JP2012129120A - Method for manufacturing magnet wire and apparatus for manufacturing magnet wire - Google Patents

Method for manufacturing magnet wire and apparatus for manufacturing magnet wire Download PDF

Info

Publication number
JP2012129120A
JP2012129120A JP2010280992A JP2010280992A JP2012129120A JP 2012129120 A JP2012129120 A JP 2012129120A JP 2010280992 A JP2010280992 A JP 2010280992A JP 2010280992 A JP2010280992 A JP 2010280992A JP 2012129120 A JP2012129120 A JP 2012129120A
Authority
JP
Japan
Prior art keywords
electrodeposition
magnet wire
tank
conductor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010280992A
Other languages
Japanese (ja)
Other versions
JP5619591B2 (en
Inventor
Hiroyuki Kamibayashi
裕之 上林
Toyokazu Nagato
豊和 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2010280992A priority Critical patent/JP5619591B2/en
Publication of JP2012129120A publication Critical patent/JP2012129120A/en
Application granted granted Critical
Publication of JP5619591B2 publication Critical patent/JP5619591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To efficiently form an electrodeposition coating of a magnet wire, while preventing the elution of copper ions and the like and the generation of oxygen gas.SOLUTION: An electrodeposition coating 8 is gradually thickly formed on a bare copper wire 7, while arranging a plurality of electrodeposition baths 2, 3, and 4 in which an electrode 5 is soaked in electrodeposition varnish 6, applying gradually high voltages to these electrodeposition baths 2, 3, and 4, and causing the bare copper wire (conductor) 7 to pass through the first low voltage electrodeposition bath 2 to the third high voltage electrodeposition bath 4 in sequence.

Description

本発明は、マグネットワイヤの製造方法及びマグネットワイヤの製造装置に関するものである。   The present invention relates to a magnet wire manufacturing method and a magnet wire manufacturing apparatus.

従来より、コイル形に巻かれて使用されるマグネットワイヤ(巻線)が知られている。このマグネットワイヤの製造方法としては、例えば特許文献1のように、電線電着塗料として水分散型電着塗料に少量の水溶性添加剤又は水分散性添加剤を添加したものを用い、裸導線にそれを電着し、次いで有機溶剤又は有機溶剤蒸気で処理した後、焼き付ける電着エナメル電線の製造方法は知られている。   2. Description of the Related Art Conventionally, a magnet wire (winding) used by being wound in a coil shape is known. As a manufacturing method of this magnet wire, for example, as disclosed in Patent Document 1, a wire-dispersed electrodeposition paint in which a small amount of a water-soluble additive or a water-dispersible additive is added to a water-dispersed electrodeposition paint is used. It is known to manufacture electrodeposited enameled wires that are electrodeposited and then baked after treatment with an organic solvent or organic solvent vapor.

特開昭58−97217号公報JP 58-97217 A

しかしながら、例えば図3に示すような従来の電着方式によるマグネットワイヤの製造装置101では、電着ワニス106(電着材料を含む樹脂状の材料を溶媒に溶かした溶液)が充満した電着槽102の中に裸銅線107を通過させる際に電極105に電圧を荷電して電着するが、電着被膜108が形成されて次第に厚くなるに従って絶縁となってしまうために、電気が流れにくくなり電着被膜108が形成されにくくなる。荷電する電圧を高くすることで更に電着被膜108を厚くすることが可能であるが、裸銅線107が電着槽102内に入ったところは電着被膜108がなくて最も電気が流れやすく、その箇所に高電圧を荷電すると電着反応及び水の電気分解反応が激しくなり、裸導線107からの銅イオンの溶出や酸素ガスの発生が多くなることから電着被膜108に悪影響を及ぼす。そのため、このような電着方式では、電着ワニス106のクーロン効率(1クーロンあたりに生成される電着被膜の厚さ)に応じたある一定までの被膜厚さしか形成することができない、という問題があった。   However, in the conventional electrodeposition method magnet wire manufacturing apparatus 101 as shown in FIG. 3, for example, an electrodeposition tank filled with an electrodeposition varnish 106 (a solution obtained by dissolving a resinous material including an electrodeposition material in a solvent). When the bare copper wire 107 is passed through the electrode 102, the electrode 105 is charged with a voltage and is electrodeposited. However, since the electrodeposited film 108 is formed and becomes gradually thicker, it becomes insulative, so that it is difficult for electricity to flow. Therefore, the electrodeposition coating 108 is hardly formed. It is possible to make the electrodeposition film 108 thicker by increasing the voltage to be charged, but when the bare copper wire 107 enters the electrodeposition tank 102, there is no electrodeposition film 108, and electricity flows most easily. When the portion is charged with a high voltage, the electrodeposition reaction and the water electrolysis reaction become intense, and elution of copper ions from the bare conductive wire 107 and generation of oxygen gas increase, which adversely affects the electrodeposition coating 108. Therefore, in such an electrodeposition method, it can be said that only a certain film thickness can be formed according to the coulomb efficiency (the thickness of the electrodeposition film generated per coulomb) of the electrodeposition varnish 106. There was a problem.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、マグネットワイヤの電着被膜を銅イオン等の溶出や酸素ガスの発生を防ぎながら効率よく形成することにある。   This invention is made | formed in view of this point, The place made into the objective is to form efficiently the electrodeposition coating of a magnet wire, preventing elution of copper ion etc. and generation | occurrence | production of oxygen gas.

