JP2012131719A - Method of producing lignin derivative, cured product, and lignin epoxy resin - Google Patents

Method of producing lignin derivative, cured product, and lignin epoxy resin Download PDF

Info

Publication number
JP2012131719A
JP2012131719A JP2010283752A JP2010283752A JP2012131719A JP 2012131719 A JP2012131719 A JP 2012131719A JP 2010283752 A JP2010283752 A JP 2010283752A JP 2010283752 A JP2010283752 A JP 2010283752A JP 2012131719 A JP2012131719 A JP 2012131719A
Authority
JP
Japan
Prior art keywords
lignin
lignin derivative
producing
epoxy resin
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010283752A
Other languages
Japanese (ja)
Inventor
Gen Komiya
玄 小宮
Takahiro Imai
隆浩 今井
Kenichi Yamazaki
顕一 山崎
Yoko Todo
洋子 藤堂
Kiyoko Murayama
聖子 村山
Susumu Kinoshita
晋 木下
Miyoshi Matsuoka
美佳 松岡
Goji Fukumoto
剛司 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010283752A priority Critical patent/JP2012131719A/en
Publication of JP2012131719A publication Critical patent/JP2012131719A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a lignin derivative in which curing reaction is not inhibited even if acid residue occurs.SOLUTION: The method includes: a step of suspending a woody material 1 containing lignin or lignocellulose in an aqueous solution of metallic compounds 2 such as aluminum sulfate; a step of adding as needed a second organic solvents 6 that promotes decomposition, such as ethanol, to the suspension; a step of decomposing the suspension in an autoclave under high-temperature high-pressure condition; a step of adding a first organic solvent 4 such as methyl ethyl ketone to the reaction liquid subjected to the decomposition processing, and thereafter separating the reaction liquid into an organic phase and a water phase; and a step of collecting the organic phase for drying. The lignin derivative 5 is produced which does not inhibit the curing reaction of an epoxy resin 7 even if the acid residue occurs.

Description

本発明の実施形態は、熱硬化性樹脂に加えられるリグニン誘導体の製造方法、このリグニン誘導体を添加した硬化物、リグニン誘導体にエポキシ基を付与したリグニンエポキシ樹脂に関する。   Embodiments of the present invention relate to a method for producing a lignin derivative added to a thermosetting resin, a cured product to which the lignin derivative is added, and a lignin epoxy resin having an epoxy group added to the lignin derivative.

従来、フェノールノボラックやビスフェノールなどは、電気絶縁などを目的としたエポキシ樹脂に代表される熱硬化性樹脂の原材料として広く用いられている。しかしながら、熱硬化性樹脂は石油資源への依存度が大きく、地球環境との調和から、新しい機能を付加した絶縁材料が求められている。   Conventionally, phenol novolac, bisphenol, and the like are widely used as raw materials for thermosetting resins typified by epoxy resins for the purpose of electrical insulation. However, thermosetting resins are highly dependent on petroleum resources, and insulation materials with new functions are being demanded from harmony with the global environment.

このような要求に対し、木質資源のフェノール骨格を有するリグニンを工業的に利用すべく、リグノセルロースにフェノール化合物を溶媒和させ、濃硫酸などの酸を添加してリグニン誘導体を得るものが知られている(例えば、特許文献1参照。)。また、リグニン誘導体を、ビスフェノールA型エポキシ樹脂などのエポキシ樹脂とイミダゾールなどの硬化触媒とともにメチルエチルケトンなどの有機溶媒に溶解し、これを加熱することにより硬化させ、二酸化炭素の排出を抑制する絶縁材料が知られている(例えば、特許文献2参照。)。   In response to such demands, in order to industrially use lignin having a phenolic skeleton of wood resources, lignin is solvated with a phenol compound, and an acid such as concentrated sulfuric acid is added to obtain a lignin derivative. (For example, refer to Patent Document 1). An insulating material that suppresses emission of carbon dioxide by dissolving a lignin derivative in an organic solvent such as methyl ethyl ketone together with an epoxy resin such as bisphenol A type epoxy resin and a curing catalyst such as imidazole, and heating it. It is known (for example, refer to Patent Document 2).

