JP2012134334A - Method for manufacturing laminated device - Google Patents

Method for manufacturing laminated device Download PDF

Info

Publication number
JP2012134334A
JP2012134334A JP2010285416A JP2010285416A JP2012134334A JP 2012134334 A JP2012134334 A JP 2012134334A JP 2010285416 A JP2010285416 A JP 2010285416A JP 2010285416 A JP2010285416 A JP 2010285416A JP 2012134334 A JP2012134334 A JP 2012134334A
Authority
JP
Japan
Prior art keywords
semiconductor
laminated
wafer
defective
semiconductor wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010285416A
Other languages
Japanese (ja)
Inventor
Shoichi Kodama
祥一 児玉
Yong Suk Kim
ヨンソク キム
Nobuhide Maeda
展秀 前田
Akihito Kawai
章仁 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2010285416A priority Critical patent/JP2012134334A/en
Publication of JP2012134334A publication Critical patent/JP2012134334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a laminated device capable of producing the same with a high yield.SOLUTION: The method comprises: a semiconductor wafer preparing step for preparing m sheets of semiconductor wafers ( m is an integer of 3 or more ); a map forming step for forming nondefective unit and a defective unit maps 12A, 12B, 12C, 12D for every semiconductor wafer in m sheets of semiconductor wafers; a combination detecting step for detecting a combination in which the number of defective semiconductor devices 16b included in the semiconductor devices is minimum by selecting and laminating a predetermined number n sheets of semiconductor wafers from the m sheets of semiconductor wafers; a laminated wafer forming step for forming the predetermined number n sheets of semiconductor wafers according the combination of semiconductor wafers detected in the combination detecting step; and a splitting step for splitting the laminated wafer formed in the laminated wafer forming step along a scheduled division line and forming a laminated device in which the predetermined number n sheets of semiconductor devices are laminated.

Description

本発明は、複数の半導体デバイスが積層された積層デバイスの製造方法に関する。   The present invention relates to a method for manufacturing a stacked device in which a plurality of semiconductor devices are stacked.

半導体デバイスの製造プロセスにおいては、半導体ウエーハの表面にストリートと呼ばれる分割予定ラインによって区画された各領域にICやLSI等のデバイスが形成される。そして、分割予定ラインに沿って半導体ウエーハをチップに分割することで、個々の半導体デバイスが製造される。このようにして製造された半導体デバイスは各種電気機器に広く利用されている。   In the manufacturing process of semiconductor devices, devices such as ICs and LSIs are formed in each region partitioned by dividing lines called streets on the surface of the semiconductor wafer. Then, individual semiconductor devices are manufactured by dividing the semiconductor wafer into chips along the planned dividing lines. The semiconductor device manufactured in this way is widely used in various electric appliances.

近年、電気機器の小型化・薄型化に伴い半導体デバイスパッケージも小型化・薄型化が要求され、実装の高密度化が要求されている。複数の半導体デバイスを一つのパッケージに集積する手法の一つに複数の半導体デバイスチップを縦方向に積層して実装する三次元実装がある。   In recent years, along with miniaturization and thinning of electrical equipment, semiconductor device packages are also required to be miniaturized and thin, and higher density of packaging is required. One technique for integrating a plurality of semiconductor devices in one package is a three-dimensional mounting in which a plurality of semiconductor device chips are stacked in the vertical direction and mounted.

従来の三次元実装では、ワイヤボンディングを用いて半導体デバイスチップ間、或いは半導体デバイスチップとインターポーザとを接続していた。ワイヤボンディングによる接続では、その配線長分インダクタンス等が大きくなるので高速での信号のやり取りには向かないという問題があるとともに、ワイヤが半導体デバイスチップ等に触れないようにチップを積層する必要があるため小型化が難しい等の問題がある。   In conventional three-dimensional packaging, wire bonding is used to connect between semiconductor device chips or between a semiconductor device chip and an interposer. In connection by wire bonding, inductance and the like increase by the length of the wiring, so that there is a problem that it is not suitable for high-speed signal exchange, and it is necessary to stack chips so that wires do not touch semiconductor device chips and the like Therefore, there are problems such as difficulty in miniaturization.