上記の目的を達成するために、この発明では、複数の電着槽を並べ各電着槽でそれぞれ異なる電圧をかけて電着を多段に行うにした。   In order to achieve the above object, in the present invention, a plurality of electrodeposition tanks are arranged, and different voltages are applied to the electrodeposition tanks to perform electrodeposition in multiple stages.

具体的には、第1の発明では、導体に電着被膜を形成するマグネットワイヤの製造方法を前提とし、
電極が電着ワニスに浸された複数の電着槽を並べ、
上記複数の電着槽に徐々に高い電圧を荷電し、
上記導体を低い電圧の電着槽から高い電圧の電着槽へ順次通過させながら、上記電着被膜を徐々に厚く形成する構成とする。
Specifically, in the first invention, on the premise of a magnet wire manufacturing method for forming an electrodeposition coating on a conductor,
A plurality of electrodeposition baths in which the electrodes are immersed in the electrodeposition varnish are arranged,
Gradually charge a high voltage to the plurality of electrodeposition baths,
The electrodeposition coating is formed so as to gradually increase in thickness while passing the conductor sequentially from a low voltage electrodeposition tank to a high voltage electrodeposition tank.

すなわち、電着被膜は、乾燥及び焼付けにより完全な絶縁体となると、更に電着を行うことはできないが、乾燥前の溶媒が残留している状態であれば、更に電着を行うことができる。最初の電着槽の入口付近では導体の状態にあって電着が行いやすいので、低い電圧を荷電して電着被膜を薄目に形成し、次いで、一定の電着被膜が形成された状態の銅線を電着被膜が乾ききらないうちに、すなわち加熱処理などを行うことなく、次のより高い電圧が荷電された電着槽に通過させ、薄目の電着被膜の上から更に電着被膜を形成する。2番目以降の電着槽では、導体はすでにある程度電着被膜に覆われているので、高めの電圧をかけても銅イオン等が溶出したり酸素ガスが発生したりしにくい。このように、順次高い電圧が荷電された電着槽に銅線を通過させることにより、必要以上に高い電圧を荷電して銅イオン等を溶出させたり酸素ガスの発生させたりすることなく、厚い電着被膜が形成される。なお、導体としては、銅、アルミニウム、銅合金、銅クラッドアルミニウム、ニッケルメッキ銅等の良導電性金属を用いるとよい。   That is, when the electrodeposition film becomes a complete insulator by drying and baking, it cannot be further electrodeposited, but can be further electrodeposited if the solvent before drying remains. . In the vicinity of the entrance of the first electrodeposition tank, it is easy to perform electrodeposition because it is in a conductor state, so a low voltage is charged to form a thin electrodeposition film, and then a certain electrodeposition film is formed. The copper wire is passed through the electrodeposition tank charged with the next higher voltage before the electrodeposition film is completely dried, that is, without heat treatment, and the electrodeposition film is further applied from above the thin electrodeposition film. Form. In the second and subsequent electrodeposition tanks, the conductor is already covered to some extent by the electrodeposition coating, so that it is difficult for copper ions to elute or oxygen gas to be generated even when a high voltage is applied. In this way, by passing the copper wire sequentially through the electrodeposition tank charged with a high voltage, it is thick without charging a higher voltage than necessary to elute copper ions or the like or generating oxygen gas. An electrodeposition coating is formed. As the conductor, a highly conductive metal such as copper, aluminum, copper alloy, copper clad aluminum, or nickel plated copper may be used.

第2の発明では、第1の発明において、
上記電着ワニスの濃度を荷電する電圧に合わせて徐々に大きくする。
In the second invention, in the first invention,
The concentration of the electrodeposition varnish is gradually increased according to the charged voltage.

上記の構成によると、2つめの電着槽から電着被膜が徐々に厚くなるので、段々と電着被膜を形成しにくくなるが、電着ワニスの濃度をそれに合わせて高くすることで、できるだけ荷電する電圧を高くしないようにして銅イオン等の溶出や酸素ガスの発生を防止しながら効率よく厚い電着被膜が形成される。   According to the above configuration, since the electrodeposition film gradually becomes thicker from the second electrodeposition tank, it becomes difficult to form the electrodeposition film gradually, but by increasing the concentration of the electrodeposition varnish accordingly, as much as possible A thick electrodeposition film is efficiently formed while preventing elution of copper ions and the generation of oxygen gas without increasing the charging voltage.