特開平9−278904号公報Japanese Patent Laid-Open No. 9-278904 特開2009−292884号公報JP 2009-29284 A

上記の従来のリグニン誘導体、これを添加した絶縁材料においては、次のような問題がある。特許文献1では、フェノール化合物に溶媒和させたリグニンを、72%濃硫酸と接触させて分離し、リグニン誘導体の一種であるリグノフェノールを得ている。このため、得られるリグノ誘導体中に硫酸が残留、あるいは混入することがある。引用文献2では、硬化触媒であるイミダゾールが塩基性であり、リグニン誘導体に硫酸が残留していると、有機溶媒のメチルエチルケトンを介して硬化触媒であるイミダゾールが硫酸により失活し、硬化反応が充分に進行しないことが起きる。硬化不足を生じると、硬化物として充分な諸特性を得ることができなくなる。また、酸による反応阻害は、エポキシ化反応についても同様である。   The above conventional lignin derivative and the insulating material to which this is added have the following problems. In Patent Document 1, lignin solvated with a phenol compound is separated by contacting with 72% concentrated sulfuric acid to obtain lignophenol which is a kind of lignin derivative. For this reason, sulfuric acid may remain or be mixed in the obtained ligno derivative. In Cited Document 2, when the imidazole that is the curing catalyst is basic and sulfuric acid remains in the lignin derivative, the imidazole that is the curing catalyst is deactivated by the sulfuric acid via methyl ethyl ketone, which is an organic solvent, and the curing reaction is sufficient. It does n’t happen to happen. When insufficient curing occurs, it becomes impossible to obtain various characteristics sufficient as a cured product. The reaction inhibition by acid is the same for the epoxidation reaction.

本発明は上記問題を解決するためになされたもので、酸の残留があっても硬化反応を阻害しないリグニン誘導体の製造方法、このリグニン誘導体を添加した硬化物、エポキシ基を付与したリグニンエポキシ樹脂を提供することを目的とする。   The present invention has been made to solve the above problems, and a method for producing a lignin derivative that does not inhibit the curing reaction even if an acid remains, a cured product to which the lignin derivative is added, and a lignin epoxy resin having an epoxy group added thereto. The purpose is to provide.

上記目的を達成するために、実施形態のリグニン誘導体は、木質素材を金属化合物の水溶液に懸濁する工程と、この懸濁液を高温高圧中で分解処理する工程と、前記分解処理した反応液に第1の有機溶媒を加え、有機相と水相に分離させる工程と、前記有機相を回収して乾燥する工程と、を備えたことを特徴とする。   In order to achieve the above object, the lignin derivative of the embodiment comprises a step of suspending a wooden material in an aqueous solution of a metal compound, a step of decomposing the suspension in a high temperature and high pressure, and the reaction solution subjected to the decomposition treatment. And adding a first organic solvent to separate the organic phase and the aqueous phase, and recovering and drying the organic phase.

本発明に係るリグニン誘導体の製造方法を説明するフロー図。The flowchart explaining the manufacturing method of the lignin derivative which concerns on this invention. 本発明の実施例1に係るリグニン誘導体の製造方法を説明するフロー図。The flowchart explaining the manufacturing method of the lignin derivative which concerns on Example 1 of this invention. 本発明の実施例2に係るリグニンエポキシ樹脂の製造方法を説明するフロー図。The flowchart explaining the manufacturing method of the lignin epoxy resin which concerns on Example 2 of this invention. 本発明の実施例2に係るエポキシ化リグニンの化学反応を説明する図。The figure explaining the chemical reaction of the epoxidized lignin which concerns on Example 2 of this invention.

本発明の実施形態によるリグニン誘導体の製造方法を図1を参照して説明する。   A method for producing a lignin derivative according to an embodiment of the present invention will be described with reference to FIG.

