物に照射される際の前記フェムト秒レーザの楕円率を、前記加工対象物の仕上げ表面粗さに応じて変更する手段を備えたことを特徴とする硬脆材料加工装置。
A rotating means for rotating a workpiece made of a hard and brittle material;
Triaxial moving means for moving the rotating means in three axial directions;
Laser irradiation means for irradiating a femtosecond laser through an optical system including a condenser lens on the object to be processed;
The optical system includes means for changing an ellipticity of the femtosecond laser when the workpiece is irradiated in accordance with a finish surface roughness of the workpiece. Processing equipment.
前記光学系は、前記楕円率が0から±1の範囲で調整可能であることを特徴とする請求項1に記載の硬脆材料加工装置。   The hard and brittle material processing apparatus according to claim 1, wherein the optical system is adjustable in the ellipticity range of 0 to ± 1. 前記回転手段は、前記加工対象物の円周速度が0.01mm/秒から100mm/秒の範囲で制御可能であることを特徴とする請求項1又は2に記載の硬脆材料加工装置。 The hard and brittle material processing apparatus according to claim 1, wherein the rotating means is capable of controlling a circumferential speed of the processing object within a range of 0.01 mm / second to 100 mm / second. 前記硬脆材料がダイヤモンド、又は超硬合金であることを特徴とする請求項1から3のいずれかに記載の硬脆材料加工装置。 4. The hard / brittle material processing apparatus according to claim 1, wherein the hard / brittle material is diamond or a cemented carbide. 硬脆材料から成る加工対象物を回転、移動させながらフェムト秒レーザ光を照射し、前記加工対象物の端部を凸状に加工する硬脆材料の端部加工方法であって、
前記加工対象物に照射される前記フェムト秒レーザの楕円率は仕上げ表面粗さに応じて調整することを特徴とする硬脆材料の端部加工方法。
An end processing method for a hard and brittle material that irradiates femtosecond laser light while rotating and moving a processing target made of a hard and brittle material, and processing the end of the processing target into a convex shape,
A method for processing an end portion of a hard and brittle material, wherein the ellipticity of the femtosecond laser irradiated to the workpiece is adjusted according to the finished surface roughness.
前記硬脆材料の端部が、予め研削又は研磨により所望の形状に加工してあることを特徴とする請求項5に記載の硬脆材料の端部加工方法。   6. The method for processing an end portion of a hard and brittle material according to claim 5, wherein the end portion of the hard and brittle material is previously processed into a desired shape by grinding or polishing. 前記楕円率が0から±1の範囲にあることを特徴とする請求項6又は7に記載の硬脆材料の端部加工方法。 The method for processing an end portion of a hard and brittle material according to claim 6 or 7, wherein the ellipticity is in a range of 0 to ± 1. 前記端部の形状を、曲率半径が1μmから1000μmの球面形状に加工することを特徴とする請求項5から7のいずれかに記載の硬脆材料の端部加工方法。 The method of processing an end portion of a hard and brittle material according to any one of claims 5 to 7, wherein the shape of the end portion is processed into a spherical shape with a radius of curvature of 1 µm to 1000 µm. 前記硬脆材料がダイヤモンド、又は超硬合金であることを特徴とする請求項5から8のいずれかに記載の硬脆材料の加工方法。   The method for processing a hard and brittle material according to claim 5, wherein the hard and brittle material is diamond or a cemented carbide.
JP2008286498A 2008-11-07 2008-11-07 Apparatus and method for machining hard and brittle material Pending JP2010110799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286498A JP2010110799A (en) 2008-11-07 2008-11-07 Apparatus and method for machining hard and brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286498A JP2010110799A (en) 2008-11-07 2008-11-07 Apparatus and method for machining hard and brittle material

Publications (1)

Publication Number Publication Date
JP2010110799A true JP2010110799A (en) 2010-05-20

Family

ID=42299791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286498A Pending JP2010110799A (en) 2008-11-07 2008-11-07 Apparatus and method for machining hard and brittle material

Country Status (1)

Country Link
JP (1) JP2010110799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309972A (en) * 2020-09-30 2022-04-12 孙朝阳 Manufacturing process of organic glass elliptical mold body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309972A (en) * 2020-09-30 2022-04-12 孙朝阳 Manufacturing process of organic glass elliptical mold body

Similar Documents

Publication Publication Date Title
JP4976576B2 (en) Cutting tool, manufacturing method thereof and manufacturing apparatus
TWI380868B (en) Fine processing method of sintered diamond using laser, cutter wheel for brittle material substrate, and method of manufacturing the same
JP6392909B2 (en) Method for forming cutting edge of rotary cutting tool
Wu et al. Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel
Zhao et al. Fabrication of high hardness microarray diamond tools by femtosecond laser ablation
JP2009066627A (en) Polishing method using laser beam machining, polishing device, and polished cutting tool
JP5870621B2 (en) Laser processing apparatus and laser processing method
Kadivar et al. Laser-assisted micro-grinding of Si3N4
JP6435801B2 (en) End mill
JP5201424B2 (en) Carbon film coated cutting tool and method for manufacturing the same
JP6950183B2 (en) Diamond-coated rotary cutting tool and its manufacturing method
JP2012016735A (en) Laser beam machining device and laser beam machining method
JP6089596B2 (en) End mill and manufacturing method thereof
JP2021516631A (en) Ultra-precision blade edge processing method using femtosecond laser
JP5899904B2 (en) Carbon film coated end mill and method for producing the same
JP6980216B2 (en) Cutting tool manufacturing method
JP2010110799A (en) Apparatus and method for machining hard and brittle material
JP2012045581A (en) Laser processing method
JP5899905B2 (en) Carbon film-coated drill and manufacturing method thereof
WO2011046052A1 (en) Method for forming ventilation holes in an electrode plate
CN111940930A (en) Micropore laser processing method and equipment
JP2012135828A (en) Carbon film-coated insert tip, and method of manufacturing the same
JP4900655B2 (en) Laser processing equipment
JP2018039101A (en) Manufacturing method of cutting tool and honing face formation device
Chung et al. Silicon micromachining by CO2 laser