第3の発明では、導体に電着被膜を形成するマグネットワイヤの製造装置を対象とし、
上記製造装置は、
電着ワニスが収容された複数の電着槽と、
上記複数の電着槽の電着ワニスにそれぞれ浸され、各電着槽ごとに低い電圧から高い電圧まで荷電される電極と、
低い電圧が荷電された電極を有する電着槽から高い電圧が荷電された電極を有する電着槽へ順番に導体を通過させる導体繰出装置とを備える構成とする。
The third invention is directed to a magnet wire manufacturing apparatus for forming an electrodeposited coating on a conductor,
The manufacturing apparatus is
A plurality of electrodeposition tanks containing electrodeposition varnishes;
Electrodes immersed in the electrodeposition varnishes of the plurality of electrodeposition tanks, and charged from a low voltage to a high voltage for each electrodeposition tank;
And a conductor feeding device for sequentially passing a conductor from an electrodeposition tank having an electrode charged with a low voltage to an electrodeposition tank having an electrode charged with a high voltage.

すなわち、電着被膜は、乾燥及び焼付けにより完全な絶縁体となると、更に電着を行うことはできないが、乾燥前の溶媒が残留している状態であれば、更に電着を行うことができる。最初の電着槽の入口付近では導体の状態にあって電着が行いやすいので、低い電圧を荷電して電着被膜を薄目に形成し、次いで、一定の電着被膜が形成された状態の銅線を電着被膜が乾ききらないうちに、すなわち加熱処理などを行うことなく、導体繰出装置によって次のより高い電圧が荷電された電着槽に通過させ、薄目の電着被膜の上から更に電着被膜を形成する。2番目以降の電着槽では、導体はすでに電着被膜に覆われているので、高めの電圧をかけても銅イオン等が溶出したり酸素ガスが発生したりしにくい。このように、導体繰出装置によって順次高い電圧が荷電された電着槽に銅線を通過させることにより、必要以上に高い電圧を荷電して銅イオン等を溶出させたり酸素ガスの発生させたりすることなく、厚い電着被膜が形成される。   That is, when the electrodeposition film becomes a complete insulator by drying and baking, it cannot be further electrodeposited, but can be further electrodeposited if the solvent before drying remains. . In the vicinity of the entrance of the first electrodeposition tank, it is easy to perform electrodeposition because it is in a conductor state, so a low voltage is charged to form a thin electrodeposition film, and then a certain electrodeposition film is formed. The copper wire is passed through the electrodeposition tank charged with the next higher voltage by the conductor feeding device before the electrodeposition coating is completely dried, that is, without performing a heat treatment, etc., and from above the thin electrodeposition coating. Furthermore, an electrodeposition film is formed. In the second and subsequent electrodeposition tanks, since the conductor is already covered with the electrodeposition film, it is difficult for copper ions or the like to elute or to generate oxygen gas even when a high voltage is applied. In this way, by passing the copper wire through the electrodeposition tank charged sequentially with a high voltage by the conductor feeding device, the voltage is charged higher than necessary to elute copper ions and generate oxygen gas. Without forming a thick electrodeposition film.

以上説明したように、本発明によれば、複数の電着槽に徐々に高い電圧を荷電し、導体を低い電圧の電着槽から高い電圧の電着槽へ順次通過させるようにしたことにより、マグネットワイヤの電着被膜を銅イオン等の溶出や酸素ガスの発生を防ぎながら効率よく形成することができるので、品質が高く製造コストの安いマグネットワイヤが得られる。   As described above, according to the present invention, a plurality of electrodeposition tanks are gradually charged with a high voltage, and a conductor is sequentially passed from a low voltage electrodeposition tank to a high voltage electrodeposition tank. In addition, since the electrodeposition film of the magnet wire can be efficiently formed while preventing elution of copper ions and the like and generation of oxygen gas, a magnet wire with high quality and low manufacturing cost can be obtained.

本発明のマグネットワイヤの製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the magnet wire of this invention. 本発明のマグネットワイヤの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the magnet wire of this invention. 従来のマグネットワイヤの製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the conventional magnet wire.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態のマグネットワイヤの製造方法を行うための製造装置1を示し、この製造装置1は、複数の電着槽2,3,4を有し、各電着槽2,3,4には、電極5が設けられ、この電極5が電着ワニス6に浸されている。各電極5には、電源10,11,12の陽極が接続され、導体としての裸銅線7には、電源10,11,12の陰極が接続されている。なお、図1では、電着槽の数は、3つとしているが、2つ以上であればいくつでもよい。導体としては、他にアルミニウム、銅合金、銅クラッドアルミニウム、ニッケルメッキ銅等の良導電性金属を用いることができる。   FIG. 1 shows a manufacturing apparatus 1 for performing a method of manufacturing a magnet wire according to an embodiment of the present invention. This manufacturing apparatus 1 has a plurality of electrodeposition tanks 2, 3, 4. 3 and 4 are provided with an electrode 5, which is immersed in an electrodeposition varnish 6. Each electrode 5 is connected to anodes of power supplies 10, 11, and 12, and a bare copper wire 7 as a conductor is connected to cathodes of power supplies 10, 11, and 12. In FIG. 1, the number of electrodeposition tanks is three, but any number of electrodeposition tanks may be used as long as it is two or more. As the conductor, a highly conductive metal such as aluminum, copper alloy, copper clad aluminum, or nickel-plated copper can be used.