近年、新たな三次元実装技術として、ワイヤの代わりにSi貫通電極(Through−Silicon Via:TSV)を用いた実装技術が注目されている。TSV技術を用いると、配線長がワイヤより短いため配線抵抗やインダクタンスが大幅に低減でき、消費電力も大幅に低減できるというメリットがある。   In recent years, as a new three-dimensional mounting technique, a mounting technique using a through-silicon via (TSV) instead of a wire has attracted attention. When the TSV technology is used, since the wiring length is shorter than that of the wire, the wiring resistance and inductance can be greatly reduced, and the power consumption can be greatly reduced.

TSV技術の一つとして、複数の半導体ウエーハ同士を積層し、積層した半導体ウエーハを貫く貫通電極を形成してウエーハ同士を接続する方法がある(Wafer on Wafer:WOW)。   As one of the TSV technologies, there is a method in which a plurality of semiconductor wafers are stacked, a through electrode penetrating the stacked semiconductor wafers is formed, and the wafers are connected to each other (Wafer on Wafer: WOW).

特開2003−249620号公報JP 2003-249620 A

ところが、殆どの半導体ウエーハには、良品半導体デバイスと幾つかの不良品半導体デバイスが混在しているため、複数の半導体ウエーハ同士を積層し、積層した半導体ウエーハ同士を貫く貫通電極を形成して半導体ウエーハ同士を接続するWOW技術では歩留まりが悪いという問題がある。数多くの半導体ウエーハを積層する場合には、上記問題が顕著になる。   However, since most semiconductor wafers contain both good semiconductor devices and several defective semiconductor devices, a plurality of semiconductor wafers are stacked together to form a through electrode that penetrates the stacked semiconductor wafers. The WOW technology for connecting wafers has a problem of poor yield. The above problem becomes significant when a large number of semiconductor wafers are stacked.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、歩留まりの悪化を抑制可能な積層デバイスの製造方法を提供することである。   This invention is made | formed in view of such a point, The place made into the objective is providing the manufacturing method of the laminated device which can suppress the deterioration of a yield.

本発明によると、所定数n(nは2以上の整数)の半導体デバイスが積層された積層デバイスを製造する積層デバイスの製造方法であって、それぞれ同位置に交差する複数の分割予定ラインを有し、該分割予定ラインで区画された各領域にそれぞれ半導体デバイスが形成された半導体ウエーハを該nより多いm枚(mは3以上の整数)準備する半導体ウエーハ準備ステップと、該半導体ウエーハ準備ステップで準備したm枚の半導体ウエーハにおいて、どの半導体デバイスが良品でどの半導体デバイスが不良品であるかのマップを半導体ウエーハ毎に作成するマップ作成ステップと、該マップ作成ステップを実施した後、該m枚の半導体ウエーハから該所定数nの半導体ウエーハを選択して積層する組み合わせのうち、積層された半導体デバイス中に不良品半導体デバイスが含まれる数が最も少なくなる組み合わせを検出する組み合わせ検出ステップと、該組み合わせ検出ステップで検出した半導体ウエーハの組み合わせに従って、該所定数nの半導体ウエーハを積層して積層ウエーハを形成する積層ウエーハ形成ステップと、該積層ウエーハ形成ステップで形成した該積層ウエーハを該分割予定ラインに沿って分割して、該所定数nの半導体デバイスが積層された積層デバイスを形成する分割ステップと、を具備したことを特徴とする積層デバイスの製造方法が提供される。   According to the present invention, there is provided a laminated device manufacturing method for manufacturing a laminated device in which a predetermined number n (n is an integer of 2 or more) of semiconductor devices are laminated, each having a plurality of division lines that intersect at the same position. A semiconductor wafer preparation step of preparing m semiconductor wafers (m is an integer of 3 or more) larger than the n semiconductor wafers each having a semiconductor device formed in each region partitioned by the division line, and the semiconductor wafer preparation step In the m semiconductor wafers prepared in step (b), a map creation step for creating a map of which semiconductor devices are non-defective products and which semiconductor devices are defective products for each semiconductor wafer; Of the combinations in which the predetermined number n of semiconductor wafers are selected from a plurality of semiconductor wafers and stacked, the stacked semiconductor devices A predetermined number n of semiconductor wafers are stacked in accordance with a combination of a combination detection step for detecting a combination in which the number of defective semiconductor devices is the smallest in the semiconductor wafer and a combination of the semiconductor wafers detected in the combination detection step. A laminated wafer forming step, and a dividing step in which the laminated wafer formed in the laminated wafer forming step is divided along the planned dividing line to form a laminated device in which the predetermined number n of semiconductor devices are laminated. A method for manufacturing a laminated device is provided.