先ず、公知技術から得られるリグニンもしくはリグノセルロースよりなる木質素材1に、金属化合物2を溶解、もしくは懸濁させた水3を加える。金属化合物2は、硫酸アルミニウム、塩化アルミニウム、塩化鉄、塩化錫、硫酸錫、硫酸亜鉛、塩化亜鉛のうち少なくとも1種類以上からなる。この懸濁液を高温高圧状態に保ち、分解処理を行う。懸濁液中においては、一部溶解した金属化合物2がルイス酸として作用し、リグニンのエーテル結合を加水分解し、天然時の高分子量体から低分子量体へと変換する。   First, water 3 in which a metal compound 2 is dissolved or suspended is added to a wooden material 1 made of lignin or lignocellulose obtained from a known technique. The metal compound 2 is composed of at least one of aluminum sulfate, aluminum chloride, iron chloride, tin chloride, tin sulfate, zinc sulfate, and zinc chloride. This suspension is kept at a high temperature and a high pressure to be decomposed. In the suspension, the partially dissolved metal compound 2 acts as a Lewis acid, hydrolyzes the ether bond of lignin, and converts it from a natural high molecular weight substance to a low molecular weight substance.

次に、分解処理した反応液に第1の有機溶媒4を加えると、リグニン誘導体を含む有機相と、金属化合物およびセルロース誘導体を含む水相に相分離する。第1の有機溶媒4は、メチルエチルケトン、ブタノール、ペンタノールのうち少なくとも1種類以上からなる。そして、分離した有機相をろ過して回収し、乾燥させることにより、リグニン誘導体5を得ることができる。   Next, when the first organic solvent 4 is added to the decomposed reaction solution, the phase is separated into an organic phase containing a lignin derivative and an aqueous phase containing a metal compound and a cellulose derivative. The first organic solvent 4 is composed of at least one of methyl ethyl ketone, butanol, and pentanol. Then, the separated organic phase is recovered by filtration and dried, whereby the lignin derivative 5 can be obtained.

なお、前述の木質素材1を懸濁させた金属化合物2の水溶液に、第2の有機溶媒6を加えると、リグニンの分解が促進され、高収率でリグニン誘導体5を得ることができる。第2の有機溶媒6は、メタノール、エタノール、プロパノール、クレゾール、フェノール、メチルエチルケトン、アセトンのうち少なくとも1種類以上からなる。   In addition, when the 2nd organic solvent 6 is added to the aqueous solution of the metal compound 2 which suspended the woody material 1 mentioned above, decomposition | disassembly of lignin is accelerated | stimulated and the lignin derivative 5 can be obtained with a high yield. The second organic solvent 6 is composed of at least one of methanol, ethanol, propanol, cresol, phenol, methyl ethyl ketone, and acetone.

得られたリグニン誘導体5にエポキシ樹脂7と硬化触媒の塩基性触媒8を加え、所定温度で加熱すると、強固に硬化したエポキシ樹脂の硬化物9を得ることができる。加熱により、エポキシ樹脂7とリグニン誘導体5(フェノール樹脂)は溶解状態で進行する。このとき、金属化合物2の酸が残留していても、これらの非水溶液性の媒体には不溶であるため、硬化反応には関与しない。変換に用いたルイス酸性が硬化反応を阻害することなく硬化を進行させる。   When the epoxy resin 7 and the basic catalyst 8 of the curing catalyst are added to the obtained lignin derivative 5 and heated at a predetermined temperature, a hardened epoxy resin cured product 9 can be obtained. By heating, the epoxy resin 7 and the lignin derivative 5 (phenol resin) proceed in a dissolved state. At this time, even if the acid of the metal compound 2 remains, it is insoluble in these non-aqueous media and does not participate in the curing reaction. The Lewis acidity used for the conversion proceeds with curing without inhibiting the curing reaction.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係るリグニン誘導体の製造方法を図2を参照して説明する。図2は、本発明の実施例1に係るリグニン誘導体の製造方法を説明するフロー図である。   First, the manufacturing method of the lignin derivative which concerns on Example 1 of this invention is demonstrated with reference to FIG. FIG. 2 is a flowchart for explaining a method for producing a lignin derivative according to Example 1 of the present invention.