電着ワニス6は、裸銅線7に荷電したときに電着被膜8がつきやすく、電着被膜8が形成されると絶縁となるものであれば特に限定されないが、例えば、アクリル系、エポキシ系、ポリエステル系、ウレタン系、ポリイミド系などの樹脂を含むものが用いられる。ポリイミド樹脂は、耐熱性が高く電気絶縁性が良好で、機械的強度が高いという利点がある。アクリル樹脂及びエポキシ樹脂は、耐熱性が低いが機械的強度が高い。ウレタン樹脂及びポリエステル樹脂は、耐熱性が低いが、熱で分解しやすいので剥離しやすい。   The electrodeposition varnish 6 is not particularly limited as long as the electrodeposition coating 8 is easily attached when the bare copper wire 7 is charged, and becomes insulating when the electrodeposition coating 8 is formed. A resin containing a resin such as a polyester, a polyester, a urethane, or a polyimide is used. Polyimide resins have the advantages of high heat resistance, good electrical insulation, and high mechanical strength. Acrylic resins and epoxy resins have low heat resistance but high mechanical strength. Urethane resins and polyester resins have low heat resistance, but are easy to peel off because they are easily decomposed by heat.

各電着槽2,3,4における裸銅線7が進む方向の長さは、例えば20cm程度の比較的短いものが使用される。   The length in the direction in which the bare copper wire 7 travels in each electrodeposition tank 2, 3, 4 is, for example, a relatively short length of about 20 cm.

荷電する電圧は、例えば、電源10,11,12を10V、20V、30Vに調整することにより、第1電着槽2が10V、第2電着槽3が20V及び第3電着槽4が30Vに設定される。電圧を上昇させる程度は、電着槽2,3,4の数が増えるほど緩やかにするとよい。電圧の増加に合わせて電着ワニス6の濃度を第1電着槽2から第3電着槽4にかけて徐々に高くしてもよい。   For example, by adjusting the power supplies 10, 11, and 12 to 10V, 20V, and 30V, the first electrodeposition tank 2 is 10V, the second electrodeposition tank 3 is 20V, and the third electrodeposition tank 4 is charged. Set to 30V. The degree to which the voltage is increased should be moderate as the number of electrodeposition tanks 2, 3, and 4 increases. The concentration of the electrodeposition varnish 6 may be gradually increased from the first electrodeposition tank 2 to the third electrodeposition tank 4 as the voltage increases.

裸銅線7は、例えば、外径が0.1〜2.0mmのもので、裸銅線7が巻かれた導体繰出装置9により、例えば、5〜10m/minの速度で繰り出される。電着被膜8が形成されたマグネットワイヤは、図示しない乾燥装置や焼付装置で完全に乾燥され、焼付けされた上で巻取装置に巻き取られる。各電着槽2,3,4間の距離は、常温で電着ワニス6内の溶媒が乾燥しきらないように設定すればよい。電着被膜8の厚さは、例えば5〜30μmである。   The bare copper wire 7 has an outer diameter of, for example, 0.1 to 2.0 mm, and is drawn out at a speed of, for example, 5 to 10 m / min by a conductor feeding device 9 around which the bare copper wire 7 is wound. The magnet wire on which the electrodeposited film 8 is formed is completely dried by a drying device or a printing device (not shown), and after being baked, it is wound on a winding device. What is necessary is just to set the distance between each electrodeposition tank 2,3,4 so that the solvent in the electrodeposition varnish 6 may not dry completely at normal temperature. The thickness of the electrodeposition coating 8 is, for example, 5 to 30 μm.

−マグネットワイヤの製造方法−
次に、本実施形態にかかるマグネットワイヤの製造方法について説明する。
-Manufacturing method of magnet wire-
Next, the manufacturing method of the magnet wire concerning this embodiment is demonstrated.

まず、図2に示すように、ステップS01において、最初に電極5がそれぞれ電着ワニス6に浸された複数の電着槽2,3,4と裸銅線7を繰り出す導体繰出装置9とを準備する。   First, as shown in FIG. 2, in step S01, a plurality of electrodeposition tanks 2, 3, and 4 in which the electrode 5 is first immersed in the electrodeposition varnish 6 and a conductor feeding device 9 that feeds the bare copper wire 7 are provided. prepare.