本発明の積層デバイスの製造方法によると、準備した全半導体ウエーハ中積層デバイスの歩留まりが最も高くなる組み合わせを選択して積層ウエーハを形成するため、積層ウエーハを分割して得られる積層デバイスの歩留まりを向上することができる。   According to the method for manufacturing a laminated device of the present invention, the combination of the laminated devices among all the prepared semiconductor wafers is selected to form the laminated wafer, so that the yield of the laminated devices obtained by dividing the laminated wafer is increased. Can be improved.

半導体ウエーハ準備ステップを説明する図である。It is a figure explaining a semiconductor wafer preparation step. マップ形成ステップを説明する図である。It is a figure explaining a map formation step. 図3(A)は半導体ウエーハAのマップと半導体ウエーハBのマップの組み合わせを示す図、図3(B)は半導体ウエーハCのマップと半導体ウエーハDのマップの組み合わせを示す図である。FIG. 3A is a diagram showing a combination of a map of the semiconductor wafer A and a map of the semiconductor wafer B, and FIG. 3B is a diagram showing a combination of a map of the semiconductor wafer C and a map of the semiconductor wafer D. 図4(A)は半導体ウエーハAのマップと半導体ウエーハCのマップの組み合わせを示す図、図4(B)は半導体ウエーハBのマップと半導体ウエーハDのマップの組み合わせを示す図である。4A is a diagram showing a combination of a map of the semiconductor wafer A and a map of the semiconductor wafer C, and FIG. 4B is a diagram showing a combination of a map of the semiconductor wafer B and a map of the semiconductor wafer D. 図5(A)は半導体ウエーハAのマップと半導体ウエーハDのマップの組み合わせを示す図、図5(B)は半導体ウエーハBのマップと半導体ウエーハCのマップの組み合わせを示す図である。FIG. 5A is a diagram showing a combination of a map of the semiconductor wafer A and a map of the semiconductor wafer D, and FIG. 5B is a diagram showing a combination of a map of the semiconductor wafer B and a map of the semiconductor wafer C. 図6(A)は半導体ウエーハAと半導体ウエーハCとが積層された積層ウエーハの斜視図、図6(B)は半導体ウエーハBと半導体ウエーハDとが積層された積層ウエーハの斜視図である。FIG. 6A is a perspective view of a laminated wafer in which a semiconductor wafer A and a semiconductor wafer C are laminated, and FIG. 6B is a perspective view of a laminated wafer in which a semiconductor wafer B and a semiconductor wafer D are laminated. 積層ウエーハを分割する分割ステップを示す斜視図である。It is a perspective view which shows the division | segmentation step which divides | segments a laminated wafer.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1を参照すると、半導体ウエーハ準備ステップの説明図が示されている。ここでは、4枚の半導体ウエーハ2A,2B,2C,2Dを準備するものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, an explanatory diagram of the semiconductor wafer preparation step is shown. Here, four semiconductor wafers 2A, 2B, 2C, and 2D are prepared.

各半導体ウエーハ2A〜2Dはシリコンウエーハから形成されており、その表面には格子状に形成された複数の分割予定ライン(ストリート)4によって区画された各領域にIC、LSI等の半導体デバイス6a,6bが形成されている。   Each of the semiconductor wafers 2A to 2D is formed of a silicon wafer, and a semiconductor device 6a such as an IC or LSI is formed in each region partitioned by a plurality of division lines (streets) 4 formed in a lattice shape on the surface thereof. 6b is formed.

ここで、白抜きは良品半導体デバイス6a、シェーディングが施されたデバイスは不良品半導体デバイス6bであるとする。8はシリコンウエーハの結晶方位を示すマークとしてのノッチである。   Here, it is assumed that the white semiconductor device 6a is white and the shaded device is a defective semiconductor device 6b. Reference numeral 8 denotes a notch as a mark indicating the crystal orientation of the silicon wafer.