図2に示すように、先ず、木質素材のリグノセルロースを金属化合物の硫酸アルミニウム水溶液に懸濁させる(st1)。硫酸アルミニウムの添加量は、木質素材の重量に対して1/3とする。これは、変換工程に適切な1時間でリグニン中のエーテル結合を開裂するために必要な分量である。なお、必要により、第2の有機溶媒となるエタノールを加え、リグニンの分解を促進させる(st2)。   As shown in FIG. 2, first, the wood material lignocellulose is suspended in an aluminum sulfate aqueous solution of a metal compound (st1). The amount of aluminum sulfate added is 1/3 of the weight of the wood material. This is the amount necessary to cleave the ether bond in lignin in one hour suitable for the conversion step. If necessary, ethanol as a second organic solvent is added to promote decomposition of lignin (st2).

次に、懸濁液をオートクレーブ中で高温高圧状態にし、木質の分解処理を行う(st3)。温度は、150〜220℃の範囲とし、180℃が好ましい。150℃未満では、リグニンの分解が進行し難く、220℃超過では、リグニンの再重合やガス化が起こり、回収率が低下する。圧力は、1.5〜2MPaとし、1時間保持する。液中においては、一部溶解した硫酸アルミニウムがルイス酸として作用し、リグニンのエーテル結合を加水分解し、天然時に高分子量体であったものを低分子量体へと変換する。   Next, the suspension is brought into a high-temperature and high-pressure state in an autoclave, and wood is decomposed (st3). The temperature is in the range of 150 to 220 ° C, and preferably 180 ° C. If it is less than 150 degreeC, decomposition | disassembly of lignin does not advance easily, and if it exceeds 220 degreeC, repolymerization and gasification of lignin will occur, and a recovery rate will fall. The pressure is 1.5-2 MPa and is held for 1 hour. In the liquid, partially dissolved aluminum sulfate acts as a Lewis acid, hydrolyzes the ether bond of lignin, and converts what was a high molecular weight product into a low molecular weight product in nature.

次に、この反応液に第1の有機溶媒となるメチルエチルケトンを加え、相分離させる(st4)。相分離では、リグニン誘導体を含む有機相と、金属酸化物およびセルロース誘導体を含む水相に分離される。この中からろ過により有機相を回収し(st5)、溶媒を除去し、乾燥させると(st6)、リグニン誘導体を得ることができる(st7)。このリグニン誘導体をガスクロマトグラフィー(GPC)で分析したところ、平均分子量が1100であり、数万程度の分子量を持つ天然のリグニンに対し、低分子量体へと変換されていた。   Next, methyl ethyl ketone as the first organic solvent is added to the reaction solution, and the phases are separated (st4). In the phase separation, an organic phase containing a lignin derivative and an aqueous phase containing a metal oxide and a cellulose derivative are separated. From this, the organic phase is recovered by filtration (st5), the solvent is removed and dried (st6), and a lignin derivative can be obtained (st7). When this lignin derivative was analyzed by gas chromatography (GPC), the average molecular weight was 1100, and natural lignin having a molecular weight of about tens of thousands was converted to a low molecular weight form.

低分子量体に変換されたリグニン誘導体と、ビスフェノールA型エポキシ樹脂と、イミダゾール系硬化触媒とを、メチルエチルケトンに溶解したのち、120〜150℃の所定温度で加熱すると、硬化反応が進行し、溶媒が除去され、良好に硬化した硬化物を得ることができる。リグニン誘導体とエポキシ樹脂は溶解状態で反応が進行するため、硫酸アルミニウムが残留していても、溶媒には不溶であり、硬化反応に関与しない。変換に用いたルイス酸が硬化反応を阻害しないためである。なお、ポリエステル樹脂などの熱硬化性樹脂においても、良好に硬化する硬化物を得ることができる。   When a lignin derivative converted to a low molecular weight form, a bisphenol A type epoxy resin, and an imidazole-based curing catalyst are dissolved in methyl ethyl ketone and then heated at a predetermined temperature of 120 to 150 ° C., the curing reaction proceeds, A cured product which is removed and cured well can be obtained. Since the reaction of the lignin derivative and the epoxy resin proceeds in a dissolved state, even if aluminum sulfate remains, it is insoluble in the solvent and does not participate in the curing reaction. This is because the Lewis acid used for the conversion does not inhibit the curing reaction. Note that a cured product that cures well can be obtained even in a thermosetting resin such as a polyester resin.