例えば、3つの電着槽2,3,4に徐々に高い電圧(10V、20V、30V)を荷電する。つまり、裸銅線7に、電圧10V、20V、30Vをそれぞれ発生させる電源10,11,12のマイナス側を接続し、プラス側を各電着槽2,3,4の電極5に接続する。   For example, the three electrodeposition tanks 2, 3 and 4 are gradually charged with a high voltage (10V, 20V, 30V). That is, the negative side of the power supplies 10, 11 and 12 for generating voltages 10V, 20V and 30V, respectively, is connected to the bare copper wire 7, and the positive side is connected to the electrodes 5 of the electrodeposition tanks 2, 3 and 4.

次いで、ステップ02〜04において、裸銅線7を例えば、5〜10m/分の速度で繰り出し、低い電圧の第1電着槽2から高い電圧の第3電着槽4へ順次通過させる。   Next, in steps 02 to 04, the bare copper wire 7 is fed out at a speed of, for example, 5 to 10 m / min, and sequentially passed from the first electrodeposition tank 2 having a low voltage to the third electrodeposition tank 4 having a high voltage.

まずステップS02の第1電着工程において、第1電着槽2に入った裸銅線7は、10Vの電圧が荷電された電極5との電位差により、徐々に電着被膜8が形成され、この電着被膜8の厚さは第1電着槽2の出口付近で最も厚くなる。第1電着槽2の入口付近では、裸銅線7には絶縁物が被膜されていないことから、過剰な電着反応及び水の電気分解反応が発生しやすいが、電極5の電圧を10Vに抑えているので、銅イオンや酸素ガスの発生が抑えられる。   First, in the first electrodeposition process of step S02, the bare copper wire 7 entering the first electrodeposition tank 2 is gradually formed with an electrodeposition film 8 due to a potential difference with the electrode 5 charged with a voltage of 10V, The thickness of this electrodeposition coating 8 is the thickest in the vicinity of the outlet of the first electrodeposition tank 2. In the vicinity of the entrance of the first electrodeposition tank 2, the bare copper wire 7 is not coated with an insulator, so that an excessive electrodeposition reaction and an electrolysis reaction of water are likely to occur, but the voltage of the electrode 5 is set to 10V. Therefore, the generation of copper ions and oxygen gas can be suppressed.

次いで、ステップS03の第2電着工程において、裸銅線7に形成された電着被膜8の溶媒が乾燥しきらないうちに素早く、すなわち加熱することなく常温で第2電着槽3に被膜された裸銅線7を通過させる。つまり、電着被膜8は、乾燥及び焼付けにより完全な絶縁体となると、更に電着を行うことはできないが、乾燥前の溶媒が残留している状態であれば、更に電着を行うことができる。このとき、裸銅線7は、すでに一定厚さの電着被膜8が形成されているので、若干電着反応が起こりにくくなっている。このため、第2電着槽3では、電極5に第1電着槽2よりも高い電圧である20Vの電圧を荷電しても、過剰な電着反応及び水の電気分解反応が発生することなく、更に電着被膜8が形成される。   Next, in the second electrodeposition step of step S03, the film of the electrodeposition coating 8 formed on the bare copper wire 7 is quickly coated on the second electrodeposition bath 3 at room temperature without drying, that is, without heating. The bare copper wire 7 is passed through. That is, when the electrodeposition coating 8 becomes a complete insulator by drying and baking, it cannot be further electrodeposited, but can be further electrodeposited if the solvent before drying remains. it can. At this time, since the electrodeposition coating 8 having a certain thickness is already formed on the bare copper wire 7, the electrodeposition reaction is slightly less likely to occur. For this reason, in the second electrodeposition tank 3, even when the electrode 5 is charged with a voltage of 20 V, which is higher than that of the first electrodeposition tank 2, an excessive electrodeposition reaction and an electrolysis reaction of water occur. In addition, the electrodeposition film 8 is further formed.

次いで、ステップS04の第3電着工程において、裸銅線7に更に厚く形成された電着被膜8の溶媒が乾燥しきらないうちに被覆された裸銅線7を素早く第3電着槽4に通過させる。ここでも、常温で加熱等を行わなければ溶媒が乾ききることはない。この裸銅線7は、更に厚い電着被膜8が形成されているので、更に電着反応が起こりにくくなっている。第3電着槽4では、電極5に第2電着槽3よりも高い電圧である30Vの電圧が荷電されているが、このときもすで電着被膜8が形成されているので、過剰な電着反応及び水の電気分解反応が発生することなく、更に電着被膜8が形成される。   Next, in the third electrodeposition step of step S04, the bare copper wire 7 coated before the solvent of the electrodeposition coating 8 formed thicker on the bare copper wire 7 is completely dried is quickly applied to the third electrodeposition tank 4. To pass through. Again, the solvent will not dry out unless heated at room temperature. Since this bare copper wire 7 has a thicker electrodeposition coating 8, an electrodeposition reaction is less likely to occur. In the third electrodeposition tank 4, the electrode 5 is charged with a voltage of 30V, which is higher than that of the second electrodeposition tank 3, but since the electrodeposition film 8 is already formed at this time, it is excessive. Further, the electrodeposition coating 8 is formed without causing any electrodeposition reaction and water electrolysis reaction.