半導体ウエーハ2A〜2Dの全ての半導体デバイスは検査工程で電気的特性等が検査され、良品半導体デバイス6aは検査工程で合格した半導体デバイスであり、不良品半導体デバイス6bは検査工程で不合格とされた半導体デバイスである。   All semiconductor devices of the semiconductor wafers 2A to 2D are inspected for electrical characteristics in the inspection process, the non-defective semiconductor device 6a is a semiconductor device that has passed the inspection process, and the defective semiconductor device 6b is rejected in the inspection process. Semiconductor device.

本発明の積層デバイスの製造方法では、図1に示す半導体ウエーハ2A〜2Dを準備した後、半導体ウエーハ2A〜2Dにおいてどの半導体デバイスが良品でどの半導体デバイスが不良品であるかのマップを半導体ウエーハ毎に作成するマップ作成ステップを実施する。   In the method for manufacturing a laminated device of the present invention, after preparing the semiconductor wafers 2A to 2D shown in FIG. 1, a map of which semiconductor devices are non-defective products and which semiconductor devices are defective products in the semiconductor wafers 2A to 2D. The map creation step to be created every time is performed.

このマップ作成ステップでは、図2に示すようなマップを作成し、これらのマップを例えばウエーハ積層装置のメモリに格納する。ここで12Aは図1に示した半導体ウエーハ2Aに対応したマップであり、16aは良品半導体デバイスの位置を示し、16bは不良品半導体デバイスの位置を示しており、それぞれ半導体ウエーハ2Aの良品半導体デバイス6a、不良品半導体デバイス6bに対応する。   In this map creation step, maps as shown in FIG. 2 are created, and these maps are stored, for example, in the memory of the wafer laminating apparatus. Here, 12A is a map corresponding to the semiconductor wafer 2A shown in FIG. 1, 16a shows the position of the non-defective semiconductor device, 16b shows the position of the defective semiconductor device, and the non-defective semiconductor device of the semiconductor wafer 2A, respectively. 6a corresponds to the defective semiconductor device 6b.

12Bは半導体ウエーハ2Bのマップであり、良品半導体デバイス位置16a、不良品半導体デバイス位置16bはそれぞれ半導体ウエーハ2Bの良品半導体デバイス6a、不良品半導体デバイス6bに対応している。   12B is a map of the semiconductor wafer 2B, and the non-defective semiconductor device position 16a and the defective semiconductor device position 16b correspond to the non-defective semiconductor device 6a and the defective semiconductor device 6b of the semiconductor wafer 2B, respectively.

12Cは半導体ウエーハ2Cのマップであり、良品半導体デバイス位置16a、不良品半導体デバイス位置16bはそれぞれ半導体ウエーハ2Cの良品半導体デバイス6a、不良品半導体デバイス6bに対応している。   12C is a map of the semiconductor wafer 2C, and the non-defective semiconductor device position 16a and the defective semiconductor device position 16b correspond to the non-defective semiconductor device 6a and the defective semiconductor device 6b of the semiconductor wafer 2C, respectively.

12Dは半導体ウエーハ2Dのマップであり、良品半導体デバイス位置16a、不良品半導体デバイス位置16bはそれぞれ半導体ウエーハ2Dの良品半導体デバイス6a、不良品半導体デバイス6bに対応している。   12D is a map of the semiconductor wafer 2D, and the non-defective semiconductor device position 16a and the defective semiconductor device position 16b correspond to the non-defective semiconductor device 6a and the defective semiconductor device 6b of the semiconductor wafer 2D, respectively.

このように本発明のマップ作成ステップでは、半導体ウエーハ準備ステップで準備した全ての半導体ウエーハについて、良品半導体デバイス位置及び不良品半導体デバイス位置を示すマップを作成し、これらのマップをウエーハ積層装置のメモリに格納する。   As described above, in the map creation step of the present invention, a map showing the position of the non-defective semiconductor device and the position of the defective semiconductor device is created for all the semiconductor wafers prepared in the semiconductor wafer preparation step, and these maps are stored in the memory of the wafer stacking apparatus. To store.

マップ作成ステップを実施後、複数枚積層された半導体デバイス中に不良品半導体デバイス6bが含まれる数が最も少なくなる半導体ウエーハの組み合わせを検出する組み合わせ検出ステップを実施する。   After performing the map creation step, a combination detection step is performed to detect a combination of semiconductor wafers in which the number of defective semiconductor devices 6b contained in a plurality of stacked semiconductor devices is the smallest.