上記実施例1のリグニン誘導体の製造方法によれば、リグノセルロースを硫酸アルミニウム水溶液に懸濁させ、分解処理をしてリグニン誘導体を得ているので、硫酸アルミニウムがルイス酸として作用して低分子量体に変換させることができ、リグニン誘導体に硫酸アルミニウムが残留していても、硬化反応を阻害せず、強固に硬化するエポキシ樹脂の硬化物を得ることができる。   According to the method for producing a lignin derivative of Example 1 above, lignocellulose is suspended in an aluminum sulfate aqueous solution and decomposed to obtain a lignin derivative, so that the aluminum sulfate acts as a Lewis acid to produce a low molecular weight substance. Even if aluminum sulfate remains in the lignin derivative, it is possible to obtain a cured product of an epoxy resin that hardens without inhibiting the curing reaction.

次に、本発明の実施例2に係るリグニン誘導体を用いたリグニンエポキシ樹脂を図3、図4を参照して説明する。図3は、本発明の実施例2に係るリグニンエポキシ樹脂の製造方法を説明するフロー図、図4は、本発明の実施例2に係るエポキシ化リグニンの化学反応を説明する図である。なお、この実施例2が実施例1と異なる点は、リグニン誘導体にエポキシ基を付与したことである。各図において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, the lignin epoxy resin using the lignin derivative which concerns on Example 2 of this invention is demonstrated with reference to FIG. 3, FIG. FIG. 3 is a flowchart for explaining a method for producing a lignin epoxy resin according to Example 2 of the present invention, and FIG. 4 is a diagram for explaining a chemical reaction of an epoxidized lignin according to Example 2 of the present invention. The difference between Example 2 and Example 1 is that an epoxy group was added to the lignin derivative. In each figure, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、実施例1と同様の(st1)〜(st7)の製造方法でリグニン誘導体5を得る。これをテトラブチルアンモニウムブロマイド11の触媒存在下でエピクロルヒドリン12に溶解、反応させ、フェノール系水酸基にクロルヒドリンエーテルを導入する。この場合、硫酸アルミニウムが残留していても、反応を阻害することはなく、クロルヒドリンエーテル化リグニン(中間体)13となる。これに過剰の水酸化ナトリウム水溶液14を加え、脱水反応によりエポキシ基を閉環し、精製することでエポキシ基が付与されたエポキシ化リグニン15を得ることができる。   As shown in FIG. 3, the lignin derivative 5 is obtained by the same production method (st1) to (st7) as in Example 1. This is dissolved and reacted in epichlorohydrin 12 in the presence of a catalyst of tetrabutylammonium bromide 11 to introduce chlorohydrin ether into the phenolic hydroxyl group. In this case, even if aluminum sulfate remains, the reaction is not hindered and becomes chlorohydrin etherified lignin (intermediate) 13. An epoxidized lignin 15 to which an epoxy group has been imparted can be obtained by adding an excess of aqueous sodium hydroxide solution 14 to cyclize the epoxy group by dehydration and purifying it.

このエポキシ化リグニン15は、一般的に用いられる硬化剤の酸無水物やアミン類により硬化することができるし、また実施例1で得られたリグニン誘導体により硬化させることもできる。これらの化学反応の概念を図4に示す。なお、エポキシ基を付与したエポキシ化リグニンをリグニンエポキシ樹脂と称する。   The epoxidized lignin 15 can be cured with a generally used acid anhydride or amine of a curing agent, or can be cured with the lignin derivative obtained in Example 1. The concept of these chemical reactions is shown in FIG. In addition, the epoxidized lignin which provided the epoxy group is called a lignin epoxy resin.

上記実施例2のリグニンエポキシ樹脂によれば、実施例1で得られたリグニン誘導体にエポキシ基を付与することができる。   According to the lignin epoxy resin of Example 2, the epoxy group can be imparted to the lignin derivative obtained in Example 1.

以上述べたような実施形態によれば、リグニン誘導体に酸が残留していても、硬化反応を阻害せず、強固に硬化させることのできる熱硬化性樹脂の硬化物を得ることができる。   According to the embodiment as described above, even if an acid remains in the lignin derivative, a cured product of a thermosetting resin that can be cured firmly without inhibiting the curing reaction can be obtained.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、および変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 木質素材
2 金属化合物
3 水
4 第1の有機溶媒
5 リグニン誘導体
6 第2の有機溶媒
7 エポキシ樹脂
8 塩基性硬化触媒
9 硬化物
11 テトラブチルアンモニウムブロマイド
12 エピクロルヒドリン
13 クロルヒドリンエーテル化リグニン
14 水酸化ナトリウム
15 エポキシ化リグニン
DESCRIPTION OF SYMBOLS 1 Woody material 2 Metal compound 3 Water 4 1st organic solvent 5 Lignin derivative 6 2nd organic solvent 7 Epoxy resin 8 Basic curing catalyst 9 Cured material 11 Tetrabutylammonium bromide 12 Epichlorohydrin 13 Chlorhydrin etherified lignin 14 Water Sodium oxide 15 Epoxidized lignin

Claims (7)

木質素材を金属化合物の水溶液に懸濁する工程と、
この懸濁液を高温高圧中で分解処理する工程と、
前記分解処理した反応液に第1の有機溶媒を加え、有機相と水相に分離させる工程と、
前記有機相を回収して乾燥する工程と、
を備えたことを特徴とするリグニン誘導体の製造方法。
Suspending a wooden material in an aqueous solution of a metal compound;
A step of decomposing the suspension in a high temperature and high pressure,
Adding a first organic solvent to the decomposed reaction solution, and separating the organic phase and the aqueous phase;
Recovering and drying the organic phase;
A process for producing a lignin derivative, comprising:
前記金属化合物は、硫酸アルミニウム、塩化アルミニウム、塩化鉄、塩化錫、硫酸錫、硫酸亜鉛、塩化亜鉛のうち少なくとも1種類以上からなることを特徴とする請求項1に記載のリグニン誘導体の製造方法。   The method for producing a lignin derivative according to claim 1, wherein the metal compound is composed of at least one of aluminum sulfate, aluminum chloride, iron chloride, tin chloride, tin sulfate, zinc sulfate, and zinc chloride. 前記第1の有機溶媒は、メチルエチルケトン、ブタノール、ペンタノールのうち少なくとも1種類以上からなることを特徴とする請求項1または請求項2に記載のリグニン誘導体の製造方法。   The method for producing a lignin derivative according to claim 1 or 2, wherein the first organic solvent comprises at least one of methyl ethyl ketone, butanol, and pentanol. 前記懸濁液に第2の有機溶媒を添加し、分解処理を促進させたことを特徴とする請求項1乃至請求項3のいずれか1項に記載のリグニン誘導体の製造方法。   The method for producing a lignin derivative according to any one of claims 1 to 3, wherein a second organic solvent is added to the suspension to promote decomposition. 前記第2の有機溶媒は、メタノール、エタノール、プロパノール、クレゾール、フェノール、メチルエチルケトン、アセトンのうち少なくとも1種類以上からなることを特徴とする請求項4に記載のリグニン誘導体の製造方法。   The method for producing a lignin derivative according to claim 4, wherein the second organic solvent comprises at least one of methanol, ethanol, propanol, cresol, phenol, methyl ethyl ketone, and acetone. 熱硬化性樹脂の硬化物であって、
木質素材を金属化合物の水溶液に懸濁し、分解処理して回収したリグニン誘導体に、
ビスフェノールA型エポキシ樹脂と塩基性硬化触媒とを加え、
所定温度で加熱して硬化させたことを特徴とする硬化物。
A cured product of a thermosetting resin,
A lignin derivative recovered by suspending a wooden material in an aqueous solution of a metal compound and decomposing it,
Add bisphenol A type epoxy resin and basic curing catalyst,
A cured product, which is cured by heating at a predetermined temperature.
リグニンにエポキシ基を付与したリグニンエポキシ樹脂であって
木質素材を金属化合物の水溶液に懸濁し、分解処理して回収したリグニン誘導体を、
テトラブチルアンモニウムブロマイドの触媒存在下でエピクロルヒドリンに溶解させ、
この溶解液に水酸化ナトリウム水溶液を加えてエポキシ基を閉環したことを特徴とするリグニンエポキシ樹脂。
A lignin epoxy resin in which an epoxy group is added to lignin and a wooden material is suspended in an aqueous solution of a metal compound, and the lignin derivative recovered by decomposition treatment is recovered.
Dissolved in epichlorohydrin in the presence of a catalyst of tetrabutylammonium bromide,
A lignin epoxy resin, wherein an aqueous solution of sodium hydroxide is added to the solution to close the epoxy group.
JP2010283752A 2010-12-20 2010-12-20 Method of producing lignin derivative, cured product, and lignin epoxy resin Pending JP2012131719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010283752A JP2012131719A (en) 2010-12-20 2010-12-20 Method of producing lignin derivative, cured product, and lignin epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010283752A JP2012131719A (en) 2010-12-20 2010-12-20 Method of producing lignin derivative, cured product, and lignin epoxy resin