次いで、ステップS05の洗浄工程において、有機溶剤を収容した溶剤槽(図示せず)中を通過させる。有機溶剤としては、乾燥及び焼付け前の半硬化状態又はその状態に至る前の電着被膜8を膨潤又は溶解するものが用いられる。この洗浄工程は必須ではない。   Next, in a cleaning process in step S05, the organic solvent is passed through a solvent tank (not shown). As the organic solvent, a solvent which swells or dissolves the electrodeposition coating 8 before being dried or baked or before reaching the state is used. This washing step is not essential.

次いで、ステップS06の乾燥工程において、洗浄後のマグネットワイヤを乾燥装置(図示せず)に導入する。これにより、洗浄後のマグネットワイヤが加熱され、電着被膜8中の有機溶剤及び水が蒸発除去される。乾燥装置の温度は有機溶剤の種類によって適宜選択することができるが、一般に約60〜300℃、好ましくは約100〜250℃である。乾燥工程又は、その前段階において、液体の蒸発の促進と、又は電着被膜8の半硬化又は完全硬化を同時に行うために、例えば約200〜500℃の高温処理を適用してもよい。   Next, in the drying process of step S06, the magnet wire after cleaning is introduced into a drying device (not shown). Thereby, the magnet wire after washing is heated, and the organic solvent and water in the electrodeposition coating 8 are removed by evaporation. Although the temperature of a drying apparatus can be suitably selected according to the kind of organic solvent, generally it is about 60-300 degreeC, Preferably it is about 100-250 degreeC. In order to simultaneously promote the evaporation of the liquid or the semi-curing or complete curing of the electrodeposition coating 8 in the drying step or in the previous stage, for example, a high temperature treatment of about 200 to 500 ° C. may be applied.

次いで、ステップS07の焼付工程において、焼付炉(図示せず)にて電着被膜8を硬化処理して電着被膜8を完成させる。焼付温度は通常100〜700℃、好ましくは150〜600℃、より好ましくは170〜300℃である。また、乾燥工程と焼付工程は一連の加熱装置を介して行ってもよい。   Next, in the baking step of step S07, the electrodeposition coating 8 is cured by a baking furnace (not shown) to complete the electrodeposition coating 8. The baking temperature is usually 100 to 700 ° C, preferably 150 to 600 ° C, more preferably 170 to 300 ° C. Moreover, you may perform a drying process and a baking process through a series of heating apparatuses.

このようにして、裸銅線7上に厚く電着被膜8が形成されたマグネットワイヤが得られ、得られたマグネットワイヤは、巻取り機(図示せず)により巻き取られる。   In this way, a magnet wire having a thick electrodeposition coating 8 formed on the bare copper wire 7 is obtained, and the obtained magnet wire is wound up by a winder (not shown).

このように、電着槽を3つに分割し、各電着槽2,3,4の裸銅線7の進む方向の長さが20cm程度の短い長さに保たれていることも、銅イオンや酸素ガスの発生の防止に役立っている。すなわち、各電着槽2,3,4の長さが長くなると、電着被膜8の厚さの差が大きくなって場所によって流れる電流の差が大きくなり、各電着槽2,3,4の入口付近で電着反応及び水の電気分解反応が激しくなり、銅イオンや酸素ガスが多く発生するという問題が生じるが、この問題が各電着槽2,3,4の長さを短くすることで回避されている。   Thus, the electrodeposition tank is divided into three, and the length in the direction in which the bare copper wire 7 of each electrodeposition tank 2, 3, 4 travels is kept as short as about 20 cm. It helps to prevent the generation of ions and oxygen gas. That is, as the length of each electrodeposition tank 2, 3, 4 increases, the difference in thickness of the electrodeposition coating 8 increases, and the difference in current flowing depending on the location increases. The electrodeposition reaction and water electrolysis reaction become intense near the entrance of the steel, and there is a problem that a large amount of copper ions and oxygen gas is generated. This problem shortens the length of each electrodeposition tank 2, 3, 4 Has been avoided.

各電着槽2,3,4の長さが短くなった分、電着槽2,3,4の数を増やすことにより、電圧を必要以上に上げることなく、従来と同じ厚さの電着被膜8が得られる。   By increasing the number of electrodeposition tanks 2, 3, and 4, the length of each electrodeposition tank 2, 3, 4 is reduced, so that the electrodeposition of the same thickness as before can be performed without increasing the voltage more than necessary. A coating 8 is obtained.