例えば、図1に示した4枚の半導体ウエーハ2A〜2Dの中から2枚の半導体ウエーハを組み合わせて積層ウエーハを形成する場合には、図3乃至図5に示す3通りの組み合わせがある。   For example, when a laminated wafer is formed by combining two semiconductor wafers from the four semiconductor wafers 2A to 2D shown in FIG. 1, there are three combinations shown in FIGS.

図3は第1の組み合わせ方法を示しており、図3(A)は半導体ウエーハ2Aのマップ12Aと半導体ウエーハ2Bのマップ12Bを組み合わせる場合を示しており、図3(B)は半導体ウエーハ2Cのマップ12Cと半導体ウエーハ2Dのマップ12Dを組み合わせる場合を示している。   FIG. 3 shows a first combination method, FIG. 3A shows a case where a map 12A of the semiconductor wafer 2A and a map 12B of the semiconductor wafer 2B are combined, and FIG. 3B shows the case of the semiconductor wafer 2C. The case where the map 12C and the map 12D of the semiconductor wafer 2D are combined is shown.

図4は第2の組み合わせ方法を示しており、図4(A)は半導体ウエーハ2Aのマップ12Aと半導体ウエーハ2Cのマップ12Cを組み合わせる場合を示しており、図4(B)は半導体ウエーハ2Bのマップ12Bと半導体ウエーハ2Dのマップ12Dを組み合わせる場合を示している。   FIG. 4 shows a second combination method, FIG. 4A shows a case where a map 12A of the semiconductor wafer 2A and a map 12C of the semiconductor wafer 2C are combined, and FIG. 4B shows the case of the semiconductor wafer 2B. The case where the map 12B and the map 12D of the semiconductor wafer 2D are combined is shown.

図5は第3の組み合わせ方法を示しており、図5(A)は半導体ウエーハ2Aのマップ12Aと半導体ウエーハ2Dのマップ12Dを組み合わせる場合を示しており、図5(B)は半導体ウエーハ2Bのマップ12Bと半導体ウエーハ2Cのマップ12Cを組み合わせる場合を示している。   FIG. 5 shows a third combination method, FIG. 5 (A) shows a case where a map 12A of the semiconductor wafer 2A and a map 12D of the semiconductor wafer 2D are combined, and FIG. 5 (B) shows a case of the semiconductor wafer 2B. The case where the map 12B and the map 12C of the semiconductor wafer 2C are combined is shown.

本発明の組み合わせ検出ステップでは、積層された半導体デバイス中に不良品半導体デバイス6bが含まれる数が最も少なくなる組み合わせを検出する。ここで、半導体ウエーハ2A中の不良品半導体デバイス16bの数をA、半導体ウエーハ2B中の不良品半導体デバイス16bの数をB、半導体ウエーハ2C中の不良品半導体デバイス6bの数をC、半導体ウエーハ2D中の不良品半導体デバイス6bの数をDとし、位置が重複する不良品半導体デバイスの数をxとすると、図3〜図5に示した第1の組み合わせ乃至第3の組み合わせについて、それぞれ以下の関係が得られる。   In the combination detection step of the present invention, the combination in which the number of defective semiconductor devices 6b contained in the stacked semiconductor devices is minimized is detected. Here, the number of defective semiconductor devices 16b in the semiconductor wafer 2A is A, the number of defective semiconductor devices 16b in the semiconductor wafer 2B is B, the number of defective semiconductor devices 6b in the semiconductor wafer 2C is C, and the semiconductor wafer. Assuming that the number of defective semiconductor devices 6b in 2D is D and the number of defective semiconductor devices whose positions overlap is x, each of the first to third combinations shown in FIGS. The relationship is obtained.

図3に示した第1の組み合わせ方法では、図3(A)はA+B−x=5+6−1=10であり、図3(B)はC+D−x=10+3−3=10であり、合計で20個の不良品積層デバイスが得られる。   In the first combination method shown in FIG. 3, FIG. 3A shows A + B−x = 5 + 6-1 = 10, and FIG. 3B shows C + D−x = 10 + 3-3 = 10, Twenty defective laminated devices are obtained.

図4に示した第2の組み合わせ方法では、図4(A)はA+C−x=5+10−4=11であり、図4(B)はB+D−x=7+3−2=8であり、合計で19個の不良品積層デバイスを含んでいる。   In the second combination method shown in FIG. 4, FIG. 4A is A + C−x = 5 + 10−4 = 11, and FIG. 4B is B + D−x = 7 + 3−2 = 8. Includes 19 defective stacked devices.