Publications (1)

Publication Number Publication Date
JP2012131719A true JP2012131719A (en) 2012-07-12

Family

ID=46647764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283752A Pending JP2012131719A (en) 2010-12-20 2010-12-20 Method of producing lignin derivative, cured product, and lignin epoxy resin

Country Status (1)

Country Link
JP (1) JP2012131719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin

Similar Documents

Publication Publication Date Title
Lancefield et al. Isolation of Functionalized Phenolic Monomers through Selective Oxidation and C O Bond Cleavage of the β‐O‐4 Linkages in Lignin
Asada et al. Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials
Zhao et al. Renewable epoxy thermosets from fully lignin-derived triphenols
US4551508A (en) Polyglycidyl ethers, process for production thereof, and cured products thereof
RU2018134925A (en) PRODUCTION OF MONOMERS FROM LIGNIN IN THE PROCESS OF DEPOLIMERIZATION OF A COMPOSITION CONTAINING LIGNO CELLULOSE
JP2012236811A (en) Purified lignin and epoxy resin
EP2986665A1 (en) Novel cyclic acetal, cyclic ketal diamines epoxy curing agents and degradable polymers and composites based thereon
JP2012102297A (en) Method for solubilizing lignin
JP6587284B2 (en) Modified lignin, epoxy resin, and method for producing the same
US9550710B2 (en) Process for depolymerization of lignin
JP5130728B2 (en) Epoxy resin purification method
JP2013035886A (en) Lignin, composition containing the lignin and method for producing the lignin
WO2018085174A1 (en) Process for the recovery of furfural
JP2012131719A (en) Method of producing lignin derivative, cured product, and lignin epoxy resin
EP2143718A1 (en) Process for producing tetraglycidylamino compound
EP3921356B1 (en) Recyclable and reworkable epoxy resins
JP2011144340A (en) Epoxy resin
WO2016207711A1 (en) Modified lignin, epoxy resin, and method for producing same
JP2018178024A (en) Method for producing lignin-derived epoxy resin, lignin-derived epoxy resin, epoxy resin composition and cured product thereof
CN106366003A (en) Method for recycling dimethylamine in MCP hydrolysis mother liquor
JP2018178023A (en) Method for producing lignin-derived epoxy resin, lignin-derived epoxy resin, epoxy resin composition and cured product thereof
JP2663103B2 (en) Method for producing glycidyl ether of novolak resin
JP6660070B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP6598354B2 (en) Modified lignin, epoxy resin, and method for producing the same
KR102291469B1 (en) Novel Tri-Furan monomer, novel Tri-furan Epoxy and Method for preparing the same