また、各電着槽2,3,4内で裸銅線7に流れる電流の差が小さく保たれるので、銅イオンや酸素ガスの発生を抑えながら高い電圧を加えることもでき、従来よりも厚い電着被膜8を形成することが可能となる。   In addition, since the difference in current flowing through the bare copper wire 7 in each electrodeposition tank 2, 3, 4 is kept small, it is possible to apply a high voltage while suppressing the generation of copper ions and oxygen gas. A thick electrodeposition coating 8 can be formed.

また、電着ワニス6の濃度を荷電する電圧に合わせて徐々に大きくした場合には、第2電着槽3から電着被膜8が徐々に厚くなるので、徐々に電着被膜8を形成しにくくなるが、電着ワニス6の濃度をそれに合わせて高くすることで、できるだけ荷電する電圧を高くしないようにして銅イオンの溶出や酸素ガスの発生を防止しながら効率よく厚い電着被膜8を形成することができる。   Further, when the concentration of the electrodeposition varnish 6 is gradually increased in accordance with the voltage to be charged, the electrodeposition coating 8 is gradually thickened from the second electrodeposition tank 3, so that the electrodeposition coating 8 is gradually formed. Although it becomes difficult, by increasing the concentration of the electrodeposition varnish 6 accordingly, a thick electrodeposition coating 8 can be efficiently formed while preventing the elution of copper ions and the generation of oxygen gas by preventing the charging voltage from being increased as much as possible. Can be formed.

したがって、本実施形態にかかるマグネットワイヤの製造方法によると、複数の電着槽2,3,4に徐々に高い電圧を荷電し、裸銅線7を進行方向の長さが短く保たれた、低い電圧の第1電着槽2から高い電圧の第3電着槽4へ順次通過させるようにしたので、マグネットワイヤの電着被膜8を銅イオンの溶出や酸素ガスの発生を防ぎながら効率よく形成することができる。このため、電着被膜8への悪影響が最小限に抑えられるので、品質が高く製造コストの安いマグネットワイヤが得られる。   Therefore, according to the method for manufacturing a magnet wire according to the present embodiment, a plurality of electrodeposition tanks 2, 3 and 4 are gradually charged with a high voltage, and the length of the bare copper wire 7 in the traveling direction is kept short. Since the low-voltage first electrodeposition tank 2 is sequentially passed through the high-voltage third electrodeposition tank 4, the electrodeposition coating 8 of the magnet wire is efficiently prevented while preventing elution of copper ions and generation of oxygen gas. Can be formed. For this reason, since the adverse effect on the electrodeposition coating 8 is minimized, a magnet wire with high quality and low manufacturing cost can be obtained.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or a use.

以上説明したように、本発明は、マグネットワイヤの製造方法及びマグネットワイヤの製造装置について有用である。   As described above, the present invention is useful for a magnet wire manufacturing method and a magnet wire manufacturing apparatus.

1 製造装置
2 第1電着槽
3 第2電着槽
4 第3電着槽
5 電極
6 電着ワニス
7 裸銅線
8 電着被膜
9 導体繰出装置
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 1st electrodeposition tank 3 2nd electrodeposition tank 4 3rd electrodeposition tank 5 Electrode 6 Electrodeposition varnish 7 Bare copper wire 8 Electrodeposition coating 9 Conductor feeding apparatus

Claims (3)

導体に電着被膜を形成するマグネットワイヤの製造方法において、
電極が電着ワニスに浸された複数の電着槽を並べ、
上記複数の電着槽に徐々に高い電圧を荷電し、
上記導体を低い電圧の電着槽から高い電圧の電着槽へ順次通過させながら、上記電着被膜を徐々に厚く形成する
ことを特徴とするマグネットワイヤの製造方法。
In the method of manufacturing a magnet wire for forming an electrodeposition film on a conductor,
A plurality of electrodeposition baths in which the electrodes are immersed in the electrodeposition varnish are arranged,
Gradually charge a high voltage to the plurality of electrodeposition baths,
A method for producing a magnet wire, characterized in that the electrodeposition coating is formed gradually thick while the conductor is sequentially passed from a low voltage electrodeposition tank to a high voltage electrodeposition tank.
請求項1に記載のマグネットワイヤの製造方法において、
上記電着ワニスの濃度を荷電する電圧に合わせて徐々に大きくする
ことを特徴とするマグネットワイヤの製造方法。
In the manufacturing method of the magnet wire of Claim 1,
A method for producing a magnet wire, characterized in that the concentration of the electrodeposition varnish is gradually increased in accordance with the charged voltage.
導体に電着被膜を形成するマグネットワイヤの製造装置において、
電着ワニスが収容された複数の電着槽と、
上記複数の電着槽の電着ワニスにそれぞれ浸され、各電着槽ごとに低い電圧から高い電圧まで荷電される電極と、
低い電圧が荷電された電極を有する電着槽から高い電圧が荷電された電極を有する電着槽へ順番に導体を通過させる導体繰出装置とを備える
ことを特徴とするマグネットワイヤの製造装置。
In a magnet wire manufacturing apparatus that forms an electrodeposition coating on a conductor,
A plurality of electrodeposition tanks containing electrodeposition varnishes;
Electrodes immersed in the electrodeposition varnishes of the plurality of electrodeposition tanks, and charged from a low voltage to a high voltage for each electrodeposition tank;
An apparatus for producing a magnet wire, comprising: a conductor feeding device for sequentially passing a conductor from an electrodeposition tank having an electrode charged with a low voltage to an electrodeposition tank having an electrode charged with a high voltage.
JP2010280992A 2010-12-16 2010-12-16 Magnet wire manufacturing method and magnet wire manufacturing apparatus Expired - Fee Related JP5619591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280992A JP5619591B2 (en) 2010-12-16 2010-12-16 Magnet wire manufacturing method and magnet wire manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280992A JP5619591B2 (en) 2010-12-16 2010-12-16 Magnet wire manufacturing method and magnet wire manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2012129120A true JP2012129120A (en) 2012-07-05
JP5619591B2 JP5619591B2 (en) 2014-11-05