図5に示した第3の組み合わせ方法では、図5(A)はA+D−x=5+3−3=5であり、図5(B)はB+C−x=7+10−6=11であり、合計で16個の不良品積層デバイスを含んでいる。   In the third combination method shown in FIG. 5, FIG. 5A is A + D−x = 5 + 3-3 = 5, and FIG. 5B is B + C−x = 7 + 10−6 = 11. Includes 16 defective stacked devices.

よって、本発明の組み合わせ検出ステップでは、図5に示した第3の組み合わせ方法である半導体ウエーハ2Aと半導体ウエーハ2Dとを組み合わせ、更に半導体ウエーハ2Bと半導体ウエーハ2Cとを組み合わせる組み合わせ方法が最も少ない不良品積層デバイスを製造できると検出される。   Therefore, in the combination detection step of the present invention, the third combination method shown in FIG. 5 is a combination method of combining the semiconductor wafer 2A and the semiconductor wafer 2D, and further combining the semiconductor wafer 2B and the semiconductor wafer 2C. It is detected that a good multilayer device can be manufactured.

よって、本発明の積層デバイスの製造方法では、組み合わせ検出ステップで検出した半導体ウエーハの積層組み合わせに従って、図6(A)に示すように、半導体ウエーハ2Aと半導体ウエーハ2Dとを組み合わせて積層ウエーハ18Aを形成し、図6(B)に示すように、半導体ウエーハ2Bと半導体ウエーハ2Cとを組み合わせて積層ウエーハ18Bを形成する。   Therefore, in the manufacturing method of the laminated device of the present invention, the laminated wafer 18A is formed by combining the semiconductor wafer 2A and the semiconductor wafer 2D as shown in FIG. 6A according to the laminated combination of the semiconductor wafers detected in the combination detecting step. Then, as shown in FIG. 6B, a laminated wafer 18B is formed by combining the semiconductor wafer 2B and the semiconductor wafer 2C.

次いで、図7に示すように、切削装置の図示しないチャックテーブルで積層ウエーハ18Aを吸引保持しながら、積層ウエーハ18Aの第1の方向に伸長する分割予定ライン4に沿って切削ブレード20で積層ウエーハ18Aを切削して分割溝22を形成する。   Next, as shown in FIG. 7, while the laminated wafer 18A is sucked and held by a chuck table (not shown) of the cutting apparatus, the laminated wafer is drawn by the cutting blade 20 along the division line 4 extending in the first direction of the laminated wafer 18A. The dividing groove 22 is formed by cutting 18A.

第1の方向に伸長する全ての分割予定ライン4に沿っての分割溝22の形成終了後、図示しないチャックテーブルを90度回転してから、第1の方向と直交する第2の方向に伸長する全ての分割予定ライン4に沿っても同様な分割溝22を形成することにより、積層ウエーハ18Aを個々の積層デバイスに分割することができる。   After the formation of the dividing grooves 22 along all the planned dividing lines 4 extending in the first direction, the chuck table (not shown) is rotated by 90 degrees and then extended in the second direction orthogonal to the first direction. The laminated wafer 18A can be divided into individual laminated devices by forming the same divided grooves 22 along all the planned division lines 4 to be performed.

図6(B)に示す積層ウエーハ18Bでも同様であり、第1の方向及び第1の方向に直交する第2の方向に伸長する全ての分割予定ライン4に沿って分割溝22を形成することにより、積層ウエーハ18Bを個々の積層デバイスに分割することができる。   The same applies to the laminated wafer 18B shown in FIG. 6B, and the division grooves 22 are formed along all the division lines 4 extending in the first direction and the second direction orthogonal to the first direction. Thus, the laminated wafer 18B can be divided into individual laminated devices.

上述した実施形態では、4枚の半導体ウエーハ2A〜2Dの中から2枚の半導体ウエーハを積層する例について説明したが、本発明の積層デバイスの製造方法はこれに限定されるものではなく、一般的にn枚(nは2以上の整数)の半導体ウエーハを積層する場合について、m枚(mはnより大きい整数)の半導体ウエーハの中から最適の組み合わせを得る場合について同様に適用することができる。   In the above-described embodiment, the example in which two semiconductor wafers are stacked from among the four semiconductor wafers 2A to 2D has been described. However, the manufacturing method of the stacked device of the present invention is not limited to this, In particular, when n (n is an integer of 2 or more) semiconductor wafers are stacked, the same applies to the case where an optimal combination is obtained from m (m is an integer greater than n) semiconductor wafers. it can.

2A,2B,2C,2D 半導体ウエーハ
4 分割予定ライン(ストリート)
6a 良品半導体デバイス
6b 不良品半導体デバイス
12A,12B,12C,12D マップ
16a 良品半導体デバイス位置
16b 不良品半導体デバイス位置
18A,18B 積層半導体ウエーハ
20 切削ブレード
2A, 2B, 2C, 2D Semiconductor wafer 4 Scheduled line (street)
6a Non-defective semiconductor device 6b Defective semiconductor device 12A, 12B, 12C, 12D Map 16a Non-defective semiconductor device position 16b Defective semiconductor device position 18A, 18B Multilayer semiconductor wafer 20 Cutting blade

Claims (1)

所定数n(nは2以上の整数)の半導体デバイスが積層された積層デバイスを製造する積層デバイスの製造方法であって、
それぞれ同位置に交差する複数の分割予定ラインを有し、該分割予定ラインで区画された各領域にそれぞれ半導体デバイスが形成された半導体ウエーハを該nより多いm枚(mは3以上の整数)準備する半導体ウエーハ準備ステップと、
該半導体ウエーハ準備ステップで準備したm枚の半導体ウエーハにおいて、どの半導体デバイスが良品でどの半導体デバイスが不良品であるかのマップを半導体ウエーハ毎に作成するマップ作成ステップと、
該マップ作成ステップを実施した後、該m枚の半導体ウエーハから該所定数nの半導体ウエーハを選択して積層する組み合わせのうち、積層された半導体デバイス中に不良品半導体デバイスが含まれる数が最も少なくなる組み合わせを検出する組み合わせ検出ステップと、
該組み合わせ検出ステップで検出した半導体ウエーハの組み合わせに従って、該所定数nの半導体ウエーハを積層して積層ウエーハを形成する積層ウエーハ形成ステップと、
該積層ウエーハ形成ステップで形成した該積層ウエーハを該分割予定ラインに沿って分割して、該所定数nの半導体デバイスが積層された積層デバイスを形成する分割ステップと、
を具備したことを特徴とする積層デバイスの製造方法。
A manufacturing method of a laminated device for producing a laminated device in which a predetermined number n (n is an integer of 2 or more) semiconductor devices are laminated,
A plurality of semiconductor wafers each having a plurality of division lines intersecting at the same position, each having a semiconductor device formed in each region partitioned by the division lines (m is an integer greater than or equal to 3) A semiconductor wafer preparation step to be prepared;
A map creation step of creating a map of which semiconductor devices are non-defective and which are defective in each of the m semiconductor wafers prepared in the semiconductor wafer preparation step;
After performing the map creation step, among the combinations in which the predetermined number n of semiconductor wafers are selected from the m semiconductor wafers and stacked, the number of defective semiconductor devices included in the stacked semiconductor devices is the highest. A combination detection step for detecting fewer combinations;
A laminated wafer forming step of forming the laminated wafer by laminating the predetermined number n of semiconductor wafers according to the combination of the semiconductor wafers detected in the combination detecting step;
A dividing step of dividing the laminated wafer formed in the laminated wafer forming step along the division planned line to form a laminated device in which the predetermined number n of semiconductor devices are laminated;
The manufacturing method of the laminated device characterized by comprising.
JP2010285416A 2010-12-22 2010-12-22 Method for manufacturing laminated device Pending JP2012134334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285416A JP2012134334A (en) 2010-12-22 2010-12-22 Method for manufacturing laminated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285416A JP2012134334A (en) 2010-12-22 2010-12-22 Method for manufacturing laminated device

Publications (1)

Publication Number Publication Date
JP2012134334A true JP2012134334A (en) 2012-07-12

Family

ID=46649587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285416A Pending JP2012134334A (en) 2010-12-22 2010-12-22 Method for manufacturing laminated device

Country Status (1)

Country Link
JP (1) JP2012134334A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115349A (en) * 2011-11-30 2013-06-10 Fujitsu Semiconductor Ltd Manufacturing method and manufacturing system of semiconductor wafer laminate
US9653430B2 (en) 2014-12-01 2017-05-16 Samsung Electronics Co., Ltd. Semiconductor devices having stacked structures and methods for fabricating the same
KR20200137971A (en) 2019-05-30 2020-12-09 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068142A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068140A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068137A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068138A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068139A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068141A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
US12087589B2 (en) 2021-03-09 2024-09-10 Disco Corporation Method of manufacturing wafer and method of manufacturing stacked device chip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269838A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Semiconductor integrated circuit group, manufacturing method thereof, semiconductor integrated circuit body and semiconductor substrate combination determination program
JP2007081296A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Semiconductor part manufacturing system, control device and computer program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269838A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Semiconductor integrated circuit group, manufacturing method thereof, semiconductor integrated circuit body and semiconductor substrate combination determination program
JP2007081296A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Semiconductor part manufacturing system, control device and computer program

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115349A (en) * 2011-11-30 2013-06-10 Fujitsu Semiconductor Ltd Manufacturing method and manufacturing system of semiconductor wafer laminate
US9653430B2 (en) 2014-12-01 2017-05-16 Samsung Electronics Co., Ltd. Semiconductor devices having stacked structures and methods for fabricating the same
KR20200137971A (en) 2019-05-30 2020-12-09 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
US11164802B2 (en) 2019-05-30 2021-11-02 Disco Corporation Wafer manufacturing method and multilayer device chip manufacturing method
KR20220068142A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068140A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068137A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068138A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068139A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
KR20220068141A (en) 2020-11-18 2022-05-25 가부시기가이샤 디스코 Method for manufacturing wafer and method for manufacturing stacked device chip
US11756831B2 (en) 2020-11-18 2023-09-12 Disco Corporation Wafer manufacturing method and laminated device chip manufacturing method
US11764114B2 (en) 2020-11-18 2023-09-19 Disco Corporation Wafer manufacturing method and laminated device chip manufacturing method
US11764115B2 (en) 2020-11-18 2023-09-19 Disco Corporation Wafer manufacturing method and laminated device chip manufacturing method
US11854891B2 (en) 2020-11-18 2023-12-26 Disco Corporation Wafer manufacturing method and laminated device chip manufacturing method
US12087589B2 (en) 2021-03-09 2024-09-10 Disco Corporation Method of manufacturing wafer and method of manufacturing stacked device chip

Similar Documents

Publication Publication Date Title
JP2012134334A (en) Method for manufacturing laminated device
EP3430646B1 (en) Stairstep interposers with integrated shielding for electronics packages
US20100001379A1 (en) Multi-chip package (MCP) having three dimensional mesh-based power distribution network, and power distribution method of the MCP
US20110272788A1 (en) Computer system wafer integrating different dies in stacked master-slave structures
US20080009124A1 (en) Method of forming a semiconductor device
US20200365539A1 (en) Bonding Structure And Method For Manufacturing The Same
JP2010080752A (en) Method of manufacturing semiconductor device
CN103325703A (en) Probing chips during package formation
JP5657499B2 (en) Semiconductor device, manufacturing method thereof, and semiconductor device management system
US9678142B2 (en) Two-step interconnect testing of semiconductor dies
CN111627893B (en) TSV semiconductor device including two-dimensional shift
US20120309118A1 (en) Silicon wafer alignment method used in through-silicon-via interconnection
KR20130007602A (en) Multi-chip package with offset die stacking and method of making same
US11222865B2 (en) Semiconductor device including vertical bond pads
US9811627B2 (en) Method of component partitions on system on chip and device thereof
CN103579171B (en) Semiconductor package part and manufacture method thereof
JP2009158764A (en) Stacked semiconductor device, semiconductor substrate, and process for manufacturing stacked semiconductor device
CN106024756A (en) 3D integrated circuit structure and manufacture method thereof
JP2014071932A (en) Multi-chip memory module
US20200357709A1 (en) Semiconductor device and method to manufacture the same
JP5748198B2 (en) Manufacturing method of laminated device and laminated device
JP2019004007A (en) Semiconductor device and method of manufacturing the same
TW201724408A (en) Integrated stacked strata of functional die islands in a semiconductor device
JP2009194363A (en) 3-dimensional integrated circuit
Zhang et al. Yield analysis of a novel wafer manipulation method in 3D stacking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007