Family

ID=46645924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280992A Expired - Fee Related JP5619591B2 (en) 2010-12-16 2010-12-16 Magnet wire manufacturing method and magnet wire manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5619591B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160304A (en) * 2011-01-31 2012-08-23 Mitsubishi Cable Ind Ltd Manufacturing method and apparatus of insulation wire
WO2018173608A1 (en) * 2017-03-22 2018-09-27 三菱マテリアル株式会社 Insulated electric wire, production method therefor, coil and coil production method using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849826A (en) * 1971-10-27 1973-07-13
JPS4843708B1 (en) * 1970-02-14 1973-12-20
JPH09511024A (en) * 1994-03-29 1997-11-04 ユナイテッド テクノロジーズ コーポレイション Electrophoretic process for depositing multilayer coatings on fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843708B1 (en) * 1970-02-14 1973-12-20
JPS4849826A (en) * 1971-10-27 1973-07-13
JPH09511024A (en) * 1994-03-29 1997-11-04 ユナイテッド テクノロジーズ コーポレイション Electrophoretic process for depositing multilayer coatings on fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160304A (en) * 2011-01-31 2012-08-23 Mitsubishi Cable Ind Ltd Manufacturing method and apparatus of insulation wire
WO2018173608A1 (en) * 2017-03-22 2018-09-27 三菱マテリアル株式会社 Insulated electric wire, production method therefor, coil and coil production method using same
JP2018160317A (en) * 2017-03-22 2018-10-11 三菱マテリアル株式会社 Insulated wire, manufacturing method thereof, coil manufacturing method using the same, and coil
US11581127B2 (en) 2017-03-22 2023-02-14 Mitsubishi Materials Corporation Insulated electric wire, production method therefor, coil and coil production method using same

Also Published As

Publication number Publication date
JP5619591B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
US9508461B2 (en) Polymeric overcoated anodized wire
US6261437B1 (en) Anode, process for anodizing, anodized wire and electric device comprising such anodized wire
JP5619591B2 (en) Magnet wire manufacturing method and magnet wire manufacturing apparatus
US2085995A (en) Insulated electrical conductor and process of making same
JP2009024242A (en) Plating device for metal pipe, and plating method for metal pipe
RU2588703C2 (en) Method for formation of insulating coating on a conductor
JP6907809B2 (en) Insulated flat conductor with high aspect ratio, its manufacturing method and coil
US3729389A (en) Method of electroplating discrete conductive regions
TW201841985A (en) Insulated electric wire, method of producing insulated wire, and coil
JP5198790B2 (en) Insulated wire
EP3093376B1 (en) Process for continuous electrochemical tinning of an aluminium wire
CN210575151U (en) Water-resistant winding wire
KR101690299B1 (en) manufacturing method of Aluminum electric wire with oxide layer
CN110580975A (en) water-resistant winding wire and manufacturing method thereof
RU2603758C1 (en) Method of enamelled wires making
WO2021020382A1 (en) Insulated superconductive wire, production method for insulated superconductive wire, superconductive coil, and channel for insulated superconductive wire
WO2021020386A1 (en) Insulating superconducting wire material, method of manufacturing insulating superconducting wire material, and superconducting coil
JP2022139309A (en) Apparatus and method for manufacturing insulation coated conductor
CN108538515A (en) A kind of enameled wire machining technique
JP2002298674A (en) Manufacturing method of insulation wire and insulation wire
JP2010108838A (en) Wiring cable and method of manufacturing the same
JPH03159014A (en) Manufacture of flat and square insulated cable
CN114038621A (en) Copper oxide insulated round copper wire and preparation method and application thereof
JP2005248318A (en) Wire rod for acoustic purpose, ic, keyless entry system, miniature motor winding, speaker voice coil, transmission line, and electrical machinery component
WO2012081257A1 (en) Insulating member and method for producing same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees